101
|
Curdlan sulfate/O-linked quaternized chitosan nanoparticles acting as potential adjuvants promote multiple arms of immune responses. Carbohydr Polym 2019; 213:100-111. [DOI: 10.1016/j.carbpol.2019.02.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
|
102
|
Levine MZ, Holiday C, Jefferson S, Gross FL, Liu F, Li S, Friel D, Boutet P, Innis BL, Mallett CP, Tumpey TM, Stevens J, Katz JM. Heterologous prime-boost with A(H5N1) pandemic influenza vaccines induces broader cross-clade antibody responses than homologous prime-boost. NPJ Vaccines 2019; 4:22. [PMID: 31149353 PMCID: PMC6541649 DOI: 10.1038/s41541-019-0114-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/03/2019] [Indexed: 11/29/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) A(H5Nx) viruses continue to pose a pandemic threat. US national vaccine stockpiles are a cornerstone of the influenza pandemic preparedness plans. However, continual genetic and antigenic divergence of A(H5Nx) viruses requires the development of effective vaccination strategies using stockpiled vaccines and adjuvants for pandemic preparedness. Human sera collected from healthy adults who received either homologous (2 doses of a AS03A-adjuvanted A/turkey/Turkey/1/2005, A/Turkey), or heterologous (primed with AS03A-adjuvanted A/Indonesia/5/2005, A/Indo, followed by A/Turkey boost) prime-boost vaccination regimens were analyzed by hemagglutination inhibition and microneutralization assays against 8 wild-type HPAI A(H5Nx) viruses from 6 genetic clades. Molecular, structural and antigenic features of the A(H5Nx) viruses that could influence the cross-clade antibody responses were also explored. Compared with homologous prime-boost vaccinations, priming with a clade 2.1.3.2 antigen (A/Indo) followed by one booster dose of a clade 2.2.1 antigen (A/Turkey) administered 18 months apart did not compromise the antibody responses to the booster vaccine (A/Turkey), it also broadened the cross-clade antibody responses to several antigenically drifted variants from 6 heterologous clades, including an antigenically distant A(H5N8) virus (A/gyrfalcon/Washington/410886/2014, clade 2.3.4.4) that caused recent outbreaks in US poultry. The magnitude and breadth of the cross-clade antibody responses against emerging HPAI A(H5Nx) viruses are associated with genetic, structural and antigenic differences from the vaccine viruses and enhanced by the inclusion of an adjuvant. Heterologous prime-boost vaccination with AS03A adjuvanted vaccine offers a vaccination strategy to use existing stockpiled vaccines for pandemic preparedness against new emerging HPAI A(H5Nx) viruses. Influenza viruses are highly variable and display continuous antigenic drift, limiting the effectiveness of vaccine stockpiles and demanding new strategies to enhance vaccine effectiveness. Here, Min Levine from the Centers for Disease Control and Prevention and colleagues report a heterologous prime-boost A(H5N1) vaccination regimen that induced a broader cross-clade response when compared with homologous vaccination. In the study, adults primed with a clade 2.1.3.2 antigen (A/Indo) followed by one booster dose of a clade 2.2.1 antigen (A/Turkey) presented with enhanced hemagglutinin inhibition and neutralizing antibody titers to eight A(H5Nx) viruses without limiting the antibody response to the A/Turkey booster vaccine. Given that no individual H5 clade has led to protection against all H5 viruses, heterologous vaccination strategies that provide cross-clade reactivity may lead to more effective protection against influenza virus infection.
Collapse
Affiliation(s)
- Min Z Levine
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Crystal Holiday
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Stacie Jefferson
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - F Liaini Gross
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA.,2Battelle Memorial Institute, Atlanta, GA USA
| | - Feng Liu
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Sheng Li
- 5Biomedical Advanced Research and Development Authority, Washington, DC USA.,Present Address: Sciogen, Los Altos, CA USA
| | | | | | - Bruce L Innis
- GSK Vaccines, Rockville, MD USA.,7Present Address: PATH, Washington, DC USA
| | | | - Terrence M Tumpey
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - James Stevens
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Jacqueline M Katz
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
103
|
MF59-adjuvanted seasonal trivalent inactivated influenza vaccine: Safety and immunogenicity in young children at risk of influenza complications. Int J Infect Dis 2019; 85S:S18-S25. [PMID: 31051279 DOI: 10.1016/j.ijid.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To assess the safety and immunogenicity of the MF59-adjuvanted seasonal trivalent inactivated influenza vaccine (aIIV3; Fluad) in children aged 6 months through 5 years who are at risk of influenza complications. METHODS A retrospective analysis was performed to examine unsolicited adverse events (AEs) in an integrated dataset from six randomized clinical studies that compared aIIV3 with non-adjuvanted inactivated influenza vaccines (IIV3). The integrated safety set comprised 10 784 children, of whom 373 (3%) were at risk of influenza complications. RESULTS The at-risk safety population comprised 373 children aged 6 months through 5 years: 179 received aIIV3 and 194 received non-adjuvanted IIV3 (128 subjects received a licensed IIV3). The most important risk factors were respiratory system illnesses (62-70%) and infectious and parasitic diseases (33-39%). During the treatment period, unsolicited AEs occurred in 54% of at-risk children and 55% of healthy children who received aIIV3; of those receiving licensed IIV3, 59% of at-risk and 62% of healthy subjects reported an unsolicited AE. The most common AEs were infections, including upper respiratory tract infection. Serious AEs (SAEs) were reported in <10% of at-risk subjects, and no vaccine-related SAEs were observed. In the immunogenicity subset (involving 103 participants from one study), geometric mean titers (GMTs) were approximately 2- to 3-fold higher with aIIV3 than with IIV3 for all three homologous strains (A/H1N1, A/H3N2, and B). Seroconversion rates were high for both aIIV3 (79-96%) and IIV3 (83-89%). CONCLUSIONS In young children at risk of influenza complications, aIIV3 was well-tolerated and had a safety profile that was generally similar to that of non-adjuvanted IIV3. Similar to the not-at-risk population, the immune response in at-risk subjects receiving aIIV3 was increased over those receiving IIV3, suggesting aIIV3 is a valuable option in young children at risk of influenza complications.
Collapse
|
104
|
Ravichandran S, Hahn M, Belaunzarán-Zamudio PF, Ramos-Castañeda J, Nájera-Cancino G, Caballero-Sosa S, Navarro-Fuentes KR, Ruiz-Palacios G, Golding H, Beigel JH, Khurana S. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat Commun 2019; 10:1943. [PMID: 31028263 PMCID: PMC6486612 DOI: 10.1038/s41467-019-09914-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) outbreak in Americas led to extensive efforts to develop vaccines and ZIKV-specific diagnostics. In the current study, we use whole genome phage display library spanning the entire ZIKV genome (ZIKV-GFPDL) for in-depth immune profiling of IgG and IgM antibody repertoires in serum and urine longitudinal samples from individuals acutely infected with ZIKV. We observe a very diverse IgM immune repertoire encompassing the entire ZIKV polyprotein on day 0 in both serum and urine. ZIKV-specific IgG antibodies increase 10-fold between day 0 and day 7 in serum, but not in urine; these are highly focused on prM/E, NS1 and NS2B. Differential antibody affinity maturation is observed against ZIKV structural E protein compared with nonstructural protein NS1. Serum antibody affinity to ZIKV-E protein inversely correlates with ZIKV disease symptoms. Our study provides insight into unlinked evolution of immune response to ZIKV infection and identified unique targets for ZIKV serodiagnostics.
Collapse
Affiliation(s)
- Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | | | | | - Sandra Caballero-Sosa
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, 30740, Chiapas, Mexico
| | | | - Guillermo Ruiz-Palacios
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ministry of Health, Mexico City, 14080, Mexico
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - John H Beigel
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
105
|
Tesini BL, Kanagaiah P, Wang J, Hahn M, Halliley JL, Chaves FA, Nguyen PQT, Nogales A, DeDiego ML, Anderson CS, Ellebedy AH, Strohmeier S, Krammer F, Yang H, Bandyopadhyay S, Ahmed R, Treanor JJ, Martinez-Sobrido L, Golding H, Khurana S, Zand MS, Topham DJ, Sangster MY. Broad Hemagglutinin-Specific Memory B Cell Expansion by Seasonal Influenza Virus Infection Reflects Early-Life Imprinting and Adaptation to the Infecting Virus. J Virol 2019; 93:e00169-19. [PMID: 30728266 PMCID: PMC6450111 DOI: 10.1128/jvi.00169-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Memory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection "imprints" for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCE Rapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.
Collapse
Affiliation(s)
- Brenda L Tesini
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Preshetha Kanagaiah
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jiong Wang
- Division of Nephrology Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Megan Hahn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica L Halliley
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Phuong Q T Nguyen
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher S Anderson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ali H Ellebedy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John J Treanor
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hana Golding
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Surender Khurana
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Martin S Zand
- Division of Nephrology Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
106
|
Bhide Y, Dong W, Gribonika I, Voshart D, Meijerhof T, de Vries-Idema J, Norley S, Guilfoyle K, Skeldon S, Engelhardt OG, Boon L, Christensen D, Lycke N, Huckriede A. Cross-Protective Potential and Protection-Relevant Immune Mechanisms of Whole Inactivated Influenza Virus Vaccines Are Determined by Adjuvants and Route of Immunization. Front Immunol 2019; 10:646. [PMID: 30984200 PMCID: PMC6450434 DOI: 10.3389/fimmu.2019.00646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Adjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus. In general, intranasal immunizations were significantly more effective than intramuscular immunizations in inducing virus-specific serum-IgG, mucosal-IgA, and splenic IFNγ-producing CD4 T cells. Intranasal immunizations with adjuvanted vaccines afforded strong cross-protection with milder clinical symptoms and better control of virus load in lungs. Mechanistic studies indicated that non-neutralizing IgG antibodies and CD4 T cells were responsible for the improved cross-protection while IgA antibodies were dispensable. The role of CD4 T cells was particularly pronounced for CTA1-3M2e-DD adjuvanted vaccine as evidenced by CD4 T cell-dependent reduction of lung virus titers and clinical symptoms. Thus, intranasally administered WIV in combination with effective mucosal adjuvants appears to be a promising broadly protective influenza vaccine candidate.
Collapse
Affiliation(s)
- Yoshita Bhide
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wei Dong
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Daniëlle Voshart
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephen Norley
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Kate Guilfoyle
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Sarah Skeldon
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | | | - Dennis Christensen
- Adjuvant Research, Department of Infectious Diseases Immunology, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Anke Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
107
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
108
|
Asensio MA, Lim YW, Wayham N, Stadtmiller K, Edgar RC, Leong J, Leong R, Mizrahi RA, Adams MS, Simons JF, Spindler MJ, Johnson DS, Adler AS. Antibody repertoire analysis of mouse immunization protocols using microfluidics and molecular genomics. MAbs 2019; 11:870-883. [PMID: 30898066 PMCID: PMC6601537 DOI: 10.1080/19420862.2019.1583995] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunization of mice followed by hybridoma or B-cell screening is one of the most common antibody discovery methods used to generate therapeutic monoclonal antibody (mAb) candidates. There are a multitude of different immunization protocols that can generate an immune response in animals. However, an extensive analysis of the antibody repertoires that these alternative immunization protocols can generate has not been performed. In this study, we immunized mice that transgenically express human antibodies with either programmed cell death 1 protein or cytotoxic T-lymphocyte associated protein 4 using four different immunization protocols, and then utilized a single cell microfluidic platform to generate tissue-specific, natively paired immunoglobulin (Ig) repertoires from each method and enriched for target-specific binders using yeast single-chain variable fragment (scFv) display. We deep sequenced the scFv repertoires from both the pre-sort and post-sort libraries. All methods and both targets yielded similar oligoclonality, variable (V) and joining (J) gene usage, and divergence from germline of enriched libraries. However, there were differences between targets and/or immunization protocols for overall clonal counts, complementarity-determining region 3 (CDR3) length, and antibody/CDR3 sequence diversity. Our data suggest that, although different immunization protocols may generate a response to an antigen, performing multiple immunization protocols in parallel can yield greater Ig diversity. We conclude that modern microfluidic methods, followed by an extensive molecular genomic analysis of antibody repertoires, can be used to quickly analyze new immunization protocols or mouse platforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renee Leong
- a GigaGen Inc ., South San Francisco , CA , USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Boudreau CM, Alter G. Extra-Neutralizing FcR-Mediated Antibody Functions for a Universal Influenza Vaccine. Front Immunol 2019; 10:440. [PMID: 30949165 PMCID: PMC6436086 DOI: 10.3389/fimmu.2019.00440] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
While neutralizing antibody titers measured by hemagglutination inhibition have been proposed as a correlate of protection following influenza vaccination, neutralization alone is a modest predictor of protection against seasonal influenza. Instead, emerging data point to a critical role for additional extra-neutralizing functions of antibodies in protection from infection. Specifically, beyond binding and neutralization, antibodies mediate a variety of additional immune functions via their ability to recruit and deploy innate immune effector function. Along these lines, antibody-dependent cellular cytotoxicity, antibody-mediated macrophage phagocytosis and activation, antibody-driven neutrophil activation, antibody-dependent complement deposition, and non-classical Fc-receptor antibody trafficking have all been implicated in protection from influenza infection. However, the precise mechanism(s) by which the immune system actively tunes antibody functionality to drive protective immunity has been poorly characterized. Here we review the data related to Fc-effector functional protection from influenza and discuss prospects to leverage this humoral immune activity for the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States.,Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
110
|
Abstract
There is substantial variation between individuals in the immune response to vaccination. In this review, we provide an overview of the plethora of studies that have investigated factors that influence humoral and cellular vaccine responses in humans. These include intrinsic host factors (such as age, sex, genetics, and comorbidities), perinatal factors (such as gestational age, birth weight, feeding method, and maternal factors), and extrinsic factors (such as preexisting immunity, microbiota, infections, and antibiotics). Further, environmental factors (such as geographic location, season, family size, and toxins), behavioral factors (such as smoking, alcohol consumption, exercise, and sleep), and nutritional factors (such as body mass index, micronutrients, and enteropathy) also influence how individuals respond to vaccines. Moreover, vaccine factors (such as vaccine type, product, adjuvant, and dose) and administration factors (schedule, site, route, time of vaccination, and coadministered vaccines and other drugs) are also important. An understanding of all these factors and their impacts in the design of vaccine studies and decisions on vaccination schedules offers ways to improve vaccine immunogenicity and efficacy.
Collapse
|
111
|
Allman D, Wilmore JR, Gaudette BT. The continuing story of T-cell independent antibodies. Immunol Rev 2019; 288:128-135. [PMID: 30874357 PMCID: PMC6653682 DOI: 10.1111/imr.12754] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to review the role of extrafollicular and T-cell independent antibody responses in humoral immunity. We consider two interrelated questions: (a) do T-cell independent antibody responses dominated by IgM and/or IgA play unique functions in immunity and homeostasis; and (b) is it typical for these responses to result in lifelong protection? In addressing these questions, we consider the established advantages of T-cell driven responses including the unique role played by germinal center reactions in these responses, and contrast the processes and outcomes of germinal center-centric responses with germinal center- and T-cell independent antibodies. We suggest that T-independent and other extrafollicular responses contribute substantially to highly stable antibody repertoires in both the serum and the intestine, providing relatively constitutive humoral barriers with the collective dual function of protecting against invading pathogens and regulating the composition of non-pathogenic microbial communities.
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
112
|
Parnham MJ, Nijkamp FP, Rossi AG. Immune Response in Human Pathology: Infections Caused by Bacteria, Viruses, Fungi, and Parasites. NIJKAMP AND PARNHAM'S PRINCIPLES OF IMMUNOPHARMACOLOGY 2019:165-178. [PMCID: PMC7123078 DOI: 10.1007/978-3-030-10811-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In the middle of the nineteenth century, it became clear that micro-organisms could cause disease. Effective treatment, however, was not possible at that time; prevention and spread of infectious diseases depended solely on proper hygienic means. At the beginning of the twentieth century, passive and active vaccination procedures were developed against a number of these PATHOGENIC MICRO-ORGANISMS to prevent the diseases in question (rabies, diphtheria, tetanus, etc.). Thanks to the discovery of antimicrobial chemicals (by Paul Ehrlich) and antibiotics (by Sir Alexander Fleming), the threat of infectious diseases seemed to be minimised. Large-scale vaccination programmes against childhood diseases (diphtheria, whooping cough, and polio), started in the early 1950s, raised hopes of finally being able to eradicate these diseases from the planet. This approach was successful for smallpox (1980). However, new infectious diseases have emerged [e.g., Legionella , HUMAN IMMUNODEFICIENCY VIRUS (HIV), Helicobacter , SARS, etc.], and new vaccines and antibiotics are needed. Furthermore, due to intensive medical treatment with antibiotics and immunosuppressive drugs, hospital infections are a growing problem. Bacteria hitherto deemed harmless are causing OPPORTUNISTIC INFECTIONS in immunocompromised patients. The pathogens have developed resistance to many antibiotics, and sometimes no effective antibiotics are available to treat these patients.
Collapse
Affiliation(s)
- Michael J. Parnham
- Translational Drug Validation, Fraunhofer IME-TMP and Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Adriano G. Rossi
- The Queen’s Medical Research Institute, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
113
|
Fink K. Can We Improve Vaccine Efficacy by Targeting T and B Cell Repertoire Convergence? Front Immunol 2019; 10:110. [PMID: 30814993 PMCID: PMC6381292 DOI: 10.3389/fimmu.2019.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/15/2019] [Indexed: 01/31/2023] Open
Abstract
Traditional vaccine development builds on the assumption that healthy individuals have virtually unlimited antigen recognition repertoires of receptors in B cells and T cells [the B cell receptor (BCR) and TCR respectively]. However, there are indications that there are "holes" in the breadth of repertoire diversity, where no or few B or T cell are able to bind to a given antigen. Repertoire diversity may in these cases be a limiting factor for vaccine efficacy. Assuming that it is possible to predict which B and T cell receptors will respond to a given immunogen, vaccine strategies could be optimized and personalized. In addition, vaccine testing could be simplified if we could predict responses through sequencing BCR and TCRs. Bulk sequencing has shown putatively specific converging sequences after infection or vaccination. However, only single cell technologies have made it possible to capture the sequence of both heavy and light chains of a BCR or the alpha and beta chains the TCR. This has enabled the cloning of receptors and the functional validation of a predicted specificity. This review summarizes recent evidence of converging sequences in infectious diseases. Current and potential future applications of single cell technology in immune repertoire analysis are then discussed. Finally, possible short- and long- term implications for vaccine research are highlighted.
Collapse
Affiliation(s)
- Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
114
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
115
|
Tifrea DF, Pal S, Le Bon C, Giusti F, Popot JL, Cocco MJ, Zoonens M, de la Maza LM. Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine 2018; 36:6640-6649. [PMID: 30293763 DOI: 10.1016/j.vaccine.2018.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christel Le Bon
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Fabrice Giusti
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, Department of Pharmaceutical Sciences, 1218 Natural Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Manuela Zoonens
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
116
|
Van Reeth K. The post-2009 influenza pandemic era: time to revisit antibody immunodominance. J Clin Invest 2018; 128:4751-4754. [PMID: 30295644 DOI: 10.1172/jci124151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The current inactivated influenza vaccines rely on the induction of neutralizing antibodies against the head domain of the viral hemagglutinin (HA). The HA head contains five immunodominant antigenic sites, all of which are subject to antigenic drift, thereby limiting vaccine efficacy. Bypassing the immune system's tendency to focus on the most variable regions of the HA may be a step toward more broadly protective influenza vaccines. However, this requires a better understanding of the biological meaning of immunodominance, and of the hierarchy between different antigenic sites. In this issue of the JCI, Liu et al. determined the immunodominance of the five antigenic sites of the HA head in experimentally infected mice, guinea pigs, and ferrets. All three species exhibited different preferences for the five sites of the 2009 pandemic H1N1 strain. Moreover, human subjects exhibited yet a different pattern of immunodominance following immunization with the standard inactivated influenza vaccine. Together, these results have important implications for influenza vaccine design and interpretation of animal models.
Collapse
|
117
|
Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin Immunol 2018; 39:14-21. [DOI: 10.1016/j.smim.2018.05.001] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022]
|
118
|
Schaffner W, van Buynder P, McNeil S, Osterhaus ADME. Seasonal influenza immunisation: Strategies for older adults. Int J Clin Pract 2018; 72:e13249. [PMID: 30216647 DOI: 10.1111/ijcp.13249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
Adults over the age of 60-65 years suffer disproportionally from seasonal influenza, experiencing high rates of complications, exacerbation of underlying medical comorbidities, and excess mortality. Thus, older adults are an important priority for influenza immunisation campaigns. Unfortunately, older adults generally display lower immune responses to standard influenza vaccines because of immunosenescence, with resulting suboptimal vaccine effectiveness. Thus, the development of improved vaccines that heighten immune responses and improve effectiveness is an important medical need. To this end, enhanced influenza vaccines specifically targeting this age group have been developed, which seek to overcome the inherent limitations in the immune responses of older adults. Both the licensed high-dose trivalent influenza vaccine (hdTIV) containing fourfold higher antigen contents than standard vaccine, and the MF59® -adjuvanted trivalent influenza vaccine (aTIV) have been proven to be safe and well-tolerated while enhancing the immune response. Healthcare providers for populations of older adults should be advised to routinely use these enhanced influenza vaccines in seasonal immunisation campaigns to provide improved immunity against influenza and its consequences in this particularly susceptible age group.
Collapse
Affiliation(s)
| | - Paul van Buynder
- School of Medicine, Griffith University, Gold Coast, Qld, Australia
| | - Shelly McNeil
- Canadian Center for Vaccinology, IWK Health Center and Nova Scotia Health Authority, Dalhousie University, Halifax, NS, Canada
| | - Albert D M E Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, LS, Germany
| |
Collapse
|
119
|
AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ Vaccines 2018; 3:40. [PMID: 30302282 PMCID: PMC6167326 DOI: 10.1038/s41541-018-0076-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023] Open
Abstract
Immune responses to inactivated vaccines against avian influenza are poor due in part to lack of immune memory. Adjuvants significantly increased virus neutralizing titers. We performed comprehensive analyses of polyclonal antibody responses following FDA-approved adjuvanted H5N1-A/Indonesia vaccine, administered in presence or absence of AS03. Using Whole Genome Fragment Phage Display Libraries, we observed that AS03 induced antibody epitope diversity to viral hemagglutinin (HA) and neuraminidase compared with unadjuvanted vaccine. Furthermore, AS03 promoted significant antibody affinity maturation to properly folded H5-HA1 (but not to HA2) domain, which correlated with neutralization titers against both vaccine and heterologous H5N1 strains. However, no increase in heterosubtypic cross-neutralization of Group1-H1N1 seasonal strains was observed. AS03-H5N1 vaccine also induced higher neuraminidase inhibition antibody titers. This study provides insight into the differential impacts of AS03 adjuvant on H5N1 vaccine-induced antibody responses that may help optimize vaccine platforms for future vaccines with improved protection against seasonal and pandemic influenza strains.
Collapse
|
120
|
Immunodominance of Antigenic Site B in the Hemagglutinin of the Current H3N2 Influenza Virus in Humans and Mice. J Virol 2018; 92:JVI.01100-18. [PMID: 30045991 DOI: 10.1128/jvi.01100-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin protein of H3N2 influenza viruses is the major target of neutralizing antibodies induced by infection and vaccination. However, the virus frequently escapes antibody-mediated neutralization due to mutations in the globular head domain. Five topologically distinct antigenic sites in the head domain of H3 hemagglutinin, A to E, have been previously described by mapping the binding sites of monoclonal antibodies, yet little is known about the contribution of each site to the immunogenicity of modern H3 hemagglutinins, as measured by hemagglutination inhibition activity, which is known to correlate with protection. To investigate the hierarchy of antibody immunodominance, five Δ1 recombinant influenza viruses expressing hemagglutinin of the A/Hong Kong/4801/2014 (H3N2) strain with mutations in single antigenic sites were generated. Next, the Δ1 viruses were used to determine the hierarchy of immunodominance by measuring the hemagglutination inhibition reactivity of mouse antisera and plasma from 18 human subjects before and after seasonal influenza vaccination in 2017-2018. In both mice and humans, mutations in antigenic site B caused the most significant decrease in hemagglutination inhibition titers compared to wild-type hemagglutinin. This study revealed that antigenic site B is immunodominant in the H3N2 influenza virus strain included in the current vaccine preparations.IMPORTANCE Influenza viruses rapidly evade humoral immunity through antigenic drift, making current vaccines poorly effective and antibody-mediated protection short-lived. The majority of neutralizing antibodies target five antigenic sites in the head domain of the hemagglutinin protein that are also the most sequence-variable regions. A better understanding of the contribution of each antigenic site to the overall antibody response to hemagglutinin may help in the design of improved influenza virus vaccines.
Collapse
|
121
|
Souza CK, Rajão DS, Sandbulte MR, Lopes S, Lewis NS, Loving CL, Gauger PC, Vincent AL. The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine 2018; 36:6103-6110. [PMID: 30181048 DOI: 10.1016/j.vaccine.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge.
Collapse
Affiliation(s)
- Carine K Souza
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9090, CEP: 91540-000 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Daniela S Rajão
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | - Matthew R Sandbulte
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Sara Lopes
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Nicola S Lewis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Crystal L Loving
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | | | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| |
Collapse
|
122
|
Abstract
The discovery and wide spread use of vaccines have saved millions of lives in the past few decades. Vaccine adjuvants represent an integral part of the modern vaccines. Despite numerous efforts, however, only a handful of vaccine adjuvants is currently available for human use. A comprehensive understanding of the mechanisms of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in mounting desirable immune responses to counter human pathogens. Decomposing the host response to vaccines and its components at systems level has recently been made possible owing to the recent advancements in Omics technology and cutting edge immunological assays powered by systems biology approaches. This approach has begun to shed light on the molecular signatures of several human vaccines and adjuvants. This review is an attempt to provide an overview of the recent efforts in systems analysis of vaccine adjuvants that are currently in clinic.
Collapse
Affiliation(s)
- Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
123
|
Salyer ACD, David SA. Transcriptomal signatures of vaccine adjuvants and accessory immunostimulation of sentinel cells by toll-like receptor 2/6 agonists. Hum Vaccin Immunother 2018; 14:1686-1696. [PMID: 29852079 PMCID: PMC6067887 DOI: 10.1080/21645515.2018.1480284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
An important component of vaccine development is the identification of safe and effective adjuvants. We sought to identify transcriptomal signatures of innate immune stimulating molecules using next-generation RNA sequencing with the goal of being able to utilize such signatures in identifying novel immunostimulatory compounds with adjuvant activity. The CC family of chemokines, particularly CC chemokines 1, 2, 3, 4, 7, 8, 17, 18, 20, and 23, were broadly upregulated by most Toll-like receptor (TLR) and nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) stimuli. Extracellular receptors such as TLR2, TLR4 and TLR5 induced the transcription of CXC chemokines including CXCL5, CXCL6 and CXCL8, whereas intracellular receptors such as TLR7 and TLR8 upregulated CXC chemokines 11 and 12. Both TLR1/2 and TLR2/6 agonists induced strong chemokine production in human peripheral blood mononuclear cells. Human skeletal muscle cells and fibroblasts respond with chemokine production only to TLR2/6 agonists, but not TLR1/2 agonists, consistent with strong expression of TLR2 and TLR6, but not of TLR1, in fibroblasts. TLR2/6 stimulated fibroblasts demonstrated functional chemotactic responses to human T cell and natural killer cells subsets. The activation of non-hematopoietic, adventitial cells such as fibroblasts and myocytes may contribute.
Collapse
Affiliation(s)
- Alex C. D. Salyer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
124
|
Angeletti D, Yewdell JW. Is It Possible to Develop a "Universal" Influenza Virus Vaccine? Outflanking Antibody Immunodominance on the Road to Universal Influenza Vaccination. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028852. [PMID: 28663210 DOI: 10.1101/cshperspect.a028852] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza remains a major human pathogen despite seasonal vaccination. At long last, there is energy and resources to develop influenza vaccines that provide more predictable and durable protection. Vaccines based on inducing antibodies to the conserved stem of the viral hemagglutinin (HA) have emerged as leading candidates for broadening population immunity and ultimately limiting antigenic drift. Here, we discuss the knowns and unknowns of HA-specific B-cell and antibody responses. In particular, we focus on how immunodominance sculpts antibody responses and drives antigenic drift. We propose a number of strategies to overcome immunodominance and improve the breadth and efficacy of antibody responses.
Collapse
Affiliation(s)
- Davide Angeletti
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
125
|
Harnessing T Follicular Helper Cell Responses for HIV Vaccine Development. Viruses 2018; 10:v10060336. [PMID: 29921828 PMCID: PMC6024737 DOI: 10.3390/v10060336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Passive administration of broadly neutralizing antibodies (bNAbs) capable of recognizing a broad range of viral strains to non-human primates has led to protection from infection with chimeric SIV/HIV virus (SHIV). This data suggests that generating protective antibody responses could be an effective strategy for an HIV vaccine. However, classic vaccine approaches have failed so far to induce such protective antibodies in HIV vaccine trials. HIV-specific bNAbs identified in natural infection show high levels of somatic hypermutations, demonstrating that they underwent extensive affinity maturation. It is likely that to gain ability to recognize diverse viral strains, vaccine-induced humoral responses will also require complex, iterative maturation. T follicular helper cells (Tfh) are a specialized CD4+ T cell subset that provides help to B cells in the germinal center for the generation of high-affinity and long-lasting humoral responses. It is therefore probable that the quality and quantity of Tfh responses upon vaccination will impact development of bNAbs. Here, we review studies that advanced our understanding of Tfh differentiation, function and regulation. We discuss correlates of Tfh responses and bNAb development in natural HIV infection. Finally, we highlight recent strategies to optimize Tfh responses upon vaccination and their impact on prophylactic HIV vaccine research.
Collapse
|
126
|
Lewnard JA, Cobey S. Immune History and Influenza Vaccine Effectiveness. Vaccines (Basel) 2018; 6:E28. [PMID: 29883414 PMCID: PMC6027411 DOI: 10.3390/vaccines6020028] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The imperfect effectiveness of seasonal influenza vaccines is often blamed on antigenic mismatch, but even when the match appears good, effectiveness can be surprisingly low. Seasonal influenza vaccines also stand out for their variable effectiveness by age group from year to year and by recent vaccination status. These patterns suggest a role for immune history in influenza vaccine effectiveness, but inference is complicated by uncertainty about the contributions of bias to the estimates themselves. In this review, we describe unexpected patterns in the effectiveness of seasonal influenza vaccination and explain how these patterns might arise as consequences of study design, the dynamics of immune memory, or both. Resolving this uncertainty could lead to improvements in vaccination strategy, including the use of universal vaccines in experienced populations, and the evaluation of vaccine efficacy against influenza and other antigenically variable pathogens.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA.
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
127
|
Broecker F, Götze S, Hudon J, Rathwell DCK, Pereira CL, Stallforth P, Anish C, Seeberger PH. Synthesis, Liposomal Formulation, and Immunological Evaluation of a Minimalistic Carbohydrate-α-GalCer Vaccine Candidate. J Med Chem 2018; 61:4918-4927. [PMID: 29742893 DOI: 10.1021/acs.jmedchem.8b00312] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fully synthetic glycan-based vaccines hold great potential as preventive and therapeutic vaccines against infectious diseases as well as cancer. Here, we present a two-component platform based on the facile conjugation of carbohydrate antigens to α-galactosylceramide (α-GalCer) to yield fully synthetic vaccine candidates. Formulation of the cancer-associated Tn antigen glycolipid model vaccine candidate into liposomes of different sizes and subsequent immunization of mice generated specific, high-affinity antibodies against the carbohydrate antigen with characteristics of T cell-dependent immunity. Liposome formulation elicited more reproducible glycan immunity than a conventional glycoconjugate vaccine bearing the same glycan antigen did. Further evaluation of the immune response revealed that the size of the liposomes influenced the glycan antibody responses toward either a cellular (Th1) or a humoral (Th2) immune phenotype. The glycolipid vaccine platform affords strong and robust antiglycan antibody responses in vivo without the need for an external adjuvant.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Sebastian Götze
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Jonathan Hudon
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Dominea C K Rathwell
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Claney L Pereira
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Pierre Stallforth
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
128
|
Li Z, Ding W, Guo Q, Liu Z, Zhu Z, Song S, Li W, Liao G. Analysis of the dose-sparing effect of adjuvanted Sabin-inactivated poliovirus vaccine (sIPV). Hum Vaccin Immunother 2018; 14:1987-1994. [PMID: 29601259 PMCID: PMC6150041 DOI: 10.1080/21645515.2018.1454571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sabin-based inactivated poliovirus vaccine(sIPV) is gradually replacing live-attenuated oral polio vaccine(OPV). Sabin-inactivated poliovirus vaccine(sIPV) has played a vital role in reducing economic burden of poliomyelitis and maintaining appropriate antibody levels in the population. However, due to its high cost and limited manufacturing capacity, sIPV cannot reach its full potential for global poliovirus eradication in developing countries. Therefore, to address this situation, we designed this study to evaluate the dose-sparing effects of AS03, CpG oligodeoxynucleotides (CpG-ODN) and polyinosinic:polycytidylic acid (PolyI:C) admixed with sIPV in rats. Our results showed that a combination of 1/4-dose sIPV adjuvanted with AS03 or AS03 with BW006 provides a seroconversion rate similar to that of full-dose sIPV without adjuvant and that, this rate is 5-fold higher than that of 1/4-dose sIPV without adjuvant after the first immunization. The combination of AS03 or AS03 with BW006 as an adjuvant effectively reduced sIPV dose by at least 4-fold and induced both humoral and cellular immune responses. Therefore, our study revealed that the combination of AS03 or AS03 with BW006 is a promising adjuvant for sIPV development.
Collapse
Affiliation(s)
- Zhuofan Li
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Wenting Ding
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Ze Liu
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhe Zhu
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- b The Department of Production Administration , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| |
Collapse
|
129
|
Saletti G, Gerlach T, Rimmelzwaan GF. Influenza vaccines: 'tailor-made' or 'one fits all'. Curr Opin Immunol 2018; 53:102-110. [PMID: 29734023 DOI: 10.1016/j.coi.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023]
Abstract
Currently used inactivated influenza vaccines aim at the induction of virus-neutralizing antibodies directed to the variable head domain of the viral hemagglutinin. Although these vaccines are effective against antigenically matching virus strains, they offer little protection against antigenically distinct drift variants or potentially pandemic viruses of alternative subtypes. In the last decades, the threat of novel influenza pandemics has sparked research efforts to develop vaccines that induce more broadly protective immunity. Here, we discuss the immune responses induced by conventional 'tailor-made' inactivated and live influenza vaccines and novel 'one fits all' candidate vaccines able to induce cross-reactive virus-specific antibody and T cell responses and to afford protection to a wider range of influenza viruses.
Collapse
Affiliation(s)
- Giulietta Saletti
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Thomas Gerlach
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
130
|
Vesikari T, Kirstein J, Devota Go G, Leav B, Ruzycky ME, Isakov L, de Bruijn M, Oberye J, Heijnen E. Efficacy, immunogenicity, and safety evaluation of an MF59-adjuvanted quadrivalent influenza virus vaccine compared with non-adjuvanted influenza vaccine in children: a multicentre, randomised controlled, observer-blinded, phase 3 trial. THE LANCET RESPIRATORY MEDICINE 2018; 6:345-356. [DOI: 10.1016/s2213-2600(18)30108-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
|
131
|
Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol 2018; 92:JVI.01970-17. [PMID: 29444938 DOI: 10.1128/jvi.01970-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
Pandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination.IMPORTANCE We have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in detection of B cells in the axillary lymph nodes, spleen, and peripheral blood. We demonstrate that intranasally administered pLAIV elicits a highly localized germinal center B cell response in the mediastinal lymph node that is rapidly recalled following pISV boost into germinal center reactions at numerous distant immune sites.
Collapse
|
132
|
Kumar A, Meldgaard TS, Bertholet S. Novel Platforms for the Development of a Universal Influenza Vaccine. Front Immunol 2018; 9:600. [PMID: 29628926 PMCID: PMC5877485 DOI: 10.3389/fimmu.2018.00600] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.
Collapse
Affiliation(s)
- Arun Kumar
- GSK, Research and Development Center, Siena, Italy.,Linköping University, Linköping, Sweden
| | - Trine Sundebo Meldgaard
- GSK, Research and Development Center, Siena, Italy.,DTU Nanotech, Technical University of Denmark, Copenhagen, Denmark
| | - Sylvie Bertholet
- GSK, Research and Development Center, Siena, Italy.,GSK, Research and Development Center, Rockville, MD, United States
| |
Collapse
|
133
|
Liang F, Lindgren G, Sandgren KJ, Thompson EA, Francica JR, Seubert A, De Gregorio E, Barnett S, O'Hagan DT, Sullivan NJ, Koup RA, Seder RA, Loré K. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci Transl Med 2018; 9:9/393/eaal2094. [PMID: 28592561 DOI: 10.1126/scitranslmed.aal2094] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine-induced adaptive immunity are largely unknown. We introduce a model to delineate the steps of how adjuvant-driven innate immune activation leads to priming of vaccine responses using rhesus macaques. Fluorescently labeled HIV-1 envelope glycoprotein (Env) was administered together with the conventional aluminum salt (alum) adjuvant. This was compared to Env given with alum with preabsorbed Toll-like receptor 7 (TLR7) ligand (alum-TLR7) or the emulsion MF59 because they show superiority over alum for qualitatively and quantitatively improved vaccine responses. All adjuvants induced rapid and robust immune cell infiltration to the injection site in the muscle. This resulted in substantial uptake of Env by neutrophils, monocytes, and myeloid and plasmacytoid dendritic cells (DCs) and migration exclusively to the vaccine-draining lymph nodes (LNs). Although less proficient than monocytes and DCs, neutrophils were capable of presenting Env to memory CD4+ T cells. MF59 and alum-TLR7 showed more pronounced cell activation and overall higher numbers of Env+ cells compared to alum. This resulted in priming of higher numbers of Env-specific CD4+ T cells in the vaccine-draining LNs, which directly correlated with increased T follicular helper cell differentiation and germinal center formation. Thus, strong innate immune activation promoting efficient vaccine antigen delivery to infiltrating antigen-presenting cells in draining LNs is an important mechanism by which superior adjuvants enhance vaccine responses.
Collapse
Affiliation(s)
- Frank Liang
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Lindgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerrie J Sandgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Thompson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Loré
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
134
|
Chen WC, Murawsky CM. Strategies for Generating Diverse Antibody Repertoires Using Transgenic Animals Expressing Human Antibodies. Front Immunol 2018; 9:460. [PMID: 29563917 PMCID: PMC5845867 DOI: 10.3389/fimmu.2018.00460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023] Open
Abstract
Therapeutic molecules derived from antibodies have become a dominant class of drugs used to treat human disease. Increasingly, therapeutic antibodies are discovered using transgenic animal systems that have been engineered to express human antibodies. While the engineering details differ, these platforms share the ability to raise an immune response that is comprised of antibodies with fully human idiotypes. Although the predominant transgenic host species has been mouse, the genomes of rats, rabbits, chickens, and cows have also been modified to express human antibodies. The creation of transgenic animal platforms expressing human antibody repertoires has revolutionized therapeutic antibody drug discovery. The observation that the immune systems of these animals are able to recognize and respond to a wide range of therapeutically relevant human targets has led to a surge in antibody-derived drugs in current development. While the clinical success of fully human monoclonal antibodies derived from transgenic animals is well established, recent trends have seen increasingly stringent functional design goals and a shift in difficulty as the industry attempts to tackle the next generation of disease-associated targets. These challenges have been met with a number of novel approaches focused on the generation of large, high-quality, and diverse antibody repertoires. In this perspective, we describe some of the strategies and considerations we use for manipulating the immune systems of transgenic animal platforms (such as XenoMouse®) with a focus on maximizing the diversity of the primary response and steering the ensuing antibody repertoire toward a desired outcome.
Collapse
Affiliation(s)
- Weihsu C Chen
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| | - Christopher M Murawsky
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| |
Collapse
|
135
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
136
|
Gallinaro A, Borghi M, Bona R, Grasso F, Calzoletti L, Palladino L, Cecchetti S, Vescio MF, Macchia D, Morante V, Canitano A, Temperton N, Castrucci MR, Salvatore M, Michelini Z, Cara A, Negri D. Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens. Front Immunol 2018; 9:171. [PMID: 29459873 PMCID: PMC5807328 DOI: 10.3389/fimmu.2018.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV) as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA) and nucleoprotein (NP) were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp) with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively). Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA)-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate that IDLV can be harnessed for producing a vaccine able to induce a comprehensive immune response, including functional antibodies directed toward HA and NA proteins present on the vector particles in addition to a functional T cell response directed to the protein transcribed from the vector.
Collapse
Affiliation(s)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Grasso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Calzoletti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Cecchetti
- Confocal Microscopy Unit NMR, Confocal Microscopy Area Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Daniele Macchia
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Morante
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Kent, United Kingdom
| | | | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
137
|
Comparison of the Efficacy of N9 Neuraminidase-Specific Monoclonal Antibodies against Influenza A(H7N9) Virus Infection. J Virol 2018; 92:JVI.01588-17. [PMID: 29167344 DOI: 10.1128/jvi.01588-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.
Collapse
|
138
|
Athale S, Banchereau R, Thompson-Snipes L, Wang Y, Palucka K, Pascual V, Banchereau J. Influenza vaccines differentially regulate the interferon response in human dendritic cell subsets. Sci Transl Med 2017; 9:9/382/eaaf9194. [PMID: 28330867 DOI: 10.1126/scitranslmed.aaf9194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022]
Abstract
Human dendritic cells (DCs) play a fundamental role in the initiation of long-term adaptive immunity during vaccination against influenza. Understanding the early response of human DCs to vaccine exposure is thus essential to determine the nature and magnitude of maturation signals that have been shown to strongly correlate with vaccine effectiveness. In 2009, the H1N1 influenza epidemics fostered the commercialization of the nonadjuvanted monovalent H1N1 California vaccine (MIV-09) to complement the existing nonadjuvanted trivalent Fluzone 2009-2010 vaccine (TIV-09). In retrospective studies, MIV-09 displayed lower effectiveness than TIV-09. We show that TIV-09 induces monocyte-derived DCs (moDCs), blood conventional DCs (cDCs), and plasmacytoid DCs (pDCs) to express CD80, CD83, and CD86 and secrete cytokines. TIV-09 stimulated the secretion of type I interferons (IFNs) IFN-α and IFN-β and type III IFN interleukin-29 (IL-29) by moDC and cDC subsets. The vaccine also induced the production of IL-6, tumor necrosis factor, and the chemokines IFN-γ-inducible protein 10 (IP-10) and macrophage inflammatory protein-1β (MIP-1β). Conversely, MIV-09 did not induce the production of type I IFNs in moDCs and blood cDCs. Furthermore, it inhibited the TIV-09-induced secretion of type I IFNs by these DCs. However, both vaccines induced pDCs to secrete type I IFNs, indicating that different influenza vaccines activate distinct molecular signaling pathways in DC subsets. These results suggest that subtypes of nonadjuvanted influenza vaccines trigger immunity through different mechanisms and that the ability of a vaccine to induce an IFN response in DCs may offset the absence of adjuvant and increase vaccine efficacy.
Collapse
Affiliation(s)
- Shruti Athale
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | - Yuanyuan Wang
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | - Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.,Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Jacques Banchereau
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
139
|
Wilkins AL, Kazmin D, Napolitani G, Clutterbuck EA, Pulendran B, Siegrist CA, Pollard AJ. AS03- and MF59-Adjuvanted Influenza Vaccines in Children. Front Immunol 2017; 8:1760. [PMID: 29326687 PMCID: PMC5733358 DOI: 10.3389/fimmu.2017.01760] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility of novel approaches in understanding new adjuvants and their importance for developing improved influenza vaccines for children.
Collapse
Affiliation(s)
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Giorgio Napolitani
- Medical Research Council (MRC), Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A. Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pathology, and Microbiology & Immunology, Stanford University, Stanford, CA, United States
- Institute for Immunology, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
140
|
Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs. Blood Adv 2017; 1:2329-2342. [PMID: 29296883 DOI: 10.1182/bloodadvances.2017011411] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function.
Collapse
|
141
|
Levine MZ, Holiday C, Liu F, Jefferson S, Gillis E, Bellamy AR, Tumpey T, Katz JM. Cross-Reactive Antibody Responses to Novel H5Nx Influenza Viruses Following Homologous and Heterologous Prime-Boost Vaccination with a Prepandemic Stockpiled A(H5N1) Vaccine in Humans. J Infect Dis 2017; 216:S555-S559. [PMID: 28934456 PMCID: PMC5853660 DOI: 10.1093/infdis/jix001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, novel highly pathogenic avian influenza H5Nx viruses (clade 2.3.4.4) caused outbreaks in US poultry. We evaluated the potential of a stockpiled A(H5N1) A/Anhui/1/2005 (clade 2.3.4) vaccine to elicit cross-reactive antibody responses to these emerging viruses. Sera from subjects who received 2 doses of MF59-adjuvanted A/Anhui/1/2005, or 1 dose of MF59-adjuvanted A/Anhui/1/2005 following priming with a clade 1 vaccine were characterized by microneutralization assays and modified hemagglutination inhibition (HI) assays. Only heterologous prime-boost vaccination induced modest cross-reactive HI antibody responses to H5Nx viruses. Heterologous prime-boost may provide a more effective vaccination strategy to broaden the antibody responses to emerging viruses.
Collapse
Affiliation(s)
- Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Crystal Holiday
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Gillis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Abbie R Bellamy
- Statistical and Data Coordinating Center, Emmes Corporation, Rockville, Maryland
| | - Terrence Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
142
|
Zhang A, Wang D, Li J, Gao F, Fan X. The effect of aqueous extract of Xinjiang Artemisia rupestris L. (an influenza virus vaccine adjuvant) on enhancing immune responses and reducing antigen dose required for immunity. PLoS One 2017; 12:e0183720. [PMID: 28841693 PMCID: PMC5571932 DOI: 10.1371/journal.pone.0183720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
Potent adjuvant can improve the effectiveness of vaccines and reduce the antigen doses required for initiating the protective immunity. In this study, we identified that aqueous extract of Artemisia rupestris L. (AEAR) could be employed as an efficient adjuvant for influenza virus vaccine (V) to enhance immune responses and reduce the antigen doses required for initiating immunity, without compromising the immune response. ICR mice were subcutaneously co-administrated with V combined with different concentrations of AEAR demonstrated that 300 μg AEAR could significantly improve hemagglutination inhibition (HI) and increase IgG antibody titers in serum (P<0.05) and the population of CD4+CD44+ and CD8+CD44+ (P<0.05). Next, 300 μg AEAR combined with different doses of V in vivo markedly increased HI and specific IgG antibody level(P<0.05). It also significantly increased the amount of CD4+ and CD8+ T cells, CD4+CD44+ and CD8+CD44+ T cells (P<0.05), improved lymphocyte proliferation, the secretion of CD4+IL-4, CD4+IFN-γ and CD8+IFN-γ (P<0.05), and the killing efficacy of cytotoxic T lymphocyte (CTL) (P<0.05). Furthermore, the combination increased the expression of major histocompatibility complex-II (MHC-II) and co-stimulatory molecules including CD40, CD80, and CD86 on dendritic cells (DCs), and downregulated the expression of CD25+Foxp3+Treg cells (P<0.05). No significant difference was observed between high-dose V and low-dose AEAR-V (10-fold lower) vaccination group (P>0.05), indicating a 10-fold reduction of antigen required for V vaccine administration. In conclusion, this study demonstrated that AEAR, as an adjuvant for influenza vaccine, could stimulate potent humoral and cellular immune responses and reduce the antigen dose required for effective vaccination, which were mediated by promoting DCs activation and repressing Treg expression.
Collapse
Affiliation(s)
- Ailian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- * E-mail:
| | - Danyang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Feng Gao
- Urumqi Center for Disease Control and Prevention, Urumqi, China
| | - Xucheng Fan
- Urumqi Center for Disease Control and Prevention, Urumqi, China
| |
Collapse
|
143
|
Burny W, Callegaro A, Bechtold V, Clement F, Delhaye S, Fissette L, Janssens M, Leroux-Roels G, Marchant A, van den Berg RA, Garçon N, van der Most R, Didierlaurent AM. Different Adjuvants Induce Common Innate Pathways That Are Associated with Enhanced Adaptive Responses against a Model Antigen in Humans. Front Immunol 2017; 8:943. [PMID: 28855902 PMCID: PMC5557780 DOI: 10.3389/fimmu.2017.00943] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
To elucidate the role of innate responses in vaccine immunogenicity, we compared early responses to hepatitis B virus (HBV) surface antigen (HBsAg) combined with different Adjuvant Systems (AS) in healthy HBV-naïve adults, and included these parameters in multi-parametric models of adaptive responses. A total of 291 participants aged 18–45 years were randomized 1:1:1:1:1 to receive HBsAg with AS01B, AS01E, AS03, AS04, or Alum/Al(OH)3 at days 0 and 30 (ClinicalTrials.gov: NCT00805389). Blood protein, cellular, and mRNA innate responses were assessed at early time-points and up to 7 days after vaccination, and used with reactogenicity symptoms in linear regression analyses evaluating their correlation with HBs-specific CD4+ T-cell and antibody responses at day 44. All AS induced transient innate responses, including interleukin (IL)-6 and C-reactive protein (CRP), mostly peaking at 24 h post-vaccination and subsiding to baseline within 1–3 days. After the second but not the first injection, median interferon (IFN)-γ levels were increased in the AS01B group, and IFN-γ-inducible protein-10 levels and IFN-inducible genes upregulated in the AS01 and AS03 groups. No distinct marker or signature was specific to one particular AS. Innate profiles were comparable between AS01B, AS01E, and AS03 groups, and between AS04 and Alum groups. AS group rankings within adaptive and innate response levels and reactogenicity prevalence were similar (AS01B ≥ AS01E > AS03 > AS04 > Alum), suggesting an association between magnitudes of inflammatory and vaccine responses. Modeling revealed associations between adaptive responses and specific traits of the innate response post-dose 2 (activation of the IFN-signaling pathway, CRP and IL-6 responses). In conclusion, the ability of AS01 and AS03 to enhance adaptive responses to co-administered HBsAg is likely linked to their capacity to activate innate immunity, particularly the IFN-signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Frédéric Clement
- Center for Vaccinology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | | | | | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
144
|
O'Hagan DT, Friedland LR, Hanon E, Didierlaurent AM. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol 2017; 47:93-102. [PMID: 28755542 DOI: 10.1016/j.coi.2017.07.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023]
Abstract
In the last two decades, several vaccines formulated with a new generation of adjuvants have been licensed or approved to target diseases such as influenza, hepatitis B, cervical cancer, and malaria. These new generation adjuvants appear to work by delivering a localized activation signal to the innate immune system, which in turn promotes antigen-specific adaptive immunity. Advances in understanding of the innate immune system together with high-throughput discovery of synthetic immune potentiators are now expanding the portfolio of new generation adjuvants available for evaluation. Meanwhile, omics and systems biology are providing molecular benchmarks or signatures to assess vaccine safety and effectiveness. This accumulating knowledge and experience raises the prospect that the future selection of the right antigen/adjuvant combination can be more evidence based and can speed up the clinical development program for new adjuvanted vaccines.
Collapse
Affiliation(s)
- Derek T O'Hagan
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, USA. derek.t.o'
| | | | - Emmanuel Hanon
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | | |
Collapse
|
145
|
Leach S, Lundgren A, Carlin N, Löfstrand M, Svennerholm AM. Cross-reactivity and avidity of antibody responses induced in humans by the oral inactivated multivalent enterotoxigenicEscherichia coli (ETEC) vaccine ETVAX. Vaccine 2017. [PMID: 28625524 DOI: 10.1016/j.vaccine.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated whether the oral inactivated, multivalent enterotoxigenic Escherichia coli (ETEC) vaccine ETVAX, consisting of four E. coli strains over-expressing the colonisation factors (CFs) CFA/I, CS3, CS5 and CS6, combined with the toxoid LCTBA, could induce cross-reactive antibodies to CFs related to the CFA/I and CS5 families. We also evaluated the avidity of vaccine induced antibodies against the toxoid and CFs. Cross-reactivity was analysed in mucosal (faecal and antibodies in lymphocyte supernatants, ALS) samples, and antibody avidity in serum and ALS samples, from two phase I trials: a primary vaccination study, where two oral doses of ETVAX were given±the double mutant heat labile toxin (dmLT) adjuvant at a 2-week interval, and a booster vaccination study, where a single booster dose of ETVAX was given 13-23months after primary vaccinations. We found that 65-90% of subjects who had responded to CFA/I in ALS or faecal specimens also developed cross-reactive antibodies to the related CFs tested, i.e. CS1, CS14 and CS17, and that approximately 80% of those responding to CS5 also responded to the closely related CS7. For subjects who had developed cross-reactive antibodies, the magnitudes of responses against vaccine CFs and related non-vaccine CFs were comparable. Using both a simple method of antibody avidity determination based on limiting antigen dilution, as well as a chaotropic ELISA method, we found that the avidity of serum and ALS antibodies to key vaccine antigens increased after a late booster dose compared to after primary vaccination. Our results suggest that the cross-reactive antibody responses against multiple CFs may result in expanded ETEC strain coverage of ETVAX and that repeated vaccinations induce vaccine-specific antibodies with increased binding capacity.
Collapse
Affiliation(s)
- Susannah Leach
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | - Anna Lundgren
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | - Nils Carlin
- Etvax AB, Gunnar Asplunds allé, 17163 Solna, Sweden.
| | - Madeleine Löfstrand
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | - Ann-Mari Svennerholm
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| |
Collapse
|
146
|
Long-Term Persistence of Cell-Mediated and Humoral Responses to A(H1N1)pdm09 Influenza Virus Vaccines and the Role of the AS03 Adjuvant System in Adults during Two Randomized Controlled Trials. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00553-16. [PMID: 28446441 PMCID: PMC5461372 DOI: 10.1128/cvi.00553-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/17/2017] [Indexed: 12/29/2022]
Abstract
We investigated the role of AS03A (here AS03), an α-tocopherol oil-in-water emulsion-based adjuvant system, on the long-term persistence of humoral and cell-mediated immune responses to A(H1N1)pdm09 influenza vaccines. In two studies, a total of 261 healthy adults (≤60 years old) were randomized to receive two doses of AS03-adjuvanted vaccine containing 3.75 μg of hemagglutinin (HA) or nonadjuvanted vaccine containing 15 μg of hemagglutinin (in study A) or 3.75 μg of hemagglutinin (in study B) 21 days apart. Hemagglutination inhibition (HI) antibody, memory B-cell, and CD4+/CD8+ T-cell responses were characterized up to 1 year following dose 1. We also assessed the effects of age and seasonal influenza vaccination history. AS03-adjuvanted (3.75 μg HA) vaccine and nonadjuvanted vaccine at 15 μg but not at 3.75 μg HA elicited HI antibody responses persisting at levels that continued to meet European licensure criteria through month 12. At month 12, the geometric mean titer for AS03-adjuvanted vaccine was similar to that for nonadjuvanted (15-μg) vaccine in study A (1:86 and 1:88, respectively) and higher than that for nonadjuvanted (3.75-μg) vaccine in study B (1:77 and 1:35, respectively). A(H1N1)pdm09-specific CD4+ T-cell and B-cell responses were stronger in AS03-adjuvanted groups and persisted only in these groups for 12 months at levels exceeding prevaccination frequencies. Advancing age and a seasonal vaccination history tended to reduce HI antibody and memory B-cell responses and, albeit less consistently, CD4+ T-cell responses. Thus, AS03 seemed to enhance the persistence of humoral and cell-mediated responses to A(H1N1)pdm09 vaccine, allowing for antigen sparing and mitigating potential negative effects of age and previous seasonal vaccination. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00968539 and NCT00989287.)
Collapse
|
147
|
Inactivated influenza virus vaccines: the future of TIV and QIV. Curr Opin Virol 2017; 23:102-106. [PMID: 28505524 DOI: 10.1016/j.coviro.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
Influenza viruses continue to be a major public health concern, despite the availability of vaccines. Currently licensed influenza vaccines aim at the induction of antibodies that target hemagglutinin, the major antigenic determinant on the surface of influenza virions that is responsible for attachment of the virus to the host cell that is to be infected. Currently licensed influenza vaccines come as inactivated or live attenuated influenza vaccines and are trivalent or quadrivalent as they contain antigens of two influenza A and one or two influenza B strains that circulate in the human population, respectively. In this review we briefly compare trivalent and quadrivalent inactivated influenza vaccines (TIV and QIV) with live attenuated influenza vaccines (LAIV). The use of the latter vaccine type in children age 2-8 has been disrecommended recently by the American Centers for Disease Control and Prevention due to inferior vaccine effectiveness in this age group in recent seasons. This recommendation will favor the use of TIV and QIV over LAIV in the near future. However, there is much evidence from studies in humans that illustrate the benefit of LAIV and we discuss some of the mechanisms that contribute to broader protection against influenza viruses of different subtypes induced by natural infection and LAIV. The future challenge will be to apply these insights to allow induction of broader and long-lasting protection provided by TIV and QIV vaccines, for example, by the use of adjuvants or combining LAIV with TIV and QIV. Other immune factors than serum hemagglutination inhibiting antibodies have shown to correlate with protection provided by TIV and QIV, which illustrates the need for other correlates of protection than hemagglutination inhibition by serum antibodies and justifies more focus on influenza antigens in the TIV and QIV other than hemagglutinin.
Collapse
|
148
|
Chada KE, Forshee R, Golding H, Anderson S, Yang H. A systematic review and meta-analysis of cross-reactivity of antibodies induced by oil-in-water emulsion adjuvanted influenza H5N1 virus monovalent vaccines. Vaccine 2017; 35:3162-3170. [PMID: 28483200 DOI: 10.1016/j.vaccine.2017.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cross-clade immunogenic stockpiled H5N1 vaccines may decrease the morbidity and transmission of infection during the initial phase of influenza pandemic. Meta-analysis of cross-reactive antibodies induced by oil-in-water emulsion adjuvanted (OWEA) influenza H5N1 virus monovalent vaccines with circulating heterologous H5N1 virus strains, isolated from human infections was performed. METHODS Literature search of MEDLINE, EMBASE, Web of Knowledge, The Cochrane Library, ClinicalTrials.gov, and International Standard Randomised Controlled Trial Number registry was conducted up through December 1, 2015. Methodologically qualified studies were included for (1) use of two doses of licensed OWEA (AS03 or MF59) egg-derived, inactivated influenza H5N1 virus monovalent vaccine, (2) participant age between 18 and 64years, and (3) evaluation of immunogenicity outcome for one or more subclade. Meta-analysis assessed the cross-reactivity of antibodies elicited by clade 1 adjuvanted vaccine strain against clade 2.1 virus strain (A/Vietnam/1194/2004 vs. A/Indonesia/05/2005); and separately against clade 2.2 virus strain (A/Vietnam/1194/2004 vs. A/turkey/Turkey/1/05); and clade 2.1 adjuvanted vaccine strain against clade 1 virus strain (A/Indonesia/05/2005 vs. A/Vietnam/1194/2004). Quantitative publication bias and influence analysis was conducted to evaluate potential impact of unpublished or new studies on the robustness of meta-analysis. RESULTS Of 960 articles, 53 qualified for quality assessment and 15 studies met the inclusion criteria. All assessed clade pairs elicited cross-reactive antibodies (clade 1 against clade 2.1 and 2.2; clade 2.1 against clade 1, 2.2, and 2.3). Heterologous strains of same sub-clade are likely to elicit higher cross-reactive antibodies. CONCLUSIONS OWEA influenza H5N1 virus monovalent vaccines exhibit broad cross-clade immunogenicity, a desired feature for vaccine stockpiling not yet demonstrated by unadjuvanted vaccines. In case of an impending H5N1 virus pandemic, stockpiled OWEA influenza H5N1 virus monovalent vaccines may allow population priming that could slow down the course of pandemic and could offer additional time needed for development of an effective strain specific vaccine supply.
Collapse
Affiliation(s)
- Kinnera E Chada
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States.
| | - Richard Forshee
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| | - Hana Golding
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| | - Steven Anderson
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| | - Hong Yang
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| |
Collapse
|
149
|
Boigard H, Alimova A, Martin GR, Katz A, Gottlieb P, Galarza JM. Zika virus-like particle (VLP) based vaccine. PLoS Negl Trop Dis 2017; 11:e0005608. [PMID: 28481898 PMCID: PMC5436897 DOI: 10.1371/journal.pntd.0005608] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/18/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022] Open
Abstract
The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Female
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/ultrastructure
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Zika Virus/immunology
- Zika Virus Infection/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Hélène Boigard
- TechnoVax, Inc., Tarrytown, NY, United States of America
| | - Alexandra Alimova
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York City, NY, United States of America
| | | | - Al Katz
- Physics Department, City College of New York, New York City, NY, United States of America
| | - Paul Gottlieb
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York City, NY, United States of America
| | | |
Collapse
|
150
|
Van Hoeven N, Fox CB, Granger B, Evers T, Joshi SW, Nana GI, Evans SC, Lin S, Liang H, Liang L, Nakajima R, Felgner PL, Bowen RA, Marlenee N, Hartwig A, Baldwin SL, Coler RN, Tomai M, Elvecrog J, Reed SG, Carter D. A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci Rep 2017; 7:46426. [PMID: 28429728 PMCID: PMC5399443 DOI: 10.1038/srep46426] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/20/2017] [Indexed: 11/30/2022] Open
Abstract
Since 1997, highly pathogenic avian influenza viruses of the H5N1 subtype have been transmitted from avian hosts to humans. The severity of H5N1 infection in humans, as well as the sporadic nature of H5N1 outbreaks, both geographically and temporally, make generation of an effective vaccine a global public health priority. An effective H5N1 vaccine must ultimately provide protection against viruses from diverse clades. Toll-like receptor (TLR) agonist adjuvant formulations have a demonstrated ability to broaden H5N1 vaccine responses in pre-clinical models. However, many of these agonist molecules have proven difficult to develop clinically. Here, we describe comprehensive adjuvant formulation development of the imidazoquinoline TLR-7/8 agonist 3M-052, in combination with H5N1 hemagglutinin (HA) based antigens. We find that 3M-052 in multiple formulations protects both mice and ferrets from lethal H5N1 homologous virus challenge. Furthermore, we conclusively demonstrate the ability of 3M-052 adjuvant formulations to broaden responses to H5N1 HA based antigens, and show that this broadening is functional using a heterologous lethal virus challenge in ferrets. Given the extensive clinical use of imidazoquinoline TLR agonists for other indications, these studies identify multiple adjuvant formulations which may be rapidly advanced into clinical trials in an H5N1 vaccine.
Collapse
Affiliation(s)
- Neal Van Hoeven
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Brian Granger
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Tara Evers
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Sharvari W Joshi
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Ghislain I Nana
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Sarah C Evans
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Susan Lin
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Hong Liang
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Li Liang
- University of California Irvine, Department of Medicine, Irvine CA 92697, USA
| | - Rie Nakajima
- University of California Irvine, Department of Medicine, Irvine CA 92697, USA
| | - Philip L Felgner
- University of California Irvine, Department of Medicine, Irvine CA 92697, USA
| | - Richard A Bowen
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, USA
| | - Nicole Marlenee
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, USA
| | - Airn Hartwig
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, USA
| | - Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Rhea N Coler
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Mark Tomai
- 3M, Inc., St. Paul, Minnesota 55121, USA
| | | | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| |
Collapse
|