101
|
Zhang K, Zhu X, Durst S, Hohenberger P, Han MJ, An G, Sahi VP, Riemann M, Nick P. A rice tubulin tyrosine ligase-like 12 protein affects the dynamic and orientation of microtubules. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:848-864. [PMID: 33336892 DOI: 10.1111/jipb.13059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The detyrosination/retyrosination cycle is the most common post-translational modification of α-tubulin. Removal of the conserved C-terminal tyrosine of α-tubulin by a still elusive tubulin tyrosine carboxypeptidase, and religation of this tyrosine by a tubulin tyrosine ligase (TTL), are probably common to all eukaryotes. Interestingly, for plants, the only candidates qualifying as potential TTL homologs are the tubulin tyrosine ligase-like 12 proteins. To get insight into the biological functions of these potential TTL homologs, we cloned the rice TTL-like 12 protein (OsTTLL12) and generated overexpression OsTTLL12-RFP lines in both rice and tobacco BY-2 cells. We found, unexpectedly, that overexpression of this OsTTLL12-RFP increased the relative abundance of detyrosinated α-tubulin in both coleoptile and seminal root, correlated with more stable microtubules. This was independent of the respective orientation of cortical microtubule, and followed by correspondingly changing growth of coleoptiles and seminal roots. A perturbed organization of phragmoplast microtubules and disoriented cell walls were further characteristics of this phenotype. Thus, the elevated tubulin detyrosination in consequence of OsTTLL12 overexpression affects structural and dynamic features of microtubules, followed by changes in the axiality of cell plate deposition and, consequently, plant growth.
Collapse
Affiliation(s)
- Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Steffen Durst
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Petra Hohenberger
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Min-Jung Han
- Aptamer Initiative, Postech Biotech Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do, 37673, South Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotech, Kyung Hee University, Yongin, 446-701, South Korea
| | - Vaidurya P Sahi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
102
|
May EA, Kalocsay M, D'Auriac IG, Schuster PS, Gygi SP, Nachury MV, Mick DU. Time-resolved proteomics profiling of the ciliary Hedgehog response. J Cell Biol 2021; 220:211991. [PMID: 33856408 PMCID: PMC8054476 DOI: 10.1083/jcb.202007207] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid, and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein-coupled receptor GPR161 in response to Hedgehog, and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the phosphatase Paladin as a cell type-specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA.,Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Inès Galtier D'Auriac
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Patrick S Schuster
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Maxence V Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - David U Mick
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling, Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
103
|
Motility Plays an Important Role in the Lifetime of Mammalian Lipid Droplets. Int J Mol Sci 2021; 22:ijms22083802. [PMID: 33916886 PMCID: PMC8067576 DOI: 10.3390/ijms22083802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/31/2023] Open
Abstract
The lipid droplet is a kind of organelle that stores neutral lipids in cells. Recent studies have found that in addition to energy storage, lipid droplets also play an important role in biological processes such as resistance to stress, immunity, cell proliferation, apoptosis, and signal transduction. Lipid droplets are formed at the endoplasmic reticulum, and mature lipid droplets participate in various cellular processes. Lipid droplets are decomposed by lipase and lysosomes. In the life of a lipid droplet, the most important thing is to interact with other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and autophagic lysosomes. The interaction between lipid droplets and other organelles requires them to be close to each other, which inevitably involves the motility of lipid droplets. In fact, through many microscopic observation techniques, researchers have discovered that lipid droplets are highly dynamic organelles that move quickly. This paper reviews the process of lipid droplet motility, focusing on explaining the molecular basis of lipid droplet motility, the factors that regulate lipid droplet motility, and the influence of motility on the formation and decomposition of lipid droplets. In addition, this paper also proposes several unresolved problems for lipid droplet motility. Finally, this paper makes predictions about the future research of lipid droplet motility.
Collapse
|
104
|
Kesarwani S, Lama P, Chandra A, Reddy PP, Jijumon AS, Bodakuntla S, Rao BM, Janke C, Das R, Sirajuddin M. Genetically encoded live-cell sensor for tyrosinated microtubules. J Cell Biol 2021; 219:152071. [PMID: 32886100 PMCID: PMC7659708 DOI: 10.1083/jcb.201912107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions. Using a yeast display library, we identified a binder against terminal tyrosine of α-tubulin, a unique PTM site. Extensive characterization validates the robustness and nonperturbing nature of our binder as tyrosination sensor, a live-cell tubulin nanobody specific towards tyrosinated microtubules. Using this sensor, we followed nocodazole-, colchicine-, and vincristine-induced depolymerization events of tyrosinated microtubules in real time and found each distinctly perturbs the microtubule polymer. Together, our work describes a novel tyrosination sensor and its potential applications to study the dynamics of microtubule and their PTM processes in living cells.
Collapse
Affiliation(s)
- Shubham Kesarwani
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Lama
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anchal Chandra
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - P Purushotam Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - A S Jijumon
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| |
Collapse
|
105
|
Koyanagi T, Saga Y, Takahashi Y, Tamura K, Yoshiba T, Takahashi S, Taneichi A, Takei Y, Urabe M, Mizukami H, Fujiwara H. Knockout of vasohibin-2 reduces tubulin carboxypeptidase activity and increases paclitaxel sensitivity in ovarian cancer. Cancer Med 2021; 10:2732-2739. [PMID: 33710778 PMCID: PMC8026928 DOI: 10.1002/cam4.3841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/21/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Vasohibin-1 (VASH1) is a VEGF-inducible endothelium-derived angiogenesis inhibitor, and vasohibin-2 (VASH2), its homolog, exhibits proangiogenic activity. VASH2 is expressed by various cancer cells and accelerates tumor angiogenesis and progression. VASH2 was recently shown to exhibit tubulin carboxypeptidase (TCP) activity related to microtubule functions. Paclitaxel (PTX), an effective chemotherapeutic agent that is widely used to treat ovarian cancer, inhibits microtubule depolymerization and may interact with VASH2. We herein established several VASH2 knockout ovarian cancer cell lines using the CRISPR/Cas9 genome editing system to examine the intracellular tubulin detyrosination status and PTX chemosensitivity. The knockout of VASH2 did not affect the proliferation or sphere-forming activity of ovarian cancer cells in vitro. A Western blot analysis of VASH2 knockout cells revealed the weak expression of detyrosinated tubulin and upregulated expression of cyclin B1. The knockout of VASH2 significantly increased chemosensitivity to PTX, but not to cisplatin in ovarian cancer cell lines. The knockout of VASH2 reduced TCP activity and increased cyclin B1 expression, resulting in increased PTX chemosensitivity in ovarian cancer cells. The inhibition of angiogenesis and regulation of microtubule activity may be achieved in ovarian cancer treatment strategies targeting VASH2.
Collapse
Affiliation(s)
- Takahiro Koyanagi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasushi Saga
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshifumi Takahashi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kohei Tamura
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takahiro Yoshiba
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Suzuyo Takahashi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akiyo Taneichi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yuji Takei
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masashi Urabe
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
106
|
de Oliveira MB, Meier K, Jung S, Bartels-Klein E, Coxam B, Geudens I, Szymborska A, Skoczylas R, Fechner I, Koltowska K, Gerhardt H. Vasohibin 1 selectively regulates secondary sprouting and lymphangiogenesis in the zebrafish trunk. Development 2021; 148:dev194993. [PMID: 33547133 PMCID: PMC7904002 DOI: 10.1242/dev.194993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023]
Abstract
Previous studies have shown that Vasohibin 1 (Vash1) is stimulated by VEGFs in endothelial cells and that its overexpression interferes with angiogenesis in vivo Recently, Vash1 was found to mediate tubulin detyrosination, a post-translational modification that is implicated in many cell functions, such as cell division. Here, we used the zebrafish embryo to investigate the cellular and subcellular mechanisms of Vash1 on endothelial microtubules during formation of the trunk vasculature. We show that microtubules within venous-derived secondary sprouts are strongly and selectively detyrosinated in comparison with other endothelial cells, and that this difference is lost upon vash1 knockdown. Vash1 depletion in zebrafish specifically affected secondary sprouting from the posterior cardinal vein, increasing endothelial cell divisions and cell number in the sprouts. We show that altering secondary sprout numbers and structure upon Vash1 depletion leads to defective lymphatic vessel formation and ectopic lymphatic progenitor specification in the zebrafish trunk.
Collapse
Affiliation(s)
- Marta Bastos de Oliveira
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Simone Jung
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Eireen Bartels-Klein
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Ilse Geudens
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Ines Fechner
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, 10178 Berlin, Germany
| |
Collapse
|
107
|
Müller M, Ringer K, Hub F, Kamm N, Worzfeld T, Jacob R. TTL-Expression Modulates Epithelial Morphogenesis. Front Cell Dev Biol 2021; 9:635723. [PMID: 33614664 PMCID: PMC7892909 DOI: 10.3389/fcell.2021.635723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Hub
- Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Thomas Worzfeld
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany.,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
108
|
Edlund K, Madjar K, Lebrecht A, Aktas B, Pilch H, Hoffmann G, Hofmann M, Kolberg HC, Boehm D, Battista M, Seehase M, Stewen K, Gebhard S, Cadenas C, Marchan R, Brenner W, Hasenburg A, Koelbl H, Solbach C, Gehrmann M, Tanner B, Weber KE, Loibl S, Sachinidis A, Rahnenführer J, Schmidt M, Hengstler JG. Gene Expression-Based Prediction of Neoadjuvant Chemotherapy Response in Early Breast Cancer: Results of the Prospective Multicenter EXPRESSION Trial. Clin Cancer Res 2021; 27:2148-2158. [PMID: 33542080 DOI: 10.1158/1078-0432.ccr-20-2662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression-based classifiers to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) are not routinely used in the clinic. We aimed to build and validate a classifier for pCR after NACT. PATIENTS AND METHODS We performed a prospective multicenter study (EXPRESSION) including 114 patients treated with anthracycline/taxane-based NACT. Pretreatment core needle biopsies from 91 patients were used for gene expression analysis and classifier construction, followed by validation in five external cohorts (n = 619). RESULTS A 20-gene classifier established in the EXPRESSION cohort using a Youden index-based cut-off point predicted pCR in the validation cohorts with an accuracy, AUC, negative predictive value (NPV), positive predictive value, sensitivity, and specificity of 0.811, 0.768, 0.829, 0.587, 0.216, and 0.962, respectively. Alternatively, aiming for a high NPV by defining the cut-off point for classification based on the complete responder with the lowest predicted probability of pCR in the EXPRESSION cohort led to an NPV of 0.960 upon external validation. With this extreme-low cut-off point, a recommendation to not treat with anthracycline/taxane-based NACT would be possible for 121 of 619 unselected patients (19.5%) and 112 of 322 patients with luminal breast cancer (34.8%). The analysis of the molecular subtypes showed that the identification of patients who do not achieve a pCR by the 20-gene classifier was particularly relevant in luminal breast cancer. CONCLUSIONS The novel 20-gene classifier reliably identifies patients who do not achieve a pCR in about one third of luminal breast cancers in both the EXPRESSION and combined validation cohorts.
Collapse
Affiliation(s)
- Karolina Edlund
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Antje Lebrecht
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | - Henryk Pilch
- Department of Gynecology and Obstetrics, University Hospital Köln, Köln, Germany
| | - Gerald Hoffmann
- Department of Obstetrics and Gynecology, St. Josefs-Hospital, Wiesbaden, Germany
| | - Manfred Hofmann
- Department of Obstetrics and Gynecology, Vinzenz von Paul Kliniken gGmbH Marienhospital, Stuttgart, Germany
| | | | - Daniel Boehm
- Center of Minimal Invasive Surgery, Senology and Oncology, mic.ma.mainz, Mainz, Germany
| | - Marco Battista
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Martina Seehase
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Stewen
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Susanne Gebhard
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Cristina Cadenas
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Heinz Koelbl
- Department of Obstetrics and Gynecology, University of Vienna Medical School, Vienna, Austria
| | - Christine Solbach
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Berno Tanner
- Practice for Gynecological Oncology, Hoen Neuendorf, Germany
| | | | | | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Jan G Hengstler
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany.
| |
Collapse
|
109
|
Hotta T, Haynes SE, Blasius TL, Gebbie M, Eberhardt EL, Sept D, Cianfrocco M, Verhey KJ, Nesvizhskii AI, Ohi R. Parthenolide Destabilizes Microtubules by Covalently Modifying Tubulin. Curr Biol 2021; 31:900-907.e6. [PMID: 33482110 DOI: 10.1016/j.cub.2020.11.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
Detyrosination of the α-tubulin C-terminal tail is a post-translational modification (PTM) of microtubules that is key for many biological processes.1 Although detyrosination is the oldest known microtubule PTM,2-7 the carboxypeptidase responsible for this modification, VASH1/2-SVBP, was identified only 3 years ago,8,9 precluding genetic approaches to prevent detyrosination. Studies examining the cellular functions of detyrosination have therefore relied on a natural product, parthenolide, which is widely believed to block detyrosination of α-tubulin in cells, presumably by inhibiting the activity of the relevant carboxypeptidase(s).10 Parthenolide is a sesquiterpene lactone that forms covalent linkages predominantly with exposed thiol groups; e.g., on cysteine residues.11-13 Using mass spectrometry, we show that parthenolide forms adducts on both cysteine and histidine residues on tubulin itself, in vitro and in cells. Parthenolide causes tubulin protein aggregation and prevents the formation of microtubules. In contrast to epoY, an epoxide inhibitor of VASH1/2-SVBP,9 parthenolide does not block VASH1-SVBP activity in vitro. Lastly, we show that epoY is an efficacious inhibitor of microtubule detyrosination in cells, providing an alternative chemical means to block detyrosination. Collectively, our work supports the notion that parthenolide is a promiscuous inhibitor of many cellular processes and suggests that its ability to block detyrosination may be an indirect consequence of reducing the polymerization-competent pool of tubulin in cells.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Teresa L Blasius
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Margo Gebbie
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Emily L Eberhardt
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
110
|
Schuldt M, Pei J, Harakalova M, Dorsch LM, Schlossarek S, Mokry M, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Dalinghaus M, Michels M, Asselbergs FW, Moutin MJ, Carrier L, Jimenez CR, van der Velden J, Kuster DWD. Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circ Heart Fail 2021; 14:e007022. [PMID: 33430602 PMCID: PMC7819533 DOI: 10.1161/circheartfailure.120.007022] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital (M. Morky), University Medical Center Utrecht, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Tim Schelfhorst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Cris Dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Australia (C.d.R.)
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology (M.D.), Erasmus Medical Center Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thorax Center (M. Michels), Erasmus Medical Center Rotterdam, The Netherlands
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.), University College London, United Kingdom.,Health Data Research UK and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Marie-Jo Moutin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, Grenoble, France (M.-J.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| |
Collapse
|
111
|
Ferreira LT, Orr B, Rajendraprasad G, Pereira AJ, Lemos C, Lima JT, Guasch Boldú C, Ferreira JG, Barisic M, Maiato H. α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity. J Cell Biol 2020; 219:133849. [PMID: 32328631 PMCID: PMC7147099 DOI: 10.1083/jcb.201910064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Incorrect kinetochore–microtubule attachments during mitosis can lead to chromosomal instability, a hallmark of human cancers. Mitotic error correction relies on the kinesin-13 MCAK, a microtubule depolymerase whose activity in vitro is suppressed by α-tubulin detyrosination—a posttranslational modification enriched on long-lived microtubules. However, whether and how MCAK activity required for mitotic error correction is regulated by α-tubulin detyrosination remains unknown. Here we found that detyrosinated α-tubulin accumulates on correct, more stable, kinetochore–microtubule attachments. Experimental manipulation of tubulin tyrosine ligase (TTL) or carboxypeptidase (Vasohibins-SVBP) activities to constitutively increase α-tubulin detyrosination near kinetochores compromised efficient error correction, without affecting overall kinetochore microtubule stability. Rescue experiments indicate that MCAK centromeric activity was required and sufficient to correct the mitotic errors caused by excessive α-tubulin detyrosination independently of its global impact on microtubule dynamics. Thus, microtubules are not just passive elements during mitotic error correction, and the extent of α-tubulin detyrosination allows centromeric MCAK to discriminate correct vs. incorrect kinetochore–microtubule attachments, thereby promoting mitotic fidelity.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - António J Pereira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,UnIGENe, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana T Lima
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Clàudia Guasch Boldú
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
112
|
Li L, Williams P, Gao Z, Wang Y. VEZF1-guanine quadruplex DNA interaction regulates alternative polyadenylation and detyrosinase activity of VASH1. Nucleic Acids Res 2020; 48:11994-12003. [PMID: 33231681 PMCID: PMC7708047 DOI: 10.1093/nar/gkaa1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
Vascular endothelial zinc finger 1 (VEZF1) plays important roles in endothelial lineage definition and angiogenesis. Vasohibins 1 and 2 (VASH1 and VASH2) can form heterodimers with small vasohibin-binding protein (SVBP) and were recently shown to regulate angiogenesis by acting as tubulin detyrosinases. Here, we showed that VEZF1 binds directly with DNA guanine quadruplex (G quadruplex, G4) structures in vitro and in cells, which modulates the levels of the two isoforms of VASH1 mRNA. Disruption of this interaction, through genetic depletion of VEZF1 or treatment of cells with G4-stabilizing small molecules, led to increased production of the long over short isoform of VASH1 (i.e. VASH1A and VASH1B, respectively) mRNA and elevated tubulin detyrosinase activity in cells. Moreover, disruption of VEZF1-G4 interactions in human umbilical vein endothelial cells resulted in diminished angiogenesis. These results suggest that the interaction between VEZF1 and G4 structures assumes a crucial role in angiogenesis, which occurs through regulating the relative levels of the two isoforms of VASH1 mRNA and the detyrosinase activity of the VASH1-SVBP complex. Together, our work revealed VEZF1 as a G4-binding protein, identified a novel regulatory mechanism for tubulin detyrosinase, and illustrated that the VEZF1- and VASH1-mediated angiogenesis pathways are functionally connected.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Preston Williams
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zi Gao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
113
|
Zorgniotti A, Ditamo Y, Arce CA, Bisig CG. Irreversible incorporation of L-dopa into the C-terminus of α-tubulin inhibits binding of molecular motor KIF5B to microtubules and alters mitochondrial traffic along the axon. Neurobiol Dis 2020; 147:105164. [PMID: 33171229 DOI: 10.1016/j.nbd.2020.105164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
L-dopa is the most effective drug used to date for management of Parkinson's disease symptoms. Unfortunately, long-term administration of L-dopa often results in development of motor disorders, including dyskinesias. Despite extensive research on L-dopa-induced dyskinesia, its pathogenesis remains poorly understood. We demonstrated previously that L-dopa can be post-translationally incorporated into the C-terminus of α-tubulin in living cells. In the present study, we investigated the effect of the presence of L-dopa-tubulin-enriched microtubules on mitochondrial traffic mediated by molecular motor KIF5B. Using biochemical approaches in combination with experiments on neuronal cell lines and mouse hippocampal primary cultures, we demonstrated that L-dopa incorporation into tubulin is irreversible. Transport of mitochondria along the axon was altered after L-dopa treatment of cells. In L-dopa-treated cells, mitochondria had reduced ability to reach the distal segment of the axon, spent more time in pause, and showed reduced velocity of anterograde movement. KIF5B motor, a member of the kinesin family involved in mitochondrial transport in neurons, showed reduced affinity for Dopa-tubulin-containing microtubules. Our findings, taken together, suggest that tyrosination state of tubulin (and microtubules) is altered by L-dopa incorporation into tubulin; the gradual increase in amount of altered microtubules affects microtubule functioning, impairs mitochondrial traffic and distribution, and this could be relevant in Parkinson's disease patients chronically treated with L-dopa.
Collapse
Affiliation(s)
- Agustina Zorgniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Yanina Ditamo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Carlos A Arce
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - C Gaston Bisig
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| |
Collapse
|
114
|
Lopes D, Maiato H. The Tubulin Code in Mitosis and Cancer. Cells 2020; 9:cells9112356. [PMID: 33114575 PMCID: PMC7692294 DOI: 10.3390/cells9112356] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/23/2022] Open
Abstract
The “tubulin code” combines different α/β-tubulin isotypes with several post-translational modifications (PTMs) to generate microtubule diversity in cells. During cell division, specific microtubule populations in the mitotic spindle are differentially modified, but only recently, the functional significance of the tubulin code, with particular emphasis on the role specified by tubulin PTMs, started to be elucidated. This is the case of α-tubulin detyrosination, which was shown to guide chromosomes during congression to the metaphase plate and allow the discrimination of mitotic errors, whose correction is required to prevent chromosomal instability—a hallmark of human cancers implicated in tumor evolution and metastasis. Although alterations in the expression of certain tubulin isotypes and associated PTMs have been reported in human cancers, it remains unclear whether and how the tubulin code has any functional implications for cancer cell properties. Here, we review the role of the tubulin code in chromosome segregation during mitosis and how it impacts cancer cell properties. In this context, we discuss the existence of an emerging “cancer tubulin code” and the respective implications for diagnostic, prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Danilo Lopes
- Chromosome Instability & Dynamics Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-22-040-8800
| |
Collapse
|
115
|
Pratt SJP, Lee RM, Chang KT, Hernández-Ochoa EO, Annis DA, Ory EC, Thompson KN, Bailey PC, Mathias TJ, Ju JA, Vitolo MI, Schneider MF, Stains JP, Ward CW, Martin SS. Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca 2+ signals that are inhibited by oncogenic KRas. Proc Natl Acad Sci U S A 2020; 117:26008-26019. [PMID: 33020304 PMCID: PMC7584994 DOI: 10.1073/pnas.2009495117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Rachel M Lee
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Katarina T Chang
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - David A Annis
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Eleanor C Ory
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Keyata N Thompson
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Patrick C Bailey
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Trevor J Mathias
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Julia A Ju
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Michele I Vitolo
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Christopher W Ward
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
- School of Nursing, University of Maryland, Baltimore, MD 21201
| | - Stuart S Martin
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
116
|
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 2020; 24:159-176. [PMID: 33052495 DOI: 10.1007/s10456-020-09754-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| | - Ikumi Wakabayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan. .,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
117
|
Ikeda A, Urata S, Ando T, Suzuki Y, Sato Y, Nishino T. The crystal structure of the tetrameric human vasohibin-1-SVBP complex reveals a variable arm region within the structural core. Acta Crystallogr D Struct Biol 2020; 76:993-1000. [PMID: 33021501 PMCID: PMC7543661 DOI: 10.1107/s2059798320011298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 11/11/2022] Open
Abstract
Vasohibins regulate angiogenesis, tumor growth, metastasis and neuronal differentiation. They form a complex with small vasohibin-binding protein (SVBP) and show tubulin tyrosine carboxypeptidase activity. Recent crystal structure determinations of vasohibin-SVBP complexes have provided a molecular basis for complex formation, substrate binding and catalytic activity. However, the regulatory mechanism and dynamics of the complex remain elusive. Here, the crystal structure of the VASH1-SVBP complex and a molecular-dynamics simulation study are reported. The overall structure of the complex was similar to previously reported structures. Importantly, however, the structure revealed a domain-swapped heterotetramer that was formed between twofold symmetry-related molecules. This heterotetramerization was stabilized by the mutual exchange of ten conserved N-terminal residues from the VASH1 structural core, which was intramolecular in other structures. Interestingly, a comparison of this region with previously reported structures revealed that the patterns of hydrogen bonding and hydrophobic interactions vary. In the molecular-dynamics simulations, differences were found between the heterotetramer and heterodimer, where the fluctuation of the N-terminal region in the heterotetramer was suppressed. Thus, heterotetramer formation and flexibility of the N-terminal region may be important for enzyme activity and regulation.
Collapse
Affiliation(s)
- Akihito Ikeda
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Seia Urata
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 6-6-10 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 6-6-10 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tatsuya Nishino
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
118
|
Knossow M, Campanacci V, Khodja LA, Gigant B. The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies. iScience 2020; 23:101511. [PMID: 32920486 PMCID: PMC7491153 DOI: 10.1016/j.isci.2020.101511] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
Microtubules are cytoskeletal components involved in pivotal eukaryotic functions such as cell division, ciliogenesis, and intracellular trafficking. They assemble from αβ-tubulin heterodimers and disassemble in a process called dynamic instability, which is driven by GTP hydrolysis. Structures of the microtubule and of soluble tubulin have been determined by cryo-EM and by X-ray crystallography, respectively. Altogether, these data define the mechanism of tubulin assembly-disassembly at atomic or near-atomic level. We review here the structural changes that occur during assembly, tubulin switching from a curved conformation in solution to a straight one in the microtubule core. We also present more subtle changes associated with GTP binding, leading to tubulin activation for assembly. Finally, we show how cryo-EM and X-ray crystallography are complementary methods to characterize the interaction of tubulin with proteins involved either in intracellular transport or in microtubule dynamics regulation.
Collapse
Affiliation(s)
- Marcel Knossow
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Liza Ammar Khodja
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
119
|
van der Laan S, Lévêque MF, Marcellin G, Vezenkov L, Lannay Y, Dubra G, Bompard G, Ovejero S, Urbach S, Burgess A, Amblard M, Sterkers Y, Bastien P, Rogowski K. Evolutionary Divergence of Enzymatic Mechanisms for Tubulin Detyrosination. Cell Rep 2020; 29:4159-4171.e6. [PMID: 31851940 DOI: 10.1016/j.celrep.2019.11.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
The two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes. Phylogenetic analysis of the vasohibin family revealed that regulatory diversification of VASH-mediated tubulin detyrosination coincided with early vertebrate evolution. Thus, as a model organism for functional analysis, we used Trypanosoma brucei (Tb), an evolutionarily early-branched eukaryote that possesses a single VASH and encodes a terminal tyrosine on both α- and β-tubulin tails, both subject to removal. Remarkably, although detyrosination levels are high in the flagellum, TbVASH knockout parasites did not present any noticeable flagellar abnormalities. In contrast, we observed reduced proliferation associated with profound morphological and mitotic defects, underscoring the importance of tubulin detyrosination in cell division.
Collapse
Affiliation(s)
- Siem van der Laan
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France.
| | - Maude F Lévêque
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France.
| | - Guillaume Marcellin
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM, 34093 Montpellier Cedex 5, France
| | - Yoann Lannay
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Geronimo Dubra
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Guillaume Bompard
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Sara Ovejero
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Serge Urbach
- Functional Proteomics Platform (FPP), IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Andrew Burgess
- ANZAC Research Institute, Gate 3 Hospital Rd., Concord, Sydney, NSW 2139, Australia; The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM, 34093 Montpellier Cedex 5, France
| | - Yvon Sterkers
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France
| | - Patrick Bastien
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France
| | - Krzysztof Rogowski
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
120
|
Tubulin modifying enzymes as target for the treatment oftau-related diseases. Pharmacol Ther 2020; 218:107681. [PMID: 32961263 DOI: 10.1016/j.pharmthera.2020.107681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
In the brain of patients with Alzheimer's disease (AD), the number and length of microtubules (MTs) are significantly and selectively reduced. MTs are involved in a wide range of cellular functions, and defects of the microtubular system have emerged as a unifying hypothesis for the heterogeneous and variable clinical presentations of AD. MTs orchestrate their numerous functions through the spatiotemporal regulation of the binding of specialised microtubule-associated proteins (MAPs) and molecular motors. Covalent posttranslational modifications (PTMs) on the tubulin C-termini that protrude at the surface of MTs regulate the binding of these effectors. In neurons, MAP tau is highly abundant and its abnormal dissociation from MTs in the axon, cellular mislocalization and hyperphosphorylation, are primary events leading to neuronal death. Consequently, compounds targeting tau phosphorylation or aggregation are currently evaluated but their clinical significance has not been demonstrated yet. In this review, we discuss the emerging link between tubulin PTMs and tau dysfunction. In neurons, high levels of glutamylation and detyrosination profoundly impact the physicochemical properties at the surface of MTs. Moreover, in patients with early-onset progressive neurodegeneration, deleterious mutations in enzymes involved in modifying MTs at the surface have recently been identified, underscoring the importance of this enzymatic machinery in neurology. We postulate that pharmacologically targeting the tubulin-modifying enzymes holds promise as therapeutic approach for the treatment of neurodegenerative diseases.
Collapse
|
121
|
De Zan E, van Stiphout R, Gapp BV, Blomen VA, Brummelkamp TR, Nijman SMB. Quantitative genetic screening reveals a Ragulator-FLCN feedback loop that regulates the mTORC1 pathway. Sci Signal 2020; 13:13/649/eaba5665. [PMID: 32934076 DOI: 10.1126/scisignal.aba5665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forward genetic screens in mammalian cell lines, such as RNAi and CRISPR-Cas9 screens, have made major contributions to the elucidation of diverse signaling pathways. Here, we exploited human haploid cells as a robust comparative screening platform and report a set of quantitative forward genetic screens for identifying regulatory mechanisms of mTORC1 signaling, a key growth control pathway that senses diverse metabolic states. Selected chemical and genetic perturbations in this screening platform, including rapamycin treatment and genetic ablation of the Ragulator subunit LAMTOR4, revealed the known core mTORC1 regulatory signaling complexes and the intimate interplay of the mTORC1 pathway with lysosomal function, validating the approach. In addition, we identified a differential requirement for LAMTOR4 and LAMTOR5 in regulating the mTORC1 pathway under fed and starved conditions. Furthermore, we uncovered a previously unknown "synthetic-sick" interaction between the tumor suppressor folliculin and LAMTOR4, which may have therapeutic implications in cancer treatment. Together, our study demonstrates the use of iterative "perturb and observe" genetic screens to uncover regulatory mechanisms driving complex mammalian signaling networks.
Collapse
Affiliation(s)
- Erica De Zan
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Ruud van Stiphout
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Bianca V Gapp
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | | | | | - Sebastian M B Nijman
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK.
| |
Collapse
|
122
|
Bacala R, Fu BX, Perreault H, Hatcher DW. C-terminal tyrosine removal from wheat low-molecular weight glutenin subunits (LMW-GS); biologically relevant or mistaken substrate? J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
123
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
124
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
125
|
Ju JA, Lee CJ, Thompson KN, Ory EC, Lee RM, Mathias TJ, Pratt SJP, Vitolo MI, Jewell CM, Martin SS. Partial thermal imidization of polyelectrolyte multilayer cell tethering surfaces (TetherChip) enables efficient cell capture and microtentacle fixation for circulating tumor cell analysis. LAB ON A CHIP 2020; 20:2872-2888. [PMID: 32744284 PMCID: PMC7595763 DOI: 10.1039/d0lc00207k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.
Collapse
Affiliation(s)
- Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Bressler Research Building Rm 10-29, 655 W, Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Borys F, Joachimiak E, Krawczyk H, Fabczak H. Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Molecules 2020; 25:E3705. [PMID: 32823874 PMCID: PMC7464520 DOI: 10.3390/molecules25163705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubules (MTs), highly dynamic structures composed of α- and β-tubulin heterodimers, are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell, MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs) can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in normal and cancer cells and describes microtubule-MTA interactions, highlighting the importance of tubulin isoform diversity and post-translational modifications in MTA responses and the consequences of such a phenomenon, including drug resistance development.
Collapse
Affiliation(s)
- Filip Borys
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| |
Collapse
|
127
|
Li F, Li Y, Ye X, Gao H, Shi Z, Luo X, Rice LM, Yu H. Cryo-EM structure of VASH1-SVBP bound to microtubules. eLife 2020; 9:58157. [PMID: 32773040 PMCID: PMC7449697 DOI: 10.7554/elife.58157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The dynamic tyrosination-detyrosination cycle of α-tubulin regulates microtubule functions. Perturbation of this cycle impairs mitosis, neural physiology, and cardiomyocyte contraction. The carboxypeptidases vasohibins 1 and 2 (VASH1 and VASH2), in complex with the small vasohibin-binding protein (SVBP), mediate α-tubulin detyrosination. These enzymes detyrosinate microtubules more efficiently than soluble αβ-tubulin heterodimers. The structural basis for this substrate preference is not understood. Using cryo-electron microscopy (cryo-EM), we have determined the structure of human VASH1-SVBP bound to microtubules. The acidic C-terminal tail of α-tubulin binds to a positively charged groove near the active site of VASH1. VASH1 forms multiple additional contacts with the globular domain of α-tubulin, including contacts with a second α-tubulin in an adjacent protofilament. Simultaneous engagement of two protofilaments by VASH1 can only occur within the microtubule lattice, but not with free αβ heterodimers. These lattice-specific interactions enable preferential detyrosination of microtubules by VASH1.
Collapse
Affiliation(s)
- Faxiang Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Haishan Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhubing Shi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
128
|
Ramos SI, Makeyev EV, Salierno M, Kodama T, Kawakami Y, Sahara S. Tuba8 Drives Differentiation of Cortical Radial Glia into Apical Intermediate Progenitors by Tuning Modifications of Tubulin C Termini. Dev Cell 2020; 52:477-491.e8. [PMID: 32097653 DOI: 10.1016/j.devcel.2020.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/11/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Most adult neurons and glia originate from radial glial progenitors (RGs), a type of stem cell typically extending from the apical to the basal side of the developing cortex. Precise regulation of the choice between RG self-renewal and differentiation is critical for normal development, but the mechanisms underlying this transition remain elusive. We show that the non-canonical tubulin Tuba8, transiently expressed in cortical progenitors, drives differentiation of RGs into apical intermediate progenitors, a more restricted progenitor type lacking attachment to the basal lamina. This effect depends on the unique C-terminal sequence of Tuba8 that antagonizes tubulin tyrosination and Δ2 cleavage, two post-translational modifications (PTMs) essential for RG fiber maintenance and the switch between direct and indirect neurogenesis and ultimately distinct neuronal lineage outcomes. Our work uncovers an instructive role of a developmentally regulated tubulin isotype in progenitor differentiation and provides new insights into biological functions of the cellular tubulin PTM "code."
Collapse
Affiliation(s)
- Susana I Ramos
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Marcelo Salierno
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Takashi Kodama
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Setsuko Sahara
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
129
|
Wang R, Yu R, Zhu C, Lin HY, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol 2020; 11:967-978. [PMID: 31408157 PMCID: PMC6927241 DOI: 10.1093/jmcb/mjz084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 12/03/2022] Open
Abstract
Human trophoblast syncytialization is one of the most important yet least understood events during placental development. In this study, we found that detyrosinated α-tubulin (detyr-α-tub), which is negatively regulated by tubulin tyrosine ligase (TTL), was elevated during human placental cytotrophoblast fusion. Correspondingly, relatively high expression of TTL protein was observed in first-trimester human placental cytotrophoblast cells, but fusing trophoblast cells exhibited much lower levels of TTL. Notably, fusion of preeclamptic cytotrophoblast cells was compromised but could be partially rescued by knockdown of TTL levels. Mechanistically, chronic downregulation of TTL in trophoblast cells resulted in significantly elevated expression of detyr-α-tub. Restoration of detyr-α-tub thus contributed to the cell surface localization of the fusogenic protein Syncytin-2 and the gap junction protein Connexin 43 (Cx43), which in turn promoted successful fusion between trophoblast cells. Taken together, the results suggest that tubulin detyrosination plays an essential role in human trophoblast fusogenic protein aggregation and syncytialization. Insufficient tubulin detyrosination leads to defects in syncytialization and potentially to the onset of preeclampsia.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
130
|
Fbxo45 Binds SPRY Motifs in the Extracellular Domain of N-Cadherin and Regulates Neuron Migration during Brain Development. Mol Cell Biol 2020; 40:MCB.00539-19. [PMID: 32341084 DOI: 10.1128/mcb.00539-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
Several events during the normal development of the mammalian neocortex depend on N-cadherin, including the radial migration of immature projection neurons into the cortical plate. Remarkably, radial migration requires the N-cadherin extracellular domain but not N-cadherin-dependent homophilic cell-cell adhesion, suggesting that other N-cadherin-binding proteins may be involved. We used proximity ligation and affinity purification proteomics to identify N-cadherin-binding proteins. Both screens detected MycBP2 and SPRY domain protein Fbxo45, two components of an intracellular E3 ubiquitin ligase. Fbxo45 appears to be secreted by a nonclassical mechanism, not involving a signal peptide and not requiring transport from the endoplasmic reticulum to the Golgi apparatus. Fbxo45 binding requires N-cadherin SPRY motifs that are not involved in cell-cell adhesion. SPRY mutant N-cadherin does not support radial migration in vivo Radial migration was similarly inhibited when Fbxo45 expression was suppressed. The results suggest that projection neuron migration requires both Fbxo45 and the binding of Fbxo45 or another protein to SPRY motifs in the extracellular domain of N-cadherin.
Collapse
|
131
|
Olson MT, Yergey AL, Mukherjee K, Pergande MR, Bane SL, Cologna SM, Sackett DL. Taurine Is Covalently Incorporated into Alpha-Tubulin. J Proteome Res 2020; 19:3184-3190. [PMID: 32400163 DOI: 10.1021/acs.jproteome.0c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taurine is the most abundant free amino acid in the human body. It is found in relatively high concentrations (1-10 mM) in many animal tissues but not in plants. It has been studied since the early 1800s but has not been found to be covalently incorporated into proteins in any animal tissue. Taurine has been found in only one macromolecular complex as a post-transcriptional modification to mitochondrial tRNA. Tubulin is the subunit of microtubules found in all eukaryotic species and almost all eukaryotic cells and subject to numerous post-translational modifications (PTMs). An important PTM on α-tubulin is the removal and re-ligation of the final carboxyl residue, tyrosine. We here demonstrate that taurine can be covalently incorporated at the C-terminal end of alpha-tubulin in avian erythrocytes in a reaction that requires the de-tyrosination PTM and prevents the re-tyrosination PTM. Further, this is, to our knowledge, the first instance of taurine incorporation into a large protein.
Collapse
Affiliation(s)
- Matthew T Olson
- Biomedical Mass Spectrometry Facility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Alfred L Yergey
- Biomedical Mass Spectrometry Facility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Kamalika Mukherjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Susan L Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
132
|
Chen CY, Salomon AK, Caporizzo MA, Curry S, Kelly NA, Bedi K, Bogush AI, Krämer E, Schlossarek S, Janiak P, Moutin MJ, Carrier L, Margulies KB, Prosser BL. Depletion of Vasohibin 1 Speeds Contraction and Relaxation in Failing Human Cardiomyocytes. Circ Res 2020; 127:e14-e27. [PMID: 32272864 DOI: 10.1161/circresaha.119.315947] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Impaired myocardial relaxation is an intractable feature of several heart failure (HF) causes. In human HF, detyrosinated microtubules stiffen cardiomyocytes and impair relaxation. Yet the identity of detyrosinating enzymes have remained ambiguous, hindering mechanistic study and therapeutic development. OBJECTIVE We aimed to determine if the recently identified complex of VASH1/2 (vasohibin 1/2) and SVBP (small vasohibin binding protein) is an active detyrosinase in cardiomyocytes and if genetic inhibition of VASH-SVBP is sufficient to lower stiffness and improve contractility in HF. METHODS AND RESULTS Transcriptional profiling revealed that VASH1 transcript is >10-fold more abundant than VASH2 in human hearts. Using short hairpin RNAs (shRNAs) against VASH1, VASH2, and SVBP, we showed that both VASH1- and VASH2-SVBP complexes function as tubulin carboxypeptidases in cardiomyocytes, with a predominant role for VASH1. We also generated a catalytically dead version of the tyrosinating enzyme TTL (TTL-E331Q) to separate the microtubule depolymerizing effects of TTL from its enzymatic activity. Assays of microtubule stability revealed that both TTL and TTL-E331Q depolymerize microtubules, while VASH1 and SVBP depletion reduce detyrosination independent of depolymerization. We next probed effects on human cardiomyocyte contractility. Contractile kinetics were slowed in HF, with dramatically slowed relaxation in cardiomyocytes from patients with HF with preserved ejection fraction. Knockdown of VASH1 conferred subtle kinetic improvements in nonfailing cardiomyocytes, while markedly improving kinetics in failing cardiomyocytes. Further, TTL, but not TTL-E331Q, robustly sped relaxation. Simultaneous measurements of calcium transients and contractility demonstrated that VASH1 depletion speeds kinetics independent from alterations to calcium cycling. Finally, atomic force microscopy confirmed that VASH1 depletion reduces the stiffness of failing human cardiomyocytes. CONCLUSIONS VASH-SVBP complexes are active tubulin carboxypeptidases in cardiomyocytes. Inhibition of VASH1 or activation of TTL is sufficient to lower stiffness and speed relaxation in cardiomyocytes from patients with HF, supporting further pursuit of detyrosination as a therapeutic target for diastolic dysfunction.
Collapse
Affiliation(s)
- Christina Yingxian Chen
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Alexander K Salomon
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Matthew A Caporizzo
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Sam Curry
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Neil A Kelly
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Kenneth Bedi
- Department of Medicine (K.B., K.B.M.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Alexey I Bogush
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (E.K., S.S., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (E.K., S.S., L.C.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (E.K., S.S., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (E.K., S.S., L.C.)
| | - Philip Janiak
- Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France (P.J.)
| | - Marie-Jo Moutin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France (M.-J.M.).,Inserm, U1216, F-38000 Grenoble, France (M.-J.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (E.K., S.S., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (E.K., S.S., L.C.)
| | - Kenneth B Margulies
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia.,Department of Medicine (K.B., K.B.M.), University of Pennsylvania Perelman School of Medicine, Philadelphia.,Penn Cardiovascular Institute (K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Benjamin L Prosser
- From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia.,Penn Cardiovascular Institute (K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
133
|
Abstract
The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must also be accomplished. For example, localized delivery of presynaptic components to hundreds of thousands of "en passant" synapses distributed along the length of a single axon in some neuronal subtypes provides a layer of complexity that must be successfully navigated to maintain synaptic transmission. We review recent advances in the field of axonal transport, with a focus on conceptual developments, and highlight our growing quantitative understanding of neuronal trafficking and its role in maintaining the synaptic function that underlies higher cognitive processes such as learning and memory.
Collapse
Affiliation(s)
- Pedro Guedes-Dias
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
134
|
Caporizzo MA, Chen CY, Bedi K, Margulies KB, Prosser BL. Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium. Circulation 2020; 141:902-915. [PMID: 31941365 PMCID: PMC7078018 DOI: 10.1161/circulationaha.119.043930] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Diastolic dysfunction is a prevalent and therapeutically intractable feature of heart failure (HF). Increasing ventricular compliance can improve diastolic performance, but the viscoelastic forces that resist diastolic filling and become elevated in human HF are poorly defined. Having recently identified posttranslationally detyrosinated microtubules as a source of viscoelasticity in cardiomyocytes, we sought to test whether microtubules contribute meaningful viscoelastic resistance to diastolic stretch in human myocardium. METHODS Experiments were conducted in isolated human cardiomyocytes and trabeculae. First, slow and rapid (diastolic) stretch was applied to intact cardiomyocytes from nonfailing and HF hearts and viscoelasticity was characterized after interventions targeting microtubules. Next, intact left ventricular trabeculae from HF patient hearts were incubated with colchicine or vehicle and subject to pre- and posttreatment mechanical testing, which consisted of a staircase protocol and rapid stretches from slack length to increasing strains. RESULTS Viscoelasticity was increased during diastolic stretch of HF cardiomyocytes compared with nonfailing counterparts. Reducing either microtubule density or detyrosination reduced myocyte stiffness, particularly at diastolic strain rates, indicating reduced viscous forces. In myocardial tissue, we found microtubule depolymerization reduced myocardial viscoelasticity, with an effect that decreased with increasing strain. Colchicine reduced viscoelasticity at strains below, but not above, 15%, with a 2-fold reduction in energy dissipation upon microtubule depolymerization. Post hoc subgroup analysis revealed that myocardium from patients with HF with reduced ejection fraction were more fibrotic and elastic than myocardium from patients with HF with preserved ejection fraction, which were relatively more viscous. Colchicine reduced viscoelasticity in both HF with preserved ejection fraction and HF with reduced ejection fraction myocardium. CONCLUSIONS Failing cardiomyocytes exhibit elevated viscosity and reducing microtubule density or detyrosination lowers viscoelastic resistance to diastolic stretch in human myocytes and myocardium. In failing myocardium, microtubules elevate stiffness over the typical working range of strains and strain rates, but exhibited diminishing effects with increasing length, consistent with an increasing contribution of the extracellular matrix or myofilament proteins at larger excursions. These studies indicate that a stabilized microtubule network provides a viscous impediment to diastolic stretch, particularly in HF.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology (M.A.C., C.Y.C., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Pennsylvania Muscle Institute (M.A.C., C.Y.C., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Christina Yingxian Chen
- Department of Physiology (M.A.C., C.Y.C., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Pennsylvania Muscle Institute (M.A.C., C.Y.C., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Ken Bedi
- Department of Medicine (K.B., K.B.M.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Cardiovascular Institute (K.B., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Kenneth B Margulies
- Department of Physiology (M.A.C., C.Y.C., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Department of Medicine (K.B., K.B.M.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Cardiovascular Institute (K.B., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Benjamin L Prosser
- Department of Physiology (M.A.C., C.Y.C., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Pennsylvania Muscle Institute (M.A.C., C.Y.C., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
- Cardiovascular Institute (K.B., K.B.M., B.L.P.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| |
Collapse
|
135
|
The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 2020; 21:307-326. [PMID: 32107477 DOI: 10.1038/s41580-020-0214-3] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.
Collapse
|
136
|
Gomez-Acevedo H, Dai Y, Strub G, Shawber C, Wu JK, Richter GT. Identification of putative biomarkers for Infantile Hemangiomas and Propranolol treatment via data integration. Sci Rep 2020; 10:3261. [PMID: 32094357 PMCID: PMC7039967 DOI: 10.1038/s41598-020-60025-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Infantile hemangiomas (IHs) are the most common benign tumors in early childhood. They show a distinctive mechanism of tumor growth in which a rapid proliferative phase is followed by a regression phase (involution). Propranolol is an approved treatment for IHs, but its mechanism of action remains unclear. We integrated and harmonized microRNA and mRNA transcriptome data from newly generated microarray data on IHs with publicly available data on toxicological transcriptomics from propranolol exposure, and with microRNA data from IHs and propranolol exposure. We identified subsets of putative biomarkers for proliferation and involution as well as a small set of putative biomarkers for propranolol's mechanism of action for IHs, namely EPAS1, LASP1, SLC25A23, MYO1B, and ALDH1A1. Based on our integrative data approach and confirmatory experiments, we concluded that hypoxia in IHs is regulated by EPAS1 (HIF-2α) instead of HIF-1α, and also that propranolol-induced apoptosis in endothelial cells may occur via mitochondrial stress.
Collapse
Affiliation(s)
- Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Yuemeng Dai
- Mesquite Rehabilitation Institute, Mesquite, Texas, USA
| | - Graham Strub
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Carrie Shawber
- Department of Surgery, New York-Presbyterian/Morgan Stanley Children's Hospital, Columbia University, New York, New York, USA
| | - June K Wu
- Department of Reproductive Sciences in Obstetrics & Gynecology and Surgery, Columbia University, New York, New York, USA
| | - Gresham T Richter
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Hospital, Little Rock, Arkansas, USA
| |
Collapse
|
137
|
Oláh J, Lehotzky A, Szunyogh S, Szénási T, Orosz F, Ovádi J. Microtubule-Associated Proteins with Regulatory Functions by Day and Pathological Potency at Night. Cells 2020; 9:E357. [PMID: 32033023 PMCID: PMC7072251 DOI: 10.3390/cells9020357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeleton, including the microtubule network. Microtubules play crucial roles achieved by their decoration with proteins/enzymes as well as by posttranslational modifications. This review focuses on the Tubulin Polymerization Promoting Protein (TPPP/p25), a new microtubule associated protein, on its "regulatory functions by day and pathological functions at night". Physiologically, the moonlighting TPPP/p25 modulates the dynamics and stability of the microtubule network by bundling microtubules and enhancing the tubulin acetylation due to the inhibition of tubulin deacetylases. The optimal endogenous TPPP/p25 level is crucial for its physiological functions, to the differentiation of oligodendrocytes, which are the major constituents of the myelin sheath. Pathologically, TPPP/p25 forms toxic oligomers/aggregates with α-synuclein in neurons and oligodendrocytes in Parkinson's disease and Multiple System Atrophy, respectively; and their complex is a potential therapeutic drug target. TPPP/p25-derived microtubule hyperacetylation counteracts uncontrolled cell division. All these issues reveal the anti-mitotic and α-synuclein aggregation-promoting potency of TPPP/p25, consistent with the finding that Parkinson's disease patients have reduced risk for certain cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary; (J.O.); (A.L.); (S.S.); (T.S.); (F.O.)
| |
Collapse
|
138
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
139
|
Liu X, Wang H, Zhu J, Xie Y, Liang X, Chen Z, Feng Y, Zhang Y. Structural insights into tubulin detyrosination by vasohibins-SVBP complex. Cell Discov 2019; 5:65. [PMID: 31908845 PMCID: PMC6937246 DOI: 10.1038/s41421-019-0133-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xi Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Hao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866 China
| | - Yongchao Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084 China
- Max-Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zeliang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866 China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| |
Collapse
|
140
|
Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, Dinglin X, Ma S, Li D, Wu Y, Peng Y, Huang H, Chen L. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer 2019; 18:181. [PMID: 31823788 PMCID: PMC6902331 DOI: 10.1186/s12943-019-1108-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brain metastasis (BM) is one of the principal causes of mortality for lung cancer patients. While the molecular events that govern BM of lung cancer remain frustrating cloudy. METHODS The miRNA expression profiles are checked in the paired human BM and primary lung cancer tissues. The effect of miR-143-3p on BM of lung cancer cells and its related mechanisms are investigated. RESULTS miR-143-3p is upregulated in the paired BM tissues as compared with that in primary cancer tissues. It can increase the invasion capability of in vitro blood brain barrier (BBB) model and angiogenesis of lung cancer by targeting the three binding sites of 3'UTR of vasohibin-1 (VASH1) to inhibit its expression. Mechanistically, VASH1 can increase the ubiquitylation of VEGFA to trigger the proteasome mediated degradation, further, it can endow the tubulin depolymerization through detyrosination to increase the cell motility. m6A methyltransferase Mettl3 can increase the splicing of precursor miR-143-3p to facilitate its biogenesis. Moreover, miR-143-3p/VASH1 axis acts as adverse prognosis factors for in vivo progression and overall survival (OS) rate of lung cancer. CONCLUSIONS Our work implicates a causal role of the miR-143-3p/VASH1 axis in BM of lung cancers and suggests their critical roles in lung cancer pathogenesis.
Collapse
Affiliation(s)
- Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Qianqian Deng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Ziyan Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yuyi Ling
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xue Hou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhuojia Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiaoxiao Dinglin
- Cancer Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Shuxiang Ma
- Department of Medical Oncology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Delan Li
- Department of Medical Oncology, Zhongshan City People Hospital, Zhongshan, 528403, Guangdong, China
| | - Yingmin Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbing Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
141
|
Bompard G, van Dijk J, Cau J, Lannay Y, Marcellin G, Lawera A, van der Laan S, Rogowski K. CSAP Acts as a Regulator of TTLL-Mediated Microtubule Glutamylation. Cell Rep 2019; 25:2866-2877.e5. [PMID: 30517872 DOI: 10.1016/j.celrep.2018.10.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 10/25/2018] [Indexed: 01/22/2023] Open
Abstract
Tubulin glutamylation is a reversible posttranslational modification that accumulates on stable microtubules (MTs). While abnormally high levels of this modification lead to a number of disorders such as male sterility, retinal degeneration, and neurodegeneration, very little is known about the molecular mechanisms underlying the regulation of glutamylase activity. Here, we found that CSAP forms a complex with TTLL5, and we demonstrate that the two proteins regulate their reciprocal abundance. Moreover, we show that CSAP increases TTLL5-mediated glutamylation and identify the TTLL5-interacting domain. Deletion of this domain leads to complete loss of CSAP activating function without impacting its MT binding. Binding of CSAP to TTLL5 promotes relocalization of TTLL5 toward MTs. Finally, we show that CSAP binds and activates all of the remaining autonomously active TTLL glutamylases. As such, we present CSAP as a major regulator of tubulin glutamylation and associated functions.
Collapse
Affiliation(s)
- Guillaume Bompard
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Juliette van Dijk
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Julien Cau
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Yoann Lannay
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Guillaume Marcellin
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Aleksandra Lawera
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Siem van der Laan
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France
| | - Krzysztof Rogowski
- Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France.
| |
Collapse
|
142
|
Pagnamenta AT, Heemeryck P, Martin HC, Bosc C, Peris L, Uszynski I, Gory-Fauré S, Couly S, Deshpande C, Siddiqui A, Elmonairy AA, Jayawant S, Murthy S, Walker I, Loong L, Bauer P, Vossier F, Denarier E, Maurice T, Barbier EL, Deloulme JC, Taylor JC, Blair EM, Andrieux A, Moutin MJ. Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum Mol Genet 2019; 28:3391-3405. [PMID: 31363758 PMCID: PMC6891070 DOI: 10.1093/hmg/ddz186] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pierre Heemeryck
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Bosc
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Ivy Uszynski
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Simon Couly
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Charu Deshpande
- South East Thames Regional Genetics Unit, Guys and St Thomas NHS Trust, London, UK
| | - Ata Siddiqui
- Department of Neuroradiology, Kings College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Alaa A Elmonairy
- Ministry of Health, Kuwait Medical Genetics Center, Sulaibikhat 80901, Kuwait
| | | | | | - Sandeep Jayawant
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | | | - Ian Walker
- Clinical Biochemistry, Wexham Park Hospital, Slough, UK
| | - Lucy Loong
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Frédérique Vossier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Eric Denarier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Tangui Maurice
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Emmanuel L Barbier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jean-Christophe Deloulme
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jenny C Taylor
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Edward M Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Annie Andrieux
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| |
Collapse
|
143
|
Freund RRA, Gobrecht P, Rao Z, Gerstmeier J, Schlosser R, Görls H, Werz O, Fischer D, Arndt HD. Stereoselective total synthesis of parthenolides indicates target selectivity for tubulin carboxypeptidase activity. Chem Sci 2019; 10:7358-7364. [PMID: 31489157 PMCID: PMC6713873 DOI: 10.1039/c9sc01473j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
The 2-(silyloxymethyl)allylboration of aldehydes was established to enable stereoselective access to α-(exo)-methylene γ-butyrolactones under mild conditions. Acid-labile functionality and chiral carbonyl compounds are tolerated. Excellent asymmetric induction was observed for β,β'-disubstituted α,β-epoxy aldehydes. These findings led to the enantioselective total synthesis of the sesquiterpene natural product (-)-parthenolide, its unnatural (+)-enantiomer, and diastereoisomers. Among all the isomers tested in cell culture, only (-)-parthenolide showed potent inhibition of microtubule detyrosination in living cells, confirming its exquisite selectivity on tubulin carboxypeptidase activity. On the other hand, the anti-inflammatory activity of the parthenolides was weaker and less selective with regard to compound stereochemistry.
Collapse
Affiliation(s)
- Robert R A Freund
- Institut für Organische Chemie und Makromolekulare Chemie , Friedrich-Schiller-Universität , Humboldtstr. 10 , 07743 Jena , Germany .
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie , Ruhr-Universität Bochum , Universitätsstr. 150, ND/4 , 44780 Bochum , Germany
| | - Zhigang Rao
- Institut für Pharmazie , Friedrich-Schiller-Universität , Philosophenweg 14 , 07743 Jena , Germany
| | - Jana Gerstmeier
- Institut für Pharmazie , Friedrich-Schiller-Universität , Philosophenweg 14 , 07743 Jena , Germany
| | - Robin Schlosser
- Institut für Organische Chemie und Makromolekulare Chemie , Friedrich-Schiller-Universität , Humboldtstr. 10 , 07743 Jena , Germany .
| | - Helmar Görls
- Institut für Anorganische Chemie und Analytische Chemie , Friedrich-Schiller-Universität , Humboldtstr. 8 , 07743 Jena , Germany
| | - Oliver Werz
- Institut für Pharmazie , Friedrich-Schiller-Universität , Philosophenweg 14 , 07743 Jena , Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie , Ruhr-Universität Bochum , Universitätsstr. 150, ND/4 , 44780 Bochum , Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie , Friedrich-Schiller-Universität , Humboldtstr. 10 , 07743 Jena , Germany .
| |
Collapse
|
144
|
Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 2019; 244:1255-1272. [PMID: 31398994 DOI: 10.1177/1535370219868960] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are large (∼40,000 µm3), rod-shaped muscle cells that provide the working force behind each heartbeat. These highly structured cells are packed with dense cytoskeletal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cytoskeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the non-sarcomeric cytoskeleton, which is composed of β- and γ-actin, microtubules, and intermediate filaments. Together, microtubules and intermediate filaments form a cross-linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the transmission of mechanical signals, the shaping of membrane systems, and the organization of myofibrils and organelles. Microtubules are extensively altered as part of both adaptive and pathological cardiac remodeling, which has diverse ramifications for the structure and function of the cardiomyocyte. In heart failure, the proliferation and post-translational modification of the microtubule network is linked to a number of maladaptive processes, including the mechanical impediment of cardiomyocyte contraction and relaxation. This raises the possibility that reversing microtubule alterations could improve cardiac performance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic microtubule biology in the heart. The aim of this review is to summarize the known physiological roles of the cardiomyocyte microtubule network, the consequences of its pathological remodeling, and to highlight the open and intriguing questions regarding cardiac microtubules. Impact statement Advancements in cell biological and biophysical approaches and super-resolution imaging have greatly broadened our view of tubulin biology over the last decade. In the heart, microtubules and microtubule-based transport help to organize and maintain key structures within the cardiomyocyte, including the sarcomere, intercalated disc, protein clearance machinery and transverse-tubule and sarcoplasmic reticulum membranes. It has become increasingly clear that post translational regulation of microtubules is a key determinant of their sub-cellular functionality. Alterations in microtubule network density, stability, and post-translational modifications are hallmarks of pathological cardiac remodeling, and modified microtubules can directly impede cardiomyocyte contractile function in various forms of heart disease. This review summarizes the functional roles and multi-leveled regulation of the cardiac microtubule cytoskeleton and highlights how refined experimental techniques are shedding mechanistic clarity on the regionally specified roles of microtubules in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
145
|
Zhou C, Yan L, Zhang WH, Liu Z. Structural basis of tubulin detyrosination by VASH2/SVBP heterodimer. Nat Commun 2019; 10:3212. [PMID: 31324789 PMCID: PMC6642083 DOI: 10.1038/s41467-019-11277-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 02/04/2023] Open
Abstract
The C-terminus of α-tubulin undergoes a detyrosination/tyrosination cycle and dysregulation of this cycle is associated with cancer and other diseases. The molecular mechanisms of tubulin tyrosination are well studied, however it has remained unknown how tyrosine is cleaved from the tubulin tail. Here, we report the crystal structure of the long-sought detyrosination enzyme, the VASH2/SVBP heterodimer at 2.2 Å resolution and the structure of the tail/VASH2/SVBP complex at 2.5 Å resolution. VASH2 possesses a non-canonical Cys-His-Ser catalytic architecture for tyrosine cleavage. The dynamics of the α1- and α2- helices of VASH2 are related to the insolubility of VASH2. SVBP plays a chaperone-like role by extensively interacting with VASH2 and stabilizing these dynamic helices. A positively charged groove around the catalytic pocket and the α1- and α2- helices of VASH2 targets the tubulin tail for detyrosination. We provide insights into the mechanisms underlying the cycle of tubulin tyrosine cleavage and religation. The VASH2/SVBP heterodimer catalyzes the detyrosination of the α-tubulin C-terminus. Here the authors provide insights into the tubulin detyrosination mechanism by determining the crystal structures of VASH2/SVBP and VASH2/SVBP in complex with a tubulin tail peptide.
Collapse
Affiliation(s)
- Chen Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Yan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
146
|
Affiliation(s)
- Kevin C Slep
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
147
|
Crystal structure of the tubulin tyrosine carboxypeptidase complex VASH1-SVBP. Nat Struct Mol Biol 2019; 26:567-570. [PMID: 31270470 DOI: 10.1038/s41594-019-0254-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022]
Abstract
The cyclic enzymatic removal and ligation of the C-terminal tyrosine of α-tubulin generates heterogeneous microtubules and affects their functions. Here we describe the crystal and solution structure of the tubulin carboxypeptidase complex between vasohibin (VASH1) and small vasohibin-binding protein (SVBP), which folds in a long helix, which stabilizes the VASH1 catalytic domain. This structure, combined with molecular docking and mutagenesis experiments, reveals which residues are responsible for recognition and cleavage of the tubulin C-terminal tyrosine.
Collapse
|
148
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)–induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1–dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
149
|
Structural basis of tubulin detyrosination by vasohibins. Nat Struct Mol Biol 2019; 26:583-591. [PMID: 31235910 PMCID: PMC6609488 DOI: 10.1038/s41594-019-0242-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Microtubules are regulated by posttranslational modifications (PTMs) of tubulin. The ligation and cleavage of the C-terminal tyrosine of α tubulin impact microtubule functions during mitosis, cardiomyocyte contraction, and neuronal processes. Tubulin tyrosination and detyrosination are mediated by tubulin tyrosine ligase (TTL) and the recently discovered tubulin detyrosinases, vasohibin 1 and 2 (VASH1 and VASH2) bound to the small vasohibin-binding protein (SVBP). Here, we report the crystal structures of human VASH1–SVBP alone, in complex with a tyrosine-derived covalent inhibitor, and bound to the natural product parthenolide. The structures and subsequent mutagenesis analyses explain the requirement for SVBP during tubulin detyrosination, and reveal the basis for the recognition of the C-terminal tyrosine and the acidic α tubulin tail by VASH1. The VASH1–SVBP–parthenolide structure provides a framework for designing more effective chemical inhibitors of vasohibins, which can be valuable for dissecting their biological functions and may have therapeutic potential.
Collapse
|
150
|
Structural basis of tubulin detyrosination by the vasohibin–SVBP enzyme complex. Nat Struct Mol Biol 2019; 26:571-582. [DOI: 10.1038/s41594-019-0241-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|