101
|
Klamrak A, Nabnueangsap J, Narkpuk J, Saengkun Y, Janpan P, Nopkuesuk N, Chaveerach A, Teeravechyan S, Rahman SS, Dobutr T, Sitthiwong P, Maraming P, Nualkaew N, Jangpromma N, Patramanon R, Daduang S, Daduang J. Unveiling the Potent Antiviral and Antioxidant Activities of an Aqueous Extract from Caesalpinia mimosoides Lamk: Cheminformatics and Molecular Docking Approaches. Foods 2023; 13:81. [PMID: 38201109 PMCID: PMC10778375 DOI: 10.3390/foods13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Our group previously demonstrated that Caesalpinia mimosoides Lamk exhibits many profound biological properties, including anticancer, antibacterial, and antioxidant activities. However, its antiviral activity has not yet been investigated. Here, the aqueous extract of C. mimosoides was prepared from the aerial parts (leaves, stalks, and trunks) to see whether it exerts anti-influenza (H1N1) effects and to reduce the organic solvents consumed during extraction, making it a desirable approach for the large-scale production for medical uses. Our plant extract was quantified to contain 7 g of gallic acid (GA) per 100 g of a dry sample, as determined using HPLC analysis. It also exerts potent antioxidant activities comparable to those of authentic GA. According to untargeted metabolomics (UPLC-ESI(-)-QTOF-MS/MS) with the aid of cheminformatics tools (MetFrag (version 2.1), SIRIUS (version 5.8.3), CSI:FingerID (version 4.8), and CANOPUS), the major metabolite was best annotated as "gallic acid", phenolics (e.g., quinic acid, shikimic acid, and protocatechuic acid), sugar derivatives, and dicarboxylic acids were deduced from this plant species for the first time. The aqueous plant extract efficiently inhibited an influenza A (H1N1) virus infection of MDCK cells with an IC50 of 5.14 µg/mL. Of equal importance, hemolytic activity was absent for this plant extract, signifying its applicability as a safe antiviral agent. Molecular docking suggested that GA interacts with conserved residues (e.g., Arg152 and Asp151) located in the catalytic inner shell of the viral neuraminidase (NA), sharing the same pocket as those of anti-neuraminidase drugs, such as laninamivir and oseltamivir. Additionally, other metabolites were also found to potentially interact with the active site and the hydrophobic 430-cavity of the viral surface protein, suggesting a possibly synergistic effect of various phytochemicals. Therefore, the C. mimosoides aqueous extract may be a good candidate for coping with increasing influenza virus resistance to existing antivirals.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7000, Bangladesh
| | - Theerawat Dobutr
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd., 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima 30130, Thailand;
| | - Pornsuda Maraming
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jureerut Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
102
|
Marrone G, Di Lauro M, Izzo F, Cornali K, Masci C, Vita C, Occhiuto F, Di Daniele N, De Lorenzo A, Noce A. Possible Beneficial Effects of Hydrolyzable Tannins Deriving from Castanea sativa L. in Internal Medicine. Nutrients 2023; 16:45. [PMID: 38201875 PMCID: PMC10780656 DOI: 10.3390/nu16010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Hydrolyzable tannins (HTs) deriving from chestnuts have demonstrated, through numerous studies, the ability to exert multiple beneficial effects, including antioxidant and antimicrobial effects, on the lipid metabolism and cancer cells. The latter effect is very fascinating, since different polyphenols deriving from chestnuts were able to synergistically induce the inhibition of cancerous cells through multiple pathways. Moreover, the main mechanisms by which tannins induce antioxidant functions include: the reduction in oxidative stress, the ability to scavenge free radicals, and the modulation of specific enzymes, such as superoxide dismutase. HTs have also been shown to exert significant antimicrobial activity by suppressing microbial growth. The actions on the lipid metabolism are several, among which is the inhibition of lipid accumulation. Thus, tannins seem to induce a cardioprotective effect. In fact, through various mechanisms, such as the relaxation of the vascular smooth muscle, HTs were proven to be efficient against arterial hypertension. Therefore, the great number of studies in this field prove the growing interest on the utilization of natural bioactive compounds, such as HTs deriving from natural sources or obtained by circular economy models, as potential nutraceuticals or adjuvants therapies.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Francesco Izzo
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Chiara Vita
- QuMAP (Quality of Goods and Product Reliability), University of Florence, PIN, 59100 Prato, Italy;
- Department of Economics, Management and Business Law, University of Bari “Aldo Moro”, Piazza Umberto I, 70121 Bari, Italy
| | - Francesco Occhiuto
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
103
|
Kerek Á, Szabó Á, Dobra PF, Bárdos K, Ózsvári L, Fehérvári P, Bata Z, Molnár-Nagy V, Jerzsele Á. Determining the In Vivo Efficacy of Plant-Based and Probiotic-Based Antibiotic Alternatives against Mixed Infection with Salmonella enterica and Escherichia coli in Domestic Chickens. Vet Sci 2023; 10:706. [PMID: 38133257 PMCID: PMC10747687 DOI: 10.3390/vetsci10120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Restrictions on the use of antimicrobial compounds have led to a surge of interest in alternative solutions, such as natural, plant-based compounds. In our study, we investigated the efficacy of three feed supplements containing different additives, namely, probiotics (Lactobacillus spp., "Test substance A"), turmeric (Curcuma longa L., "Test substance B"), and fenugreek (Trigonella foenum graecum, "Test substance C"). In the experiment, we tested 180 birds of the Bábolna Tetra-SL laying hybrid breed that were infected with Salmonella enteritidis strains. The birds were randomly divided into six groups: three groups treated with the different additives, a negative control group, a positive control group, and an antibiotic-treated group using enrofloxacin. We examined the maturation and the time course of shedding of Salmonella; at the end of rearing, pathological and histopathological examinations were performed. When Salmonella was isolated from the cloacal swab samples, the enrofloxacin-treated group had a high number of animals shedding Salmonella by day 9, which was like the group treated with test material C. The greatest reduction in Salmonella shedding was observed in the groups treated with test materials A and B. In terms of pathological parameters, villus length and crypt depth were significantly better in the group treated with test material C compared to the positive and negative controls, and when comparing the body weight of the tested animals, the group treated with test material B had a significantly larger absorption surface area compared to the positive control group. Overall, the supplement with test material C proved to be the most effective. In the future, it is worthwhile to investigate the combination of the tested active substances for their possible synergistic effects and to perform a dose-response study to select the optimal dosage.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary; (K.B.); (L.Ó.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Péter Ferenc Dobra
- Department of Pathology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Krisztina Bárdos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary; (K.B.); (L.Ó.)
- Department of Veterinary Forensics and Economics, Institute of Economics and Biostatistics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - László Ózsvári
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary; (K.B.); (L.Ó.)
- Department of Veterinary Forensics and Economics, Institute of Economics and Biostatistics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Péter Fehérvári
- Department of Biostatistics, Institute of Economics and Biostatistics, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Zsófia Bata
- Dr. Bata Zrt., 2364 Ócsa, Hungary; (Z.B.); (V.M.-N.)
| | | | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary; (K.B.); (L.Ó.)
| |
Collapse
|
104
|
Hosseini R, Mahdian N, Yousefi Z. The potential of gamma irradiation on antioxidant capacity and genomic alterations in Calendula officinalis. Appl Radiat Isot 2023; 202:111034. [PMID: 37832227 DOI: 10.1016/j.apradiso.2023.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
There are lines of evidence that ionizing radiations such as gamma rays can cause different biological effects on plants. Marigold (Calendula officinalis L.) is a member of the family Asteraceae. It possesses profound amounts of active ingredients. The aim of this study was to evaluate the changes imposed upon different dose levels of gamma radiation on some features of Calendula officinalis such as antioxidant activity, total phenolic compounds and flavonoid contents, antibacterial activity and genomic alterations. Calendula officinalis seeds were exposed to different doses of Gamma radiation (0, 10, 15, 20 and 25 GY). Total phenolics, flavonoids, antioxidant activity (measured by DPPH assay) using methanolic extracts of plants and antibacterial activity measured by the disc diffusion assay showed significant differences to the control samples. The samples treated with 10 GY gamma rays showed the highest total phenol and flavonoid contents. Antioxidant activity significantly differed between Gamma rays dose levels and it was the highest at 25 GY. Four bacterial strains including E. coli, Bacillus subtilis and Pseudomonas aeroginosa were used for the antibacterial assay. Extracts from plants treated with 25 GY gamma rays showed the highest antibacterial activity against the 4 bacterial strains. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to study the genetic variation. The polymorphism information content (PIC) for RAPD primers ranged from 3% to 13% and ranged from 6 to 13% for ISSR primers. Results indicated that ISSR markers were more efficient than RAPD markers, as they detected 25.57% polymorphic DNA bands compared to 21.31% polymorphism for RAPD markers.
Collapse
Affiliation(s)
- Ramin Hosseini
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Najmeh Mahdian
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zahra Yousefi
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
105
|
Malczak I, Gajda A. Interactions of naturally occurring compounds with antimicrobials. J Pharm Anal 2023; 13:1452-1470. [PMID: 38223447 PMCID: PMC10785267 DOI: 10.1016/j.jpha.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 01/16/2024] Open
Abstract
Antibiotics are among the most often used medications in human healthcare and agriculture. Overusing these substances can lead to complications such as increasing antibiotic resistance in bacteria or a toxic effect when administering large amounts. To solve these problems, new solutions in antibacterial therapy are needed. The use of natural products in medicine has been known for centuries. Some of them have antibacterial activity, hence the idea to combine their activity with commercial antibiotics to reduce the latter's use. This review presents collected information on natural compounds (terpenes, alkaloids, flavonoids, tannins, sulfoxides, and mycotoxins), of which various drug interactions have been observed. Many of the indicated compounds show synergistic or additive interactions with antibiotics, which suggests their potential for use in antibacterial therapy, reducing the toxicity of the antibiotics used and the risk of further development of bacterial resistance. Unfortunately, there are also compounds which interact antagonistically, potentially hindering the therapy of bacterial infection. Depending on its mechanism of action, each compound can behave differently in combination with different antibiotics and when acting against various bacterial strains.
Collapse
Affiliation(s)
- Izabela Malczak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| |
Collapse
|
106
|
Baldassarre F, Schiavi D, Di Lorenzo V, Biondo F, Vergaro V, Colangelo G, Balestra GM, Ciccarella G. Cellulose Nanocrystal-Based Emulsion of Thyme Essential Oil: Preparation and Characterisation as Sustainable Crop Protection Tool. Molecules 2023; 28:7884. [PMID: 38067613 PMCID: PMC10707935 DOI: 10.3390/molecules28237884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Essential oil-based pesticides, which contain antimicrobial and antioxidant molecules, have potential for use in sustainable agriculture. However, these compounds have limitations such as volatility, poor water solubility, and phytotoxicity. Nanoencapsulation, through processes like micro- and nanoemulsions, can enhance the stability and bioactivity of essential oils. In this study, thyme essential oil from supercritical carbon dioxide extraction was selected as a sustainable antimicrobial tool and nanoencapsulated in an oil-in-water emulsion system. The investigated protocol provided high-speed homogenisation in the presence of cellulose nanocrystals as stabilisers and calcium chloride as an ionic crosslinking agent. Thyme essential oil was characterised via GC-MS and UV-vis analysis, indicating rich content in phenols. The cellulose nanocrystal/essential oil ratio and calcium chloride concentration were varied to tune the nanoemulsions' physical-chemical stability, which was investigated via UV-vis, direct observation, dynamic light scattering, and Turbiscan analysis. Transmission electron microscopy confirmed the nanosized droplet formation. The nanoemulsion resulting from the addition of crosslinked nanocrystals was very stable over time at room temperature. It was evaluated for the first time on Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease. In vitro tests showed a synergistic effect of the formulation components, and in vivo tests on olive seedlings demonstrated reduced bacterial colonies without any phytotoxic effect. These findings suggest that crosslinked cellulose nanocrystal emulsions can enhance the stability and bioactivity of thyme essential oil, providing a new tool for crop protection.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Veronica Di Lorenzo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Francesca Biondo
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Gianpiero Colangelo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
107
|
Getahun M, Nesru Y, Ahmed M, Satapathy S, Shenkute K, Gupta N, Naimuddin M. Phytochemical Composition, Antioxidant, Antimicrobial, Antibiofilm, and Antiquorum Sensing Potential of Methanol Extract and Essential Oil from Acanthus polystachyus Delile (Acanthaceae). ACS OMEGA 2023; 8:43024-43036. [PMID: 38024770 PMCID: PMC10653062 DOI: 10.1021/acsomega.3c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The evolution of microbes in response to conventional antimicrobials leads to antimicrobial resistance (AMR) and multidrug resistance (MDR), and it is a global threat to public health. Natural products are possible solutions to this massive challenge. In this study, the potential of Acanthus polystachyus extracts was investigated for phytochemical composition and biological properties as antimicrobials. Gas chromatography-mass spectra (GC-MS) analysis of methanol extract (ME) and essential oil (EO) detected 79 and 20 compounds, respectively. The major compounds identified in ME and their abundance were β-sitosterol acetate (16.06%), cholest-5-en-3-yl (9Z)-9-octadecenoate (9.54%), 1-dodecanol (7.57%), (S)-(E)-(-)-4-acetoxy-1-phenyl-2-dodecen-1-one (6.03%), neophytadiene (5.7%), (E)-2-nonadecene (3.9%), hexanol-4-D2 (2.92%), and decane (2.4%). Most compounds have known bioactive functions. In EO, the major compounds were stearyl alcohol (25.38%); cis-9-tetradecenoic acid, isobutyl ester (22.95%); butyl 9-tetradecenoate (10.62%); 11,13-dimethyl-12-tetradecen-1-ol acetate (10.14%); ginsenol (3.48%); and diisooctyl phthalate (2.54%). All compounds are known to be bioactive. The antioxidant activity of ME and EO ranged from 48.3 to 84.2% radical scavenging activity (RSA) and 45.6 to 82% RSA, respectively, with dose dependency. The disc diffusion assay for the antimicrobial activity of ME revealed high inhibition against Acenetobacter baumannii (130.2%), Pseudomonas aeruginosa (100.3%), and Staphylococcus aureus (87.7%). The MIC, MBC/MFC, and MBIC values for ME were 0.5-1.0, 2-4, and 0.5-1.0 mg/mL and for EO were 0.31-0.62, 1.25-2.5, and 0.31-0.62 μL/mL, respectively, indicating inhibition potential as well as inhibition of biofilm formation. The tolerance test values indicated bactericidal activity against most strains and bacteriostatic/fungistatic activity against A. baumannii, E. faecalis, and C. albicans. The antiquorum sensing activity of ME achieved by pyocyanin inhibition assay on P. aeruginosa showed a 51.6% inhibition at 500 μg/mL. These results suggest that ME and EO derived from A. polystachyus leaves are potent, valuable, cost-effective antioxidants and antimicrobials. Both extracts may effectively combat pathogenic and resistant microbes.
Collapse
Affiliation(s)
- Meron Getahun
- Department
of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Yonatan Nesru
- Department
of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Muktar Ahmed
- Institute
of Pharmaceutical Sciences, Adama Science
and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Sunita Satapathy
- Department
of Zoology, School of Applied Science, Centurion
University of Technology & Management, Bhubaneswar 752050, Odisha, India
| | - Kebede Shenkute
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Neeraj Gupta
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Mohammed Naimuddin
- Department
of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| |
Collapse
|
108
|
Sinze Metiave AA, Tedonkeu AT, Tamokou JDD, Nanfack ARD, Matsuete-Takongmo G, Kamtcha Wetadieu D, Tsopmo A, Tene M. Antibacterial stigmastane-type steroids and other constituents from the leaves of Vernonia glabra (Steetz) Vatke (Asteraceae). Nat Prod Res 2023:1-15. [PMID: 37955140 DOI: 10.1080/14786419.2023.2278756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Two new stigmastane steroids (1 and 2) were isolated from the methanol extract of the leaves of Vernonia glabra, together with seventeen known compounds (3-19) including one fatty acid, four triterpenoids, four steroids, one trinitropropanoyl glucoside, and seven flavonoids. The structures of compounds 1 and 2 were assigned based on their IR, NMR and MS data, and by comparison with literature values. The MeOH extract, its fractions and isolated compounds were subjected to in vitro antibacterial assay against two Gram-positive (Staphylococcus aureus ATCC25923 and Streptococcus pneumoniae ATCC49619) and two Gram-negative (Escherichia coli ATCC8739 and Klebsiella pneumoniae ATCC10031) bacteria, using broth microdilution method. The extract and fractions exhibited (16 ≤ MIC ≤ 512 μg/mL) antibacterial activities. The isolated and tested compounds were also active (16 ≤ MIC ≤ 128 μg/mL) against the four pathogenic bacteria, with compound 2 being the most active and E. coli, the most sensitive microorganism.
Collapse
Affiliation(s)
- Audrey A Sinze Metiave
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Alex Tchinda Tedonkeu
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jean-De-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arno R Donfack Nanfack
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Germaine Matsuete-Takongmo
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Duplex Kamtcha Wetadieu
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Apollinaire Tsopmo
- Food Science Program, Department of Chemistry, and Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Mathieu Tene
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
109
|
da Cruz JER, Saldanha HC, do Nascimento AM, Borges RB, Gomes MDS, Freitas GROE, Leal CM, Ferreira EA, da Silva Filho AA, Morais ER. Evaluation of the Antioxidant, Antimicrobial, and Anti-Biofilm Effects of the Stem Bark, Leaf, and Seed Extracts from Hymenaea courbaril and Characterization by UPLC-ESI-QTOF-MS/MS Analysis. Antibiotics (Basel) 2023; 12:1601. [PMID: 37998803 PMCID: PMC10668761 DOI: 10.3390/antibiotics12111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, biofilm-forming bacteria are difficult to treat by conventional antibiotic therapy and are, thus, becoming a clinical and epidemiological problem worldwide. Medicinal plants have been identified as novel alternative treatments due to their therapeutic and antimicrobial effects. In this context, the present study aimed to determine the total phenolic content, antioxidant capacity, and antimicrobial and anti-biofilm potential of nine extracts of Hymenaea courbaril (Fabaceae), popularly known as Jatobá. Furthermore, extracts that exhibited biofilm inhibitory activity against S. aureus (ATCC 25923) were selected for UPLC-HRMS/MS chemical analysis. Our results showed a high total phenolic content, mainly in the stem bark extract, and that the plant is rich in compounds with antioxidant activity. In the anti-biofilm analysis, leaf extracts stood out in comparison with chloramphenicol, with inhibition percentages of 78.29% and 78.85%, respectively. Through chemical analysis by UPLC-HRMS/MS, chrysoeriol-7-O-neohesperidoside, isorhamnetin-3-O-glucoside, and 3,7-di-O-methylquercetin were annotated for the first time in the leaves of H. courbaril. Therefore, these results showed the potential use of H. courbaril as an antioxidant and point to its use in antimicrobial therapy with an anti-biofilm effect.
Collapse
Affiliation(s)
- Jhonatas Emílio Ribeiro da Cruz
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Hellyssa Cataryna Saldanha
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Andressa Moreira do Nascimento
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Rafaela Barbosa Borges
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Marcos de Souza Gomes
- Institute of Chemistry, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, Patos de Minas 38700-002, MG, Brazil;
| | - Guilherme Ramos Oliveira e Freitas
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Carla Monteiro Leal
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora 36036-900, MG, Brazil; (C.M.L.); (E.A.F.); (A.A.d.S.F.)
| | - Everton Allan Ferreira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora 36036-900, MG, Brazil; (C.M.L.); (E.A.F.); (A.A.d.S.F.)
| | - Ademar Alves da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora 36036-900, MG, Brazil; (C.M.L.); (E.A.F.); (A.A.d.S.F.)
| | - Enyara Rezende Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| |
Collapse
|
110
|
Nizam NN, Mahmud S, Ark SMA, Kamruzzaman M, Hasan MK. Bakuchiol, a natural constituent and its pharmacological benefits. F1000Res 2023; 12:29. [PMID: 38021404 PMCID: PMC10683784 DOI: 10.12688/f1000research.129072.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Natural compounds extracted from medicinal plants have recently gained attention in therapeutics as they are considered to have lower Toxicity and higher tolerability relative to chemically synthesized compounds. Bakuchiol from Psoralea corylifolia L. is one such compound; it is a type of meroterpene derived from the leaves and seeds of Psoralea corylifolia plants. Natural sources of bakuchiol have been used in traditional Chinese and Indian medicine for centuries due to its preventive benefits against tumors and inflammation. It plays a strong potential role as an antioxidant with impressive abilities to remove Reactive Oxygen Species (ROS). This review has focused on bakuchiol's extraction, therapeutic applications, and pharmacological benefits. Methods A search strategy has been followed to retrieve the relevant newly published literature on the pharmacological benefits of bakuchiol. After an extensive study of the retrieved articles and maintaining the inclusion and exclusion criteria, 110 articles were finally selected for this review. Results Strong support of primary research on the protective effects via antitumorigenic, anti-inflammatory, antioxidative, antimicrobial, and antiviral activities are delineated. Conclusions From ancient to modern life, medicinal plants have always been drawing the attention of human beings to alleviate ailments for a healthy and balanced lifestyle. This review is a comprehensive approach to highlighting bona fide essential pharmacological benefits and mechanisms underlying their therapeutic applications.
Collapse
Affiliation(s)
- Nuder Nower Nizam
- Department of Public Health, American International University Bangladesh, Dhaka, 1229, Bangladesh
| | - Sohel Mahmud
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - S M Albar Ark
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - Mohammad Kamruzzaman
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
111
|
Terfi S, Djerrad Z, Krimat S, Sadi F. Phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of Lavandula dentata L. grown under different levels of heavy metals stress condition. Drug Chem Toxicol 2023; 46:864-878. [PMID: 35892144 DOI: 10.1080/01480545.2022.2104868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
In order to know if the heavy metals stress condition is boon or bane for the plants growth, Lavandula dentata species was planted in pots under different levels of heavy metals stress condition and the phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of their leaf ethanolic extracts toward this stress condition were investigated compared to the control samples. Our findings showed significant differences in heavy metals bioaccumulation, photosynthetic pigments and total phenolic/flavonoids contents among L. dentata leafs ethanolic extracts, grown under different levels of heavy metals stress condition. The L. dentata leafs extracts, grown under Zn and Cu stress condition, showed the highest antioxidant and antimicrobial activities than those grown under Cd and Pb stress condition. Comparatively, the L. dentata leafs extracts, grown under Zn stress condition, showed higher antioxidant activity, and those, grown under Cu stress condition, showed higher antimicrobial activity. The highest cytotoxicity was showed by L. dentata leaf extracts, grown under Cd and Pb stress condition, which lead to conclude that these extracts could be served as a novel scaffold in search for new drugs against cancer. In conclusion, the highlighted variability reflects the high impact of heavy metals stress condition on phytochemical composition and consequently on the biological activities of medicinal plants. Such impact led to conclude that we should select medicinal plants extracts to be investigated carefully depending on this stress condition, in order to isolate the bioactive components or to have the best quality of extracts in terms of biological activities.
Collapse
Affiliation(s)
- Souhila Terfi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Department of Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Zineb Djerrad
- Laboratory of Vegetal Ecology and Environment, Department of Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Soumeya Krimat
- Laboratory of Bioactive Products and Biomass Valorization Research, ENS Kouba, Algiers, Algeria
| | - Fatma Sadi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Department of Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| |
Collapse
|
112
|
Bonin E, Avila VD, Carvalho VM, Cardoso MAP, Matos AM, Ramos AVG, Cabral MRP, Baldoqui DC, Sarragiotto MH, Filho BADA, Prado IND. Study of chemical constituents, antioxidants and antimicrobial activities of Tamarindus indica L. seed. J Food Sci 2023; 88:4639-4652. [PMID: 37755709 DOI: 10.1111/1750-3841.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023]
Abstract
The fruits of Tamarindus indica L. are consumed worldwide, with various parts of the plant being used for medicinal purposes. The residues (pericarp and seeds) generated during cellulose processing are of significant value as they contain bioactive compounds with diverse biological activities. The objective of this study was to evaluate the chemical constituents of the ethyl acetate fraction as possible substitutes for synthetic compounds with biological properties using ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) analysis and the evaluation of the antioxidant activity (ferric reducing antioxidant power [FRAP], 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid [ABTS], and 1-diphenyl-2-picrylhydrazyl [DPPH]), total phenolic compounds (TPC), and antimicrobial activity of the hydroalcoholic extract and tamarind seed fractions were also performed. The chemical investigation of the acetate fraction using UHPLC-HRMS/MS resulted in the putative identification of 14 compounds, including flavonoids, (+)-catechin/(-)-epicatechin, procyanidin B2, procyanidin C2, isoquercetin, quercetin, luteolin, rutin, taxifolin, eriodictyol, kaempferide, hydroxybenzoic acid, protocathecuic acid, and protocathecuic acid methyl and ethyl esters derivatives. The crude hydroalcoholic extract exhibited the best results in terms of TPC: 883.87 gallic acid equivalent (GAE; mg/g) and antioxidant activity: FRAP: 183.29 GAE (mg/g), ABTS: 39.67%, and DPPH: 91.08%. The extract exhibited excellent antibacterial activity against gram-positive bacteria, specifically Staphylococcus aureus minimum inhibitory concentration (MIC)/minimum bactericidal concentration (MBC; 62.5/125 g/mL) and Bacillus cereus MIC/MBC (125/250 g/mL), and gram-negative bacteria, specifically Aeromonas hydrophila MIC/MBC (125/250 µg/mL) and Pseudomonas aeruginosa MIC/MBC (250/500 g/mL). Morphological damage to cells was observed using flow cytometry and scanning electron microscopy. Tamarind seeds contain unique bioactive compounds that should be explored for their use as novel food preservatives. PRACTICAL APPLICATION: Original data were obtained regarding the Tamarindus indica L. seed extract and the ethyl acetate and hexane fractions. This research aimed to investigate the potential of these for food preservation and as alternatives to additives and synthetic compounds added to cattle feed. This paper reports novel findings regarding the chemical composition of the extract and its antioxidant activity, along with its antimicrobial activity against bacteria (gram-positive: Staphylococcus aureus, Bacillus cereus, and gram-negative: Salmonella enterica serovar Enteritidis, Escherichia coli, Pseudomonas aeruginosa, and Aeromonas hydrophila) and yeasts (Candida albicans and Saccharomyces cerevisiae).
Collapse
Affiliation(s)
- Edinéia Bonin
- Post Graduate Program in Food Science, State University of Maringá, Maringá, Paraná, Brazil
| | - Vicente Diaz Avila
- Department of Veterinary Medicine, Remington University Corporation, Ibagué, Tolima, Colombia
| | | | | | - Aylle Medeiros Matos
- Post Graduate in Animal Science, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
113
|
Jović MD, Agatonovic-Kustrin S, Ristivojević PM, Trifković JĐ, Morton DW. Bioassay-Guided Assessment of Antioxidative, Anti-Inflammatory and Antimicrobial Activities of Extracts from Medicinal Plants via High-Performance Thin-Layer Chromatography. Molecules 2023; 28:7346. [PMID: 37959765 PMCID: PMC10647317 DOI: 10.3390/molecules28217346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Natural products and their analogues have contributed significantly to treatment options, especially for anti-inflammatory and infectious diseases. Thus, the primary objective of this work was to compare the bioactivity profiles of selected medicinal plants that are historically used in folk medicine to treat inflammation and infections in the body. Chemical HPTLC fingerprinting was used to assess antioxidant, phenolic and flavonoid content, while bioassay-guided HPTLC was used to detect compounds with the highest antibacterial and anti-inflammatory activities. The results of this study showed that green tea leaf, walnut leaf, St. John's wort herb, wild thyme herb, European goldenrod herb, chamomile flower, and immortelle flower extracts were strong radical scavengers. Green tea and nettle extracts were the most active extracts against E. coli, while calendula flower extract showed significant potency against S. aureus. Furthermore, green tea, greater celandine, and fumitory extracts exhibited pronounced potential in suppressing COX-1 activity. The bioactive compounds from the green tea extract, as the most bioactive, were isolated by preparative thin-layer chromatography and characterized with their FTIR spectra. Although earlier studies have related green tea's anti-inflammatory properties to the presence of catechins, particularly epigallocatechin-3-gallate, the FTIR spectrum of the compound from the most intense bioactive zone showed the strongest anti-inflammatory activity can be attributed to amino acids and heterocyclic compounds. As expected, antibacterial activity in extracts was related to fatty acids and monoglycerides.
Collapse
Affiliation(s)
- Marko D. Jović
- Innovation Centre of the Faculty of Chemistry Ltd., University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Department of Rural Clinical Sciences, La Trobe University, Edwards Road, Bendigo, VIC 3550, Australia
| | - Petar M. Ristivojević
- Department of Analytical Chemistry, Centre of Excellence for Molecular Food Sciences, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - Jelena Đ. Trifković
- Department of Analytical Chemistry, Centre of Excellence for Molecular Food Sciences, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - David W. Morton
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Department of Rural Clinical Sciences, La Trobe University, Edwards Road, Bendigo, VIC 3550, Australia
| |
Collapse
|
114
|
Zafar A, Wasti Y, Majid M, Muntaqua D, Bungau SG, Haq IU. Artemisia brevifolia Wall. Ex DC Enhances Cefixime Susceptibility by Reforming Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1553. [PMID: 37887253 PMCID: PMC10604168 DOI: 10.3390/antibiotics12101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Background: A possible solution to antimicrobial resistance (AMR) is synergism with plants like Artemisia brevifolia Wall. ex DC. (2) Methods: Phytochemical quantification of extracts (n-hexane (NH), ethyl acetate (EA), methanol (M), and aqueous (Aq)) was performed using RP-HPLC and chromogenic assays. Extracts were screened against resistant clinical isolates via disc diffusion, broth dilution, the checkerboard method, time-kill, and protein quantification assays. (3) Results: M extract had the maximum phenolic (15.98 ± 0.1 μg GAE/mgE) and flavonoid contents (9.93 ± 0.5 μg QE/mgE). RP-HPLC displayed the maximum polyphenols in the M extract. Secondary metabolite determination showed M extract to have the highest glycosides, alkaloids, and tannins. Preliminary resistance profiling indicated that selected isolates were resistant to cefixime (MIC 20-40 µg/mL). Extracts showed moderate antibacterial activity (MIC 60-100 µg/mL). The checkerboard method revealed a total synergy between EA extract and cefixime with 10-fold reductions in cefixime dose against resistant P. aeruginosa and MRSA. Moreover, A. brevifolia extracts potentiated the antibacterial effect of cefixime after 6 and 9 h. The synergistic combination was non- to slightly hemolytic and could inhibit bacterial protein in addition to cefixime disrupting the cell wall, thus making it difficult for bacteria to survive. (4) Conclusion: A. brevifolia in combination with cefixime has the potential to inhibit AMR.
Collapse
Affiliation(s)
- Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
- Cadson College of Pharmacy, Kharian 50090, Pakistan
| | - Yusra Wasti
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad 45550, Pakistan;
| | - Durdana Muntaqua
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
| |
Collapse
|
115
|
Neshat A, Mahdavi A, Yousefshahi MR, Cheraghi M, Eigner V, Kucerakova M, Dusek M, Rezaie F, Kaboudin B. Heteroleptic Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes: Structural Characterization, Computational Analysis, Tyrosinase Inhibitory, and Biological Effects. Inorg Chem 2023; 62:16710-16724. [PMID: 37788161 DOI: 10.1021/acs.inorgchem.3c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Derivatization of (NHC)M-Cl (M = Ag, Au) with selected sulfur donors from the family of dialkyldithiophosphates and bis(2-mercapto-1-methylimidazolyl)borate ligands gave a series of heteroleptic mononuclear complexes. In single-crystal X-ray diffraction analysis, Ag(I) complexes adopted a trigonal planar geometry, while Au(I) complexes are near-linear. TD-DFT and hole-electron analyses of the selected complexes gave insight into the electronic features of the metal complexes. In vitro cellular tests were conducted on the human cancerous breast cell line MCF-7 using 2 and 8. The antibacterial activities of complexes 1, 2, 3, 7, 8, and IPr-Ag-Cl were also screened against Gram-positive (Staphylococcus aureus PTCC 1112) and Gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mahdi Cheraghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Forough Rezaie
- Department of Chemistry, Shahid Chamran University of Ahvaz, Ahwaz 6135783151, Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| |
Collapse
|
116
|
Akbulut HF, Akbulut M. Mineral composition, the profile of phenolic compounds, organic acids, sugar and in vitro antioxidant capacity, and antimicrobial activity of organic extracts of Juniperus drupacea fruits. Food Sci Nutr 2023; 11:6435-6446. [PMID: 37823141 PMCID: PMC10563755 DOI: 10.1002/fsn3.3586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023] Open
Abstract
Juniperus drupacea fruit is widely used in traditional and complementary medicine in Turkey for the treatment of different diseases in various forms such as molasses and tar. This study was carried out to evaluate the phenolic compounds, organic acid, sugar, and macro- and micromineral distributions of methanol and water extracts of J. drupace fruit, as well as their antioxidant and antimicrobial potential. For this purpose, total phenolic content by spectrophotometer, phenolics, organic acids, and sugars distributions by HPLC in extracts of J. drupacea fruits, and macro- and micromineral element content by ICP-AES in fruit were determined. 2,2-diphenyl-l-picrylhydrazyl assay (DPPH assay) was used to evaluate in vitro antioxidant activity in extracts. The antimicrobial potential of J. drupacea fruit methanol extract against some gram-positive and gram-negative pathogenic bacteria was evaluated using disk diffusion and minimum inhibitory concentration (MIC) methods. The potassium macroelement and the iron microelement were found at high content in J. drupacea fruit. The total phenolic content in the methanol extracts was higher than the water extracts. Among the individual phenolic compounds, catechin, a flavonoid that was the highest in both extractions, was determined as 300.49 μg/g in methanol extract and 314.88 μg/g in water extract. DPPH scavenging activity was higher in methanol extracts. While the methanol extract of J. drupacea had no-inhibitory effect on the gram-negative bacteria tested, it exhibited a strong inhibition on the gram-positive bacteria Listeria innocua, Listeria monocytogenes, Staphylococcus carnosus, and Enterococcus faecalis.
Collapse
Affiliation(s)
- Hatice Feyza Akbulut
- Department of Medicinal and Aromatic Plants, Cumra Vocational SchoolSelçuk UniversityKonyaTurkey
| | - Mehmet Akbulut
- Department of Food Engineering, Agriculture FacultySelcuk UniversityKonyaTurkey
| |
Collapse
|
117
|
Chua RW, Song KP, Ting ASY. Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie Van Leeuwenhoek 2023; 116:1057-1072. [PMID: 37597137 DOI: 10.1007/s10482-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
A rare fungal endophyte, identified as Buergenerula spartinae (C28), was isolated from the roots of Cymbidium orchids and was characterised and evaluated for its antimicrobial activities. Bio-guided fractionation revealed 4 fractions from B. spartinae (C28) having antibacterial activities against at least one bacterial pathogen tested (Bacillus cereus and Staphylococcus aureus). However, inhibitory activities were absent against pathogenic fungi (Ganoderma boninense, Pythium ultimum and Fusarium solani). Fraction 2 and fraction 4 of B. spartinae (C28) exhibited potent antibacterial activities against S. aureus (MIC: 0.078 mg/mL) and B. cereus (MIC: 0.313 mg/mL), respectively. LCMS analysis revealed the presence of antibacterial agents and antibiotics in fraction 2 (benoxinate, pyropheophorbide A, (-)-ormosanine and N-undecylbenzenesulfonic acid) and fraction 4 (kaempferol 3-p-coumarate, 6-methoxy naphthalene acetic acid, levofuraltadone, hinokitiol glucoside, 3-α(S)-strictosidine, pyropheophorbide A, 5'-hydroxystreptomycin, kanzonol N and 3-butylidene-7-hydroxyphthalide), which may be responsible for the antibacterial activities observed. Most of the bioactive compounds profiled from the antibacterial fractions were discovered for the first time from endophytic isolates (i.e. from B. spartinae (C28)). Buergenerula spartinae (C28) from Cymbidium sp. is therefore, an untapped resource of bioactive compounds for potential applications in healthcare and commercial industries.
Collapse
Affiliation(s)
- Ru Wei Chua
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
118
|
Elhadef K, Chaari M, Akermi S, Nirmal NP, Mousavi Khaneghah A, Abdelkafi S, Michaud P, Ali DS, Mellouli L, Smaoui S. Production of functional raw chicken meat by incorporation of date palm seed extract: an assessment of microbiological, chemical and sensory properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023; 17:5117-5133. [DOI: 10.1007/s11694-023-02017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/14/2023] [Indexed: 05/18/2024]
|
119
|
Vertacnik KL, Herrig DK, Godfrey RK, Hill T, Geib SM, Unckless RL, Nelson DR, Linnen CR. Evolution of five environmentally responsive gene families in a pine-feeding sawfly, Neodiprion lecontei (Hymenoptera: Diprionidae). Ecol Evol 2023; 13:e10506. [PMID: 37791292 PMCID: PMC10542623 DOI: 10.1002/ece3.10506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 10/05/2023] Open
Abstract
A central goal in evolutionary biology is to determine the predictability of adaptive genetic changes. Despite many documented cases of convergent evolution at individual loci, little is known about the repeatability of gene family expansions and contractions. To address this void, we examined gene family evolution in the redheaded pine sawfly Neodiprion lecontei, a noneusocial hymenopteran and exemplar of a pine-specialized lineage evolved from angiosperm-feeding ancestors. After assembling and annotating a draft genome, we manually annotated multiple gene families with chemosensory, detoxification, or immunity functions before characterizing their genomic distributions and molecular evolution. We find evidence of recent expansions of bitter gustatory receptor, clan 3 cytochrome P450, olfactory receptor, and antimicrobial peptide subfamilies, with strong evidence of positive selection among paralogs in a clade of gustatory receptors possibly involved in the detection of bitter compounds. In contrast, these gene families had little evidence of recent contraction via pseudogenization. Overall, our results are consistent with the hypothesis that in response to novel selection pressures, gene families that mediate ecological interactions may expand and contract predictably. Testing this hypothesis will require the comparative analysis of high-quality annotation data from phylogenetically and ecologically diverse insect species and functionally diverse gene families. To this end, increasing sampling in under-sampled hymenopteran lineages and environmentally responsive gene families and standardizing manual annotation methods should be prioritized.
Collapse
Affiliation(s)
- Kim L. Vertacnik
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - R. Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, University of FloridaGainesvilleFloridaUSA
| | - Tom Hill
- National Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research UnitUnited States Department of Agriculture: Agriculture Research Service Pacific Basin Agricultural Research CenterHiloHawaiiUSA
| | - Robert L. Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - David R. Nelson
- Department of Microbiology, Immunology and BiochemistryUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | |
Collapse
|
120
|
de Carvalho JCB, de Oliveira IM, Trindade C, Juchem ALM, da Silva Machado M, Guecheva TN, Moura S, de Souza LAG, Vainstein MH, Henriques JAP. Chemical characterization of Callingcard Vine (Entada polystachya (L.) DC. var. polystachya) aqueous seed extract and evaluation of its cytotoxic, genotoxic and mutagenic properties. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503687. [PMID: 37770144 DOI: 10.1016/j.mrgentox.2023.503687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.
Collapse
Affiliation(s)
- Juliane Cristina Bugs de Carvalho
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Iuri Marques de Oliveira
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Cristiano Trindade
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | | | - Miriana da Silva Machado
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil
| | - Temenouga Nikolova Guecheva
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luiz Augusto Gomes de Souza
- Environment and Health Society Coordination of the National Institute for Research in the Amazon (COSAS/INPA), Manaus, AM, Brazil
| | - Marilene Henning Vainstein
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil; Postgraduate Programs in Biotechnology and Medical Sciences, University of Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
121
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
122
|
Abu Ghazal T, Veres K, Vidács L, Szemerédi N, Spengler G, Berkecz R, Hohmann J. Furanonaphthoquinones, Diterpenes, and Flavonoids from Sweet Marjoram and Investigation of Antimicrobial, Bacterial Efflux, and Biofilm Formation Inhibitory Activities. ACS OMEGA 2023; 8:34816-34825. [PMID: 37780020 PMCID: PMC10536869 DOI: 10.1021/acsomega.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
The chloroform extract of Origanum majorana exhibited high antibacterial and antifungal activities against 12 bacterial and 4 fungal strains; therefore, it was subjected to bioassay-guided isolation to afford six compounds (1-6). The structures were determined via one- and two-dimensional nuclear magnetic spectroscopy and high-resolution electrospray ionization mass spectrometry experiments. The compounds were identified as furanonaphthoquinones [majoranaquinone (1), 2,3-dimethylnaphtho[2,3-b]furan-4,9-dione (2)], diterpenes [19-hydroxyabieta-8,11,13-trien-7-one (3), 13,14-seco-13-oxo-19-hydroxyabieta-8-en-14-al (4)], and flavonoids [sterubin (5) and majoranin (6)]. Compounds 1 and 2 were first obtained from a natural source and compounds 3 and 4 were previously undescribed. Majoranaquinone (1) exhibited a high antibacterial effect against 4 Staphylococcus, 1 Moraxella, and 1 Enterococcus strains (MIC values between 7.8 μM and 1 mM). In the efflux pump inhibition assay, majoranaquinone (1) showed substantial activity in Escherichia coli ATCC 25922 strain. Furthermore, 1 was found to be an effective biofilm formation inhibitor on E. coli ATCC 25922 and E. coli K-12 AG100 bacteria. Our findings proved that bioactivities of majoranaquinone (1) significantly exceed those of the essential oil constituents; therefore, it should also be considered when assessing the antimicrobial effects of O. majorana.
Collapse
Affiliation(s)
| | - Katalin Veres
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| | - Lívia Vidács
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| | - Nikoletta Szemerédi
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary
| | - Gabriella Spengler
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary
| | - Róbert Berkecz
- Institute
of Pharmaceutical Analysis, University of
Szeged, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
- Interdisciplinary
Centre for Natural Products, University
of Szeged, Szeged H-6720, Hungary
- ELKH-USZ
Biologically Active Natural Products Research Group, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
123
|
Hamzah H, Nuryastuti T, Rahmah W, Chabib L, Syamsul ES, Lestari D, Jabbar A, Tunjung Pratiwi SU. Molecular Docking Study of the C-10 Massoia Lactone Compound as an Antimicrobial and Antibiofilm Agent against Candida tropicalis. ScientificWorldJournal 2023; 2023:6697124. [PMID: 37766863 PMCID: PMC10522437 DOI: 10.1155/2023/6697124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is now considered a global health problem because it reduces the effectiveness of antimicrobial drugs. According to the World Health Organization (WHO), the highest mortality rate is associated with infections caused by multidrug-resistant microorganisms, with approximately 700,000 deaths worldwide each year. The aim of this study was to determine the potential of C-10 massoia lactone to inhibit the growth of fungi and C. tropicalis biofilm, and molecular docking studies were performed to determine the nature of the inhibition. The study was conducted using the microdilution method for antifungal and antibiofilm testing and designed with a molecular docking approach. Furthermore, an analysis using the scanning electron microscope (SEM) was performed to evaluate the mechanism of effect. The results obtained showed that C-10 massoia lactone can inhibit the growth of fungi by 84.21% w/v. Meanwhile, the growth of C. tropicalis biofilm in the intermediate phase was 80.23% w/v and in the mature phase was 74.23% w/v. SEM results showed that C-10 massoia lactone damaged the EPS matrix of C. tropicalis so that hyphal formation was hindered due to damage to fungal cells, resulting in a decrease in attachment, density, and lysis of C. tropicalis fungal cells. Based on molecular docking tests, C-10 massoia lactone was able to inhibit biofilm formation without affecting microbial growth, while docking C-10 massoia lactone showed a significant binding and has the potential as an antifungal agent. In conclusion, the C-10 massoia lactone compound has the potential as an antibiofilm against C. tropicalis, so it can become a new antibiofilm agent.
Collapse
Affiliation(s)
- Hasyrul Hamzah
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Titik Nuryastuti
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Widya Rahmah
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, Indonesia
| | - Eka Siswanto Syamsul
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda, East Borneo, Indonesia
| | - Dwi Lestari
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
| | - Asriullah Jabbar
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Pharmacy, Faculty of Pharmacy, Haluoleo University, Kendari 93232, Indonesia
| | - Sylvia Utami Tunjung Pratiwi
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, North Sekip, Yogyakarta 55281, Indonesia
| |
Collapse
|
124
|
Al-Kharousi ZS, Mothershaw AS, Nzeako B. Antimicrobial Activity of Frankincense ( Boswellia sacra) Oil and Smoke against Pathogenic and Airborne Microbes. Foods 2023; 12:3442. [PMID: 37761150 PMCID: PMC10527873 DOI: 10.3390/foods12183442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
As they continuously evolve, plants will remain a renewable source for antimicrobial compounds. Omani frankincense is produced by B. sacra trees and is graded into Hojari, Nejdi, Shazri or Sha'bi. Air can be a source for pathogenic or food spoilage microbes; thus, inactivating airborne microbes is necessary in environments such as food and animal production areas. This study investigated the antimicrobial activity and the chemistry of steam-distilled oils of Hojari and Sha'bi grades. It also analyzed the antimicrobial activity of frankincense smoke and the size of its solid particles. Chemical analysis was performed using gas chromatography mass spectrometry (GC-MS). The antimicrobial activity of the oils against Staphylococcus aureus (NCTC 6571), Bacillus spp., Escherichia coli (NCTC 10418), Pseudomonas aeruginosa (NCTC 10662), Saccharomyces cerevisiae, Candida albicans, Aspergillus flavus, Aspergillus ochraceus, Aspergillus niger, Penicillium citrinum, Alternaria alternata and Fusarium solani was determined using well diffusion and micro-well dilution methods. A microscopic technique was used to determine the size of frankincense smoke solid particles. Microbes were exposed to frankincense smoke to test their susceptibility to the smoke. Hojari and Sha'bi oils were similar in composition and contained monoterpenes and sesquiterpenes. The Hojari and the Sha'bi oils possessed broad spectrum antimicrobial activity. The largest growth inhibition zones were obtained with S. cerevisiae and F. solani. An MIC of 1.56% (v/v) was found with E. coli, S. cerevisiae and F. solani. Frankincense smoke contained fine irregular solid particles with a diameter range of 0.8-2287.4 µm, and thus may pose a health risk to susceptible individuals. The smoke had potent antimicrobial activity against S. aureus, E. coli, and airborne bacteria, yeast and mold, with a maximum inhibition of 100%. It was concluded that Hojari and Sha'bi frankincense oils and smoke had significant antimicrobial activity that can be exploited in controlling human, animal and plant pathogenic microbes.
Collapse
Affiliation(s)
- Zahra S. Al-Kharousi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman;
| | - Ann S. Mothershaw
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman;
| | - Basil Nzeako
- Department of Microbiology and Immunology, College of Medicine, Sultan Qaboos University, P.O. Box 35, Al-Khod 123, Oman;
| |
Collapse
|
125
|
Nieto G, Peñalver R, Ortuño C, Hernández JD, Guillén I. Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients. Foods 2023; 12:3416. [PMID: 37761125 PMCID: PMC10528306 DOI: 10.3390/foods12183416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In the ready-to-eat food industry, Listeria control is mandatory to ensure the food safety of the products since its presence could cause a disease called listeriosis. The objective of the present study was to carry out a challenge test to verify the efficiency of different combinations of natural antimicrobial ingredients against Listeria monocytogenes to be used in ready-to-eat foods. Six different formulations of cooked ham were prepared: a control formulation and five different formulations. An initial inoculation of 2 log cycles was used in the different products, and the growth of Listeria was monitored at different temperatures and times (4 °C for 17 w and 7 °C for 12 w). Control samples showed a progressive growth, reaching 5-6 log after 3 or 4 weeks. The rest of the samples showed constant counts of Listeria during the entire study. Only samples containing 100 ppm nitrite + 250 PPM ascorbic acid + 0.7% PRS-DV-5 did not control the growth of Listeria at 7 °C after 7 w of storage. The results obtained allowed us to classify the cooked ham prepared using natural ingredient combinations as a "Ready-to-eat food unable to support the growth of L. monocytogenes other than those intended for infants and for special medical purposes".
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain
| | - Carmen Ortuño
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| | - Juan D. Hernández
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| | - Isidro Guillén
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| |
Collapse
|
126
|
Kurćubić VS, Raketić SV, Mašković JM, Mašković PZ, Kurćubić LV, Heinz V, Tomasevic IB. Evaluation of Antimicrobial Activity of Kitaibelia vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. PLANTS (BASEL, SWITZERLAND) 2023; 12:3236. [PMID: 37765400 PMCID: PMC10537753 DOI: 10.3390/plants12183236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The goal of the present research was to screen the antimicrobial activity of an ethanolic extract of Kitaibelia vitifolia against 30 multidrug-resistant (MDR) bacterial strains isolated from healthcare-associated infections. Minimum inhibitory concentrations (MICs) of the samples against the tested bacteria were determined using the microdilution method. MDR bacterial strains were characterized using standard biochemical tests and the commercial identification systems API 20 NE and API 20 E as: Klebsiella spp. (18 isolates-I); methicillin-resistant Staphylococcus aureus (MRSA)-3; Acinetobacter spp.-3; Pseudomonas aeruginosa-5; vancomycin-resistant Enterococcus (VRE)-1. The sensitivity of isolated bacterial strains was determined using the disc diffusion method against 25 commonly used antibiotics. The highest level of sensitivity to K. vitifolia extract was confirmed in 88.89% of Klebsiella spp. isolates, E. coli ATCC 25922, two strains of MRSA (1726, 1063), Acinetobacter spp. strain 1578, and VRE strain 30, like Enterococcus faecalis ATCC 29212 (MIC =< 2.44 μg/mL). The lowest sensitivity was exhibited by 75.00% of Acinetobacter spp. (strains 1577 and 6401), where the highest values for MICs were noted (1250 μg/mL). The results indicate that the extract of K. vitifolia could be a possible source for creating new, efficient, and effective natural medicines for combat against MDR strains of bacteria.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Svetlana V. Raketić
- Microbiology Laboratory for Food and Water, Public Health Institute Čačak, Veselina Milikića 7, 32000 Čačak, Serbia;
| | - Jelena M. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Beograd, Serbia;
| | - Volker Heinz
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Igor B. Tomasevic
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
127
|
Hossain MR, Alam R, Chung HJ, Eva TA, Kabir MF, Mamurat H, Hong ST, Hafiz MA, Hossen SMM. In Vivo, In Vitro and In Silico Study of Cucurbita moschata Flower Extract: A Promising Source of Natural Analgesic, Anti-Inflammatory, and Antibacterial Agents. Molecules 2023; 28:6573. [PMID: 37764349 PMCID: PMC10536299 DOI: 10.3390/molecules28186573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
For thousands of years, medicinal plants have played a pivotal role in maintaining human health and improving the quality of human life. This study was designed to analyze the analgesic, anti-inflammatory, and antibacterial potentials of a hydro-methanolic extract of Cucurbita moschata flowers, along with qualitative and quantitative phytochemical screening. The anti-inflammatory effect was tested using the in vitro membrane stabilizing method for human red blood cells (HRBC), the analgesic effect was tested using the in vivo acetic acid-induced writing method, and the antibacterial effect was tested using the disc diffusion method. In silico ADME/T and molecular docking studies were performed to assess the potential of the stated phytochemicals against Cyclooxygenase-II enzyme. Phytochemical screening confirmed the presence of flavonoids, alkaloids, glycosides, tannins, and carbohydrates. The flower extract demonstrated the maximum protection of human red blood cells at 1000 µg/mL, with a 65.73% reduction in hemolysis in a hypotonic solution. The extract also showed significant (p < 0.05) and dose-dependent analgesic effects at oral doses of 200 and 400 mg/kg on the tested animals. Furthermore, the flower extract exhibited potent antibacterial activity due to the disc diffusion method, which was compared with standard ciprofloxacin. In silico testing revealed that 42 phytochemicals exhibited notable pharmacokinetic properties and passed drug likeness screening tests. Among the six best-selected compounds, 3,4-dihydro-2H-pyran-2-yl)methanamine showed the highest binding affinity (-10.1) with significant non-bonding interactions with the target enzyme. In conclusion, the hydro-methanolic extract of Cucurbita moschata was found to be rich in various phytochemicals that may be associated with therapeutic potential, and this study supports the traditional use of Cucurbita moschata flowers in the management of inflammation and painful conditions.
Collapse
Affiliation(s)
- Md. Rabiul Hossain
- Department of Pharmacy, University of Science and Technology, Foy’s Lake, Chittagong 4202, Bangladesh; (M.R.H.); (H.M.)
| | - Rashedul Alam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Hea-Jong Chung
- Gwanju Center, Korea Basic Science Institute, Gwanju 61715, Republic of Korea
| | - Taslima Akter Eva
- Department of Pharmacy, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Husnum Mamurat
- Department of Pharmacy, University of Science and Technology, Foy’s Lake, Chittagong 4202, Bangladesh; (M.R.H.); (H.M.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
| | - Md. Al Hafiz
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh;
| | | |
Collapse
|
128
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
129
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [DOI: https:/doi.10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90–100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging’s mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin’s antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
130
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [PMID: 37764246 PMCID: PMC10535768 DOI: 10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
131
|
Buchmann D, Schwabe M, Weiss R, Kuss AW, Schaufler K, Schlüter R, Rödiger S, Guenther S, Schultze N. Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli - the role of similar biological processes despite structural diversity. Front Microbiol 2023; 14:1232039. [PMID: 37731930 PMCID: PMC10507321 DOI: 10.3389/fmicb.2023.1232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.
Collapse
Affiliation(s)
- David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Romano Weiss
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
132
|
Sithole AN, Hlatini VA, Chimonyo M. Potential of combining natural-derived antioxidants for improving broiler meat shelf-life - A review. Anim Biosci 2023; 36:1305-1313. [PMID: 36108688 PMCID: PMC10472152 DOI: 10.5713/ab.22.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Synthetic antioxidants have shown adverse effects on consumers. The review, thus, aims to assess the effect of marinating broiler meat with plant leaves-derived antioxidants potential for improving shelf-life and human health. Broiler meat loss and waste due to spoilage is more than three million kg annually, thus, extending shelf-life by reducing initial microbial load and autoxidation is essential. Adding various antioxidants would reduce oxidation of protein and fatty acids improving nutritional shelf-life through synergic interactions. Antioxidant synergetic effects also improves reduction in microbiota proliferation leading to the delayed development of off flavours and deterioration of meat colour. To reduce initial microbial load and autoxidation effects, the inclusion of polyphenols and antioxidants from varying sources by mixing various antioxidants would lead to improved synergic effects.
Collapse
Affiliation(s)
- Andiswa Ntonhle Sithole
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P Bag X01 Scottsville 3209, Pietermaritzburg,
South Africa
| | - Vuyisa Andries Hlatini
- Agricultural Research Council-Animal Production (Nutrition Building), Private Bag X2, Irene, 0062,
South Africa
| | - Michael Chimonyo
- Faculty of Science, Engineering and Agriculture, University of Venda Private Bag X5050 Thohoyandou 0950,
South Africa
| |
Collapse
|
133
|
Deng QS, Gao Y, Rui BY, Li XR, Liu PL, Han ZY, Wei ZY, Zhang CR, Wang F, Dawes H, Zhu TH, Tao SC, Guo SC. Double-network hydrogel enhanced by SS31-loaded mesoporous polydopamine nanoparticles: Symphonic collaboration of near-infrared photothermal antibacterial effect and mitochondrial maintenance for full-thickness wound healing in diabetes mellitus. Bioact Mater 2023; 27:409-428. [PMID: 37152712 PMCID: PMC10160601 DOI: 10.1016/j.bioactmat.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.
Collapse
Affiliation(s)
- Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bi-Yu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | - Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yin Han
- Department of Rheumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No.29, Xinglongxiang, Tianning District, Changzhou, 213000, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
134
|
Mitchell J. Antimicrobial resistance (AMR) as a form of human-wildlife conflict: Why and how nondomesticated species should be incorporated into AMR guidance. Ecol Evol 2023; 13:e10421. [PMID: 37664497 PMCID: PMC10468991 DOI: 10.1002/ece3.10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The challenge of antimicrobial resistance (AMR) continues to receive significant global attention as common infections become increasingly resistant to the drugs used to treat them. Once an infectious microbe has developed a mechanism of resistance, it can cause longer, more damaging infections which are more costly, time-consuming, and sometimes impossible to treat. Such impacts occur across the health of humans, animals, plants, and the environment. Thus, AMR is considered a One Health issue. However, current narratives on AMR focus on humans, food-producing animals, crops, and their immediate environments. Very little attention is given to wildlife in terms of the impact of AMR on their health, nor their role in the evolution and spread of AMR. This article (1) discusses an absence of wildlife in current AMR guidance, (2) suggests how this absence of wildlife could limit understanding of, and action on, AMR, (3) proposes that considering AMR as a form of human-wildlife conflict could enable AMR guidance to better incorporate wildlife into action planning and create a truly One Health approach to tackle AMR.
Collapse
Affiliation(s)
- Jessica Mitchell
- Nuffield Centre for International Health and Development, Leeds Institute for Health Sciences, Faculty of Medicine and HealthUniversity of LeedsLeedsUK
| |
Collapse
|
135
|
Oliveira Júnior JB, Rocha da Mota DA, de Lima FCS, Higino TMM, Chavez Gutierrez SJ, Camara CA, Barbosa Filho JM, Alves LC, Brayner FA. In vitro inhibition and eradication of multidrug-resistant Acinetobacter baumannii biofilms by riparin III and colistin combination. Microb Pathog 2023; 182:106233. [PMID: 37422173 DOI: 10.1016/j.micpath.2023.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Acinetobacter baumannii, a prominent emerging pathogen, is responsible for persistent and recurrent healthcare-associated infections (HAIs). Its bacterial resistance and virulence factors, such as biofilm formation, contribute to its survival in hospital environments. Combination therapy has proven to be an effective approach for controlling these infections; however, antimicrobial resistance and compound toxicity can hinder antimicrobial efficacy. Numerous in vitro studies have demonstrated the synergistic effect of antimicrobials and natural products against multidrug-resistant (MDR) A. baumannii biofilm. Riparin III, a natural alkamide derived from Aniba riparia (Nees) Mez., possesses various biological activities, including significant antimicrobial potential. Nonetheless, no reports are available on the use of this compound in conjunction with conventional antimicrobials. Hence, this study aimed to investigate the inhibition and eradication of A. baumannii MDR biofilm by combining riparin III and colistin, along with potential ultrastructural changes observed in vitro. Clinical isolates of A. baumannii, known for their robust biofilm production, were inhibited, or eradicated in the presence of the riparin III/colistin combination. Furthermore, the combination resulted in several ultrastructural alterations within the biofilm, such as elongated cells and coccus morphology, partial or complete disruption of the biofilm's extracellular matrix, and cells exhibiting cytoplasmic material extravasation. At the synergistic concentrations, the riparin III/colistin combination exhibited a low hemolytic percentage, ranging from 5.74% to 6.19%, exerting inhibitory and eradicating effects on the A. baumannii biofilm, accompanied by notable ultrastructural changes. These findings suggest its potential as a promising alternative for therapeutic purposes.
Collapse
Affiliation(s)
- Jorge Belém Oliveira Júnior
- Laboratory of Molecular and Cellular Biology, Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil.
| | - Daivyane Aline Rocha da Mota
- Laboratory of Molecular and Cellular Biology, Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil
| | | | | | | | - Celso Amorim Camara
- Department of Chemistry, Rural Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| | - José Maria Barbosa Filho
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, Federal University of Paraiba, João Pessoa, Brazil
| | - Luiz Carlos Alves
- Laboratory of Molecular and Cellular Biology, Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil; Electronic Microscopy Laboratory, Keizo Asami Institute, Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| | - Fábio André Brayner
- Laboratory of Molecular and Cellular Biology, Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil; Electronic Microscopy Laboratory, Keizo Asami Institute, Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
136
|
Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. PLANTS (BASEL, SWITZERLAND) 2023; 12:3077. [PMID: 37687324 PMCID: PMC10490416 DOI: 10.3390/plants12173077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Undoubtedly, the advent of antibiotics in the 19th century had a substantial impact, increasing human life expectancy. However, a multitude of scientific investigations now indicate that we are currently experiencing a phase known as the post-antibiotic era. There is a genuine concern that we might regress to a time before antibiotics and confront widespread outbreaks of severe epidemic diseases, particularly those caused by bacterial infections. These investigations have demonstrated that epidemics thrive under environmental stressors such as climate change, the depletion of natural resources, and detrimental human activities such as wars, conflicts, antibiotic overuse, and pollution. Moreover, bacteria possess a remarkable ability to adapt and mutate. Unfortunately, the current development of antibiotics is insufficient, and the future appears grim unless we abandon our current approach of generating synthetic antibiotics that rapidly lose their effectiveness against multidrug-resistant bacteria. Despite their vital role in modern medicine, medicinal plants have served as the primary source of curative drugs since ancient times. Numerous scientific reports published over the past three decades suggest that medicinal plants could serve as a promising alternative to ineffective antibiotics in combating infectious diseases. Over the past few years, phenolic compounds, alkaloids, saponins, and terpenoids have exhibited noteworthy antibacterial potential, primarily through membrane-disruption mechanisms, protein binding, interference with intermediary metabolism, anti-quorum sensing, and anti-biofilm activity. However, to optimize their utilization as effective antibacterial drugs, further advancements in omics technologies and network pharmacology will be required in order to identify optimal combinations among these compounds or in conjunction with antibiotics.
Collapse
Affiliation(s)
- Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ralciane de Paula Menezes
- Technical School of Health, Federal University of Uberlândia, Uberlândia 38400-732, MG, Brazil;
- Laboratory of Antimicrobial Testing, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil;
| | | |
Collapse
|
137
|
Núñez-Rico JL, Cabezas-Giménez J, Lillo V, Balestra SRG, Galán-Mascarós JR, Calero S, Vidal-Ferran A. TAMOF-1 as a Versatile and Predictable Chiral Stationary Phase for the Resolution of Racemic Mixtures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39594-39605. [PMID: 37579193 DOI: 10.1021/acsami.3c08843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography.
Collapse
Affiliation(s)
- José Luis Núñez-Rico
- Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Department of Inorganic and Organic Chemistry and the Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), C/Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Juanjo Cabezas-Giménez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili (URV), C/Marcel lí Domingo s/n, 43007 Tarragona, Spain
| | - Vanesa Lillo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Salvador R G Balestra
- Materials Science Institute of Madrid, Spanish National Research Council (ICMM-CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, 41013 Seville, Spain
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Sofía Calero
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anton Vidal-Ferran
- Department of Inorganic and Organic Chemistry and the Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), C/Martí i Franqués 1-11, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
138
|
Wei J, Zhang C, Ma W, Ma J, Liu Z, Ren F, Li N. Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections. Infect Drug Resist 2023; 16:5091-5105. [PMID: 37576521 PMCID: PMC10422991 DOI: 10.2147/idr.s425398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose The drug resistance of Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae has become more and more serious, and it is urgent to seek new antibacterial drugs. In this study, Thesium chinense Turcz. extracts were tested for its potential antibacterial activities. Methods T. chinense powder was extracted with 5 solvents of different polarity (ethyl alcohol, petroleum ether, ethyl acetate, n-butyl alcohol and double distilled water), and their antibacterial activities were tested. The Broth dilution method was used to evaluate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of highly active plant extracts with a concentration of 1g/mL. The inhibitory activity of this extract on biofilm formation was investigated. Afterwards, we investigated its effect on the transcriptome of S. aureus. Results The ethanol extract coded as BRY, only inhibited S. aureus, whereas the ethyl acetate extract coded as BY2 showed inhibitory effect on all the tested bacteria. The MIC of BRY on S. aureus was 128 mg/mL, and the MBC was 512 mg/mL. The MIC of BY2 against S. aureus, S. pneumoniae, S. pyogenes and H. influenzae were 8 mg/mL, 4 mg/mL, 4 mg/mL, and 4 mg/mL, respectively. The MBC of BY2 for these four bacteria ranged from 4 to 256 mg/mL. Mechanism studies have shown that BRY and BY2 have an impact on anti-formation of biofilms at MIC concentrations. Transcriptome sequencing results showed that 531 genes were up-regulated and 340 genes showed down-regulated expression in S. aureus after BY2 treatment. Conclusion BY2 has a broader antibacterial spectrum than BRY. Meanwhile, the inhibitory effect of BY2 on S. aureus is better than BRY. The mechanism of BY2 against S. aureus may relate to its inhibition of ribosome synthesis, restriction of key enzymes of citric acid cycle, decrease of pathogenicity and influence on biofilm formation. The results confirmed that BY2 was the main antibacterial part of T. chinense, which can be used as a source of antibacterial agents.
Collapse
Affiliation(s)
- Juanru Wei
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Cong Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wei Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juncheng Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zhenzhen Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Fucai Ren
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
139
|
O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, Wagner AS, Chen JG, Muchero W, Reynolds TB, Jacobson D, Lebeis SL. Plant myo-inositol transport influences bacterial colonization phenotypes. Curr Biol 2023; 33:3111-3124.e5. [PMID: 37419115 DOI: 10.1016/j.cub.2023.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Plant microbiomes are assembled and modified through a complex milieu of biotic and abiotic factors. Despite dynamic and fluctuating contributing variables, specific host metabolites are consistently identified as important mediators of microbial interactions. We combine information from a large-scale metatranscriptomic dataset from natural poplar trees and experimental genetic manipulation assays in seedlings of the model plant Arabidopsis thaliana to converge on a conserved role for transport of the plant metabolite myo-inositol in mediating host-microbe interactions. While microbial catabolism of this compound has been linked to increased host colonization, we identify bacterial phenotypes that occur in both catabolism-dependent and -independent manners, suggesting that myo-inositol may additionally serve as a eukaryotic-derived signaling molecule to modulate microbial activities. Our data suggest host control of this compound and resulting microbial behavior are important mechanisms at play surrounding the host metabolite myo-inositol.
Collapse
Affiliation(s)
- Bridget S O'Banion
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Piet Jones
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander A Demetros
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Brittni R Kelley
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leah H Knoor
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew S Wagner
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah L Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 38824, USA.
| |
Collapse
|
140
|
El Hachlafi N, Mrabti HN, Al-Mijalli SH, Jeddi M, Abdallah EM, Benkhaira N, Hadni H, Assaggaf H, Qasem A, Goh KW, AL-Farga A, Bouyahya A, Fikri-Benbrahim K. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023; 28:5913. [PMID: 37570883 PMCID: PMC10421490 DOI: 10.3390/molecules28155913] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 08/13/2023] Open
Abstract
Cedrus atlantica (Endl.) Manetti ex Carriere is an endemic tree possessing valuable health benefits which has been widely used since time immemorial in international traditional pharmacopoeia. The aim of this exploratory investigation is to determine the volatile compounds of C. atlantica essential oils (CAEOs) and to examine their in vitro antimicrobial, antioxidant, anti-inflammatory, and dermatoprotective properties. In silico simulations, including molecular docking and pharmacokinetics absorption, distribution, metabolism, excretion, and toxicity (ADMET), and drug-likeness prediction were used to reveal the processes underlying in vitro biological properties. Gas chromatography-mass spectrophotometry (GC-MS) was used for the chemical screening of CAEO. The antioxidant activity of CAEO was investigated using four in vitro complementary techniques, including ABTS and DPPH radicals scavenging activity, ferric reductive power, and inhibition of lipid peroxidation (β-carotene test). Lipoxygenase (5-LOX) inhibition and tyrosinase inhibitory assays were used for testing the anti-inflammatory and dermatoprotective properties. GC-MS analysis indicated that the main components of CAEO are β-himachalene (28.99%), α-himachalene (14.43%), and longifolene (12.2%). An in vitro antimicrobial activity of CAEO was examined against eleven strains of Gram-positive bacteria (three strains), Gram-negative bacteria (four strains), and fungi (four strains). The results demonstrated high antibacterial and antifungal activity against ten of them (>15 mm zone of inhibition) using the disc-diffusion assay. The microdilution test showed that the lowest values of MIC and MBC were recorded with the Gram-positive bacteria in particular, which ranged from 0.0625 to 0.25 % v/v for MIC and from 0.5 to 0.125 % v/v for MBC. The MIC and MFC of the fungal strains ranged from 0.5 to 4.0% (MIC) and 0.5 to 8.0% v/v (MFC). According to the MBC/MIC and MFC/MIC ratios, CAEO has bactericidal and fungicidal activity. The results of the in vitro antioxidant assays revealed that CAEO possesses remarkable antioxidant activity. The inhibitory effects on 5-LOX and tyrosinase enzymes was also significant (p < 0.05). ADMET investigation suggests that the main compounds of CAEO possess favorable pharmacokinetic properties. These findings provide scientific validation of the traditional uses of this plant and suggest its potential application as natural drugs.
Collapse
Affiliation(s)
- Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca 20250, Morocco;
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco;
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Ammar AL-Farga
- Biochemistry Department College of Science University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| |
Collapse
|
141
|
Jiru TM, Getahun M. Antifungal Activity of Plantago lanceolata and Sida ovata Leaf Extracts against Dermatomycotic Fungi. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9957892. [PMID: 37576453 PMCID: PMC10423090 DOI: 10.1155/2023/9957892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/17/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plantago lanceolata and Sida ovata have been used as medicinal plants for centuries to cure numerous diseases. This study aimed to evaluate antifungal activity of P. lanceolata and S. ovata leaf extracts against dermatomycotic fungi. Crude extracts from leaves of both plants were prepared using methanol and ethyl acetate. Phytochemical screening of both plants leaves was performed. Antifungal activity of crude extracts was evaluated against three dermatomycotic fungi (Candida albicans, Malassezia furfur, and Malassezia globosa). In addition, minimum inhibitory concentration (MIC) of the extracts was determined by microbroth dilution method. Maximum inhibition zone of 32.00 ± 11.64 mm was exhibited when combined ethyl acetate extract of both plants was applied against M. globosa. Best effect of MIC was demonstrated by ethyl acetate extract against most tested dermatomycotic fungi. Average MIC of ethyl acetate and methanol extracts ranged as follows: (0.19 ± 0.00 to 0.65 ± 0.00 mg/mL and 0.19 ± 0.00 to 0.52 ± 0.22 mg/mL) and (0.65 ± 0.22 to 1.56 ± 0.00 mg/mL and 0.19 ± 0.00 to 0.52 ± 0.00 mg/mL), respectively. Their synergistic effect was better than the effect of individual plant leaf extract. Minimum fungicidal concentration (MFC) values varied across the fungal pathogens when extracts from both plants and their combinations were used. The findings from the current study support the traditional use of P. lanceolata and S. ovata against dermatomycotic fungal infections, which could potentially be exploited for the treatment of superficial infection in humans.
Collapse
Affiliation(s)
- Tamene Milkessa Jiru
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O. Box: 196, Gondar, Ethiopia
| | - Muluneh Getahun
- Department of Biotechnology, Institute of Biotechnology, University of Gondar, P.O. Box: 196, Gondar, Ethiopia
| |
Collapse
|
142
|
Canli K, Bozyel ME, Turu D, Benek A, Simsek O, Altuner EM. Biochemical, Antioxidant Properties and Antimicrobial Activity of Steno-Endemic Origanum onites. Microorganisms 2023; 11:1987. [PMID: 37630547 PMCID: PMC10457892 DOI: 10.3390/microorganisms11081987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Origanum onites (Lamiaceae) is an Eastern Mediterranean plant that is widely used in Turkish traditional medicine. This study aimed to investigate the biochemical composition, antimicrobial activity, and antioxidant potential of O. onites. In this study, the biochemical composition of the O. onites ethanol extract (OOEt) was analyzed using GC-MS. The antimicrobial activity was investigated using a disk diffusion test and determining minimum inhibitory concentrations (MIC) against 30 microorganism strains, including 28 bacteria (some multidrug-resistant) and 2 fungi. Additionally, the antioxidant activity was evaluated using the DPPH method. The main component identified was carvacrol. OOEt demonstrated antimicrobial activity against a wide range of tested microorganism strains. OOEt displayed the highest activity against E. faecium (a Gram-positive bacterium) at 100 µL with a 52 mm inhibition zone. Additionally, P. aeruginosa DSMZ 50071 and P. fluorescens P1, which are Gram-negative bacteria, were the most sensitive strains with a 24 mm inhibition zone in 100 µL of OOEt. The data obtained from A. baumannii (a multidrug-resistant strain) is particularly striking, as higher activity was observed compared to all positive controls. All tested fungal strains showed more effective results than positive controls. The antioxidant activity of OOEt was found to be stronger than that of the positive control, ascorbic acid. This study determined that O. onites has significant antimicrobial and antioxidant potential.
Collapse
Affiliation(s)
- Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Türkiye
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Mustafa Eray Bozyel
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Türkiye
| | - Ozcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Türkiye
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Türkiye
| |
Collapse
|
143
|
Moradi A, Davati N, Emamifar A. Effects of Cuminum cyminum L. essential oil and its nanoemulsion on oxidative stability and microbial growth in mayonnaise during storage. Food Sci Nutr 2023; 11:4781-4793. [PMID: 37576044 PMCID: PMC10420787 DOI: 10.1002/fsn3.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 08/15/2023] Open
Abstract
The present study aimed to investigate the effects of Cuminum cyminum L. essential oil (CEO) and its nanoemulsion (CEON) on oxidative stability and microbial growth of mayonnaise during storage. The GC analysis indicated that Cuminaldehyde (27.99%), o-Cymene (17.31%), γ-Terpinen (16.67%), and β-Pinene (9.35%) were the major components of CEO, respectively. The assessments of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) showed that Escherichia coli ATCC 25922 (MBCCEO = 12 and MBCCEON = 6 mg/mL) was the most resistant bacteria, and in contrast, Staphylococcus aureus ATCC 29213 (MBCCEO = 6 and MBCCEON = 3 mg/mL) was the most sensitive bacteria. In the radical-scavenging assay, CEON (IC50 = 5 ± 0.07 μg/mL) exhibited a higher antioxidant activity than CEO (IC50 = 10 ± 0.13 μg/mL). The results showed that applying the MBC of CEO and CEON in mayonnaise led to a significant decrease (p < .05) in acidity, peroxide value, number of acid-resistant bacteria and fungi, and total microbial count compared with the control sample. In conclusion, this study demonstrated that using CEON resulted in oxidative stability, microbial growth control, and desirable sensorial attributes in mayonnaise compared with CEO and control samples.
Collapse
Affiliation(s)
- Asma Moradi
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Nafiseh Davati
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Aryou Emamifar
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
144
|
Azahar N, Swan S, Mohd Mokhtar N, Abd Aziz M, Arifin M. Evaluation of antioxidant, antibacterial and anticancer activities of Ganoderma lucidum extracts. MATERIALS TODAY: PROCEEDINGS 2023. [DOI: 10.1016/j.matpr.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
145
|
Zarroug SHO, Bajaman JS, Hamza FN, Saleem RA, Abdalla HK. Caenorhabditis elegans as an In Vivo Model for the Discovery and Development of Natural Plant-Based Antimicrobial Compounds. Pharmaceuticals (Basel) 2023; 16:1070. [PMID: 37630985 PMCID: PMC10458014 DOI: 10.3390/ph16081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) due to the prevalence of multidrug-resistant (MDR) pathogens is rapidly increasing worldwide, and the identification of new antimicrobial agents with innovative mechanisms of action is urgently required. Medicinal plants that have been utilised for centuries with minor side effects may hold great promise as sources of effective antimicrobial products. The free-living nematode Caenorhabditis elegans (C. elegans) is an excellent live infection model for the discovery and development of new antimicrobial compounds. However, while C. elegans has widely been utilised to explore the effectiveness and toxicity of synthetic antibiotics, it has not been used to a comparable extent for the analysis of natural products. By screening the PubMed database, we identified articles reporting the use of the C. elegans model for the identification of natural products endowed with antibacterial and antifungal potential, and we critically analysed their results. The studies discussed here provide important information regarding "in vivo" antimicrobial effectiveness and toxicity of natural products, as evaluated prior to testing in conventional vertebrate models, thereby supporting the relevance of C. elegans as a highly proficient model for their identification and functional assessment. However, their critical evaluation also underlines that the characterisation of active phytochemicals and of their chemical structure, and the unravelling of their mechanisms of action represent decisive challenges for future research in this area.
Collapse
Affiliation(s)
- Samah H. O. Zarroug
- Department of Pharmacology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia
| | - Juhaina S. Bajaman
- Department of Pharmacology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia
| | - Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia; (F.N.H.); (R.A.S.)
| | - Rimah A. Saleem
- Department of Biochemistry, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia; (F.N.H.); (R.A.S.)
| | - Hana K. Abdalla
- Department of Microbiology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
146
|
Yousef MM, Zohri ANA, Darwish AMG, Shamseldin A, Kabeil SA, Abdelkhalek A, Binsuwaidan R, Jaremko M, Alshwyeh HA, Hafez EE, Saied EM. Exploring the antibacterial potential of plant extracts and essential oils against Bacillus thermophilus in beet sugar for enhanced sucrose retention: a comparative assessment and implications. Front Microbiol 2023; 14:1219823. [PMID: 37547698 PMCID: PMC10400092 DOI: 10.3389/fmicb.2023.1219823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Sugar beet is one of the greatest sources for producing sugar worldwide. However, a group of bacteria grows on beets during the storage process, leading to a reduction in sucrose yield. Our study focused on identifying common bacterial species that grow on beets during manufacturing and contribute to sucrose loss. The ultimate goal was to find a potential antibacterial agent from various plant extracts and oils to inhibit the growth of these harmful bacteria and reduce sucrose losses. The screening of bacterial species that grow on beet revealed that a large group of mesophilic bacteria, such as Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas fluorescens, Escherichia coli, Acinetobacter baumannii, Staphylococcus xylosus, Enterobacter amnigenus, and Aeromonas species, in addition to a dominant thermophilic species called Bacillus thermophilus, were found to be present during the manufacturing of beets. The application of 20 plant extracts and 13 different oils indicated that the extracts of Geranium gruinum, Datura stramonium, and Mentha spicata were the best antibacterials to reduce the growth of B. thermophilus with inhibition zones equal to 40, 39, and 35 mm, respectively. In contrast, the best active oils for inhibiting the growth of B. thermophilus were Mentha spicata and Ocimum bacilicum, with an inhibitory effect of 50 and 45 mm, respectively. RAPD-PCR with different primers indicated that treating sugar juice with the most effective oils against bacteria resulted in new recombinant microorganisms, confirming their roles as strong antibacterial products. The characterization of Mentha spicata and Ocimum bacilicum oils using GC/MS analysis identified cis-iso pulegone and hexadecanoic acid as the two main bioactive compounds with potential antibacterial activity. An analysis of five genes using DD-PCR that have been affected due to antibacterial activity from the highly effective oil from Mentha spicata concluded that all belonged to the family of protein defense. Our findings indicate that the application of these pure antibacterial plant extracts and oils would minimize the reduction of sucrose during sugar production.
Collapse
Affiliation(s)
- Mohamed M. Yousef
- Faculty of Sugar Industry Technology and Integrated Industries, Assiut University, Assiut, Egypt
| | - Abdel-Naser A. Zohri
- Department of Botany and Microbiology, Faculty of Science, Assuit University, Assiut, Egypt
| | - Amira M. G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University, Alexandria, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Abdelaal Shamseldin
- Department of Environmental Biotechnology, GEBRI Institute at the City of Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Sanaa A. Kabeil
- Department of Protein Research, GEBRI Institute at the City of Scientific Research and Technology Applications, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, Smart-Health Initiative and Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
147
|
Ahmmed F, Al-Mijalli SH, Abdallah EM, Eissa IH, Ali F, Bhat AR, Jamalis J, Ben Hadda T, Kawsar SMA. Galactoside-Based Molecule Enhanced Antimicrobial Activity through Acyl Moiety Incorporation: Synthesis and In Silico Exploration for Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:998. [PMID: 37513910 PMCID: PMC10385442 DOI: 10.3390/ph16070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a series of galactoside-based molecules, compounds of methyl β-d-galactopyranoside (MDGP, 1), were selectively acylated using 2-bromobenzoyl chloride to obtain 6-O-(2-bromobenzoyl) substitution products, which were then transformed into 2,3,4-tri-O-6-(2-bromobenzoyl) compounds (2-7) with various nontraditional acyl substituents. The chemical structures of the synthesized analogs were characterized by spectroscopic methods and physicochemical and elemental data analyses. The antimicrobial activities of the compounds against five human pathogenic bacteria and two phyto-fungi were evaluated in vitro and it was found that the acyl moiety-induced synthesized analogs exhibited varying levels of antibacterial activity against different bacteria, with compounds 3 and 6 exhibiting broad-spectrum activity and compounds 2 and 5 exhibiting activity against specific bacteria. Compounds 3 and 6 were tested for MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) based on their activity. The synthesized analogs were also found to have potential as a source of new antibacterial agents, particularly against gram-positive bacteria. The antifungal results suggested that the synthesized analogs could be a potential source of novel antifungal agents. Moreover, cytotoxicity testing revealed that the compounds are less toxic. A structure-activity relationship (SAR) investigation revealed that the lauroyl chain [CH3(CH2)10CO-] and the halo-aromatic chain [3(/4)-Cl.C6H4CO-] in combination with sugar, had the most potent activity against bacterial and fungal pathogens. Density functional theory (DFT)-calculated thermodynamic and physicochemical parameters, and molecular docking, showed that the synthesized molecule may block dengue virus 1 NS2B/NS3 protease (3L6P). A 150 ns molecular dynamic simulation indicated stable conformation and binding patterns in a stimulating environment. In silico ADMET calculations suggested that the designed (MDGP, 1) had good drug-likeness values. In summary, the newly synthesized MDGP analogs exhibit potential antiviral activity and could serve as a therapeutic target for dengue virus 1 NS2B/NS3 protease.
Collapse
Affiliation(s)
- Faez Ahmmed
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 116884, Egypt
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | | | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda 60000, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
148
|
Shor SM, Schweig SK. The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses. Microorganisms 2023; 11:1759. [PMID: 37512931 PMCID: PMC10384908 DOI: 10.3390/microorganisms11071759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The primary objective of this paper is to provide an evidence-based update of the literature on the use of bioactive phytochemicals, nutraceuticals, and micronutrients (dietary supplements that provide health benefits beyond their nutritional value) in the management of persistent cases of Borrelia burgdorferi infection (Lyme disease) and two other tick-borne pathogens, Babesia and Bartonella species. Recent studies have advanced our understanding of the pathophysiology and mechanisms of persistent infections. These advances have increasingly enabled clinicians and patients to utilize a wider set of options to manage these frequently disabling conditions. This broader toolkit holds the promise of simultaneously improving treatment outcomes and helping to decrease our reliance on the long-term use of pharmaceutical antimicrobials and antibiotics in the treatment of tick-borne pathogens such as Borrelia burgdorferi, Babesia, and Bartonella.
Collapse
Affiliation(s)
- Samuel M Shor
- Internal Medicine of Northern Virginia, George Washington University Health Care Sciences, Reston, VA 20190, USA
| | - Sunjya K Schweig
- California Center for Functional Medicine, Oakland, CA 94619, USA
| |
Collapse
|
149
|
Bagher Abiri A, Baghaei H, Mohammadi Nafchi A. Preparation and Application of Active Bionanocomposite Films Based on Sago Starch Reinforced with a Combination of TiO 2 Nanoparticles and Penganum harmala Extract for Preserving Chicken Fillets. Polymers (Basel) 2023; 15:2889. [PMID: 37447533 DOI: 10.3390/polym15132889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to develop sago starch-based bionanocomposite films containing TiO2 nanoparticles and Penganum harmala extract (PE) to increase the shelf life of chicken fillets. First, sago starch films containing different levels of TiO2 nanoparticles (1, 3, and 5%) and PE (5, 10, and 15%) were prepared. The barrier properties and antibacterial activity of the films against different bacteria strains were investigated. Then, the produced films were used for the chicken fillets packaging, and the physicochemical and antimicrobial properties of fillets were estimated during 12-day storage at 4 °C. The results showed that the addition of nano TiO2 and PE in the films increased the antibacterial activity against gram-positive (S. aureus) higher than gram-negative (E. coli) bacteria. The water vapor permeability of the films decreased from 2.9 to 1.26 (×10-11 g/m·s·Pa) by incorporating both PE and nano TiO2. Synergistic effects of PE and nano TiO2 significantly decreased the oxygen permeability of the sago starch films from 8.17 to 4.44 (cc.mil/m2·day). Application results of bionanocomposite films for chicken fillet storage at 4 °C for 12 days demonstrated that the films have great potential to increase the shelf life of fillets. The total volatile basic nitrogen (TVB-N) of chicken fillets increased from 7.34 to 35.28 after 12 days, whereas samples coated with bionanocomposite films increased from 7.34 to 16.4. For other physicochemical and microbiological properties of chicken fillets, similar improvement was observed during cold storage. It means that the bionanocomposite films could successfully improve the shelf life of the chicken fillets by at least eight days compared to the control sample.
Collapse
Affiliation(s)
- Alireza Bagher Abiri
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
150
|
Galgano M, Pellegrini F, Mrenoshki D, Capozza P, Omar AH, Salvaggiulo A, Camero M, Lanave G, Tempesta M, Pratelli A, Buonavoglia A. Assessing Contact Time and Concentration of Thymus vulgaris Essential Oil on Antibacterial Efficacy In Vitro. Antibiotics (Basel) 2023; 12:1129. [PMID: 37508225 PMCID: PMC10376642 DOI: 10.3390/antibiotics12071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The overuse and misuse of antibiotics can pose the risk of spreading mutant strains that show antimicrobial resistance (AMR), with negative impacts on the management of bacterial infections and economic implications for healthcare systems. The research and development of natural antibacterial agents could be a priority in the next years to improve a number of effective antibacterial molecules and to reduce the AMR phenomenon and its development. The present study identified the most effective concentration and contact time of Thymus vulgaris L. essential oil (TEO) to obtain bactericidal effects in vitro against different Gram-positive and Gram-negative bacterial strains. Six clinically isolated (wild types) bacterial strains, (Citrobacter freundii, Enterococcus feciorum, Proteus mirabilis, Acinetobacter cioffi, Pseudomonas putrefaciens and Klebsiella pneumoniae) and two ATCCs (Staphylococcus aureus and Streptococcus mutans) were tested after 1 min, 3 min and 5 min of contact with TEO. The preliminary results on S. aureus after 24 h of incubation revealed a TEO concentration of 9.28 mg/mL (w/v) that completely inhibited bacteria growth, keeping cell viability. The total suppression of bacterial growth at all tested contact times was observed for all tested bacterial strains, and the results were confirmed after 48 h of incubation. Bacterial growth suppression was confirmed even with the presence of organic components. These preliminary results showed the in vitro antimicrobial efficacy of TEO against different Gram-positive and Gram-negative bacterial strains. Future studies are necessary to confirm the reproducibility of these results even on other strains and to define the exact molecular mechanisms of EOs in order to consider TEO as a valid alternative to classic antibiotic therapies and subsequently to reduce the occurrence of AMR.
Collapse
Affiliation(s)
- Michela Galgano
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Daniela Mrenoshki
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Ahmed Hassan Omar
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Anna Salvaggiulo
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| |
Collapse
|