101
|
Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, Chen J, Liu H, Tang J, Zhong Y, Zhang X, Liu Z, Zuo Y, Shen H, Wei Y, Zhao L. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res 2023; 194:106837. [PMID: 37379962 DOI: 10.1016/j.phrs.2023.106837] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiyuan Yuan
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of medicinal chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, Sichuan 646000, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China
| | - Hongping Shen
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
102
|
Ge J, Tan R, Gao Q, Li R, Xu P, Song H, Wang S, Wan Y, Zhou L. A Multifunctional Nanocarrier System for Highly Efficient and Targeted Delivery of Ketamine to NMDAR Sites for Improved Treatment of Depression. Adv Healthc Mater 2023; 12:e2300154. [PMID: 37031162 DOI: 10.1002/adhm.202300154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Indexed: 04/10/2023]
Abstract
Ketamine (KA), commonly used as an anesthetic, is now widely studied as an antidepressant for the treatment of depression. However, due to its side effects, such as addiction and cognitive impairment, the dosage and frequency of (S)-ketamine approved by the FDA for the treatment of refractory depression is very low, which limits its efficacy. Here, a new multifunctional nanocarrier system (AC-RM@HA-MS) with specific targeting capabilities is developed to improve the efficacy of KA treatment. KA-loaded NPs (AC-RM@HA-MS-KA) are constructed with a multilayer core-shell structure. KA-loaded mesoporous silica NPs are prepared, conjugated with hyaluronic acid (HA) as pore gatekeepers, and sheathed with an RBC-membrane (RM) for camouflage. Finally, the surface is tagged with bifunctional peptides (Ang-2-Con-G, AC) to achieve specific targeting. One peptide (Ang-2) is acted as a guide to facilitate the crossing of the blood-brain barrier (BBB), while the other (Con-G) is functioned as a ligand for the targeted delivery of KA to the N-methyl-D-aspartate receptor sites. Animal experiments reveal that AC-RM@HA-MS-KA NPs effectively cross the BBB and directionally accumulate in the curing areas, thereby alleviating the depressive symptoms and improving the cognitive functions of depressed mice. After treatment, the depressed mice almost completely return to normal without obvious symptoms of addiction.
Collapse
Affiliation(s)
- Jing Ge
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Li
- School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Pengxin Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hang Song
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lei Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
103
|
Xiao C, Zhou J, Li A, Zhang L, Zhu X, Zhou J, Hu Y, Zheng Y, Liu J, Deng Q, Wang H, Wang G. Esketamine vs Midazolam in Boosting the Efficacy of Oral Antidepressants for Major Depressive Disorder: A Pilot Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2328817. [PMID: 37578792 PMCID: PMC10425830 DOI: 10.1001/jamanetworkopen.2023.28817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
Importance Loss of a previously effective response while still using adequate antidepressant treatment occurs in a relatively high proportion of patients with major depressive disorder (MDD); therefore, there is a need to develop novel effective treatment strategies. Objective To assess the efficacy and safety of a single subanesthetic dose of esketamine in boosting the efficacy of oral antidepressants for treating fluctuating antidepressant response in MDD. Design, Setting, and Participants This single-center, double-blind, midazolam-controlled pilot randomized clinical trial was conducted at Beijing Anding Hospital, Capital Medical University in China. The study enrolled participants aged 18 years and older with fluctuating antidepressant response, defined as patients with MDD experiencing fluctuating symptoms after symptom relief and stabilization. Patient recruitment was conducted from August 2021 to January 2022, and participants were followed-up for 6 weeks. Data were analyzed as intention-to-treat from July to September 2022. Interventions All participants in the esketamine-treated group received intravenous esketamine at 0.2 mg/kg in 40 minutes. Participants in the midazolam control group received intravenous midazolam at 0.045 mg/kg in 40 minutes. Main Outcomes and Measures The primary outcome was the response rate at 2 weeks, defined as a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS). Secondary outcomes included response rate at 6 weeks, remission rates at 2 and 6 weeks, and change in MADRS and Clinical Global Impression-Severity score from baseline to 6 weeks; remission was defined by a MADRS score of 10 or lower. Results A total of 30 patients (median [IQR] age, 28.0 [24.0-40.0] years; 17 [56.7%] female) were randomized, including 15 patients randomized to midazolam and 15 patients randomized to esketamine; 29 patients completed the study. Response rates at 2 weeks were significantly higher in the esketamine-treated group than in the midazolam control group (10 patients [66.7%] vs 1 patient [6.7%]; P < .001). Participants treated with esketamine experienced significantly greater reduction in MADRS score from baseline to 2 weeks compared with those treated with midazolam (mean [SD] reduction, 15.7 [1.5] vs 3.1 [1.3]; P < .001). No serious adverse events were observed in this trial, and no psychotogenic effects and clinically significant manic symptoms were reported. Conclusions and Relevance This pilot randomized clinical trial found that a single subanesthetic dose of esketamine could boost the efficacy of oral antidepressants in treating fluctuating antidepressant response, with a good safety profile. Trial Registration Chinese Clinical Trial Registry Identifier: ChiCTR2100050335.
Collapse
Affiliation(s)
- Chunfeng Xiao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jia Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Anning Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ling Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xuequan Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yongdong Hu
- Unit of Psychological Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yunying Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jing Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qiying Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
104
|
Jefferson SJ, Gregg I, Dibbs M, Liao C, Wu H, Davoudian PA, Woodburn SC, Wehrle PH, Sprouse JS, Sherwood AM, Kaye AP, Pittenger C, Kwan AC. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 2023; 48:1257-1266. [PMID: 37015972 PMCID: PMC10354037 DOI: 10.1038/s41386-023-01572-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access. One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT, particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of 5-MeO-DMT and highlight similarities and differences with those of psilocybin.
Collapse
Affiliation(s)
- Sarah J Jefferson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ian Gregg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Clara Liao
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Pasha A Davoudian
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Samuel C Woodburn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Patrick H Wehrle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | | | - Alfred P Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA National Center for PTSD Clinical Neuroscience Division, West Haven, CT, 06516, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
105
|
Dawson M, Terstege DJ, Jamani N, Tsutsui M, Pavlov D, Bugescu R, Epp JR, Leinninger GM, Sargin D. Hypocretin/orexin neurons encode social discrimination and exhibit a sex-dependent necessity for social interaction. Cell Rep 2023; 42:112815. [PMID: 37459234 DOI: 10.1016/j.celrep.2023.112815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/20/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear. Using fiber photometry and behavioral analysis, we show here that hypocretin neurons differentially encode social discrimination based on the nature of social encounters. The optogenetic inhibition of hypocretin neuron activity or blocking of hcrt-1 receptors reduces the amount of time mice are engaged in social interaction in males but not in females. Reduced hcrt-1 receptor signaling during social interaction is associated with altered activity in the insular cortex and ventral tegmental area in males. Our data implicating hypocretin neurons as sexually dimorphic regulators within social networks have significant implications for the treatment of neuropsychiatric diseases with social dysfunction, particularly considering varying prevalence among sexes.
Collapse
Affiliation(s)
- Matthew Dawson
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Dylan J Terstege
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Naila Jamani
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Dmitrii Pavlov
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
106
|
Lepow L, Morishita H, Yehuda R. Critical Period Plasticity as a Framework for Psychedelic-Assisted Psychotherapy. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:329-336. [PMID: 37404962 PMCID: PMC10316207 DOI: 10.1176/appi.focus.23021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
As psychedelic compounds gain traction in psychiatry, there is a need to consider the active mechanism to explain the effect observed in randomized clinical trials. Traditionally, biological psychiatry has asked how compounds affect the causal pathways of illness to reduce symptoms and therefore focus on analysis of the pharmacologic properties. In psychedelic-assisted psychotherapy (PAP), there is debate about whether ingestion of the psychedelic alone is thought to be responsible for the clinical outcome. A question arises how the medication and psychotherapeutic intervention together might lead to neurobiological changes that underlie recovery from illness such as post-traumatic stress disorder (PTSD). This paper offers a framework for investigating the neurobiological basis of PAP by extrapolating from models used to explain how a pharmacologic intervention might create an optimal brain state during which environmental input has enduring effects. Specifically, there are developmental "critical" periods (CP) with exquisite sensitivity to environmental input; the biological characteristics are largely unknown. We discuss a hypothesis that psychedelics may remove the brakes on adult neuroplasticity, inducing a state similar to that of neurodevelopment. In the visual system, progress has been made both in identifying the biological conditions which distinguishes the CP and in manipulating the active ingredients with the idea that we might pharmacologically reopen a critical period in adulthood. We highlight ocular dominance plasticity (ODP) in the visual system as a model for characterizing CP in limbic systems relevant to psychiatry. A CP framework may help to integrate the neuroscientific inquiry with the influence of the environment both in development and in PAP. Appeared originally in Front Neurosci 2021; 15:710004.
Collapse
Affiliation(s)
- Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| |
Collapse
|
107
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
108
|
Obi-Nagata K, Suzuki N, Miyake R, MacDonald ML, Fish KN, Ozawa K, Nagahama K, Okimura T, Tanaka S, Kano M, Fukazawa Y, Sweet RA, Hayashi-Takagi A. Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders. SCIENCE ADVANCES 2023; 9:eade5973. [PMID: 37294752 PMCID: PMC10256173 DOI: 10.1126/sciadv.ade5973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.
Collapse
Affiliation(s)
- Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| | - Norimitsu Suzuki
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Matthew L. MacDonald
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Katsuya Ozawa
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo 157-8577, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida, Fukui, 910-1193, Japan
| | - Robert A. Sweet
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Akiko Hayashi-Takagi
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| |
Collapse
|
109
|
Lucantonio F, Li S, Lu J, Roeglin J, Bontempi L, Shields BC, Zarate CA, Tadross MR, Pignatelli M. Ketamine rescues anhedonia by cell-type and input specific adaptations in the Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544088. [PMID: 37333325 PMCID: PMC10274891 DOI: 10.1101/2023.06.08.544088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ketamine's role in providing a rapid and sustained antidepressant response, particularly for patients unresponsive to conventional treatments, is increasingly recognized. A core symptom of depression, anhedonia, or the loss of enjoyment or interest in previously pleasurable activities, is known to be significantly alleviated by ketamine. While several hypotheses have been proposed regarding the mechanisms by which ketamine alleviates anhedonia, the specific circuits and synaptic changes responsible for its sustained therapeutic effects are not yet understood. Here, we show that the nucleus accumbens (NAc), a major hub of the reward circuitry, is essential for ketamine's effect in rescuing anhedonia in mice subjected to chronic stress, a critical risk factor in the genesis of depression in humans. Specifically, a single exposure to ketamine rescues stress-induced decreased strength of excitatory synapses on NAc D1 dopamine receptor-expressing medium spiny neurons (D1-MSNs). By using a novel cell-specific pharmacology method, we demonstrate that this cell-type specific neuroadaptation is necessary for the sustained therapeutic effects of ketamine. To test for causal sufficiency, we artificially mimicked ketamine-induced increase in excitatory strength on D1-MSNs and found that this recapitulates the behavioral amelioration induced by ketamine. Finally, to determine the presynaptic origin of the relevant glutamatergic inputs for ketamine-elicited synaptic and behavioral effects, we used a combination of opto- and chemogenetics. We found that ketamine rescues stress-induced reduction in excitatory strength at medial prefrontal cortex and ventral hippocampus inputs to NAc D1-MSNs. Chemogenetically preventing ketamine-evoked plasticity at those unique inputs to the NAc reveals a ketamine-operated input-specific control of hedonic behavior. These results establish that ketamine rescues stress-induced anhedonia via cell-type-specific adaptations as well as information integration in the NAc via discrete excitatory synapses.
Collapse
|
110
|
Wu K, Liu YY, Shao S, Song W, Chen XH, Dong YT, Zhang YM. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis. Brain Behav Immun 2023:S0889-1591(23)00141-1. [PMID: 37286175 DOI: 10.1016/j.bbi.2023.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
111
|
Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, Wright N, Lama C, Faltin S, Goff LA, Stein-O'Brien GL, Dölen G. Psychedelics reopen the social reward learning critical period. Nature 2023; 618:790-798. [PMID: 37316665 PMCID: PMC10284704 DOI: 10.1038/s41586-023-06204-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Psychedelics are a broad class of drugs defined by their ability to induce an altered state of consciousness1,2. These drugs have been used for millennia in both spiritual and medicinal contexts, and a number of recent clinical successes have spurred a renewed interest in developing psychedelic therapies3-9. Nevertheless, a unifying mechanism that can account for these shared phenomenological and therapeutic properties remains unknown. Here we demonstrate in mice that the ability to reopen the social reward learning critical period is a shared property across psychedelic drugs. Notably, the time course of critical period reopening is proportional to the duration of acute subjective effects reported in humans. Furthermore, the ability to reinstate social reward learning in adulthood is paralleled by metaplastic restoration of oxytocin-mediated long-term depression in the nucleus accumbens. Finally, identification of differentially expressed genes in the 'open state' versus the 'closed state' provides evidence that reorganization of the extracellular matrix is a common downstream mechanism underlying psychedelic drug-mediated critical period reopening. Together these results have important implications for the implementation of psychedelics in clinical practice, as well as the design of novel compounds for the treatment of neuropsychiatric disease.
Collapse
Affiliation(s)
- Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Edward Sawyer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Young Jun Song
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Makenzie Wilkinson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yasmin Padovan-Hernandez
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Júnia Lara de Deus
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Noelle Wright
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Carine Lama
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sehr Faltin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Center for Psychedelics and Consciousness Research, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
112
|
Heinsbroek JA, Giannotti G, Bonilla J, Olson DE, Peters J. Tabernanthalog Reduces Motivation for Heroin and Alcohol in a Polydrug Use Model. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2023; 1:111-119. [PMID: 37360328 PMCID: PMC10286262 DOI: 10.1089/psymed.2023.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Background The potential use of psychedelic drugs as therapeutics for neuropsychiatric disorders has been limited by their hallucinogenic properties. To overcome this limitation, we developed and characterized tabernanthalog (TBG), a novel analogue of the indole alkaloids ibogaine and 5-methoxy-N,N-dimethyltryptamine with reduced cardiac arrhythmogenic risk and a lack of classical psychedelic drugs-induced sensory alterations. We previously demonstrated that TBG has therapeutic efficacy in a preclinical model of opioid use disorder (OUD) in rats and in a binge model of alcohol drinking in mice. Alcohol is commonly co-used in ∼35-50% of individuals with OUD, and yet, preclinical models that recapitulate this comorbidity are lacking. Methodology Here we employed a polydrug model of heroin and alcohol couse to screen the therapeutic efficacy of TBG on metrics of both opioid and alcohol seeking. We first exposed rats to alcohol (or control sucrose-fade solution) in the home-cage (HC), using a two-bottle binge protocol, over a period of 1 month. Rats were then split into two groups that underwent self-administration training for either intravenous heroin or oral alcohol, so that we could assess the impact of HC alcohol exposure on the self-administration of each substance separately. Thereafter, rats began self-administering both heroin and alcohol in the same sessions. Finally, we tested the effects of TBG on break points for heroin and alcohol in a progressive ratio test, where the number of lever presses required to obtain a single reward increased exponentially. Results and Conclusion TBG effectively reduced motivation for heroin and alcohol in this test, indicating its efficacy is preserved in animals with a history of heroin and alcohol polydrug use.
Collapse
Affiliation(s)
- Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Giuseppe Giannotti
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Joel Bonilla
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
- Center for Neuroscience, University of California, Davis, Davis, California, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
113
|
Chang HX, Dai W, Bao JH, Li JF, Zhang JG, Li YF. Essential role of microglia in the fast antidepressant action of ketamine and hypidone hydrochloride (YL-0919). Front Pharmacol 2023; 14:1122541. [PMID: 37305539 PMCID: PMC10250639 DOI: 10.3389/fphar.2023.1122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Intracerebral microglia play a vital role in mediating central immune response, neuronal repair and synaptic pruning, but its precise role and mechanism in fast action of antidepressants have remained unknown. In this study, we identified that the microglia contributed to the rapid action of antidepressants ketamine and YL-0919. Methods: The depletion of microglia was achieved with the diet containing the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 in mice. The tail suspension test (TST), forced swimming test (FST) and novelty suppressed feeding test (NSFT) were employed to evaluate the rapid acting antidepressant behavior of ketamine and YL-0919 in the microglia depletion model. The number of microglia in the prefrontal cortex (PFC) was assayed by the immunofluorescence staining. The expressions of synaptic proteins (synapsin-1, PSD-95, GluA1) and brain-derived neurotrophic factor (BDNF) in the PFC were tested by Western blot. Results: The immobility duration in FST and the latency to feed in NSFT were shortened 24 h after an intraperitoneal (i.p.) injection of ketamine (10 mg/kg). The microglial depletion of PLX3397 blocked the rapid antidepressant-like effect of ketamine in mice. In addition, the immobility time in TST and FST as well as latency to feed in NSFT were reduced 24 h after the intragastric (i.g.) administration of YL-0919 (2.5 mg/kg), and the rapid antidepressant effect of YL-0919 was also blocked by the microglial depletion using PLX5622. About 92% of microglia in the prefrontal cortex was depleted in PLX5622 diet-fed mice, while both ketamine and YL-0919 promoted proliferation on the remaining microglia. YL-0919 significantly increased the protein expressions of synapsin-1, PSD-95, GluA1 and BDNF in the PFC, all of which could be blocked by PLX5622. Conclusion: These results suggested the microglia underlying the rapid antidepressant-like effect of ketamine and YL-0919, and microglia would likely constitute in the rapid enhancing impact of synaptic plasticity in the prefrontal cortex by YL-0919.
Collapse
Affiliation(s)
- Hai-Xia Chang
- College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin-Hao Bao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ji-Guo Zhang
- College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
114
|
Odland AU, Sandahl R, Andreasen JT. Chronic corticosterone improves perseverative behavior in mice during sequential reversal learning. Behav Brain Res 2023; 450:114479. [PMID: 37169127 DOI: 10.1016/j.bbr.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Stressful life events can both trigger development of psychiatric disorders and promote positive behavioral changes in response to adversities. The relationship between stress and cognitive flexibility is complex, and conflicting effects of stress manifest in both humans and laboratory animals. OBJECTIVE To mirror the clinical situation where stressful life events impair mental health or promote behavioral change, we examined the post-exposure effects of stress on cognitive flexibility in mice. METHODS We tested female C57BL/6JOlaHsd mice in the touchscreen-based sequential reversal learning test. Corticosterone (CORT) was used as a model of stress and was administered in the drinking water for two weeks before reversal learning. Control animals received drinking water without CORT. Behaviors in supplementary tests were included to exclude non-specific confounding effects of CORT and improve interpretation of the results. RESULTS CORT-treated mice were similar to controls on all touchscreen parameters before reversal. During the low accuracy phase of reversal learning, CORT reduced perseveration index, a measure of perseverative responding, but did not affect acquisition of the new reward contingency. This effect was not related to non-specific deficits in chamber activity. CORT increased anxiety-like behavior in the elevated zero maze test and repetitive digging in the marble burying test, reduced locomotor activity, but did not affect spontaneous alternation behavior. CONCLUSION CORT improved cognitive flexibility in the reversal learning test by extinguishing prepotent responses that were no longer rewarded, an effect possibly related to a stress-mediated increase in sensitivity to negative feedback that should be confirmed in a larger study.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
115
|
Kopelman J, Keller TA, Panny B, Griffo A, Degutis M, Spotts C, Cruz N, Bell E, Do-Nguyen K, Wallace ML, Mathew SJ, Howland RH, Price RB. Rapid neuroplasticity changes and response to intravenous ketamine: a randomized controlled trial in treatment-resistant depression. Transl Psychiatry 2023; 13:159. [PMID: 37160885 PMCID: PMC10170140 DOI: 10.1038/s41398-023-02451-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Intravenous ketamine is posited to rapidly reverse depression by rapidly enhancing neuroplasticity. In human patients, we quantified gray matter microstructural changes on a rapid (24-h) timescale within key regions where neuroplasticity enhancements post-ketamine have been implicated in animal models. In this study, 98 unipolar depressed adults who failed at least one antidepressant medication were randomized 2:1 to a single infusion of intravenous ketamine (0.5 mg/kg) or vehicle (saline) and completed diffusion tensor imaging (DTI) assessments at pre-infusion baseline and 24-h post-infusion. DTI mean diffusivity (DTI-MD), a putative marker of microstructural neuroplasticity in gray matter, was calculated for 7 regions of interest (left and right BA10, amygdala, and hippocampus; and ventral Anterior Cingulate Cortex) and compared to clinical response measured with the Montgomery-Asberg Depression Rating Scale (MADRS) and the Quick Inventory of Depressive Symptoms-Self-Report (QIDS-SR). Individual differences in DTI-MD change (greater decrease from baseline to 24-h post-infusion, indicative of more neuroplasticity enhancement) were associated with larger improvements in depression scores across several regions. In the left BA10 and left amygdala, these relationships were driven primarily by the ketamine group (group * DTI-MD interaction effects: p = 0.016-0.082). In the right BA10, these associations generalized to both infusion arms (p = 0.007). In the left and right hippocampus, on the MADRS only, interaction effects were observed in the opposite direction, such that DTI-MD change was inversely associated with depression change in the ketamine arm specifically (group * DTI-MD interaction effects: p = 0.032-0.06). The acute effects of ketamine on depression may be mediated, in part, by acute changes in neuroplasticity quantifiable with DTI.
Collapse
Affiliation(s)
- Jared Kopelman
- University of California San Diego School of Medicine, San Diego, CA, USA
| | | | - Benjamin Panny
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela Griffo
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Degutis
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal Spotts
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas Cruz
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Bell
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin Do-Nguyen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Sanjay J Mathew
- Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Robert H Howland
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca B Price
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
116
|
Abstract
Over the past decade, psychedelic compounds have emerged as potentially transformative therapeutics for a variety of intractable neuropsychiatric conditions. However, historically most of the basic science has utilized these compounds as probes to interrogate various endogenous neurotransmitter systems-mainly the serotonin 5-HT2A receptor. With the renewed interest in utilizing these compounds as therapeutics and the explosion in clinical trials, psychedelics have been purported to treat many neuropsychiatric disorders, including depression, cluster headaches, migraines, anxiety, and obsessive-compulsive disorder. It is therefore imperative to understand the biology and pharmacology behind their therapeutic mechanisms as well as expose any potential pitfalls in their widespread use as treatments. This review covers the latest advances in understanding the biological mechanisms, the newest efforts in drug discovery, and potential pitfalls when it comes to utilizing this class of compounds as emerging therapeutics.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
117
|
Kim JW, Suzuki K, Kavalali ET, Monteggia LM. Bridging rapid and sustained antidepressant effects of ketamine. Trends Mol Med 2023; 29:364-375. [PMID: 36907686 PMCID: PMC10101916 DOI: 10.1016/j.molmed.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Acute administration of (R,S)-ketamine (ketamine) produces rapid antidepressant effects that in some patients can be sustained for several days to more than a week. Ketamine blocks N-methyl-d-asparate (NMDA) receptors (NMDARs) to elicit specific downstream signaling that induces a novel form of synaptic plasticity in the hippocampus that has been linked to the rapid antidepressant action. These signaling events lead to subsequent downstream transcriptional changes that are involved in the sustained antidepressant effects. Here we review how ketamine triggers this intracellular signaling pathway to mediate synaptic plasticity which underlies the rapid antidepressant effects and links it to downstream signaling and the sustained antidepressant effects.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA; College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea; Department of Regulatory Science, Gradaute School, Kyung Hee University, Seoul, Republic of Korea; Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Japan
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
118
|
Sequeira MK, Swanson AM, Kietzman HW, Gourley SL. Cocaine and habit training cause dendritic spine rearrangement in the prelimbic cortex. iScience 2023; 26:106240. [PMID: 37153443 PMCID: PMC10156587 DOI: 10.1016/j.isci.2023.106240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Successfully navigating dynamic environments requires organisms to learn the consequences of their actions. The prelimbic prefrontal cortex (PL) formulates action-consequence memories and is modulated by addictive drugs like cocaine. We trained mice to obtain food rewards and then unexpectedly withheld reinforcement, triggering new action-consequence memory. New memory was disrupted by cocaine when delivered immediately following non-reinforcement, but not when delayed, suggesting that cocaine disrupted memory consolidation. Cocaine also rapidly inactivated cofilin, a primary regulator of the neuronal actin cytoskeleton. This observation led to the discovery that cocaine also within the time of memory consolidation elevated dendritic spine elimination and blunted spine formation rates on excitatory PL neurons, culminating in thin-type spine attrition. Training drug-naive mice to utilize inflexible response strategies also eliminated thin-type dendritic spines. Thus, cocaine may disrupt action-consequence memory, at least in part, by recapitulating neurobiological sequalae occurring in the formation of inflexible habits.
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Andrew M. Swanson
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Henry W. Kietzman
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
119
|
Datta MS, Chen Y, Chauhan S, Zhang J, De La Cruz ED, Gong C, Tomer R. Whole-brain mapping reveals the divergent impact of ketamine on the dopamine system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536506. [PMID: 37090584 PMCID: PMC10120808 DOI: 10.1101/2023.04.12.536506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Ketamine is a multifunctional drug with clinical applications as an anesthetic, as a pain management medication and as a transformative fast-acting antidepressant. It is also abused as a recreational drug due to its dissociative property. Recent studies in rodents are revealing the neuronal mechanisms that mediate the complex actions of ketamine, however, its long-term impact due to prolonged exposure remains much less understood with profound scientific and clinical implications. Here, we develop and utilize a high-resolution whole-brain phenotyping approach to show that repeated ketamine administration leads to a dosage-dependent decrease of dopamine (DA) neurons in the behavior state-related midbrain regions and, conversely, an increase within the hypothalamus. Congruently, we show divergently altered innervations of prefrontal cortex, striatum, and sensory areas. Further, we present supporting data for the post-transcriptional regulation of ketamine-induced structural plasticity. Overall, through an unbiased whole-brain analysis, we reveal the divergent brain-wide impact of chronic ketamine exposure on the association and sensory pathways.
Collapse
Affiliation(s)
- Malika S. Datta
- Department of Biological Sciences, Columbia University
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University
| | - Yannan Chen
- Department of Biological Sciences, Columbia University
- Department of Biomedical Engineering, Columbia University
| | | | - Jing Zhang
- Department of Biological Sciences, Columbia University
| | | | - Cheng Gong
- Department of Biological Sciences, Columbia University
- Department of Biomedical Engineering, Columbia University
| | - Raju Tomer
- Department of Biological Sciences, Columbia University
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University
- Department of Biomedical Engineering, Columbia University
| |
Collapse
|
120
|
Li C, Yu T, Li W, Gong L, Shi J, Liu H, Yu J. PINK1 deficiency with Ca 2+ changes in the hippocampus exacerbates septic encephalopathy in mice. Chem Biol Interact 2023; 374:110413. [PMID: 36804394 DOI: 10.1016/j.cbi.2023.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
PTEN-induced putative kinase 1 (PINK1) is a mitochondrial kinase that protects against oxidative stress-induced cellular death. PINK1 deletion, on the other hand, disrupts mitochondrial calcium (Ca2+) homeostasis in various brain disorders. This study looked at how PINK1 affects hippocampal intracellular Ca2+ changes in mice with septic encephalopathy. Mice were injected intraperitoneally with lipopolysaccharide (LPS, 5 mg/kg) to induce septic encephalopathy; then, fiber photometry was used to record hippocampal Ca2+ transients during behavioral tests in freely moving mice. Basal cytoplasmic Ca2+ levels were detected under a fluorescent microscope. LPS induced PINK1 expression and neuronal loss in the hippocampus of mice, whereas no difference in neuronal counts was shown between PINK1 knockout LPS mice and WT LPS mice. PINK1 deficiency led to inhibited Ca2+ transients and increased intracellular Ca2+ levels in the hippocampus of mice, thus, significantly aggravating the cognitive dysfunction in septic mice. An analysis of Parkin and PLC-γ1, downstream effectors of PINK1, showed that they are associated with the effects of PINK1. These results demonstrate that PINK1 deficiency disrupts intracellular Ca2+ homeostasis and exacerbates septic encephalopathy. This observation suggests a protective role of PINK1 in septic encephalopathy.
Collapse
Affiliation(s)
- Cui Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Tianyu Yu
- Tianjin Medical University, Tianjin, 300070, China
| | - Wenxing Li
- Tianjin Medical University, Tianjin, 300070, China
| | - Lirong Gong
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Huayang Liu
- Tianjin Medical University, Tianjin, 300070, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
121
|
Wang G, Yang H, Zuo W, Mei X. Antidepressant-like effect of acute dose of Naringin involves suppression of NR1 and activation of protein kinase A/cyclic adenosine monophosphate response element-binding protein/brain-derived neurotrophic factor signaling in hippocampus. Behav Pharmacol 2023; 34:101-111. [PMID: 36503881 DOI: 10.1097/fbp.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naringin (Nr) has been identified to have antidepressant-like effects through repeated treatment. However, the underlying mechanism of the rapid antidepressant-like effects of Nr was still unclear. The present study used behavioral tests, classic depressive model and pharmacological methods to reveal the rapid antidepressant-like potential of Nr. We found that a single dose of Nr (20 mg/kg) produced antidepressant-like action after 2 h in the tail suspension test (TST) and forced swimming test (FST). Moreover, ketamine-like effects were also demonstrated by using the chronic mild stress model (CMS) and learned helplessness (LH), and the results showed that Nr reversed all behavioral defects, TST, FST, source preference test (SPT) in CMS, and LH testing, TST, FST in LH model, at 2 h after a single administration. In addition, Nr (20 mg/kg) could improve the abnormal expressions of NMDA receptor NR1 and PKA/CREB/BDNF pathway in hippocampus 2 h after a single administration in CMS mice. Further investigation revealed that activation of NMDA receptors by NMDA (750 mg/kg) could block the antidepressant effects of acute administration of Nr (20 mg/kg). However, the inhibition of NMDA receptors by MK-801 (0.05 mg/kg) promoted the subdose of Nr (10 mg/kg) to have antidepressant effect, which was similar to the effective dose Nr (20 mg/kg). Taken together, acute dose of Nr produces rapid antidepressant-like action, and the underlying mechanism could be through inhibiting NMDA receptors in the hippocampus.
Collapse
Affiliation(s)
- Guangyao Wang
- Department of Basic Theory of Chinese Medicine, College of Chinese Medicine, Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Haixia Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenren Zuo
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyun Mei
- Department of Basic Theory of Chinese Medicine, College of Chinese Medicine, Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine
| |
Collapse
|
122
|
Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, Calkins MM, Bautista-Carro MA, Arsenault E, Telfer A, Taghavi-Abkuh FF, Malcolm NJ, El Sayegh F, Abizaid A, Schmid Y, Morton K, Halberstadt AL, Aguilar-Valles A, McCorvy JD. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep 2023; 42:112203. [PMID: 36884348 PMCID: PMC10112881 DOI: 10.1016/j.celrep.2023.112203] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Hallucinations limit widespread therapeutic use of psychedelics as rapidly acting antidepressants. Here we profiled the non-hallucinogenic lysergic acid diethylamide (LSD) analog 2-bromo-LSD (2-Br-LSD) at more than 33 aminergic G protein-coupled receptors (GPCRs). 2-Br-LSD shows partial agonism at several aminergic GPCRs, including 5-HT2A, and does not induce the head-twitch response (HTR) in mice, supporting its classification as a non-hallucinogenic 5-HT2A partial agonist. Unlike LSD, 2-Br-LSD lacks 5-HT2B agonism, an effect linked to cardiac valvulopathy. Additionally, 2-Br-LSD produces weak 5-HT2A β-arrestin recruitment and internalization in vitro and does not induce tolerance in vivo after repeated administration. 2-Br-LSD induces dendritogenesis and spinogenesis in cultured rat cortical neurons and increases active coping behavior in mice, an effect blocked by the 5-HT2A-selective antagonist volinanserin (M100907). 2-Br-LSD also reverses the behavioral effects of chronic stress. Overall, 2-Br-LSD has an improved pharmacological profile compared with LSD and may have profound therapeutic value for mood disorders and other indications.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Janelle K Lanham
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdi Ghaffari
- BetterLife Pharma Inc., Vancouver, BC V6H 1A6, Canada
| | | | - Andrew B Cao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Andre Telfer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Nicholas J Malcolm
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fatema El Sayegh
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yasmin Schmid
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
123
|
Gan SL, Long YQ, Wang QY, Feng CD, Lai CX, Liu CT, Ding YY, Liu H, Peng K, Ji FH. Effect of esketamine on postoperative depressive symptoms in patients undergoing thoracoscopic lung cancer surgery: A randomized controlled trial. Front Psychiatry 2023; 14:1128406. [PMID: 37009103 PMCID: PMC10050377 DOI: 10.3389/fpsyt.2023.1128406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundDepressive symptoms are common among patients with lung cancer. We aimed to assess the effects of esketamine on postoperative depressive symptoms after thoracoscopic lung cancer surgery.MethodsIn this randomized, double-blind, placebo-controlled trial, 156 patients undergoing thoracoscopic lung cancer surgery were randomly allocated in a 1:1 ratio to receive intravenous esketamine (intraoperatively and in patient-controlled analgesia until 48 h postoperatively) or normal saline placebo. The primary outcome was the proportion of patients with depressive symptoms at 1 month postoperatively, assessed using the Beck Depression Inventory-II (BDI-II). Secondary outcomes included depressive symptoms at 48 h postoperatively, hospital discharge and 3 months postoperatively, BDI-II scores, anxious symptoms, Beck Anxiety Inventory scores, Quality of Recovery-15 (QoR-15) scores, and 1- and 3-month mortality.Main resultsA total of 151 patients (75 in the esketamine group and 76 in the normal saline group) completed the 1-month follow-up. The esketamine group had a significantly lower incidence of depressive symptoms at 1 month compared to the normal saline group (1.3% vs. 11.8%; risk difference = −10.5, 95%CI = −19.6% to −0.49%; p = 0.018). After excluding patients without lung cancer diagnosis, the incidence of depressive symptoms was also lower in the esketamine group (1.4% vs. 12.2%; risk difference = −10.8, 95%CI = −20.2% to −0.52%; p = 0.018). The secondary outcomes were similar between groups, except that the esketamine group had higher QoR-15 scores at 1 month postoperatively (median difference = 2; 95%CI = 0 to 5; p = 0.048). The independent risk factors for depressive symptoms were hypertension (odds ratio = 6.75, 95%CI = 1.13 to 40.31; p = 0.036) and preoperative anxious symptoms (odds ratio = 23.83, 95%CI = 3.41 to 166.33; p = 0.001).ConclusionPerioperative administration of esketamine reduced the incidence of depressive symptoms at 1 month after thoracoscopic lung cancer surgery. History of hypertension and preoperative anxious symptoms were independent risk factors for depressive symptoms.Clinical trial registration: Chinese Clinical Trial Registry http://www.chictr.org.cn, Identifier (ChiCTR2100046194).
Collapse
Affiliation(s)
- Shu-lin Gan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yu-qin Long
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Qin-yun Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Chang-dong Feng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Chen-xu Lai
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Chun-tong Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yun-ying Ding
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Ke Peng,
| | - Fu-hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Fu-hai Ji,
| |
Collapse
|
124
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
125
|
Ashby DM, McGirr A. Selective effects of acute and chronic stress on slow and alpha-theta cortical functional connectivity and reversal with subanesthetic ketamine. Neuropsychopharmacology 2023; 48:642-652. [PMID: 36402835 PMCID: PMC9938145 DOI: 10.1038/s41386-022-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Anxious, depressive, traumatic, and other stress-related disorders are associated with large scale brain network functional connectivity changes, yet the relationship between acute stress effects and the emergence of persistent large scale network reorganization is unclear. Using male Thy 1-jRGECO1a transgenic mice, we repeatedly sampled mesoscale cortical calcium activity across dorsal neocortex. First, mice were imaged in a homecage control condition, followed by an acute foot-shock stress, a chronic variable stress protocol, an acute on chronic foot-shock stress, and finally treatment with the prototype rapid acting antidepressant ketamine or vehicle. We derived functional connectivity metrics and network efficiency in two activity bands, namely slow cortical activity (0.3-4 Hz) and theta-alpha cortical activity (4-15 Hz). Compared to homecage control, an acute foot-shock stress induced widespread increases in cortical functional connectivity and network efficiency in the 4-15 Hz temporal band before normalizing after 24 h. Conversely, chronic stress produced a selective increase in between-module functional connectivity and network efficiency in the 0.3-4 Hz band, which was reversed after treatment with the rapid acting antidepressant ketamine. The functional connectivity changes induced by acute stress in the 4-15 Hz band were strongly related to those in the slow band after chronic stress, as well as the selective effects of subanesthetic ketamine. Together, this data indicates that stress induces functional connectivity changes with spatiotemporal features that link acute stress, persistent network reorganization after chronic stress, and treatment effects.
Collapse
Affiliation(s)
- Donovan M Ashby
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
126
|
Oughli HA, Gebara MA, Ciarleglio A, Lavretsky H, Brown PJ, Flint AJ, Farber NB, Karp JF, Mulsant BH, Reynolds CF, Roose SP, Yang L, Butters MA, Lenze EJ. Intravenous Ketamine for Late-Life Treatment-Resistant Depression: A Pilot Study of Tolerability, Safety, Clinical Benefits, and Effect on Cognition. Am J Geriatr Psychiatry 2023; 31:210-221. [PMID: 36529623 PMCID: PMC10839705 DOI: 10.1016/j.jagp.2022.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Evidence-based treatment options for late-life treatment-resistant depression (TRD) are limited. Ketamine is a promising treatment for TRD; however, there is a paucity of data on its safety and efficacy in older adults. METHODS In this pilot clinical trial, 25 adults aged ≥60 years with TRD received IV ketamine openly twice a week for 4 weeks; partial responders at the end of this acute phase were eligible to receive weekly infusions for 4 more weeks in a continuation phase. Acceptability, tolerability, and safety, including adverse and serious adverse events (AEs and SAEs), blood pressure changes, dissociation, craving, in addition to rates of depression response and remission were evaluated. The NIH Toolbox Cognitive Battery was used to assess specific measures of executive function (EF) and overall fluid cognition. RESULTS Completion rates were 88% for the acute phase and 100% for the continuation phase. No AEs resulted in participant discontinuation, and there were no SAEs. Treatment-emergent elevation of blood pressure, dissociation, and craving were transient and did not result in any participant discontinuation. Depressive symptoms improved significantly and 48% of participants responded. During the acute phase, the EF measures and the fluid cognition composite score improved (Cohen's d = 0.61), and these improvements were sustained in the continuation phase. CONCLUSION This pilot study suggests that repeated IV ketamine infusions are well-tolerated and are associated with improvement in depression and EF in older adults with TRD. These promising findings need to be confirmed and extended in a larger randomized controlled trial.
Collapse
Affiliation(s)
- Hanadi Ajam Oughli
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Marie Anne Gebara
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA.
| | - Adam Ciarleglio
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, the George Washington University, Washington, DC
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Patrick J Brown
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Mental Health, University Health Network, Toronto, Canada
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Jordan F Karp
- Department of Psychiatry, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Charles F Reynolds
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Steven P Roose
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY
| | - Lei Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Meryl A Butters
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
127
|
Nguyen TML, Defaix C, Mendez-David I, Tritschler L, Etting I, Alvarez JC, Choucha W, Colle R, Corruble E, David DJ, Gardier AM. Intranasal (R, S)-ketamine delivery induces sustained antidepressant effects associated with changes in cortical balance of excitatory/inhibitory synaptic activity. Neuropharmacology 2023; 225:109357. [PMID: 36462636 DOI: 10.1016/j.neuropharm.2022.109357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
In 2019, an intranasal (IN) spray of esketamine SPRAVATO® was approved as a fast-acting antidepressant by drug Agencies US FDA and European EMA. At sub-anesthetic doses, (±)-ketamine, a non-competitive glutamate N-methyl-d-aspartate (NMDA) receptor antagonist, increases the overall excitability of the medial prefrontal cortex (mPFC), an effect being essential for its rapid antidepressant activity. We wondered if this effect of ketamine could come from changes in the balance between neuronal excitation and inhibition (E/I balance) in the mPFC. Here, we performed a preclinical approach to study neurochemical and behavioral responses to a single IN ketamine dose in BALB/cJ mice, a strain more sensitive to stress. By using in vivo microdialysis, we measured cortical E/I balance as the ratio between glutamate to GABA extracellular levels 24 h post-ketamine. We found, for the first time, that E/I balance was shifted in favor of excitation rather than inhibition in the mPFC but more robustly with IN KET than with a single intraperitoneal (IP) dose. Increases in plasma and brain ketamine, norketamine and HNKs levels suggest different metabolic profiles of IP and IN ketamine 30 min post-dose. A significantly larger proportion of ketamine and HNKs in the brain are derived from the IN route 30 min post-dose. It may be linked to the greater magnitude in E/I ratio following IN delivery relative to IP at t24 h. This study suggests that both IP and IN are effective brain delivery methods inducing similar sustained antidepressant efficacy of KET, but the way they induced neurotransmitter changes is slightly different.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Céline Defaix
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Indira Mendez-David
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Isabelle Etting
- Lab. Pharmacologie-Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Jean-Claude Alvarez
- Lab. Pharmacologie-Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Walid Choucha
- Université Paris-Saclay, Faculté de Médecine, UMR 1018, CESP MOODS Team, Bicêtre Hospital, Université Paris-Saclay, Le Kremin-Bicêtre, 94270, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, UMR 1018, CESP MOODS Team, Bicêtre Hospital, Université Paris-Saclay, Le Kremin-Bicêtre, 94270, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, UMR 1018, CESP MOODS Team, Bicêtre Hospital, Université Paris-Saclay, Le Kremin-Bicêtre, 94270, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Denis J David
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France.
| |
Collapse
|
128
|
Campos ACP, Pople C, Silk E, Surendrakumar S, Rabelo TK, Meng Y, Gouveia FV, Lipsman N, Giacobbe P, Hamani C. Neurochemical mechanisms of deep brain stimulation for depression in animal models. Eur Neuropsychopharmacol 2023; 68:11-26. [PMID: 36640729 DOI: 10.1016/j.euroneuro.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Christopher Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Esther Silk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Flavia Venetucci Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
129
|
Wang J, Chen HS, Li HH, Wang HJ, Zou RS, Lu XJ, Wang J, Nie BB, Wu JF, Li S, Shan BC, Wu PF, Long LH, Hu ZL, Chen JG, Wang F. Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice. Brain Behav Immun 2023; 109:23-36. [PMID: 36581303 DOI: 10.1016/j.bbi.2022.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Synapse loss in medial prefrontal cortex (mPFC) has been implicated in stress-related mood disorders, such as depression. However, the exact effect of synapse elimination in the depression and how it is triggered are largely unknown. Through repeated longitudinal imaging of mPFC in the living brain, we found both presynaptic and postsynaptic components were declined, together with the impairment of synapse remodeling and cross-synaptic signal transmission in the mPFC during chronic stress. Meanwhile, chronic stress also induced excessive microglia phagocytosis, leading to engulfment of excitatory synapses. Further investigation revealed that the elevated complement C3 during the stress acted as the tag of synapses to be eliminated by microglia. Besides, chronic stress induced a reduction of the connectivity between the mPFC and neighbor regions. C3 knockout mice displayed significant reduction of synaptic pruning and alleviation of disrupted functional connectivity in mPFC, resulting in more resilience to chronic stress. These results indicate that complement-mediated excessive microglia phagocytosis in adulthood induces synaptic dysfunction and cortical hypo-connectivity, leading to stress-related behavioral abnormality.
Collapse
Affiliation(s)
- Ji Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hou-Hong Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hua-Jie Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Ruo-Si Zou
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Xiao-Jia Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Bin Nie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Feng Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Ci Shan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
130
|
Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, Cameron LP, Patel SD, Hennessey JJ, Saeger HN, McCorvy JD, Gray JA, Tian L, Olson DE. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science 2023; 379:700-706. [PMID: 36795823 PMCID: PMC10108900 DOI: 10.1126/science.adf0435] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023]
Abstract
Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.
Collapse
Affiliation(s)
- Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis; Davis, CA 95618, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - Lee E. Dunlap
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Chunyang Dong
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis; Davis, CA 95616, USA
| | - Samuel J. Carter
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Robert J. Tombari
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Shekib A. Jami
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
| | - Lindsay P. Cameron
- Neuroscience Graduate Program, University of California, Davis; Davis, CA 95618, USA
| | - Seona D. Patel
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Joseph J. Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Hannah N. Saeger
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Pharmacology and Toxicology Graduate Program, University of California, Davis; Davis, CA 95616, USA
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - John A. Gray
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Lin Tian
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis; Sacramento, CA 95817, USA
| | - David E. Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis; Sacramento, CA 95817, USA
| |
Collapse
|
131
|
Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Neuropharmacology 2023; 224:109335. [PMID: 36403852 DOI: 10.1016/j.neuropharm.2022.109335] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-β1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
132
|
Weapons of stress reduction: (R,S)-ketamine and its metabolites as prophylactics for the prevention of stress-induced psychiatric disorders. Neuropharmacology 2023; 224:109345. [PMID: 36427554 DOI: 10.1016/j.neuropharm.2022.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
|
133
|
Hughes BW, Siemsen BM, Tsvetkov E, Berto S, Kumar J, Cornbrooks RG, Akiki RM, Cho JY, Carter JS, Snyder KK, Assali A, Scofield MD, Cowan CW, Taniguchi M. NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses. eLife 2023; 12:e75631. [PMID: 36780219 PMCID: PMC9925055 DOI: 10.7554/elife.75631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/29/2023] [Indexed: 02/14/2023] Open
Abstract
Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Benjamin M Siemsen
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Stefano Berto
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jennifer Y Cho
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jordan S Carter
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
| |
Collapse
|
134
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|
135
|
Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN, Warren HT, Chow WL, Gray JA, Olson DE. 5-HT2ARs Mediate Therapeutic Behavioral Effects of Psychedelic Tryptamines. ACS Chem Neurosci 2023; 14:351-358. [PMID: 36630260 PMCID: PMC9939288 DOI: 10.1021/acschemneuro.2c00718] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Psychedelic compounds have displayed antidepressant potential in both humans and rodents. Despite their promise, psychedelics can induce undesired effects that pose safety concerns and limit their clinical scalability. The rational development of optimized psychedelic-related medicines will require a full mechanistic understanding of how these molecules produce therapeutic effects. While the hallucinogenic properties of psychedelics are generally attributed to activation of serotonin 2A receptors (5-HT2ARs), it is currently unclear if these receptors also mediate their antidepressant effects as several nonhallucinogenic analogues of psychedelics with antidepressant-like properties have been developed. Moreover, many psychedelics exhibit promiscuous pharmacology, making it challenging to identify their primary therapeutic target(s). Here, we use a combination of pharmacological and genetic tools to demonstrate that activation of 5-HT2A receptors is essential for tryptamine-based psychedelics to produce antidepressant-like effects in rodents. Our results suggest that psychedelic tryptamines can induce hallucinogenic and therapeutic effects through activation of the same receptor.
Collapse
Affiliation(s)
- Lindsay P. Cameron
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
| | - Seona D. Patel
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - Eden V. Barragan
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
| | - Hannah N. Saeger
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Pharmacology and Toxicology Graduate Program, University of California, Davis, Davis, CA 95616, USA
| | - Hunter T. Warren
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - Winston L. Chow
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - John A. Gray
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
136
|
Nomoto K, Kansaku K. Chronic corticosterone deteriorates latrine and nesting behaviours in mice. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220718. [PMID: 36756053 PMCID: PMC9890096 DOI: 10.1098/rsos.220718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Self-care behaviours are actions that help maintain good health and surroundings. For example, appropriate toileting, sleeping in the bed, and bathing and washing are among self-care behaviours in humans. Animals also perform similar self-care behaviours such as latrine, nesting and self-grooming. Studies have shown that chronic stress disrupts nesting and self-grooming behaviours. However, the effect of chronic stress on latrine behaviour, preferential, repeated defecation at specific locations, has not yet been clarified. This study aimed to investigate the influence of chronic corticosterone administration on latrine and nesting behaviours in mice. The variation in defecation location was quantified as the degree of the latrine behaviour by using Shannon entropy. The nest quality was scored based on shape. The study showed that mice exposed to chronic corticosterone had scattered defecation sites and lower nest quality compared to the control group. Furthermore, results showed that more scattered defecation behaviour was associated with lower nest quality at an individual level. Additionally, the deterioration of these self-care behaviours was associated with depression-like behaviours such as less open field activity and increased immobility time during the tail suspension test. These results suggest that chronic corticosterone deteriorates self-care behaviours such as latrine and nesting in mice.
Collapse
Affiliation(s)
- Kensaku Nomoto
- Department of Physiology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Kenji Kansaku
- Department of Physiology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| |
Collapse
|
137
|
Chronic Corticosterone Exposure Suppresses Copper Transport through GR-Mediated Intestinal CTR1 Pathway in Mice. BIOLOGY 2023; 12:biology12020197. [PMID: 36829476 PMCID: PMC9953443 DOI: 10.3390/biology12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Numerous studies have discovered that chronic stress induces metabolic disorders by affecting iron and zinc metabolism, but the relationship between chronic stress and copper metabolism remains unclear. Here, we explore the influence of chronic corticosterone (CORT) exposure on copper metabolism and its regulatory mechanism in mice. Mice were treated with 100 μg/mL CORT in drinking water for a 4-week trial. We found that CORT treatment resulted in a significant decrease in plasma copper level, plasma ceruloplasmin activity, plasma and liver Cu/Zn-SOD activity, hepatic copper content, and liver metallothionein content in mice. CORT treatment led to the reduction in duodenal expression of copper transporter 1 (CTR1), duodenal cytochrome b (DCYTB), and ATPase copper-transporting alpha (ATP7A) at the mRNA and protein level in mice. CORT treatment activated nuclear glucocorticoid receptor (GR) and down-regulated CRT1 expression in Caco-2 cells, whereas these phenotypes were reversible by an antagonist of GR, RU486. Chromatin immunoprecipitation analysis revealed that GR bound to the Ctr1 promoter in Caco-2 cells. Transient transfection assays in Caco-2 cells demonstrated that the Ctr1 promoter was responsive to the CORT-activated glucocorticoid receptor, whereas mutation/deletion of the glucocorticoid receptor element (GRE) markedly impaired activation of the Ctr1 promoter. In addition, CORT-induced downregulation of Ctr1 promoter activity was markedly attenuated in Caco-2 cells when RU486 was added. These findings present a novel molecular target for CORT that down-regulates intestinal CTR1 expression via GR-mediated trans-repression in mice.
Collapse
|
138
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
139
|
Dixon TA, Muotri AR. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol Psychiatry 2023; 28:83-95. [PMID: 35948659 PMCID: PMC9812789 DOI: 10.1038/s41380-022-01708-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
Psychiatric disorders are often distinguished from neurological disorders in that the former do not have characteristic lesions or findings from cerebrospinal fluid, electroencephalograms (EEGs), or brain imaging, and furthermore do not have commonly recognized convergent mechanisms. Psychiatric disorders commonly involve clinical diagnosis of phenotypic behavioral disturbances of mood and psychosis, often with a poorly understood contribution of environmental factors. As such, psychiatric disease has been challenging to model preclinically for mechanistic understanding and pharmaceutical development. This review compares commonly used animal paradigms of preclinical testing with evolving techniques of induced pluripotent cell culture with a focus on emerging three-dimensional models. Advances in complexity of 3D cultures, recapitulating electrical activity in utero, and disease modeling of psychosis, mood, and environmentally induced disorders are reviewed. Insights from these rapidly expanding technologies are discussed as they pertain to the utility of human organoid and other models in finding novel research directions, validating pharmaceutical action, and recapitulating human disease.
Collapse
Affiliation(s)
- Thomas Anthony Dixon
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037 USA
| |
Collapse
|
140
|
Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology 2023; 48:90-103. [PMID: 36057649 PMCID: PMC9700729 DOI: 10.1038/s41386-022-01422-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that characterize depression. The review also highlights complementary human and preclinical findings that classical and novel antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These findings offer a useful path forward for designing better antidepressant compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
141
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
142
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
143
|
Cichon J, Wasilczuk AZ, Looger LL, Contreras D, Kelz MB, Proekt A. Ketamine triggers a switch in excitatory neuronal activity across neocortex. Nat Neurosci 2023; 26:39-52. [PMID: 36424433 PMCID: PMC10823523 DOI: 10.1038/s41593-022-01203-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
The brain can become transiently disconnected from the environment while maintaining vivid, internally generated experiences. This so-called 'dissociated state' can occur in pathological conditions and under the influence of psychedelics or the anesthetic ketamine (KET). The cellular and circuit mechanisms producing the dissociative state remain poorly understood. We show in mice that KET causes spontaneously active neurons to become suppressed while previously silent neurons become spontaneously activated. This switch occurs in all cortical layers and different cortical regions, is induced by both systemic and cortical application of KET and is mediated by suppression of parvalbumin and somatostatin interneuron activity and inhibition of NMDA receptors and HCN channels. Combined, our results reveal two largely non-overlapping cortical neuronal populations-one engaged in wakefulness, the other contributing to the KET-induced brain state-and may lay the foundation for understanding how the brain might become disconnected from the surrounding environment while maintaining internal subjective experiences.
Collapse
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
144
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
145
|
Sherif MA, Khalil MZ, Shukla R, Brown JC, Carpenter LL. Synapses, predictions, and prediction errors: A neocortical computational study of MDD using the temporal memory algorithm of HTM. Front Psychiatry 2023; 14:976921. [PMID: 36911109 PMCID: PMC9995817 DOI: 10.3389/fpsyt.2023.976921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Synapses and spines play a significant role in major depressive disorder (MDD) pathophysiology, recently highlighted by the rapid antidepressant effect of ketamine and psilocybin. According to the Bayesian brain and interoception perspectives, MDD is formalized as being stuck in affective states constantly predicting negative energy balance. To understand how spines and synapses relate to the predictive function of the neocortex and thus to symptoms, we used the temporal memory (TM), an unsupervised machine-learning algorithm. TM models a single neocortical layer, learns in real-time, and extracts and predicts temporal sequences. TM exhibits neocortical biological features such as sparse firing and continuous online learning using local Hebbian-learning rules. METHODS We trained a TM model on random sequences of upper-case alphabetical letters, representing sequences of affective states. To model depression, we progressively destroyed synapses in the TM model and examined how that affected the predictive capacity of the network. We found that the number of predictions decreased non-linearly. RESULTS Destroying 50% of the synapses slightly reduced the number of predictions, followed by a marked drop with further destruction. However, reducing the synapses by 25% distinctly dropped the confidence in the predictions. Therefore, even though the network was making accurate predictions, the network was no longer confident about these predictions. DISCUSSION These findings explain how interoceptive cortices could be stuck in limited affective states with high prediction error. Connecting ketamine and psilocybin's proposed mechanism of action to depression pathophysiology, the growth of new synapses would allow representing more futuristic predictions with higher confidence. To our knowledge, this is the first study to use the TM model to connect changes happening at synaptic levels to the Bayesian formulation of psychiatric symptomatology. Linking neurobiological abnormalities to symptoms will allow us to understand the mechanisms of treatments and possibly, develop new ones.
Collapse
Affiliation(s)
- Mohamed A Sherif
- Lifespan Physician Group, Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Carney Institute for Brain Science, Norman Prince Neurosciences Institute, Providence, RI, United States
| | - Mostafa Z Khalil
- Department of Psychiatry and Behavioral Health, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Rammohan Shukla
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joshua C Brown
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| |
Collapse
|
146
|
Funayama Y, Li H, Ishimori E, Kawatake-Kuno A, Inaba H, Yamagata H, Seki T, Nakagawa S, Watanabe Y, Murai T, Oishi N, Uchida S. Antidepressant Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the Anterior Cingulate Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:87-98. [PMID: 36712563 PMCID: PMC9874166 DOI: 10.1016/j.bpsgos.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Background A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. Because treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods We used the large variance in behavioral responses to long-term treatment with multiple classes of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and used virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety-like behaviors. Results Cartpt expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic (gamma-aminobutyric acidergic) neurons of the anterior cingulate cortex led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the anterior cingulate cortex is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.
Collapse
Affiliation(s)
- Yuki Funayama
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
147
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
148
|
Witztum J, Singh A, Zhang R, Johnson M, Liston C. An automated platform for Assessing Working Memory and prefrontal circuit function. Neurobiol Stress 2023; 24:100518. [PMID: 36970451 PMCID: PMC10033752 DOI: 10.1016/j.ynstr.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Working memory is a process for actively maintaining and updating task-relevant information, despite interference from competing inputs, and is supported in part by sustained activity in prefrontal cortical pyramidal neurons and coordinated interactions with inhibitory interneurons, which may serve to regulate interference. Chronic stress has potent effects on working memory performance, possibly by interfering with these interactions or by disrupting long-range inputs from key upstream brain regions. Still, the mechanisms by which chronic stress disrupts working memory are not well understood, due in part to a need for scalable, easy-to-implement behavioral assays that are compatible with two-photon calcium imaging and other tools for recording from large populations of neurons. Here, we describe the development and validation of a platform that was designed specifically for automated, high-throughput assessments of working memory and simultaneous two-photon imaging in chronic stress studies. This platform is relatively inexpensive and easy to build; fully automated and scalable such that one investigator can test relatively large cohorts of animals concurrently; fully compatible with two-photon imaging, yet also designed to mitigate head-fixation stress; and can be easily adapted for other behavioral paradigms. Our validation data confirm that mice could be trained to perform a delayed response working memory task with relatively high-fidelity over the course of ∼15 days. Two-photon imaging data validate the feasibility of recording from large populations of cells during working memory tasks performance and characterizing their functional properties. Activity patterns in >70% of medial prefrontal cortical neurons were modulated by at least one task feature, and a majority of cells were engaged by multiple task features. We conclude with a brief literature review of the circuit mechanisms supporting working memory and their disruption in chronic stress states-highlighting directions for future research enabled by this platform.
Collapse
|
149
|
Afef O, Rudy L, Stéphane M. Ketamine promotes adaption-induced orientation plasticity and vigorous network changes. Brain Res 2022; 1797:148111. [PMID: 36183793 DOI: 10.1016/j.brainres.2022.148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Adult primary visual cortex features well demonstrated orientation selectivities. However, the imposition of a non-preferred stimulus for many minutes (adaptation) or the application of an antidepressant drug, such as ketamine, shifts the peak of the tuning curve, assigning a novel selectivity to a neuron. The effect of ketamine on V1 neural circuitry is not yet ascertained. The present investigation explores (in control, post-adaptation, and following local ketamine application) the modification of orientation selectivities and its outcome on functional relationships between neurons in mouse and cat. Two main results are revealed. Electrophysiological neuronal responses of monocular stimulation show that in cells exhibiting large orientation shifts after adaptation, ketamine facilitates the cell's recovery. Whereas in units displaying small shifts following adaptation, the drug increases the magnitude of orientation shifts. In addition, pair-wise cross correlogram analyses show modifications of functional relationships between neurons revealing updated micro-circuits as a consequence of ketamine application. We report in cat but not in mouse, that ketamine significantly increases the connectivity rate, their strengths, and an enhancement of neuronal synchrony.
Collapse
Affiliation(s)
- Ouelhazi Afef
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
| | - Lussiez Rudy
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
| | - Molotchnikoff Stéphane
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada.
| |
Collapse
|
150
|
Dutton M, Can AT, Lagopoulos J, Hermens DF. Stress, mental disorder and ketamine as a novel, rapid acting treatment. Eur Neuropsychopharmacol 2022; 65:15-29. [PMID: 36206584 DOI: 10.1016/j.euroneuro.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
The experience of stress is often utilised in models of emerging mental illness and neurobiological systems are implicated as the intermediary link between the experience of psychological stress and the development of a mental disorder. Chronic stress and prolonged glucocorticoid exposure have potent effects on neuronal architecture particularly in regions that modulate the hypothalamic-pituitary-adrenal (HPA) axis and are commonly associated with psychiatric disorders. This review provides an overview of stress modulating neurobiological and neurochemical systems which underpin stress-related structural and functional brain changes. These changes are thought to contribute not only to the development of disorders, but also to the treatment resistance and chronicity seen in some of our most challenging mental disorders. Reports to date suggest that stress-related psychopathology is the aetiological mechanism of these disorders and thus we review the rapid acting antidepressant ketamine as an effective emerging treatment. Ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, is shown to induce a robust treatment effect in mental disorders via enhanced synaptic strength and connectivity in key brain regions. Whilst ketamine's glutamatergic effect has been previously examined, we further consider ketamine's capacity to modulate the HPA axis and associated pathways.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia.
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| |
Collapse
|