101
|
Interferon Alpha Induces Multiple Cellular Proteins That Coordinately Suppress Hepadnaviral Covalently Closed Circular DNA Transcription. J Virol 2020; 94:JVI.00442-20. [PMID: 32581092 DOI: 10.1128/jvi.00442-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Covalently closed circular DNA (cccDNA) of hepadnaviruses exists as an episomal minichromosome in the nucleus of an infected hepatocyte and serves as the template for the transcription of viral mRNAs. It had been demonstrated by others and us that interferon alpha (IFN-α) treatment of hepatocytes induced a prolonged suppression of human and duck hepatitis B virus cccDNA transcription, which is associated with the reduction of cccDNA-associated histone modifications specifying active transcription (H3K9ac or H3K27ac), but not the histone modifications marking constitutive (H3K9me3) or facultative (H3K27me3) heterochromatin formation. In our efforts to identify IFN-induced cellular proteins that mediate the suppression of cccDNA transcription by the cytokine, we found that downregulating the expression of signal transducer and activator of transcription 1 (STAT1), structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1), or promyelocytic leukemia (PML) protein increased basal level of cccDNA transcription activity and partially attenuated IFN-α suppression of cccDNA transcription. In contrast, ectopic expression of STAT1, SMCHD1, or PML significantly reduced cccDNA transcription activity. SMCHD1 is a noncanonical SMC family protein and implicated in epigenetic silencing of gene expression. PML is a component of nuclear domain 10 (ND10) and is involved in suppressing the replication of many DNA viruses. Mechanistic analyses demonstrated that STAT1, SMCHD1, and PML were recruited to cccDNA minichromosomes and phenocopied the IFN-α-induced posttranslational modifications of cccDNA-associated histones. We thus conclude that STAT1, SMCHD1, and PML may partly mediate the suppressive effect of IFN-α on hepadnaviral cccDNA transcription.IMPORTANCE Pegylated IFN-α is the only therapeutic regimen that can induce a functional cure of chronic hepatitis B in a small, but significant, fraction of treated patients. Understanding the mechanisms underlying the antiviral functions of IFN-α in hepadnaviral infection may reveal molecular targets for development of novel antiviral agents to improve the therapeutic efficacy of IFN-α. By a loss-of-function genetic screening of individual IFN-stimulated genes (ISGs) on hepadnaviral mRNAs transcribed from cccDNA, we found that downregulating the expression of STAT1, SMCHD1, or PML significantly increased the level of viral RNAs without altering the level of cccDNA. Mechanistic analyses indicated that those cellular proteins are recruited to cccDNA minichromosomes and induce the posttranslational modifications of cccDNA-associated histones similar to those induced by IFN-α treatment. We have thus identified three IFN-α-induced cellular proteins that suppress cccDNA transcription and may partly mediate IFN-α silencing of hepadnaviral cccDNA transcription.
Collapse
|
102
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
103
|
Xia Y, Guo H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antiviral Res 2020; 180:104824. [PMID: 32450266 PMCID: PMC7387223 DOI: 10.1016/j.antiviral.2020.104824] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide with about 257 million individuals chronically infected. Current therapies can effectively control HBV replication and slow down disease progress, but cannot cure HBV infection. Upon infection, HBV establishes a pool of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The cccDNA exists as a minichromosome and resists to antivirals, thus a therapeutic eradication of cccDNA from the infected cells remains unattainable. In this review, we summarize the state of knowledge on the mechanisms underlying cccDNA formation and regulation, and discuss the possible strategies that may contribute to the eradication of HBV through targeting cccDNA.
Collapse
Affiliation(s)
- Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Haitao Guo
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
104
|
Tu T, Zehnder B, Qu B, Ni Y, Main N, Allweiss L, Dandri M, Shackel N, George J, Urban S. A novel method to precisely quantify hepatitis B virus covalently closed circular (ccc)DNA formation and maintenance. Antiviral Res 2020; 181:104865. [PMID: 32726641 DOI: 10.1016/j.antiviral.2020.104865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) is the major cause of virus-associated liver disease. Persistent HBV infection is maintained by its episomal genome (covalently closed circular DNA, cccDNA), which acts as a template for viral transcripts. The formation of cccDNA is poorly characterised due to limited ability to quantify it accurately in the presence of replicative intermediates. Here, we describe a novel cccDNA quantification assay (cccDNA inversion quantitative PCR, cinqPCR), which uses restriction enzymes to invert a DNA sequence close to the gap region of Genotype D HBV strains, including the isolate widely used in experimental studies. Importantly, cinqPCR allows simultaneous normalisation to cellular DNA in a single reaction, provides absolute copy numbers without requiring a standard curve, and has high precision, sensitivity, and specificity for cccDNA compared to previous assays. We first established that cinqPCR gives values consistent with classical approaches in both in vitro and in vivo (humanised mice) HBV infections. We then used cinqPCR to find that cccDNA is formed within 12 h post-inoculation (hpi). cccDNA formation slowed by 28 hpi despite de novo synthesis of HBV DNA, indicating inefficient conversion of new viral genomes to cccDNA within infected cells. Finally, we show that cinqPCR can be used as a 96-well screening assay. Thus, we have developed an ideal method for testing current and future anti-cccDNA therapeutics with high precision and sensitivity.
Collapse
Affiliation(s)
- Thomas Tu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathan Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia; Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Lena Allweiss
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZIF, Hamburg-Lübeck-Borstel Partner Site, Germany
| | - Nicholas Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia; Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
105
|
Wang Z, Wang W, Wang L. Epigenetic regulation of covalently closed circular DNA minichromosome in hepatitis B virus infection. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
106
|
Hu Z, Ban H, Zheng H, Liu M, Chang J, Guo JT. Protein phosphatase 1 catalyzes HBV core protein dephosphorylation and is co-packaged with viral pregenomic RNA into nucleocapsids. PLoS Pathog 2020; 16:e1008669. [PMID: 32702076 PMCID: PMC7402523 DOI: 10.1371/journal.ppat.1008669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
Hepatitis B virus (HBV) replicates its genomic DNA via viral DNA polymerase self-primed reverse transcription of a RNA pre-genome in the nucleocapsid assembled by 120 core protein (Cp) dimers. The arginine-rich carboxyl-terminal domain (CTD) of Cp plays an important role in the selective packaging of viral DNA polymerase-pregenomic (pg) RNA complex into nucleocapsid. Previous studies suggested that the CTD is initially phosphorylated at multiple sites to facilitate viral RNA packaging and subsequently dephosphorylated in association with viral DNA synthesis and secretion of DNA-containing virions. However, our recent studies suggested that Cp is hyper-phosphorylated as free dimers and its dephosphorylation is associated with pgRNA encapsidation. Herein, we provide further genetic and biochemical evidence supporting that extensive Cp dephosphorylation does take place during the assembly of pgRNA-containing nucleocapsids, but not empty capsids. Moreover, we found that cellular protein phosphatase 1 (PP1) is required for Cp dephosphorylation and pgRNA packaging. Interestingly, the PP1 catalytic subunits α and β were packaged into pgRNA-containing nucleocapsids, but not empty capsids, and treatment of HBV replicating cells with core protein allosteric modulators (CpAMs) promoted empty capsid assembly and abrogated the encapsidation of PP1 α and β. Our study thus identified PP1 as a host cellular factor that is co-packaged into HBV nucleocapsids, and plays an essential role in selective packaging of the viral DNA-polymerase-pgRNA complex through catalyzing Cp dephosphorylation. Selective packaging of pregenomic RNA by core protein dimers into nucleocapsid is a key step of HBV replication and is subjected for the regulation by multiple viral and host cellular factors. HBV core protein phosphorylation and dephosphorylation play an essential role in HBV genome replication. However, the cellular kinases and phosphatases responsible for the biochemical events remain elusive. Identification of cellular protein phosphatase 1 as a host cellular factor catalyzing core protein dephosphorylation and facilitating viral pregenomic RNA packaging into nucleocapsids sheds new light on the molecular mechanism of HBV replication and development of therapeutics to cure chronic HBV infection.
Collapse
Affiliation(s)
- Zhanying Hu
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Haiqun Ban
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Haiyan Zheng
- Biological mass spectrometry facility, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey. Piscataway, New Jersey, United States of America
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian-Tan Xi-Li, Beijing, China
| | - Jinhong Chang
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
107
|
Lenci I, Milana M, Grassi G, Manzia TM, Gazia C, Tisone G, Angelico R, Baiocchi L. Hepatitis B virus recurrence after liver transplantation: An old tale or a clear and present danger? World J Gastroenterol 2020; 26:2166-2176. [PMID: 32476783 PMCID: PMC7235198 DOI: 10.3748/wjg.v26.i18.2166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) recurrence after liver transplantation (LT) has been described more than 50 years ago. Similarly, to other clinical conditions, in which impairment of host immune defense favors viral replication, early reports described in details recurrence and reactivation of HBV in liver transplant recipients. The evidence of a possible, severe, clinical evolution of HBV reappearance in a significant percentage of these patients, allowed to consider, for some years, HBV positivity a contraindication for LT. Moving from the old to the new millennium this picture has changed dramatically. Several studies contributed to establish efficient prophylactic protocols for HBV recurrence and with the advent of more potent anti-viral drugs an increased control of infection was achieved in transplanted patients as well as in the general immune-competent HBV population. Success obtained in the last decade led some authors to the conclusion that HBV is now to consider just as a “mere nuisance”. However, with regard to HBV and LT, outstanding issues are still on the table: (1) A standard HBV prophylaxis protocol after transplant has not yet been clearly defined; (2) The evidence of HBV resistant strains to the most potent antiviral agents is claiming for a new generation of drugs; and (3) The possibility of prophylaxis withdrawal in some patients has been demonstrated, but reliable methods for their selection are still lacking. The evolution of LT for HBV is examined in detail in this review together with the description of the strategies adopted to prevent HBV recurrence and their pros and cons.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome 00133, Italy
| | - Martina Milana
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome 00133, Italy
| | - Giuseppe Grassi
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome 00133, Italy
| | - Tommaso M Manzia
- Hepato-Pancreato-Biliary and Transplant, Department of Surgery, University of Rome Tor Vergata, Rome 00133, Italy
| | - Carlo Gazia
- Hepato-Pancreato-Biliary and Transplant, Department of Surgery, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giuseppe Tisone
- Hepato-Pancreato-Biliary and Transplant, Department of Surgery, University of Rome Tor Vergata, Rome 00133, Italy
| | - Roberta Angelico
- Hepato-Pancreato-Biliary and Transplant, Department of Surgery, University of Rome Tor Vergata, Rome 00133, Italy
| | - Leonardo Baiocchi
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome 00133, Italy
| |
Collapse
|
108
|
Li Q, Lomonosova E, Donlin MJ, Cao F, O'Dea A, Milleson B, Berkowitz AJ, Baucom JC, Stasiak JP, Schiavone DV, Abdelmessih RG, Lyubimova A, Fraboni AJ, Bejcek LP, Villa JA, Gallicchio E, Murelli RP, Tavis JE. Amide-containing α-hydroxytropolones as inhibitors of hepatitis B virus replication. Antiviral Res 2020; 177:104777. [PMID: 32217151 PMCID: PMC7199283 DOI: 10.1016/j.antiviral.2020.104777] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The Hepatitis B Virus (HBV) ribonuclease H (RNaseH) is a promising but unexploited drug target. Here, we synthesized and analyzed a library of 57 amide-containing α-hydroxytropolones (αHTs) as potential leads for HBV drug development. Fifty percent effective concentrations ranged from 0.31 to 54 μM, with selectivity indexes in cell culture of up to 80. Activity against the HBV RNaseH was confirmed in semi-quantitative enzymatic assays with recombinant HBV RNaseH. The compounds were overall poorly active against human ribonuclease H1, with 50% inhibitory concentrations of 5.1 to >1,000 μM. The αHTs had modest activity against growth of the fungal pathogen Cryptococcus neoformans, but had very limited activity against growth of the Gram - bacterium Escherichia coli and the Gram + bacterium Staphylococcus aureus, indicating substantial selectivity for HBV. A molecular model of the HBV RNaseH templated against the Ty3 RNaseH was generated. Docking the compounds to the RNaseH revealed the anticipated binding pose with the divalent cation coordinating motif on the compounds chelating the two Mn++ ions modeled into the active site. These studies reveal that that amide αHTs can be strong, specific HBV inhibitors that merit further assessment toward becoming anti-HBV drugs.
Collapse
Affiliation(s)
- Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Feng Cao
- John Cochran Division, Department of Veterans Affairs Medical Center, Saint Louis, MO, USA.
| | - Austin O'Dea
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Brienna Milleson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John-Charles Baucom
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John P Stasiak
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Daniel V Schiavone
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Rudolf G Abdelmessih
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Anastasiya Lyubimova
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Americo J Fraboni
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Lauren P Bejcek
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Juan A Villa
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA; Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA; Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
109
|
Dandri M. Epigenetic modulation in chronic hepatitis B virus infection. Semin Immunopathol 2020; 42:173-185. [PMID: 32185454 PMCID: PMC7174266 DOI: 10.1007/s00281-020-00780-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
The human hepatitis B virus (HBV) is a small-enveloped DNA virus causing acute and chronic hepatitis. Despite the existence of an effective prophylactic vaccine and the strong capacity of approved antiviral drugs to suppress viral replication, chronic HBV infection (CHB) continues to be a major health burden worldwide. Both the inability of the immune system to resolve CHB and the unique replication strategy employed by HBV, which forms a stable viral covalently closed circular DNA (cccDNA) minichromosome in the hepatocyte nucleus, enable infection persistence. Knowledge of the complex network of interactions that HBV engages with its host is still limited but accumulating evidence indicates that epigenetic modifications occurring both on the cccDNA and on the host genome in the course of infection are essential to modulate viral activity and likely contribute to pathogenesis and cancer development. Thus, a deeper understanding of epigenetic regulatory processes may open new venues to control and eventually cure CHB. This review summarizes major findings in HBV epigenetic research, focusing on the epigenetic mechanisms regulating cccDNA activity and the modifications determined in infected host cells and tumor liver tissues.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.
| |
Collapse
|
110
|
Luo J, Xi J, Gao L, Hu J. Role of Hepatitis B virus capsid phosphorylation in nucleocapsid disassembly and covalently closed circular DNA formation. PLoS Pathog 2020; 16:e1008459. [PMID: 32226051 PMCID: PMC7145273 DOI: 10.1371/journal.ppat.1008459] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/09/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) delivers a partially double-stranded, relaxed circular (RC) DNA genome in complete virions to the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, which establishes and sustains viral infection. An overlength pregenomic RNA (pgRNA) is then transcribed from CCC DNA and packaged into immature nucleocapsids (NCs) by the viral core (HBc) protein. pgRNA is reverse transcribed to produce RC DNA in mature NCs, which are then enveloped and secreted as complete virions, or delivered to the nucleus to replenish the nuclear CCC DNA pool. RC DNA, whether originating from extracellular virions or intracellular mature NCs, must be released upon NC disassembly (uncoating) for CCC DNA formation. HBc is known to undergo dynamic phosphorylation and dephosphorylation at its C-terminal domain (CTD) to facilitate pgRNA packaging and reverse transcription. Here, two putative phosphorylation sites in the HBc N-terminal domain (NTD), S44 and S49, were targeted for genetic and biochemical analysis to assess their potential roles in viral replication. The NTD mutant that mimics the non-phosphorylated state (N2A) was competent in all steps of viral replication tested from capsid assembly, pgRNA packaging, reverse transcription, to virion secretion, except for a decrease in CCC DNA formation. On the other hand, the phosphor-mimetic mutant N2E showed a defect in the early step of pgRNA packaging but enhanced the late step of mature NC uncoating and consequently, increased CCC DNA formation. N2E also enhanced phosphorylation in CTD and possibly elsewhere in HBc. Furthermore, inhibition of the cyclin-dependent kinase 2 (CDK2), which is packaged into viral capsids, could block CCC DNA formation. These results prompted us to propose a model whereby rephosphorylation of HBc at both NTD and CTD by the packaged CDK2, following CTD dephosphorylation during NC maturation, facilitates uncoating and CCC DNA formation by destabilizing mature NCs.
Collapse
Affiliation(s)
- Jun Luo
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ji Xi
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Lu Gao
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
111
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
112
|
Core components of DNA lagging strand synthesis machinery are essential for hepatitis B virus cccDNA formation. Nat Microbiol 2020; 5:715-726. [PMID: 32152586 PMCID: PMC7190442 DOI: 10.1038/s41564-020-0678-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis B virus (HBV) infection results in 887,000 deaths annually. The central challenge in curing HBV is eradication of the stable covalently closed circular DNA (cccDNA) form of the viral genome, which is formed by the repair of lesion-bearing HBV relaxed circular DNA (rcDNA) delivered by the virions to hepatocytes. A complete and minimal set of host factors involved in cccDNA formation is unknown, largely due to the lack of a biochemical system that fully reconstitutes cccDNA formation. Here, we have developed experimental systems where various HBV rcDNA substrates are repaired to form cccDNA by both cell extracts and purified human proteins. Using yeast and human extract screenings, we identified five core components of lagging strand synthesis as essential for cccDNA formation: PCNA, the replication factor C (RFC) complex, DNA polymerase δ (POLδ), FEN-1, and DNA ligase 1 (LIG1). We reconstituted cccDNA formation with purified human homologs, establishing these as a minimal set of factors for cccDNA formation. We further demonstrated that treatment with DNA polymerase inhibitor aphidicolin diminishes cccDNA formation both in biochemical assays and in HBV-infected human cells. Altogether, our findings define key components in HBV cccDNA formation.
Collapse
|
113
|
Abstract
Hepatitis B virus (HBV) chronically infects hundreds of millions of people and remains a major cause of viral hepatitis, cirrhosis, and liver cancer. HBV persistence is sustained by a viral nuclear episome that directs all viral gene expression needed to support viral replication. The episome is converted from an incomplete DNA precursor in viral particles in an ill-understood process. We report here that the incomplete DNA precursor is recognized by the host cell in a way similar to the sensing of damaged cellular DNA for subsequent repair to form the nuclear episome. Intense efforts are ongoing to develop novel antiviral strategies to eliminate CCC DNA so as to cure chronic HBV infection. Our results here provide novel insights into, and suggest novel ways of perturbing, the process of episome formation. Furthermore, our results inform mechanisms of cellular DNA damage recognition and repair, processes essential for normal cell growth. The covalently closed circular (CCC) DNA of hepatitis B virus (HBV) functions as the only viral transcriptional template capable of producing all viral RNA species and is essential to initiate and sustain viral replication. CCC DNA is converted from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. As RC DNA mimics damaged cellular DNA, the host cell DNA damage repair (DDR) system is thought to be responsible for HBV CCC DNA formation. The potential role of two major cellular DDR pathways, the ataxia telangiectasia mutated (ATM) pathway and the ATM and Rad3-related (ATR) pathway, in HBV CCC DNA formation was thus investigated. Inhibition, or expression knockdown, of ATR and its downstream signaling factor CHK1, but not of ATM, decreased CCC DNA formation during de novo HBV infection, as well as intracellular CCC DNA amplification, when RC DNA from extracellular virions and intracellular nucleocapsids, respectively, is converted to CCC DNA. Furthermore, a novel RC DNA processing product with 5′ truncated minus strands was detected when the ATR-CHK1 pathway was inhibited, further indicating that this pathway controls RC DNA processing during its conversion to CCC DNA. These results provide new insights into how host cells recognize and process HBV RC DNA in order to produce CCC DNA and have implications for potential means to block CCC DNA production.
Collapse
|
114
|
Novel Hepatitis B Virus Capsid Assembly Modulator Induces Potent Antiviral Responses In Vitro and in Humanized Mice. Antimicrob Agents Chemother 2020; 64:AAC.01701-19. [PMID: 31712213 DOI: 10.1128/aac.01701-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) affects an estimated 250 million chronic carriers worldwide. Though several vaccines exist, they are ineffective for those already infected. HBV persists due to the formation of covalently closed circular DNA (cccDNA)-the viral minichromosome-in the nucleus of hepatocytes. Current nucleoside analogs and interferon therapies rarely clear cccDNA, requiring lifelong treatment. Our group identified GLP-26, a novel glyoxamide derivative that alters HBV nucleocapsid assembly and prevents viral DNA replication. GLP-26 exhibited single-digit nanomolar anti-HBV activity, inhibition of HBV e antigen (HBeAg) secretion, and reduced cccDNA amplification, in addition to showing a promising preclinical profile. Strikingly, long term combination treatment with entecavir in a humanized mouse model induced a decrease in viral loads and viral antigens that was sustained for up to 12 weeks after treatment cessation.
Collapse
|
115
|
Lin X, Shi H, Zhang W, Qiu Z, Zhou Z, Dey F, Zhong S, Qiu H, Xie J, Zhou X, Yang G, Tang G, Shen HC, Zhu W. A New Approach of Mitigating CYP3A4 Induction Led to the Discovery of Potent Hepatitis B Virus (HBV) Capsid Inhibitor with Optimal ADMET Profiles. J Med Chem 2019; 62:10352-10361. [DOI: 10.1021/acs.jmedchem.9b01421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
116
|
Agyemang NB, Kukla CR, Edwards TC, Li Q, Langen MK, Schaal A, Franson AD, Casals AG, Donald KA, Yu AJ, Donlin MJ, Morrison LA, Tavis JE, Murelli RP. Divergent synthesis of a thiolate-based α-hydroxytropolone library with a dynamic bioactivity profile. RSC Adv 2019; 9:34227-34234. [PMID: 33042521 PMCID: PMC7543996 DOI: 10.1039/c9ra06383h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.
Collapse
Affiliation(s)
- Nana B Agyemang
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| | - Cassandra R Kukla
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Tiffany C Edwards
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Madison K Langen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Alexandra Schaal
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States.,Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, 63110, United States
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
117
|
McDaniel YZ, Patterson SE, Mansky LM. Distinct dual antiviral mechanism that enhances hepatitis B virus mutagenesis and reduces viral DNA synthesis. Antiviral Res 2019; 170:104540. [PMID: 31247245 PMCID: PMC8191393 DOI: 10.1016/j.antiviral.2019.104540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Reverse transcriptase (RT) is an essential enzyme for the replication of retroviruses and hepadnaviruses. Current therapies do not eliminate the intracellular viral replication intermediate termed covalently closed circular (ccc) DNA, which has enhanced interest in hepatitis B virus (HBV) reverse transcription and cccDNA formation. The HBV cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (rc) DNA genome in incoming virions during HBV replication. The creation of the cccDNA via conversion from rcDNA remains not fully understood. Here, we sought to investigate whether viral mutagens can effect HBV replication. In particular, we investigated whether nucleoside analogs that act as viral mutagens with retroviruses could impact hepadnaviral DNA synthesis. We observed that a viral mutagen (e.g., 5-aza-2'-deoxycytidine, 5-aza-dC or 5-azacytidine, 5-aza-C) severely diminished the ability of a HBV vector to express a reporter gene following virus transfer and infection of target cells. As predicted, the treatment of 5-aza-dC or 5-aza-C elevated the HBV rcDNA mutation frequency, primarily by increasing the frequency of G-to-C transversion mutations. A reduction in rcDNA synthesis was also observed. Intriguingly, the cccDNA nick/gap region transcription was diminished by 5-aza-dC, but did not enhance viral mutagenesis. Taken together, our results demonstrate that viral mutagens can impact HBV reverse transcription, and propose a model in which viral mutagens can induce mutagenesis during rcDNA formation and diminish viral DNA synthesis during both rcDNA formation and the conversion of rcDNA to cccDNA.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Steven E Patterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Center for Drug Design, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Center for Drug Design, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
118
|
Abstract
With a yearly death toll of 880,000, hepatitis B virus (HBV) remains a major health problem worldwide, despite an effective prophylactic vaccine and well-tolerated, effective antivirals. HBV causes chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The viral genome persists in infected hepatocytes even after long-term antiviral therapy, and its integration, though no longer able to support viral replication, destabilizes the host genome. HBV is a DNA virus that utilizes a virus-encoded reverse transcriptase to convert an RNA intermediate, termed pregenomic RNA, into the relaxed circular DNA genome, which is subsequently converted into a covalently closed circular DNA (cccDNA) in the host cell nucleus. cccDNA is maintained in the nucleus of the infected hepatocyte as a stable minichromosome and functions as the viral transcriptional template for the production of all viral gene products, and thus, it is the molecular basis of HBV persistence. The nuclear cccDNA pool can be replenished through recycling of newly synthesized, DNA-containing HBV capsids. Licensed antivirals target the HBV reverse transcriptase activity but fail to eliminate cccDNA, which would be required to cure HBV infection. Elimination of HBV cccDNA is so far only achieved by antiviral immune responses. Thus, this review will focus on possible curative strategies aimed at eliminating or crippling the viral cccDNA. Newer insights into the HBV life cycle and host immune response provide novel, potentially curative therapeutic opportunities and targets.
Collapse
|
119
|
Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the Interactions of HBV cccDNA with Host Factors. Int J Mol Sci 2019; 20:ijms20174276. [PMID: 31480501 PMCID: PMC6747236 DOI: 10.3390/ijms20174276] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.
Collapse
Affiliation(s)
- Nur K Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore
| | - Zijie Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 119228, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore.
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| |
Collapse
|
120
|
Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production. PLoS Pathog 2019; 15:e1007874. [PMID: 31393946 PMCID: PMC6687101 DOI: 10.1371/journal.ppat.1007874] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) is a common cause of liver diseases, including chronic hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV chronically infects about 240 million people worldwide, posing a major global health problem. The current standard antiviral therapy effectively inhibits HBV replication but does not eliminate the virus unlike direct-acting antivirals (DAA) for curing hepatitis C. Our previous studies have demonstrated that human apolipoprotein E (apoE) plays important roles in hepatitis C virus infection and morphogenesis. In the present study, we have found that apoE is also associated with HBV and is required for efficient HBV infection. An apoE-specific monoclonal antibody was able to capture HBV similar to anti-HBs. More importantly, apoE monoclonal antibody could effectively block HBV infection, resulting in a greater than 90% reduction of HBV infectivity. Likewise, silencing of apoE expression or knockout of apoE gene by CRISPR/Cas9 resulted in a greater than 90% reduction of HBV infection and more than 80% decrease of HBV production, which could be fully restored by ectopic apoE expression. However, apoE silencing or knockout did not significantly affect HBV DNA replication or the production of nonenveloped (naked) nucleocapsids. These findings demonstrate that human apoE promotes HBV infection and production. We speculate that apoE may also play a role in persistent HBV infection by evading host immune response similar to its role in the HCV life cycle and pathogenesis. Inhibitors interfering with apoE biogenesis, secretion, and/or binding to receptors may serve as antivirals for elimination of chronic HBV infection.
Collapse
Affiliation(s)
- Luhua Qiao
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guangxiang George Luo
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|
121
|
Yan Z, Wu D, Hu H, Zeng J, Yu X, Xu Z, Zhou Z, Zhou X, Yang G, Young JA, Gao L. Direct Inhibition of Hepatitis B e Antigen by Core Protein Allosteric Modulator. Hepatology 2019; 70:11-24. [PMID: 30664279 PMCID: PMC6618080 DOI: 10.1002/hep.30514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
Abstract
Hepatitis B e antigen (HBeAg) is an important immunomodulator for promoting host immune tolerance during chronic hepatitis B (CHB) infection. In patients with CHB, HBeAg loss and seroconversion represent partial immune control of CHB infection and are regarded as valuable endpoints. However, the current approved treatments have only a limited efficacy in achieving HBeAg seroconversion in HBeAg-positive patients. Hepatitis B virus (HBV) core protein has been recognized as an attractive antiviral target, and two classes of core protein allosteric modulator (CpAM) have been discovered: the phenylpropenamides (PPAs) and the heteroaryldihydropyrimidines (HAPs). However, their differentiation and potential therapeutic benefit beyond HBV DNA inhibition remain to be seen. Here, we show that in contrast to PPA series compound AT-130, a HAP CpAM, HAP_R01, reduced HBeAg levels in multiple in vitro and in vivo HBV experimental models. Mechanistically, we found that HAP_R01 treatment caused the misassembly of capsids formed by purified HBeAg in vitro. In addition, HAP_R01 directly reduces HBeAg levels by inducing intracellular precore protein misassembly and aggregation. Using a HAP_R01-resistant mutant, we found that HAP_R01-mediated HBeAg and core protein reductions were mediated through the same mechanism. Furthermore, HAP_R01 treatment substantially reduced serum HBeAg levels in an HBV mouse model. Conclusion: Unlike PPA series compound AT-130, HAP_R01 not only inhibits HBV DNA levels but also directly reduces HBeAg through induction of its misassembly. HAP_R01, as well as other similar CpAMs, has the potential to achieve higher anti-HBeAg seroconversion rates than currently approved therapies for patients with CHB. Our findings also provide guidance for dose selection when designing clinical trials with molecules from HAP series.
Collapse
Affiliation(s)
- Zhipeng Yan
- Roche Innovation Center ShanghaiShanghaiChina
| | - Daitze Wu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Hui Hu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Jing Zeng
- Roche Innovation Center ShanghaiShanghaiChina
| | - Xin Yu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Zhiheng Xu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Zheng Zhou
- Roche Innovation Center ShanghaiShanghaiChina
| | - Xue Zhou
- Roche Innovation Center ShanghaiShanghaiChina
| | - Guang Yang
- Roche Innovation Center ShanghaiShanghaiChina
| | | | - Lu Gao
- Roche Innovation Center ShanghaiShanghaiChina
| |
Collapse
|
122
|
Gao Z, Yan L, Li W. A quantitative method for hepatitis B virus covalently closed circular DNA enables distinguishing direct acting antivirals from cytotoxic agents. Antiviral Res 2019; 168:197-202. [PMID: 31175920 DOI: 10.1016/j.antiviral.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Studying the biogenesis of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and developing anti-HBV agents require analytical methods to quantify viral DNA levels inside host cells. The well-accepted Southern blotting method is only semi-quantitative, while the other widely used methods (based on qPCR) have been questioned as to their fidelity for cccDNA quantification. In addition, Southern blotting and qPCR results barely reflect the number of host cells present in an analytical sample. We here developed new techniques that substantially improve cccDNA detection and quantification, including a sample pretreatment method that i) exploits high temperature and exonuclease V (an ATP-dependent, bidirectional exonuclease) digestion to effectively increase the amplification efficiency of HBV cccDNA by removing rcDNA and denaturing the cccDNA template, and ii) a method that splits cell samples and uses separate extraction technologies to facilitate "host normalization" based on host genomic DNA signals. Our study introduces new analytical techniques that should be useful for the basic biology and translational studies of HBV.
Collapse
Affiliation(s)
- Zhenchao Gao
- Graduate Program School of Life Sciences, Peking University, Beijing, China; National Institute of Biological Sciences, Beijing, No.7 Science Park Road, ZGC Life Science Park, Changping, Beijing, China
| | - Liwei Yan
- National Institute of Biological Sciences, Beijing, No.7 Science Park Road, ZGC Life Science Park, Changping, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, No.7 Science Park Road, ZGC Life Science Park, Changping, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
123
|
Cellular DNA Topoisomerases Are Required for the Synthesis of Hepatitis B Virus Covalently Closed Circular DNA. J Virol 2019; 93:JVI.02230-18. [PMID: 30867306 DOI: 10.1128/jvi.02230-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
In order to identify host cellular DNA metabolic enzymes that are involved in the biosynthesis of hepatitis B virus (HBV) covalently closed circular (ccc) DNA, we developed a cell-based assay supporting synchronized and rapid cccDNA synthesis from intracellular progeny nucleocapsid DNA. This was achieved by arresting HBV DNA replication in HepAD38 cells with phosphonoformic acid (PFA), a reversible HBV DNA polymerase inhibitor, at the stage of single-stranded DNA and was followed by removal of PFA to allow the synchronized synthesis of relaxed circular DNA (rcDNA) and subsequent conversion into cccDNA within 12 to 24 h. This cccDNA formation assay allows systematic screening of the effects of small molecular inhibitors of DNA metabolic enzymes on cccDNA synthesis but avoids cytotoxic effects upon long-term treatment. Using this assay, we found that all the tested topoisomerase I and II (TOP1 and TOP2, respectively) poisons as well as topoisomerase II DNA binding and ATPase inhibitors significantly reduced the levels of cccDNA. It was further demonstrated that these inhibitors also disrupted cccDNA synthesis during de novo HBV infection of HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). Mechanistic analyses indicate that whereas TOP1 inhibitor treatment prevented the production of covalently closed negative-strand rcDNA, TOP2 inhibitors reduced the production of this cccDNA synthesis intermediate to a lesser extent. Moreover, small interfering RNA (siRNA) knockdown of topoisomerase II significantly reduced cccDNA amplification. Taking these observations together, our study demonstrates that topoisomerase I and II may catalyze distinct steps of HBV cccDNA synthesis and that pharmacologic targeting of these cellular enzymes may facilitate the cure of chronic hepatitis B.IMPORTANCE Persistent HBV infection relies on stable maintenance and proper functioning of a nuclear episomal form of the viral genome called cccDNA, the most stable HBV replication intermediate. One of the major reasons for the failure of currently available antiviral therapeutics to cure chronic HBV infection is their inability to eradicate or inactivate cccDNA. We report here a chemical genetics approach to identify host cellular factors essential for the biosynthesis and maintenance of cccDNA and reveal that cellular DNA topoisomerases are required for both de novo synthesis and intracellular amplification of cccDNA. This approach is suitable for systematic screening of compounds targeting cellular DNA metabolic enzymes and chromatin remodelers for their ability to disrupt cccDNA biosynthesis and function. Identification of key host factors required for cccDNA metabolism and function will reveal molecular targets for developing curative therapeutics of chronic HBV infection.
Collapse
|
124
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
125
|
Zhang X, Cheng J, Ma J, Hu Z, Wu S, Hwang N, Kulp J, Du Y, Guo JT, Chang J. Discovery of Novel Hepatitis B Virus Nucleocapsid Assembly Inhibitors. ACS Infect Dis 2019; 5:759-768. [PMID: 30525438 DOI: 10.1021/acsinfecdis.8b00269] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein is a small protein with 183 amino acid residues and assembles the pregenomic (pg) RNA and viral DNA polymerase to form nucleocapsids. During the last decades, several groups have reported HBV core protein allosteric modulators (CpAMs) with distinct chemical structures. CpAMs bind to the hydrophobic HAP pocket located at the dimer-dimer interface and induce allosteric conformational changes in the core protein subunits. While Type I CpAMs, heteroaryldihydropyrimidine (HAP) derivatives, misdirect core protein dimers to assemble noncapsid polymers, Type II CpAMs, represented by sulfamoylbenzamides, phenylpropenamides, and several other chemotypes, induce the assembly of empty capsids with global structural alterations and faster mobility in native agarose gel electrophoresis. Through high throughput screening of an Asinex small molecule library containing 19 920 compounds, we identified 8 structurally distinct CpAMs. While 7 of those compounds are typical Type II CpAMs, a novel benzamide derivative, designated as BA-53038B, induced the formation of morphologically "normal" empty capsids with slow electrophoresis mobility. Drug resistant profile analyses indicated that BA-53038B most likely bound to the HAP pocket but obviously modulated HBV capsid assembly in a distinct manner. BA-53038B and other CpAMs reported herein provide novel structure scaffolds for the development of core protein-targeted antiviral agents for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Xuexiang Zhang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Julia Ma
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Shuo Wu
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
126
|
Thi EP, Dhillon AP, Ardzinski A, Bidirici-Ertekin L, Cobarrubias KD, Cuconati A, Kondratowicz AS, Kwak K, Li AHL, Miller A, Pasetka C, Pei L, Phelps JR, Snead NM, Wang X, Ye X, Sofia MJ, Lee ACH. ARB-1740, a RNA Interference Therapeutic for Chronic Hepatitis B Infection. ACS Infect Dis 2019; 5:725-737. [PMID: 30403127 DOI: 10.1021/acsinfecdis.8b00191] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current approved nucleoside analogue treatments for chronic hepatitis B virus (HBV) infection are effective at controlling viral titer but are not curative and have minimal impact on the production of viral proteins such as surface antigen (HBsAg), the HBV envelope protein believed to play a role in maintaining the immune tolerant state required for viral persistence. Novel agents are needed to effect HBV cure, and reduction of HBV antigenemia may potentiate activation of effective and long-lasting host immune control. ARB-1740 is a clinical stage RNA interference agent composed of three siRNAs delivered using lipid nanoparticle technology. In a number of cell and animal models of HBV, ARB-1740 caused HBV RNA reduction, leading to inhibition of multiple elements of the viral life cycle including HBsAg, HBeAg, and HBcAg viral proteins as well as replication marker HBV DNA. ARB-1740 demonstrated pan-genotypic activity in vitro and in vivo, targeting three distinct highly conserved regions of the HBV genome, and effectively inhibited replication of nucleoside analogue-resistant HBV variants. Combination of ARB-1740 with a capsid inhibitor and pegylated interferon-alpha led to greater liver HBsAg reduction which correlated with more robust induction of innate immune responses in a human chimeric mouse model of HBV. The preclinical profile of ARB-1740 demonstrates the promise of RNA interference and HBV antigen reduction in treatment strategies driving toward a cure for HBV.
Collapse
Affiliation(s)
- Emily P. Thi
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Ammen P. Dhillon
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Andrzej Ardzinski
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Lale Bidirici-Ertekin
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Kyle D. Cobarrubias
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Andrea Cuconati
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | | | - Kaylyn Kwak
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Alice H. L. Li
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Angela Miller
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Chris Pasetka
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Luying Pei
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Janet R. Phelps
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Nicholas M. Snead
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Xiaohe Wang
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Xin Ye
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Michael J. Sofia
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Amy C. H. Lee
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| |
Collapse
|
127
|
Tang L, Sheraz M, McGrane M, Chang J, Guo JT. DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog 2019; 15:e1007742. [PMID: 31026293 PMCID: PMC6505960 DOI: 10.1371/journal.ppat.1007742] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/08/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Persistent hepatitis B virus (HBV) infection relies on the establishment and maintenance of covalently closed circular (ccc) DNA, a 3.2 kb episome that serves as a viral transcription template, in the nucleus of an infected hepatocyte. Although evidence suggests that cccDNA is the repair product of nucleocapsid associated relaxed circular (rc) DNA, the cellular DNA polymerases involving in repairing the discontinuity in both strands of rcDNA as well as the underlying mechanism remain to be fully understood. Taking a chemical genetics approach, we found that DNA polymerase alpha (Pol α) is essential for cccDNA intracellular amplification, a genome recycling pathway that maintains a stable cccDNA pool in infected hepatocytes. Specifically, inhibition of Pol α by small molecule inhibitors aphidicolin or CD437 as well as silencing of Pol α expression by siRNA led to suppression of cccDNA amplification in human hepatoma cells. CRISPR-Cas9 knock-in of a CD437-resistant mutation into Pol α genes completely abolished the effect of CD437 on cccDNA formation, indicating that CD437 directly targets Pol α to disrupt cccDNA biosynthesis. Mechanistically, Pol α is recruited to HBV rcDNA and required for the generation of minus strand covalently closed circular rcDNA, suggesting that Pol α is involved in the repair of the minus strand DNA nick in cccDNA synthesis. Our study thus reveals that the distinct host DNA polymerases are hijacked by HBV to support the biosynthesis of cccDNA from intracellular amplification pathway compared to that from de novo viral infection, which requires Pol κ and Pol λ. CCC DNA is the most refractory HBV replication intermediate under long-term antiviral therapies and is responsible for the viral rebound after treatment cessation. Therefore, understanding the biosynthesis and maintenance of cccDNA minichromosome is crucial for the development of novel antiviral therapeutics to cure chronic HBV infection. Although it has been clearly demonstrated that cccDNA biosynthesis relies on host cellular DNA repair machinery, the molecular pathways that convert rcDNA into cccDNA remain to be identified. Here we report that DNA polymerase alpha (Pol α) as well as Pol δ and ɛ are required for converting rcDNA into cccDNA through intracellular cccDNA amplification. This finding adds novel molecular insights on cccDNA biosynthesis. Further understanding the mechanism of cccDNA synthesis should reveal molecular targets for developing therapeutic agents to eradicate cccDNA and cure chronic hepatitis B.
Collapse
Affiliation(s)
- Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Muhammad Sheraz
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Michael McGrane
- FlowMetric Diagnostics, Doylestown, PA, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
- * E-mail:
| |
Collapse
|
128
|
Li Y, Xia Y, Cheng X, Kleiner DE, Hewitt SM, Sproch J, Li T, Zhuang H, Liang TJ. Hepatitis B Surface Antigen Activates Unfolded Protein Response in Forming Ground Glass Hepatocytes of Chronic Hepatitis B. Viruses 2019; 11:v11040386. [PMID: 31027244 PMCID: PMC6520809 DOI: 10.3390/v11040386] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Ground glass hepatocytes (GGHs), a histological hallmark of chronic hepatitis B virus (HBV) infection, contain excessive hepatitis surface antigen (HBsAg) in the endoplasmic reticulum (ER), which is linked to unfolded protein response (UPR). The mechanism by which HBV activates UPR has not been fully defined. To investigate this, HepG2-NTCP cells and primary human hepatocytes (PHHs) were either infected with HBV or transduced with adenoviral vectors expressing replication-competent HBV genome or individual HBV genes. UPR markers were evaluated by qPCR, Western blotting, and immunofluorescence. Apoptosis and cell viability were measured by Caspase-3/7 and ATPlite assay respectively. We found that UPR markers were induced by the overexpression of HBsAg in HepG2-NTCP cells and PHHs. Elevation of UPR-induced genes showed a dose-dependent correlation with HBsAg levels. In HBV-infected livers, GGHs also demonstrated excessive accumulation of HBsAg associated with increased BIP/GRP78 staining, a marker of UPR. Prolonged activation of UPR by HBsAg overexpression induced signs of apoptosis. Overexpression of HBsAg can induce ER stress through protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway in vitro, and may be linked to the appearance of GGHs. The activation of UPR by HBsAg may sensitize hepatocytes to cell death and result in possible subsequent cellular changes leading to a premalignant phenotype.
Collapse
Affiliation(s)
- Yao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yuchen Xia
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xiaoming Cheng
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julia Sproch
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
129
|
Qu B, Urban S. Quantification of Hepatitis B Virus Covalently Closed Circular DNA in Infected Cell Culture Models by Quantitative PCR. Bio Protoc 2019; 9:e3202. [PMID: 33654998 DOI: 10.21769/bioprotoc.3202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023] Open
Abstract
Persistence of the human hepatitis B virus (HBV) requires the maintenance of covalently closed circular (ccc)DNA, the episomal genome reservoir in nuclei of infected hepatocytes. cccDNA elimination is a major aim in future curative therapies currently under development. In cell culture based in vitro studies, both hybridization- and amplification-based assays are currently used for cccDNA quantification. Southern blot, the current gold standard, is time-consuming and not practical for a large number of samples. PCR-based methods show limited specificity when excessive HBV replicative intermediates are present. We have recently developed a real-time quantitative PCR protocol, in which total cellular DNA plus all forms of viral DNA are extracted by silica column. Subsequent incubation with T5 exonuclease efficiently removes cellular DNA and all non-cccDNA forms of viral DNA while cccDNA remains intact and can reliably be quantified by PCR. This method has been used for measuring kinetics of cccDNA accumulation in several in vitro infection models and the effect of antivirals on cccDNA. It allowed detection of cccDNA in non-human cells (primary macaque and swine hepatocytes, etc.) reconstituted with the HBV receptor, human sodium taurocholate cotransporting polypeptide (NTCP). Here we present a detailed protocol of this method, including a work flowchart, schematic diagram and illustrations on how to calculate "cccDNA copies per (infected) cell".
Collapse
Affiliation(s)
- Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
130
|
Edwards TC, Mani N, Dorsey B, Kakarla R, Rijnbrand R, Sofia MJ, Tavis JE. Inhibition of HBV replication by N-hydroxyisoquinolinedione and N-hydroxypyridinedione ribonuclease H inhibitors. Antiviral Res 2019; 164:70-80. [PMID: 30768944 PMCID: PMC10587990 DOI: 10.1016/j.antiviral.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
We recently developed a screening system capable of identifying and evaluating inhibitors of the Hepatitis B virus (HBV) ribonuclease H (RNaseH), which is the only HBV enzyme not targeted by current anti-HBV therapies. Inhibiting the HBV RNaseH blocks synthesis of the positive-polarity DNA strand, causing early termination of negative-polarity DNA synthesis and accumulation of RNA:DNA heteroduplexes. We previously reported inhibition of HBV replication by N-hydroxyisoquinolinediones (HID) and N-hydroxypyridinediones (HPD) in human hepatoma cells. Here, we report results from our ongoing efforts to develop more potent anti-HBV RNaseH inhibitors in the HID/HPD compound classes. We synthesized and screened additional HIDs and HPDs for preferential suppression of positive-polarity DNA in cells replicating HBV. Three of seven new HIDs inhibited HBV replication, however, the therapeutic indexes (TI = CC50/EC50) did not improve over what we previously reported. All nine of the HPDs inhibited HBV replication with EC50s ranging from 110 nM to 4 μM. Cellular cytotoxicity was evaluated by four assays and CC50s ranged from 15 to >100 μM. The best compounds have a calculated TI of >300, which is a 16-fold improvement over the primary HPD hit. These studies indicate that the HPD compound class holds potential for antiviral discovery.
Collapse
Affiliation(s)
- Tiffany C Edwards
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Nagraj Mani
- Arbutus Biopharma Incorporated, Warminster, PA, USA.
| | - Bruce Dorsey
- Arbutus Biopharma Incorporated, Warminster, PA, USA.
| | | | | | | | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
131
|
Zhang Y, Zhang H, Zhang J, Zhang J, Guo H. Naturally occurring core protein mutations compensate for the reduced replication fitness of a lamivudine-resistant HBV isolate. Antiviral Res 2019; 165:47-54. [PMID: 30902704 DOI: 10.1016/j.antiviral.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of an RNA intermediate. The lack of proofreading capacity of the viral DNA polymerase results in a high mutation rate of HBV genome. Under the selective pressure created by the nucleos(t)ide analogue (NA) antiviral drugs, viruses with resistance mutations are selected. However, the replication fitness of NA-resistant mutants is markedly reduced compared to wild-type. Compensatory mutations in HBV polymerase, which restore the viral replication capacity, have been reported to arise under continuous treatment with lamivudine (LMV). We have previously identified a highly replicative LMV-resistant HBV isolate from a chronic hepatitis B patient experiencing acute disease exacerbation. Besides the common YMDD drug-resistant mutations, this isolate possesses multiple additional mutations in polymerase and core regions. The transcomplementation assay demonstrated that the enhanced viral replication is due to the mutations of core protein. Further mutagenesis study revealed that the P5T mutation of core protein plays an important role in the enhanced viral replication through increasing the levels of capsid formation and pregenomic RNA encapsidation. However, the LMV-resistant virus harboring compensatory core mutations remains sensitive to capsid assembly modulators (CpAMs). Taken together, our study suggests that the enhanced HBV nucleocapsid formation resulting from core mutations represents an important viral strategy to surmount the antiviral drug pressure and contribute to viral pathogenesis, and CpAMs hold promise for developing the combinational antiviral therapy for hepatitis B.
Collapse
Affiliation(s)
- Yongmei Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Junjie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOH & MOE), Fudan University, Shanghai, China.
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
132
|
Song H, Tan G, Yang Y, Cui A, Li H, Li T, Wu Z, Yang M, Lv G, Chi X, Niu J, Zhu K, Crispe IN, Su L, Tu Z. Hepatitis B Virus-Induced Imbalance of Inflammatory and Antiviral Signaling by Differential Phosphorylation of STAT1 in Human Monocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:2266-2275. [PMID: 30842274 DOI: 10.4049/jimmunol.1800848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
It is not clear how hepatitis B virus (HBV) modulates host immunity during chronic infection. In addition to the key mediators of inflammatory response in viral infection, monocytes also express a high-level IFN-stimulated gene, CH25H, upon response to IFN-α exerting an antiviral effect. In this study, the mechanism by which HBV manipulates IFN signaling in human monocytes was investigated. We observed that monocytes from chronic hepatitis B patients express lower levels of IFN signaling/stimulated genes and higher levels of inflammatory cytokines compared with healthy donors. HBV induces monocyte production of inflammatory cytokines via TLR2/MyD88/NF-κB signaling and STAT1-Ser727 phosphorylation and inhibits IFN-α-induced stat1, stat2, and ch25h expression through the inhibition of STAT1-Tyr701 phosphorylation and in an IL-10-dependent, partially autocrine manner. Further, we found that enhancement of STAT1 activity with a small molecule (2-NP) rescued HBV-mediated inhibition of IFN signaling and counteracted the induction of inflammatory cytokines. In conclusion, HBV contributes to the monocyte inflammatory response but inhibits their IFN-α/β responsiveness to impair antiviral innate immunity. These effects are mediated via differential phosphorylation of Tyr701 and Ser727 of STAT1.
Collapse
Affiliation(s)
- Hongxiao Song
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guangyun Tan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - An Cui
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tianyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Chi
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Junqi Niu
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ian Nicholas Crispe
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Pathology, University of Washington, Seattle, WA 98195; and
| | - Lishan Su
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; .,Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
133
|
Dezhbord M, Lee S, Kim W, Seong BL, Ryu WS. Characterization of the molecular events of covalently closed circular DNA synthesis in de novo Hepatitis B virus infection of human hepatoma cells. Antiviral Res 2019; 163:11-18. [PMID: 30639437 DOI: 10.1016/j.antiviral.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
Abstract
Despite the utmost importance of cccDNA in HBV biology, the mechanism by which cccDNA synthesis is regulated is not completely understood. Here we explored HepG2-NTCP cell line and performed a time-course HBV infection experiment (up to 30 days) to follow the conversion of the input viral DNA into cccDNA. We found that a protein-free RC DNA (PF-RC DNA) become detectable as early as 12 h post infection (hpi) prior to the detection of cccDNA, which become evident only at 2-3 dpi. Intriguingly, the PF-RC DNA detected at 12 hpi was abundantly located in the cytoplasm, implicating that the protein-removal from the input viral DNA takes place in the cytoplasm, perhaps inside the nucleocapsid. Notably, during the early time points of HBV infection, the PF-RC DNA accumulated at significantly higher levels and appeared in a peak followed by a plateau at late time points with dramatically lower levels, implicating the presence of two distinct populations of the PF-RC DNA. Importantly, the PF-RC DNA at earlier peak is entecavir (ETV)-resistant, whereas the PF-RC DNA at posterior days is ETV-sensitive. An interpretation is that the PF-RC DNA at earlier peak represents "input viral DNA" derived from HBV inoculum, whereas the PF-RC DNA at late time points represents the de novo product of the viral reverse transcription. The existence of two populations of the PF-RC DNA having a distinct kinetic profile and ETV-sensitivity implicated that intracellular amplification via the viral reverse transcription greatly contributes to the maintenance of cccDNA pool during HBV infection. As such, we concluded that the cccDNA level is stably maintained by continuing replenishment of cccDNA primarily through intracellular amplification in the HepG2-NTCP cell line.
Collapse
Affiliation(s)
- Mehrangiz Dezhbord
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Sooyoung Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Woohyun Kim
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea.
| | - Wang-Shick Ryu
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
134
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
135
|
Bai L, Zhang X, Kozlowski M, Li W, Wu M, Liu J, Chen L, Zhang J, Huang Y, Yuan Z. Extracellular Hepatitis B Virus RNAs Are Heterogeneous in Length and Circulate as Capsid-Antibody Complexes in Addition to Virions in Chronic Hepatitis B Patients. J Virol 2018; 92:e00798-18. [PMID: 30282709 PMCID: PMC6258948 DOI: 10.1128/jvi.00798-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular HBV RNA has been detected in both HBV-replicating cell culture media and sera from chronic hepatitis B (CHB) patients, but its exact origin and composition remain controversial. Here, we demonstrated that extracellular HBV RNA species were of heterogeneous lengths, ranging from the length of pregenomic RNA to a few hundred nucleotides. In cell models, these RNAs were predominantly associated with naked capsids, although virions also harbored a minority of them. Moreover, HBV RNAs in hepatitis B patients' blood circulation were localized in unenveloped capsids in the form of capsid-antibody complexes (CACs) and in virions. Furthermore, we showed that extracellular HBV RNAs could serve as the template for viral DNA synthesis. In conclusion, extracellular HBV RNAs mainly consist of pgRNA or the pgRNA species degraded by the RNase H domain of the polymerase in the process of viral DNA synthesis and circulate as CACs and virions. Their presence in blood circulation of CHB patients may be exploited to develop novel biomarkers for HBV persistence.IMPORTANCE Although increasing evidence suggests the presence of extracellular HBV RNA species, their origin and molecular forms are still under debate. In addition to the infectious virions, HBV is known to secrete several species of incomplete viral particles, including hepatitis B surface antigen (HBsAg) particles, naked capsids, and empty virions, during its replication cycle. Here, we demonstrated that extracellular HBV RNAs were associated with naked capsids and virions in HepAD38 cells. Interestingly, we found that unenveloped capsids circulate in the blood of hepatitis B patients in the form of CACs and, together with virions, serve as vehicles carrying these RNA molecules. Moreover, extracellular HBV RNAs are heterogeneous in length and represent either pregenomic RNA (pgRNA) or products of incomplete reverse transcription during viral replication. These findings provide a conceptual basis for further application of extracellular RNA species as novel biomarkers for HBV persistence.
Collapse
Affiliation(s)
- Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weixia Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Liang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
136
|
Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J Hepatol 2018; 69:1231-1241. [PMID: 30142426 PMCID: PMC7611400 DOI: 10.1016/j.jhep.2018.08.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Several steps in the HBV life cycle remain obscure because of a lack of robust in vitro infection models. These steps include particle entry, formation and maintenance of covalently closed circular (ccc) DNA, kinetics of gene expression and viral transmission routes. This study aimed to investigate infection kinetics and cccDNA dynamics during long-term culture. METHODS We selected a highly permissive HepG2-NTCP-K7 cell clone engineered to express sodium taurocholate co-transporting polypeptide (NTCP) that supports the full HBV life cycle. We characterized the replication kinetics and dynamics of HBV over six weeks of infection. RESULTS HBV infection kinetics showed a slow infection process. Nuclear cccDNA was only detected 24 h post-infection and increased until 3 days post-infection (dpi). Viral RNAs increased from 3 dpi reaching a plateau at 6 dpi. HBV protein levels followed similar kinetics with HBx levels reaching a plateau first. cccDNA levels modestly increased throughout the 45-day study period with 5-12 copies per infected cell. Newly produced relaxed circular DNA within capsids was reimported into the nucleus and replenished the cccDNA pool. In addition to intracellular recycling of HBV genomes, secondary de novo infection events resulted in cccDNA formation. Inhibition of relaxed circular DNA formation by nucleoside analogue treatment of infected cells enabled us to measure cccDNA dynamics. HBV cccDNA decayed slowly with a half-life of about 40 days. CONCLUSIONS After a slow infection process, HBV maintains a stable cccDNA pool by intracellular recycling of HBV genomes and via secondary infection. Our results provide important insights into the dynamics of HBV infection and support the future design and evaluation of new antiviral agents. LAY SUMMARY Using a unique hepatocellular model system designed to support viral growth, we demonstrate that hepatitis B virus (HBV) has remarkably slow infection kinetics. Establishment of the episomal transcription template and the persistent form of the virus, so called covalently closed circular DNA, as well as viral transcription and protein expression all take a long time. Once established, HBV maintains a stable pool of covalently closed circular DNA via intracellular recycling of HBV genomes and through infection of naïve cells by newly formed virions.
Collapse
|
137
|
Zhang P, Zhai S, Chang J, Guo JT. In Vitro Anti-hepatitis B Virus Activity of 2',3'-Dideoxyguanosine. Virol Sin 2018; 33:538-544. [PMID: 30421112 PMCID: PMC6335223 DOI: 10.1007/s12250-018-0065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
2',3'-dideoxyguanosine (DoG) has been demonstrated to inhibit duck hepatitis B virus (DHBV) replication in vivo in a duck model of HBV infection. In the current study, the in vitro antiviral effects of DoG on human and animal hepadnaviruses were investigated. Our results showed that DoG effectively inhibited HBV, DHBV, and woodchuck hepatitis virus (WHV) replication in hepatocyte-derived cells in a dose-dependent manner, with 50% effective concentrations (EC50) of 0.3 ± 0.05, 6.82 ± 0.25, and 23.0 ± 1.5 μmol/L, respectively. Similar to other hepadnaviral DNA polymerase inhibitors, DoG did not alter the levels of intracellular viral RNA but induced the accumulation of a less-than-full-length viral RNA species, which was recently demonstrated to be generated by RNase H cleavage of pgRNA. Furthermore, using a transient transfection assay, DoG showed similar antiviral activity against HBV wild-type, 3TC-resistant rtA181V, and adefovir-resistant rtN236T mutants. Our results suggest that DoG has potential as a nucleoside analogue drug with anti-HBV activity.
Collapse
Affiliation(s)
- Pinghu Zhang
- Institute of Translational Medicine and Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001 China
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902 USA
- Qinghai Himalayan Experimental Animal Center, Xining, 810006 China
| | - Shuo Zhai
- Institute of Translational Medicine and Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001 China
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902 USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902 USA
| |
Collapse
|
138
|
Cao F, Orth C, Donlin MJ, Adegboyega P, Meyers MJ, Murelli RP, Elagawany M, Elgendy B, Tavis JE. Synthesis and Evaluation of Troponoids as a New Class of Antibiotics. ACS OMEGA 2018; 3:15125-15133. [PMID: 30533576 PMCID: PMC6275967 DOI: 10.1021/acsomega.8b01754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 05/11/2023]
Abstract
Novel antibiotics are urgently needed. The troponoids [tropones, tropolones, and α-hydroxytropolones (α-HT)] can have anti-bacterial activity. We synthesized or purchased 92 troponoids and evaluated their antibacterial activities against Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Preliminary hits were assessed for minimum inhibitory concentrations (MIC80) and cytotoxicity (CC50) against human hepatoma cells. Sixteen troponoids inhibited S. aureus/E. coli/A. baumannii growth by ≥80% growth at <30 μM with CC50 values >50 μM. Two selected tropolones (63 and 285) inhibited 18 methicillin-resistant S. aureus (MRSA) strains with similar MIC80 values as against a reference strain. Two selected thiotropolones (284 and 363) inhibited multidrug-resistant (MDR) E. coli with MIC80 ≤30 μM. One α-HT (261) inhibited MDR-A. baumannii with MIC80 ≤30 μM. This study opens new avenues for development of novel troponoid antibiotics to address the critical need to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Feng Cao
- John
Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, Missouri 63106, United States
- E-mail: . Phone: +1 (314) 289-6358. Fax: +1(314) 289-7920 (F.C.)
| | - Cari Orth
- John
Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, Missouri 63106, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Patrick Adegboyega
- John
Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, Missouri 63106, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Ryan P. Murelli
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York 10016, United
States
| | - Mohamed Elagawany
- Center for
Clinical Pharmacology, Washington University
School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour 31111, Egypt
| | - Bahaa Elgendy
- Center for
Clinical Pharmacology, Washington University
School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, The Saint Louis University Liver Center, Saint Louis University School
of Medicine, St. Louis, Missouri 63104, United
States
| |
Collapse
|
139
|
Identification of Compounds Targeting Hepatitis B Virus Core Protein Dimerization through a Split Luciferase Complementation Assay. Antimicrob Agents Chemother 2018; 62:AAC.01302-18. [PMID: 30224531 DOI: 10.1128/aac.01302-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.
Collapse
|
140
|
Robust Human and Murine Hepatocyte Culture Models of Hepatitis B Virus Infection and Replication. J Virol 2018; 92:JVI.01255-18. [PMID: 30232184 DOI: 10.1128/jvi.01255-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic liver diseases, including hepatitis, cirrhosis, and hepatocellular carcinoma. HBV research has been hampered by the lack of robust cell culture and small animal models of HBV infection. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor has been a landmark advance in HBV research in recent years. Ectopic expression of NTCP in nonpermissive HepG2, Huh7, and AML12 cell lines confers HBV susceptibility. However, HBV replication in these human and murine hepatocyte cell lines appeared suboptimal. In the present study, we constructed stable NTCP-expressing HepG2 and AML12 cell lines and found that HBV permissiveness is correlated with NTCP expression. More significantly, we developed robust HBV cell culture models by treating the HBV-infected cells with dimethyl sulfoxide (DMSO) and hydrocortisone, which significantly promoted HBV replication and production. Mechanistic studies suggested that hydrocortisone significantly enhanced the transcription and expression of PGC1α and HNF4α, which are known to promote HBV transcription and replication. These new human and murine hepatocyte culture systems of HBV infection and replication will accelerate the determination of molecular aspects underlying HBV infection, replication, and morphogenesis in human and murine hepatocytes. We anticipate that our HBV cell culture models will also facilitate the discovery and development of antiviral drugs towards the ultimate eradication of chronic hepatitis B virus infection.IMPORTANCE HBV research has been greatly hampered by the lack of robust cell culture and small animal models of HBV infection and propagation. The discovery of NTCP as an HBV receptor has greatly impacted the field of HBV research. Although HBV infection of NTCP-expressing human and murine hepatocyte cell lines has been demonstrated, its replication in cell culture appeared inefficient. To further improve cell culture systems of HBV infection and replication, we constructed NTCP-expressing HepG2 and AML12 cell lines that are highly permissive to HBV infection. More significantly, we found that DMSO and hydrocortisone markedly enhanced HBV transcription and replication in human and murine hepatocytes when added to the cell culture medium. These new cell culture models of HBV infection and replication will facilitate HBV research and antiviral drug discovery towards the ultimate elimination of chronic hepatitis B virus infection.
Collapse
|
141
|
Mitra B, Thapa RJ, Guo H, Block TM. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B. Antiviral Res 2018; 158:185-198. [PMID: 30145242 PMCID: PMC6193490 DOI: 10.1016/j.antiviral.2018.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
142
|
Wu S, Luo Y, Viswanathan U, Kulp J, Cheng J, Hu Z, Xu Q, Zhou Y, Gong GZ, Chang J, Li Y, Guo JT. CpAMs induce assembly of HBV capsids with altered electrophoresis mobility: Implications for mechanism of inhibiting pgRNA packaging. Antiviral Res 2018; 159:1-12. [PMID: 30201396 DOI: 10.1016/j.antiviral.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
Native agarose gel electrophoresis-based particle gel assay has been commonly used for examination of hepatitis B virus (HBV) capsid assembly and pregenomic RNA encapsidation in HBV replicating cells. Interestingly, treatment of cells with several chemotypes of HBV core protein allosteric modulators (CpAMs) induced the assembly of both empty and DNA-containing capsids with faster electrophoresis mobility. In an effort to determine the physical basis of CpAM-induced capsid mobility shift, we found that the surface charge, but not the size, of capsids is the primary determinant of electrophoresis mobility. Specifically, through alanine scanning mutagenesis analysis of twenty-seven charged amino acids in core protein assembly domain and hinge region, we showed that except for K7 and E8, substitution of glutamine acid (E) or aspartic acid (D) on the surface of capsids reduced their mobility, but substitution of lysine (K) or arginine (R) on the surface of capsids increased their mobility in variable degrees. However, alanine substitution of the charged amino acids that are not exposed on the surface of capsid did not apparently alter capsid mobility. Hence, CpAM-induced electrophoresis mobility shift of capsids may reflect the global alteration of capsid structure that changes the exposure and/or ionization of charged amino acid side chains of core protein. Our findings imply that CpAM inhibition of pgRNA encapsidation is possibly due to the assembly of structurally altered nucleocapsids. Practically, capsid electrophoresis mobility shift is a diagnostic marker of compounds that target core protein assembly and predicts sensitivity of HBV strains to specific CpAMs.
Collapse
Affiliation(s)
- Shuo Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yue Luo
- Baruch S. Blumberg Institute, Doylestown, PA, USA; Institute of Hepatology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | - John Kulp
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Qifang Xu
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Guo-Zhong Gong
- Institute of Hepatology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA.
| |
Collapse
|
143
|
Patent highlights April–May 2018. Pharm Pat Anal 2018. [DOI: 10.4155/ppa-2018-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
144
|
Wu CC, Chen YS, Cao L, Chen XW, Lu MJ. Hepatitis B virus infection: Defective surface antigen expression and pathogenesis. World J Gastroenterol 2018; 24:3488-3499. [PMID: 30131655 PMCID: PMC6102499 DOI: 10.3748/wjg.v24.i31.3488] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.
Collapse
MESH Headings
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Disease Progression
- Genome, Viral/genetics
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/prevention & control
- Hepatitis B, Chronic/virology
- Humans
- Liver/immunology
- Liver/pathology
- Liver/virology
- Liver Failure, Acute/immunology
- Liver Failure, Acute/pathology
- Liver Failure, Acute/prevention & control
- Liver Failure, Acute/virology
- Mutation
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Chun-Chen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Ying-Shan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Liang Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, United States
| | - Xin-Wen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Meng-Ji Lu
- Institute of Virology, University Hospital of Essen, Essen 45122, Germany
| |
Collapse
|
145
|
Elagawany M, Hegazy L, Cao F, Donlin MJ, Rath N, Tavis J, Elgendy B. Identification of 4-isopropyl-thiotropolone as a novel anti-microbial: regioselective synthesis, NMR characterization, and biological evaluation. RSC Adv 2018; 8:29967-29975. [PMID: 35547306 PMCID: PMC9085298 DOI: 10.1039/c8ra06297h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
We have synthesized and separated tosylated thujaplicin isomers for the first time, and elucidated their structures using 1D, 2D-NMR techniques and X-ray crystallography. The tosylated isomers were used to synthesize 4-isopropyl–thiotropolone and 6-isopropyl–thiotropolone in a regioselective manner. 1H and 13C Chemical shifts of synthesized isomers were fully assigned using several NMR experiments, and their isotropic magnetic shielding was calculated using the GIAO (Gauge Including Atomic Orbitals) method and the B3LYP def2-TZVPP level of theory. The calculated chemical shift values were in a good agreement with the experimental results. The biological activity of all synthesized compounds was evaluated against the fungal pathogen Cryptococcus neoformans and four different bacterial strains (Staphylococcus aureus (ATCC 29213), E. coli (ATCC 35218), Acinetobacter baumannii and Pseudomonas aeruginosa (ATCC 27853)). 4-Isopropyl–thiotropolone was found to inhibit Staphylococcus aureus in a low micro molar range and exhibit good therapeutic index and ADME properties. This compound can be used for future lead optimization to design inhibitors against Staphylococcus aureus (ATCC 29213). 4-Isopropyl–thiotropolone was identified as a novel anti-microbial agent with good therapeutic index and ADME properties.![]()
Collapse
Affiliation(s)
- Mohamed Elagawany
- Departments of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis MO USA.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University Damanhour Egypt
| | - Lamees Hegazy
- Departments of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis MO USA
| | - Feng Cao
- John Cochran Division, Department of Veteran's Affairs Medical Center 915 North Grand Blvd. St. Louis MO 63106 USA
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine St. Louis Missouri USA
| | - Nigam Rath
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri - St. Louis One University Boulevard St. Louis USA
| | - John Tavis
- Department of Molecular Microbiology and Immunology, The Saint Louis University Liver Center, Saint Louis University School of Medicine St. Louis Missouri USA
| | - Bahaa Elgendy
- Departments of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis MO USA.,Chemistry Department, Faculty of Science, Benha University Benha 13518 Egypt
| |
Collapse
|
146
|
Yuan L, Liu X, Zhang L, Zhang Y, Chen Y, Li X, Wu K, Cao J, Hou W, Que Y, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. Optimized HepaRG is a suitable cell source to generate the human liver chimeric mouse model for the chronic hepatitis B virus infection. Emerg Microbes Infect 2018; 7:144. [PMID: 30097574 PMCID: PMC6086841 DOI: 10.1038/s41426-018-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
The human liver chimeric mouse with primary human hepatocytes (PHHs) engraftment has been demonstrated to be a useful animal model to study hepatitis B virus (HBV) pathogenesis and evaluate anti-HBV drugs. However, the disadvantages of using PHHs include the inability for cellular expansion in vitro, limited donor availability, individual differences, and ethical issues, necessitating the development of alternatives. To obtain in vitro expandable hepatocytes, we optimized the hepatic differentiation procedure of the human liver progenitor cell line, HepaRG, using four functional small molecules (4SM) and enriched the precursor hepatocyte-like cells (HLCs). HepaRG cells of different hepatic differentiation states were engrafted to immunodeficient mice (FRGS) with weekly 4SM treatment. The HepaRG-engrafted mice were challenged with HBV and/or treated with several antivirals to evaluate their effects. We demonstrated that the 4SM treatment enhanced hepatic differentiation and promoted cell proliferation capacity both in vitro and in vivo. Mice engrafted with enriched HepaRG of prehepatic differentiation and treated with 4SM displayed approximately 10% liver chimerism at week 8 after engraftment and were maintained at this level for another 16 weeks. Therefore, we developed a HepaRG-based human liver chimeric mouse model: HepaRG-FRGS. Our experimental results showed that the liver chimerism of the mice was adequate to support chronic HBV infection for 24 weeks and to evaluate antivirals. We also demonstrated that HBV infection in HepaRG cells was dependent on their hepatic differentiation state and liver chimerism in vivo. Overall, HepaRG-FRGS mice provide a novel human liver chimeric mouse model to study chronic HBV infection and evaluate anti-HBV drugs.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, 20059, USA.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| |
Collapse
|
147
|
Lee J, Zong L, Krotow A, Qin Y, Jia L, Zhang J, Tong S, Li J. N-Linked Glycosylation Is Not Essential for Sodium Taurocholate Cotransporting Polypeptide To Mediate Hepatitis B Virus Infection In Vitro. J Virol 2018; 92:e00732-18. [PMID: 29793953 PMCID: PMC6052319 DOI: 10.1128/jvi.00732-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 01/05/2023] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a hepatitis B virus (HBV) receptor, and its overexpression in HepG2 cell lines leads to efficient secretion of hepatitis B e antigen (HBeAg) following challenge with a large dose of cell culture-derived HBV (cHBV) particles. However, NTCP-reconstituted HepG2 cells are inefficiently infected by patient serum-derived HBV (sHBV) and release very little hepatitis B surface antigen (HBsAg) following cHBV infection, unlike differentiated HepaRG cells, which are naturally susceptible to both cHBV and sHBV particles. Here, we investigated whether NTCP could explain the different behaviors of the two cell types. Endogenous NTCP protein from differentiated HepaRG cells was unglycosylated despite wild-type coding sequence. HepaRG cells stably transfected with an epitope-tagged NTCP expression construct displayed higher sHBV but not cHBV susceptibility than cells transfected with the null mutant. Tagged NTCP introduced to both HepG2 and HepaRG cells was glycosylated, with N5 and N11 being sites of N-linked glycosylation. Mutating N5, N11, or both did not alter cell surface availability of NTCP or its subcellular localization, with both the singly glycosylated and nonglycosylated forms still capable of mediating cHBV infection in HepG2 cells. In conclusion, nonglycosylated NTCP is expressed by differentiated HepaRG cells and capable of mediating cHBV infection in HepG2 cells, but it cannot explain differential susceptibility of HepaRG and HepG2/NTCP cells to cHBV versus sHBV infection and different HBsAg/HBeAg ratios following cHBV infection. The responsible host factor(s) remains to be identified.IMPORTANCE HBV can infect differentiated HepaRG cells and also HepG2 cells overexpressing NTCP, the currently accepted HBV receptor. However, HepG2/NTCP cells remain poorly susceptible to patient serum-derived HBV particles and release very little hepatitis B surface antigen following infection by cell culture-derived HBV. We found differentiated HepaRG cells expressed nonglycosylated NTCP despite a wild-type coding sequence. NTCP introduced to HepG2 cells was glycosylated at two N-linked glycosylation sites, but mutating either or both sites failed to prevent infection by cell culture-derived HBV or to confer susceptibility to serum-derived HBV. Overexpressing NTCP in HepRG cells did not increase infection by cell culture-derived HBV or distort the ratio between the two viral antigens. These findings suggest that host factors unique to HepaRG cells are required for efficient infection by serum-derived HBV, and factors other than NTCP contribute to balanced viral antigen production following infection by cell culture-derived HBV.
Collapse
Affiliation(s)
- Jiwon Lee
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Li Zong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Molecular Virology Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alexander Krotow
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lucy Jia
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Molecular Virology Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
148
|
Kitamura K, Que L, Shimadu M, Koura M, Ishihara Y, Wakae K, Nakamura T, Watashi K, Wakita T, Muramatsu M. Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathog 2018; 14:e1007124. [PMID: 29928064 PMCID: PMC6013022 DOI: 10.1371/journal.ppat.1007124] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. Chronic HBV infection is a key factor in these severe liver diseases. During infection, HBV forms a nuclear viral episome in the form of covalently closed circular DNA (cccDNA). Current therapies are not able to efficiently eliminate cccDNA from infected hepatocytes. cccDNA is a master template for viral replication that is formed by the conversion of its precursor, relaxed circular DNA (rcDNA). However, the host factors critical for cccDNA formation remain to be determined. Here, we assessed whether one potential host factor, flap structure-specific endonuclease 1 (FEN1), is involved in cleavage of the flap-like structure in rcDNA. In a cell culture HBV model (Hep38.7-Tet), expression and activity of FEN1 were reduced by siRNA, shRNA, CRISPR/Cas9-mediated genome editing, and a FEN1 inhibitor. These reductions in FEN1 expression and activity did not affect nucleocapsid DNA (NC-DNA) production, but did reduce cccDNA levels in Hep38.7-Tet cells. Exogenous overexpression of wild-type FEN1 rescued the reduced cccDNA production in FEN1-depleted Hep38.7-Tet cells. Anti-FEN1 immunoprecipitation revealed the binding of FEN1 to HBV DNA. An in vitro FEN activity assay demonstrated cleavage of 5′-flap from a synthesized HBV DNA substrate. Furthermore, cccDNA was generated in vitro when purified rcDNA was incubated with recombinant FEN1, DNA polymerase, and DNA ligase. Importantly, FEN1 was required for the in vitro cccDNA formation assay. These results demonstrate that FEN1 is involved in HBV cccDNA formation in cell culture system, and that FEN1, DNA polymerase, and ligase activities are sufficient to convert rcDNA into cccDNA in vitro. Hepatitis B virus (HBV) infection remains a worldwide health problem that affects more than 350 million people. HBV is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. HBV covalently closed circular DNA (cccDNA) is a key viral intermediate for persistent infection. However, the molecular mechanism of cccDNA formation has not been clarified. Here, we found that the host factor flap-endonuclease 1 (FEN1) is pivotal in cccDNA formation. We developed a novel cccDNA formation assay by the incubation of purified viral DNA with recombinant FEN1, DNA polymerase, and DNA ligase. This study provides new insights into the molecular mechanisms of cccDNA formation and proposes FEN1 as a potential anti-HBV drug target.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Lusheng Que
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Miyuki Shimadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yuuki Ishihara
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takashi Nakamura
- Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
149
|
Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation. J Virol 2018; 92:JVI.02139-17. [PMID: 29669831 DOI: 10.1128/jvi.02139-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) core protein consists of an N-terminal assembly domain and a C-terminal domain (CTD) with seven conserved serines or threonines that are dynamically phosphorylated/dephosphorylated during the viral replication cycle. Sulfamoylbenzamide derivatives are small molecular core protein allosteric modulators (CpAMs) that bind to the heteroaryldihydropyrimidine (HAP) pocket between the core protein dimer-dimer interfaces. CpAM binding alters the kinetics and pathway of capsid assembly and can result in the formation of morphologically "normal" capsids devoid of viral pregenomic RNA (pgRNA) and DNA polymerase. In order to investigate the mechanism underlying CpAM inhibition of pgRNA encapsidation, we developed an immunoblotting assay that can resolve core protein based on its phosphorylation status and demonstrated, for the first time, that core protein is hyperphosphorylated in free dimers and empty capsids from both mock-treated and CpAM-treated cells but is hypophosphorylated in pgRNA- and DNA-containing nucleocapsids. Interestingly, inhibition of pgRNA encapsidation by a heat shock protein 90 (HSP90) inhibitor prevented core protein dephosphorylation. Moreover, core proteins with point mutations at the wall of the HAP pocket, V124A and V124W, assembled empty capsids and nucleocapsids with altered phosphorylation status. The results thus suggest that core protein dephosphorylation occurs in the assembly of pgRNA and that interference with the interaction between core protein subunits at dimer-dimer interfaces during nucleocapsid assembly alters not only capsid structure, but also core protein dephosphorylation. Hence, inhibition of pgRNA encapsidation by CpAMs might be due to disruption of core protein dephosphorylation during nucleocapsid assembly.IMPORTANCE Dynamic phosphorylation of HBV core protein regulates multiple steps of viral replication. However, the regulatory function was mainly investigated by phosphomimetic mutagenesis, which disrupts the natural dynamics of core protein phosphorylation/dephosphorylation. Development of an immunoblotting assay capable of resolving hyper- and hypophosphorylated core proteins allowed us to track the phosphorylation status of core proteins existing as free dimers and the variety of intracellular capsids and to investigate the role of core protein phosphorylation/dephosphorylation in viral replication. Here, we found that disruption of core protein interaction at dimer-dimer interfaces during nucleocapsid assembly (by CpAMs or mutagenesis) inhibited core protein dephosphorylation and pgRNA packaging. Our work has thus revealed a novel function of core protein dephosphorylation in HBV replication and the mechanism by which CpAMs, a class of compounds that are currently in clinical trials for treatment of chronic hepatitis B, induce the assembly of empty capsids.
Collapse
|
150
|
Hosoya N, Ono M, Miyagawa K. Somatic role of SYCE2: an insulator that dissociates HP1α from H3K9me3 and potentiates DNA repair. Life Sci Alliance 2018; 1:e201800021. [PMID: 30456351 PMCID: PMC6238414 DOI: 10.26508/lsa.201800021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
The synaptonemal complex is a proteinaceous structure essential for meiotic recombination, and its components have been assumed to play a role exclusively in the germ line. However, SYCE2, a component constituting the synaptonemal complex, is expressed at varying levels in somatic cells. Considering its potent protein-binding activities, it may be possible that SYCE2 plays a somatic role by affecting nuclear functions. Here, we show that SYCE2 constitutively insulates HP1α from trimethylated histone H3 lysine 9 (H3K9me3) to promote DNA double-strand break repair. Unlike other HP1α-binding proteins, which use the canonical PXVXL motifs for their bindings, SYCE2 interacts with the chromoshadow domain of HP1α through its N-terminal hydrophobic sequence. SYCE2 reduces HP1α-H3K9me3 binding without affecting H3K9me3 levels and potentiates ataxia telangiectasia mutated-mediated double-strand break repair activity even in the absence of exogenous DNA damage. Such a somatic role of SYCE2 is ubiquitously observed even if its expression levels are low. These findings suggest that SYCE2 plays a somatic role in the link between the nuclear microenvironment and the DNA damage response potentials as a scaffold of HP1α localization.
Collapse
Affiliation(s)
- Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|