101
|
Formation of the factory matrix is an important, though not a sufficient function of nonstructural protein mu NS during reovirus infection. Virology 2008; 375:412-23. [PMID: 18374384 DOI: 10.1016/j.virol.2008.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/24/2022]
Abstract
Genome replication of mammalian orthoreovirus (MRV) occurs in cytoplasmic inclusion bodies called viral factories. Nonstructural protein microNS, encoded by genome segment M3, is a major constituent of these structures. When expressed without other viral proteins, microNS forms cytoplasmic inclusions morphologically similar to factories, suggesting a role for microNS as the factory framework or matrix. In addition, most other MRV proteins, including all five core proteins (lambda1, lambda2, lambda3, micro2, and sigma2) and nonstructural protein sigmaNS, can associate with microNS in these structures. In the current study, small interfering RNA targeting M3 was transfected in association with MRV infection and shown to cause a substantial reduction in microNS expression as well as, among other effects, a reduction in infectious yields by as much as 4 log(10) values. By also transfecting in vitro-transcribed M3 plus-strand RNA containing silent mutations that render it resistant to the small interfering RNA, we were able to complement microNS expression and to rescue infectious yields by ~100-fold. We next used microNS mutants specifically defective at forming factory-matrix structures to show that this function of microNS is important for MRV growth; point mutations in a C-proximal, putative zinc-hook motif as well as small deletions at the extreme C terminus of microNS prevented rescue of viral growth while causing microNS to be diffusely distributed in cells. We furthermore confirmed that an N-terminally truncated form of microNS, designed to represent microNSC and still able to form factory-matrix structures, is unable to rescue MRV growth, localizing one or more other important functions to an N-terminal region of microNS known to be involved in both micro2 and sigmaNS association. Thus, factory-matrix formation is an important, though not a sufficient function of microNS during MRV infection; microNS is multifunctional in the course of viral growth.
Collapse
|
102
|
Abstract
Human noroviruses cause more than 90% of epidemic nonbacterial gastroenteritis. However, the role of B cells and antibody in the immune response to noroviruses is unclear. Previous studies have demonstrated that human norovirus specific antibody levels increase upon infection, but they may not be protective against infection. In this report, we used murine norovirus (MNV), an enteric norovirus, as a model to determine the importance of norovirus specific B cells and immune antibody in clearance of norovirus infection. We show here that mice genetically deficient in B cells failed to clear primary MNV infection as effectively as wild-type mice. In addition, adoptively transferred immune splenocytes derived from B-cell-deficient mice or antibody production-deficient mice were unable to efficiently clear persistent MNV infection in RAG1(-/-) mice. Further, adoptive transfer of either polyclonal anti-MNV serum or neutralizing anti-MNV monoclonal antibodies was sufficient to reduce the level of MNV infection both systemically and in the intestine. Together, these data demonstrate that antibody plays an important role in the clearance of MNV and that immunoglobulin G anti-norovirus antibody can play an important role in clearing mucosal infection.
Collapse
|
103
|
Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML. Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J 2008; 27:1289-98. [PMID: 18369316 DOI: 10.1038/emboj.2008.60] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 02/27/2008] [Indexed: 01/27/2023] Open
Abstract
Nonenveloped animal viruses must disrupt or perforate a cell membrane during entry. Recent work with reovirus has shown formation of size-selective pores in RBC membranes in concert with structural changes in capsid protein mu1. Here, we demonstrate that mu1 fragments released from reovirus particles are sufficient for pore formation. Both myristoylated N-terminal fragment mu1N and C-terminal fragment phi are released from particles. Both also associate with RBC membranes and contribute to pore formation in the absence of particles, but mu1N has the primary and sufficient role. Particles with a mutant form of mu1, unable to release mu1N or form pores, lack the ability to associate with membranes. They are, however, recruited by pores preformed with peptides released from wild-type particles or with synthetic mu1N. The results provide evidence that docking to membrane pores by virus particles may be a next step in membrane penetration after pore formation by released peptides.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
104
|
NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J Virol 2008; 82:3181-91. [PMID: 18216114 DOI: 10.1128/jvi.01612-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reovirus cell entry is mediated by attachment to cell surface carbohydrate and junctional adhesion molecule A (JAM-A) and internalization by beta1 integrin. The beta1 integrin cytoplasmic tail contains two NPXY motifs, which function in recruitment of adaptor proteins and clathrin for endocytosis and serve as sorting signals for internalized cargo. As reovirus infection requires disassembly in the endocytic compartment, we investigated the role of the beta1 integrin NPXY motifs in reovirus internalization. In comparison to wild-type cells (beta1+/+ cells), reovirus infectivity was significantly reduced in cells expressing mutant beta1 integrin in which the NPXY motifs were altered to NPXF (beta1+/+Y783F/Y795F cells). However, reovirus displayed equivalent binding and internalization levels following adsorption to beta1+/+ cells and beta1+/+Y783F/Y795F cells, suggesting that the NPXY motifs are essential for transport of reovirus within the endocytic pathway. Reovirus entry into beta1+/+ cells was blocked by chlorpromazine, an inhibitor of clathrin-mediated endocytosis, while entry into beta1+/+Y783F/Y795F cells was unaffected. Furthermore, virus was distributed to morphologically distinct endocytic organelles in beta1+/+ and beta1+/+Y783F/Y795F cells, providing further evidence that the beta1 integrin NPXY motifs mediate sorting of reovirus in the endocytic pathway. Thus, NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry, which indicates a key role for these sequences in endocytosis of a pathogenic virus.
Collapse
|
105
|
A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 2007; 1:147-57. [PMID: 18005692 PMCID: PMC2034303 DOI: 10.1016/j.chom.2007.03.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/16/2007] [Accepted: 03/19/2007] [Indexed: 02/06/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are highly tractable experimental models for studies of double-stranded (ds) RNA virus replication and pathogenesis. Reoviruses infect respiratory and intestinal epithelium and disseminate systemically in newborn animals. Until now, a strategy to rescue infectious virus from cloned cDNA has not been available for any member of the Reoviridae family of dsRNA viruses. We report the generation of viable reovirus following plasmid transfection of murine L929 (L) cells using a strategy free of helper virus and independent of selection. We used the reovirus reverse genetics system to introduce mutations into viral capsid proteins σ1 and σ3 and to rescue a virus that expresses a green fluorescent protein (GFP) transgene, thus demonstrating the tractability of this technology. The plasmid-based reverse genetics approach described here can be exploited for studies of reovirus replication and pathogenesis and used to develop reovirus as a vaccine vector.
Collapse
|
106
|
Reovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency. J Virol 2007; 82:161-72. [PMID: 17959662 DOI: 10.1128/jvi.01739-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis and myocarditis in infected animals. Differences in apoptosis efficiency displayed by reovirus strains are linked to the viral mu1-encoding M2 gene segment. Studies using pharmacologic inhibitors of reovirus replication demonstrate that apoptosis induction by reovirus requires viral disassembly in cellular endosomes but not RNA synthesis. Since the mu1 protein functions to pierce endosomal membranes during this temporal window, these findings point to an important role for mu1 in activating signaling pathways that lead to apoptosis. To understand mechanisms used by mu1 to induce apoptosis, a panel of mu1 mutant viruses generated by reverse genetics was analyzed for the capacities to penetrate host cell membranes, activate proapoptotic signaling pathways, evoke cell death, and produce encephalitis in newborn mice. We found that single amino acid changes within the delta region of mu1 reduce the efficiency of membrane penetration. These mutations also diminish the capacities of reovirus to activate proapoptotic transcription factors NF-kappaB and IRF-3 and elicit apoptosis. Additionally, we observed that following intracranial inoculation, an apoptosis-deficient mu1 mutant is less virulent in newborn mice in comparison to the wild-type virus. These results indicate a critical function for the membrane penetration activity of mu1 in evoking prodeath signaling pathways that regulate reovirus pathogenesis.
Collapse
|
107
|
Holm GH, Zurney J, Tumilasci V, Leveille S, Danthi P, Hiscott J, Sherry B, Dermody TS. Retinoic acid-inducible gene-I and interferon-beta promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. J Biol Chem 2007; 282:21953-61. [PMID: 17540767 DOI: 10.1074/jbc.m702112200] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During viral infection, cells initiate antiviral responses to contain replication and inhibit virus spread. One protective mechanism involves activation of transcription factors interferon regulatory factor-3 (IRF-3) and NF-kappaB, resulting in secretion of the antiviral cytokine, interferon-beta. Another is induction of apoptosis, killing the host cell before virus disseminates. Mammalian reovirus induces both interferon-beta and apoptosis, raising the possibility that both pathways are initiated by a common cellular sensor. We show here that reovirus activates IRF-3 with kinetics that parallel the activation of NF-kappaB, a known mediator of reovirus-induced apoptosis. Activation of IRF-3 requires functional retinoic acid inducible gene-I and interferon-beta promoter stimulator-1, but these intracellular sensors are dispensable for activation of NF-kappaB. Interferon-beta promoter stimulator-1 and IRF-3 are required for efficient apoptosis following reovirus infection, suggesting a common mechanism of antiviral cytokine induction and activation of the cell death response.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-2581, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Agosto MA, Middleton JK, Freimont EC, Yin J, Nibert ML. Thermolabilizing pseudoreversions in reovirus outer-capsid protein micro 1 rescue the entry defect conferred by a thermostabilizing mutation. J Virol 2007; 81:7400-9. [PMID: 17507494 PMCID: PMC1933377 DOI: 10.1128/jvi.02720-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heat-resistant mutants selected from infectious subvirion particles of mammalian reoviruses have determinative mutations in the major outer-capsid protein micro 1. Here we report the isolation and characterization of intragenic pseudoreversions of one such thermostabilizing mutation. From a plaque that had survived heat selection, a number of viruses with one shared mutation but different second-site mutations were isolated. The effect of the shared mutation alone or in combination with second-site mutations was examined using recoating genetics. The shared mutation, D371A, was found to confer (i) substantial thermostability, (ii) an infectivity defect that followed attachment but preceded viral protein synthesis, and (iii) resistance to micro 1 rearrangement in vitro, with an associated failure to lyse red blood cells. Three different second-site mutations were individually tested in combination with D371A and found to wholly or partially revert these phenotypes. Furthermore, when tested alone in recoated particles, each of these three second-site mutations conferred demonstrable thermolability. This and other evidence suggest that pseudoreversion of micro 1-based thermostabilization can occur by a general mechanism of micro 1-based thermolabilization, not requiring a specific compensatory mutation. The thermostabilizing mutation D371A as well as 9 of the 10 identified second-site mutations are located near contact regions between micro 1 trimers in the reovirus outer capsid. The availability of both thermostabilizing and thermolabilizing mutations in micro 1 should aid in defining the conformational rearrangements and mechanisms involved in membrane penetration during cell entry by this structurally complex nonenveloped animal virus.
Collapse
Affiliation(s)
- Melina A Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
109
|
Johansson C, Wetzel JD, He J, Mikacenic C, Dermody TS, Kelsall BL. Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. ACTA ACUST UNITED AC 2007; 204:1349-58. [PMID: 17502662 PMCID: PMC2118611 DOI: 10.1084/jem.20061587] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We defined the function of type I interferons (IFNs) in defense against reovirus strain type 1 Lang (T1L), which is a double-stranded RNA virus that infects Peyer's patches (PPs) after peroral inoculation of mice. T1L induced expression of mRNA for IFN-alpha, IFN-beta, and Mx-1 in PPs and caused localized intestinal infection that was cleared in 10 d. In contrast, T1L produced fatal systemic infection in IFNalphaR1 knockout (KO) mice with extensive cell loss in lymphoid tissues and necrosis of the intestinal mucosa. Studies of bone-marrow chimeric mice indicated an essential role for hematopoietic cells in IFN-dependent viral clearance. Dendritic cells (DCs), including conventional DCs (cDCs), were the major source of type I IFNs in PPs of reovirus-infected mice, whereas all cell types expressed the antiviral protein Mx-1. Neither NK cells nor signaling via Toll-like receptor 3 or MyD88 were essential for viral clearance. These data demonstrate a requirement for type I IFNs in the control of an intestinal viral infection and indicate that cDCs are a significant source of type I IFN production in vivo. Therefore, innate immunity in PPs is an essential component of host defense that limits systemic spread of pathogens that infect the intestinal mucosa.
Collapse
Affiliation(s)
- Cecilia Johansson
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
110
|
Reading SA, Dimmock NJ. Neutralization of animal virus infectivity by antibody. Arch Virol 2007; 152:1047-59. [PMID: 17516034 DOI: 10.1007/s00705-006-0923-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 11/24/2022]
Abstract
Neutralization is the ability of antibody to bind to and inactivate virus infectivity under defined conditions in vitro. Most neutralizing antibodies also protect animals in vivo, but protection is more complex as it also involves interaction of antibody with cells and molecules of the innate immune system. Neutralization by antibody can be mediated by a number of different mechanisms: by aggregation of virions, destabilization of the virion structure, inhibition of virion attachment to target cells, inhibition of the fusion of the virion lipid membrane with the membrane of the host cell, inhibition of the entry of the genome of non-enveloped viruses into the cell cytoplasm, inhibition of a function of the virion core through a signal transduced by an antibody, transcytosing IgA, and binding to nascent virions to block their budding or release from the cell surface. The mechanism of neutralization is determined by the properties of both a virion epitope and the antibody that reacts with it. Further, since a virus has at least several unique epitopes sited in different locations on the virion, and since the paratope and other properties of the reacting antibody can vary, this means that a virus can be neutralized by several different mechanisms. Understanding the processes of neutralization informs the creation of modern vaccines, and gives valuable insights into virus-cell interactions.
Collapse
Affiliation(s)
- S A Reading
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
111
|
Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML. Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 2007; 361:412-25. [PMID: 17208266 PMCID: PMC1913285 DOI: 10.1016/j.virol.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.
Collapse
Affiliation(s)
- Jason K Middleton
- Department of Chemical and Biological Engineering, College of Engineering, The Graduate School, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
112
|
Goodman AG, Smith JA, Balachandran S, Perwitasari O, Proll SC, Thomas MJ, Korth MJ, Barber GN, Schiff LA, Katze MG. The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism. J Virol 2006; 81:2221-30. [PMID: 17166899 PMCID: PMC1865913 DOI: 10.1128/jvi.02151-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.
Collapse
Affiliation(s)
- Alan G Goodman
- Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Hansberger MW, Campbell JA, Danthi P, Arrate P, Pennington KN, Marcu KB, Ballard DW, Dermody TS. IkappaB kinase subunits alpha and gamma are required for activation of NF-kappaB and induction of apoptosis by mammalian reovirus. J Virol 2006; 81:1360-71. [PMID: 17121808 PMCID: PMC1797491 DOI: 10.1128/jvi.01860-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reoviruses induce apoptosis both in cultured cells and in vivo. Apoptosis plays a major role in the pathogenesis of reovirus encephalitis and myocarditis in infected mice. Reovirus-induced apoptosis is dependent on the activation of transcription factor NF-kappaB and downstream cellular genes. To better understand the mechanism of NF-kappaB activation by reovirus, NF-kappaB signaling intermediates under reovirus control were investigated at the level of Rel, IkappaB, and IkappaB kinase (IKK) proteins. We found that reovirus infection leads initially to nuclear translocation of p50 and RelA, followed by delayed mobilization of c-Rel and p52. This biphasic pattern of Rel protein activation is associated with the degradation of the NF-kappaB inhibitor IkappaBalpha but not the structurally related inhibitors IkappaBbeta or IkappaBepsilon. Using IKK subunit-specific small interfering RNAs and cells deficient in individual IKK subunits, we demonstrate that IKKalpha but not IKKbeta is required for reovirus-induced NF-kappaB activation and apoptosis. Despite the preferential usage of IKKalpha, both NF-kappaB activation and apoptosis were attenuated in cells lacking IKKgamma/Nemo, an essential regulatory subunit of IKKbeta. Moreover, deletion of the gene encoding NF-kappaB-inducing kinase, which is known to modulate IKKalpha function, had no inhibitory effect on either response in reovirus-infected cells. Collectively, these findings indicate a novel pathway of NF-kappaB/Rel activation involving IKKalpha and IKKgamma/Nemo, which together mediate the expression of downstream proapoptotic genes in reovirus-infected cells.
Collapse
Affiliation(s)
- Mark W Hansberger
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Agosto MA, Ivanovic T, Nibert ML. Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. Proc Natl Acad Sci U S A 2006; 103:16496-501. [PMID: 17053074 PMCID: PMC1637610 DOI: 10.1073/pnas.0605835103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Indexed: 01/24/2023] Open
Abstract
During cell entry, reovirus particles with a diameter of 70-80 nm must penetrate the cellular membrane to access the cytoplasm. The mechanism of penetration, without benefit of membrane fusion, is not well characterized for any such nonenveloped animal virus. Lysis of RBCs is an in vitro assay for the membrane perforation activity of reovirus; however, the mechanism of lysis has been unknown. In this report, osmotic-protection experiments using PEGs of different sizes revealed that reovirus-induced lysis of RBCs occurs osmotically, after formation of small size-selective lesions or "pores." Consistent results were obtained by monitoring leakage of fluorophore-tagged dextrans from the interior of resealed RBC ghosts. Gradient fractionations showed that whole virus particles, as well as the myristoylated fragment mu1N that is released from particles, are recruited to RBC membranes in association with pore formation. We propose that formation of small pores is a discrete, intermediate step in the reovirus membrane-penetration pathway, which may be shared by other nonenveloped animal viruses.
Collapse
Affiliation(s)
- Melina A. Agosto
- Department of Microbiology and Molecular Genetics
- Biological and Biomedical Sciences Training Program, and
| | - Tijana Ivanovic
- Department of Microbiology and Molecular Genetics
- Training Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics
- Biological and Biomedical Sciences Training Program, and
- Training Program in Virology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
115
|
Farone AL, O'Donnell SM, Brooks CS, Young KM, Pierce JM, Wetzel JD, Dermody TS, Farone MB. Reovirus Strain-Dependent Inflammatory Cytokine Responses and Replication Patterns in a Human Monocyte Cell Line. Viral Immunol 2006; 19:546-57. [PMID: 16987072 DOI: 10.1089/vim.2006.19.546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Mammalian Orthoreoviruses are important models for studies of viral pathogenesis. In the rat lung, Reovirus strain type 3 Dearing (T3D) induces substantially more inflammation than does strain type 1 Lang (T1L). To better understand mechanisms underlying differences in the host inflammatory response elicited by T1L and T3D, we characterized cytokine expression patterns induced by those strains after infection of THP-1 monocyte cells. THP-1 cells were adsorbed with either viable or ultraviolet- inactivated T1L and T3D and assayed for mRNA and protein production of growth-regulated oncogene-alpha (GRO-alpha), interleukin-8 (IL-8), or tumor necrosis factor-alpha (TNF-alpha). T3D stimulated mRNA and protein production of all three cytokines, whereas T1L stimulated mRNA and protein production of IL-8 and TNF-alpha but not GRO-alpha. In each case, T3D induced greater cytokine mRNA and protein expression than did T1L. Nonviable virus did not stimulate detectable cytokine secretion, suggesting a requirement for viral RNA synthesis in cytokine induction by THP-1 cells. A greater percentage of THP-1 cells was infected with T1L than T3D as assessed by infectious center assay, and T1L achieved higher yields of infectious progeny than did T3D in infected THP-1 cells as determined by plaque assay. These strain-dependent differences in cytokine responses and corresponding replication patterns in monocyte cells parallel findings made in studies of rat models of pneumonia and provide clues about how Reovirus interfaces with the host innate immune response to produce pulmonary disease.
Collapse
Affiliation(s)
- Anthony L Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Kobayashi T, Chappell JD, Danthi P, Dermody TS. Gene-specific inhibition of reovirus replication by RNA interference. J Virol 2006; 80:9053-63. [PMID: 16940517 PMCID: PMC1563907 DOI: 10.1128/jvi.00276-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/03/2006] [Indexed: 01/26/2023] Open
Abstract
Mammalian reoviruses contain a genome of 10 segments of double-stranded RNA (dsRNA). Reovirus replication and assembly occur within distinct structures called viral inclusions, which form in the cytoplasm of infected cells. Viral nonstructural proteins muNS and sigmaNS and core protein mu2 play key roles in forming viral inclusions and recruiting other viral proteins and RNA to these structures for replication and assembly. However, the precise functions of these proteins in viral replication are poorly defined. Therefore, to better understand the functions of reovirus proteins associated with formation of viral inclusions, we used plasmid-based vectors to establish 293T cell lines stably expressing small interfering RNAs (siRNAs) specific for transcripts encoding the mu2, muNS, and sigmaNS proteins of strain type 3 Dearing (T3D). Infectivity assays revealed that yields of T3D, but not those of strain type 1 Lang, were significantly decreased in 293T cells stably expressing mu2, muNS, or sigmaNS siRNA. Stable expression of siRNAs specific for any one of these proteins substantially diminished viral dsRNA, protein synthesis, and inclusion formation, indicating that each is a critical component of the viral replication machinery. Using cell lines stably expressing muNS siRNA, we developed a complementation system to rescue viral replication by transient transfection with recombinant T3D muNS in which silent mutations were introduced into the sequence targeted by the muNS siRNA. Furthermore, we demonstrated that muNSC, which lacks the first 40 amino residues of muNS, is incapable of restoring reovirus growth in the complementation system. These results reveal interdependent functions for viral inclusion proteins and indicate that cell lines stably expressing reovirus siRNAs are useful tools for the study of viral protein structure-function relationships.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Pediatrics, and Lamb Center for Pediatric Research (D7235 MCN), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
117
|
Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, Nemerow GR, Bergelson JM, Dermody TS. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 2006; 80:2760-70. [PMID: 16501085 PMCID: PMC1395463 DOI: 10.1128/jvi.80.6.2760-2770.2006] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Microbiology and Immunology, Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Wetzel JD, Barton ES, Chappell JD, Baer GS, Mochow-Grundy M, Rodgers SE, Shyr Y, Powers AC, Thomas JW, Dermody TS. Reovirus delays diabetes onset but does not prevent insulitis in nonobese diabetic mice. J Virol 2006; 80:3078-82. [PMID: 16501117 PMCID: PMC1395416 DOI: 10.1128/jvi.80.6.3078-3082.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 12/19/2005] [Indexed: 11/20/2022] Open
Abstract
Mice infected with reovirus develop abnormalities in glucose homeostasis. Reovirus strain type 3 Abney (T3A) was capable of systemic infection of nonobese diabetic (NOD) mice, an experimental model of autoimmune diabetes. Reovirus antigen was detected in pancreatic islets of T3A-infected mice, and primary cultures of pancreatic islets from NOD mice supported T3A growth. Significantly fewer T3A-infected animals compared to uninfected controls developed diabetes. However, despite the alteration in diabetes penetrance, insulitis was evident in T3A-infected mice. These results suggest that viral infection of NOD mice alters autoimmune responses to beta-cell antigens and thereby delays development of diabetes.
Collapse
Affiliation(s)
- J Denise Wetzel
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Li M, Cuff CF, Pestka JJ. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-gamma responses. Toxicol Appl Pharmacol 2006; 214:318-25. [PMID: 16504231 PMCID: PMC7125810 DOI: 10.1016/j.taap.2006.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 12/25/2022]
Abstract
Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 × 107 plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus λ2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 μg/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG2a in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG2a in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-γ responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-γ responses.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Christopher F. Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224. Fax: +1 517 353 8963.
| |
Collapse
|
120
|
Smith JA, Schmechel SC, Raghavan A, Abelson M, Reilly C, Katze MG, Kaufman RJ, Bohjanen PR, Schiff LA. Reovirus induces and benefits from an integrated cellular stress response. J Virol 2006; 80:2019-33. [PMID: 16439558 PMCID: PMC1367166 DOI: 10.1128/jvi.80.4.2019-2033.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Following infection with most reovirus strains, viral protein synthesis is robust, even when cellular translation is inhibited. To gain further insight into pathways that regulate translation in reovirus-infected cells, we performed a comparative microarray analysis of cellular gene expression following infection with two strains of reovirus that inhibit host translation (clone 8 and clone 87) and one strain that does not (Dearing). Infection with clone 8 and clone 87 significantly increased the expression of cellular genes characteristic of stress responses, including the integrated stress response. Infection with these same strains decreased transcript and protein levels of P58(IPK), the cellular inhibitor of the eukaryotic initiation factor 2alpha (eIF2alpha) kinases PKR and PERK. Since infection with host shutoff-inducing strains of reovirus impacted cellular pathways that control eIF2alpha phosphorylation and unphosphorylated eIF2alpha is required for translation initiation, we examined reovirus replication in a variety of cell lines with mutations that impact eIF2alpha phosphorylation. Our results revealed that reovirus replication is more efficient in the presence of eIF2alpha kinases and phosphorylatable eIF2alpha. When eIF2alpha is phosphorylated, it promotes the synthesis of ATF4, a transcription factor that controls cellular recovery from stress. We found that the presence of this transcription factor increased reovirus yields 10- to 100-fold. eIF2alpha phosphorylation also led to the formation of stress granules in reovirus-infected cells. Based on these results, we hypothesize that eIF2alpha phosphorylation facilitates reovirus replication in two ways-first, by inducing ATF4 synthesis, and second, by creating an environment that places abundant reovirus transcripts at a competitive advantage for limited translational components.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Microbiology, University of Minnesota, 420 Delaware Street SE, MMC 196, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
O'Donnell SM, Holm GH, Pierce JM, Tian B, Watson MJ, Chari RS, Ballard DW, Brasier AR, Dermody TS. Identification of an NF-kappaB-dependent gene network in cells infected by mammalian reovirus. J Virol 2006; 80:1077-86. [PMID: 16414985 PMCID: PMC1346919 DOI: 10.1128/jvi.80.3.1077-1086.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 10/26/2005] [Indexed: 12/24/2022] Open
Abstract
Reovirus infection activates NF-kappaB, which leads to programmed cell death in cultured cells and in the murine central nervous system. However, little is known about how NF-kappaB elicits this cellular response. To identify host genes activated by NF-kappaB following reovirus infection, we used HeLa cells engineered to express a degradation-resistant mutant of IkappaBalpha (mIkappaBalpha) under the control of an inducible promoter. Induction of mIkappaBalpha inhibited the activation of NF-kappaB and blocked the expression of NF-kappaB-responsive genes. RNA extracted from infected and uninfected cells was used in high-density oligonucleotide microarrays to examine the expression of constitutively activated genes and reovirus-stimulated genes in the presence and absence of an intact NF-kappaB signaling axis. Comparison of the microarray profiles revealed that the expression of 176 genes was significantly altered in the presence of mIkappaBalpha. Of these genes, 64 were constitutive and not regulated by reovirus, and 112 were induced in response to reovirus infection. NF-kappaB-regulated genes could be grouped into four distinct gene clusters that were temporally regulated. Gene ontology analysis identified biological processes that were significantly overrepresented in the reovirus-induced genes under NF-kappaB control. These processes include the antiviral innate immune response, cell proliferation, response to DNA damage, and taxis. Comparison with previously identified NF-kappaB-dependent gene networks induced by other stimuli, including respiratory syncytial virus, Epstein-Barr virus, tumor necrosis factor alpha, and heart disease, revealed a number of common components, including CCL5/RANTES, CXCL1/GRO-alpha, TNFAIP3/A20, and interleukin-6. Together, these results suggest a genetic program for reovirus-induced apoptosis involving NF-kappaB-directed expression of cellular genes that activate death signaling pathways in infected cells.
Collapse
Affiliation(s)
- Sean M O'Donnell
- Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Clark KM, Wetzel JD, Gu Y, Ebert DH, McAbee SA, Stoneman EK, Baer GS, Zhu Y, Wilson GJ, Prasad BVV, Dermody TS. Reovirus variants selected for resistance to ammonium chloride have mutations in viral outer-capsid protein sigma3. J Virol 2006; 80:671-81. [PMID: 16378970 PMCID: PMC1346852 DOI: 10.1128/jvi.80.2.671-681.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the sigma3 protein and proteolytic cleavage of the mu1/mu1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the sigma3-encoding S4 gene. The deduced sigma3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of sigma3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant sigma3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of sigma3 demonstrated native capsid protein organization and minimal alterations in sigma3 structure. These results suggest that mutations in sigma3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.
Collapse
Affiliation(s)
- Kimberly M Clark
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37241, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Campbell JA, Schelling P, Wetzel JD, Johnson EM, Forrest JC, Wilson GAR, Aurrand-Lions M, Imhof BA, Stehle T, Dermody TS. Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J Virol 2005; 79:7967-78. [PMID: 15956543 PMCID: PMC1143703 DOI: 10.1128/jvi.79.13.7967-7978.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reovirus infections are initiated by the binding of viral attachment protein sigma1 to receptors on the surface of host cells. The sigma1 protein is an elongated fiber comprised of an N-terminal tail that inserts into the virion and a C-terminal head that extends from the virion surface. The prototype reovirus strains type 1 Lang/53 (T1L/53) and type 3 Dearing/55 (T3D/55) use junctional adhesion molecule A (JAM-A) as a receptor. The C-terminal half of the T3D/55 sigma1 protein interacts directly with JAM-A, but the determinants of receptor-binding specificity have not been identified. In this study, we investigated whether JAM-A also mediates the attachment of the prototype reovirus strain type 2 Jones/55 (T2J/55) and a panel of field-isolate strains representing each of the three serotypes. Antibodies specific for JAM-A were capable of inhibiting infections of HeLa cells by T1L/53, T2J/55, and T3D/55, demonstrating that strains of all three serotypes use JAM-A as a receptor. To corroborate these findings, we introduced JAM-A or the structurally related JAM family members JAM-B and JAM-C into Chinese hamster ovary cells, which are poorly permissive for reovirus infection. Both prototype and field-isolate reovirus strains were capable of infecting cells transfected with JAM-A but not those transfected with JAM-B or JAM-C. A sequence analysis of the sigma1-encoding S1 gene segment of the strains chosen for study revealed little conservation in the deduced sigma1 amino acid sequences among the three serotypes. This contrasts markedly with the observed sequence variability within each serotype, which is confined to a small number of amino acids. Mapping of these residues onto the crystal structure of sigma1 identified regions of conservation and variability, suggesting a likely mode of JAM-A binding via a conserved surface at the base of the sigma1 head domain.
Collapse
Affiliation(s)
- Jacquelyn A Campbell
- Department of Microbiology and Immunology, Elizabeth B. Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
O'Donnell SM, Hansberger MW, Connolly JL, Chappell JD, Watson MJ, Pierce JM, Wetzel JD, Han W, Barton ES, Forrest JC, Valyi-Nagy T, Yull FE, Blackwell TS, Rottman JN, Sherry B, Dermody TS. Organ-specific roles for transcription factor NF-kappaB in reovirus-induced apoptosis and disease. J Clin Invest 2005; 115:2341-50. [PMID: 16100570 PMCID: PMC1184036 DOI: 10.1172/jci22428] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 05/31/2005] [Indexed: 11/17/2022] Open
Abstract
Reovirus induces apoptosis in cultured cells and in vivo. In cell culture models, apoptosis is contingent upon a mechanism involving reovirus-induced activation of transcription factor NF-kappaB complexes containing p50 and p65/RelA subunits. To explore the in vivo role of NF-kappaB in this process, we tested the capacity of reovirus to induce apoptosis in mice lacking a functional nfkb1/p50 gene. The genetic defect had no apparent effect on reovirus replication in the intestine or dissemination to secondary sites of infection. In comparison to what was observed in wild-type controls, apoptosis was significantly diminished in the CNS of p50-null mice following reovirus infection. In sharp contrast, the loss of p50 was associated with massive reovirus-induced apoptosis and uncontrolled reovirus replication in the heart. Levels of IFN-beta mRNA were markedly increased in the hearts of wild-type animals but not p50-null animals infected with reovirus. Treatment of p50-null mice with IFN-beta substantially diminished reovirus replication and apoptosis, which suggests that IFN-beta induction by NF-kappaB protects against reovirus-induced myocarditis. These findings reveal an organ-specific role for NF-kappaB in the regulation of reovirus-induced apoptosis, which modulates encephalitis and myocarditis associated with reovirus infection.
Collapse
Affiliation(s)
- Sean M O'Donnell
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Smith JA, Schmechel SC, Williams BRG, Silverman RH, Schiff LA. Involvement of the interferon-regulated antiviral proteins PKR and RNase L in reovirus-induced shutoff of cellular translation. J Virol 2005; 79:2240-50. [PMID: 15681426 PMCID: PMC546589 DOI: 10.1128/jvi.79.4.2240-2250.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular translation is inhibited following infection with most strains of reovirus, but the mechanisms responsible for this phenomenon remain to be elucidated. The extent of host shutoff varies in a strain-dependent manner; infection with the majority of strains leads to strong host shutoff, while infection with strain Dearing results in minimal inhibition of cellular translation. A genetic study with reassortant viruses and subsequent biochemical analyses led to the hypothesis that the interferon-induced, double-stranded RNA-activated protein kinase, PKR, is responsible for reovirus-induced host shutoff. To directly determine whether PKR is responsible for reovirus-induced host shutoff, we used a panel of reovirus strains and mouse embryo fibroblasts derived from knockout mice. This approach revealed that PKR contributes to but is not wholly responsible for reovirus-induced host shutoff. Studies with cells lacking RNase L, the endoribonuclease component of the interferon-regulated 2',5'-oligoadenylate synthetase-RNase L system, demonstrated that RNase L also down-regulates cellular protein synthesis in reovirus-infected cells. In many viral systems, PKR and RNase L have well-characterized antiviral functions. An analysis of reovirus replication in cells lacking these molecules indicated that, while they contributed to host shutoff, neither PKR nor RNase L exerted an antiviral effect on reovirus growth. In fact, some strains of reovirus replicated more efficiently in the presence of PKR and RNase L than in their absence. Data presented in this report illustrate that the inhibition of cellular translation following reovirus infection is complex and involves multiple interferon-regulated gene products. In addition, our results suggest that reovirus has evolved effective mechanisms to avoid the actions of the interferon-stimulated antiviral pathways that include PKR and RNase L and may even benefit from their expression.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Microbiology, University of Minnesota, 420 Delaware St., Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
126
|
Li M, Cuff CF, Pestka J. Modulation of Murine Host Response to Enteric Reovirus Infection by the Trichothecene Deoxynivalenol. Toxicol Sci 2005; 87:134-45. [PMID: 15958657 DOI: 10.1093/toxsci/kfi225] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on the known capacity of deoxynivalenol (DON) to target gut lymphoid tissue and IgA production, it was hypothesized that this mycotoxin interferes with the immune response to enteric reovirus infection. When mice were orally gavaged, first with 25 mg/kg bw DON, and then with reovirus serotype 1, strain Lang (T1/L) 2 or 12 h later, viral titers in the GI tract were 10-fold higher than control mice after 5 days. Virus was almost completely cleared in both treatment and control groups from intestinal tissue after 10 days. Real-time PCR indicated that, in infected control mice, reovirus lambda2 core spike (L2 gene) RNA per g feces in infected mice that were pretreated with DON was significantly higher at 1, 3, and 5 days than in infected mice only. In reovirus-infected mice, DON at doses of 10 and 25 mg/kg bw but not 2 and 5 mg/kg bw increased fecal L2 RNA, whereas DON doses as low as 2 mg/kg potentiated L2 RNA levels in Peyer's patches (PP). Reovirus-specific IgA levels in feces of mice treated with DON were significantly elevated, as were specific IgA responses in lamina propria and PP fragment cultures. Similar effects were observed for serum IgA and IgG. DON suppressed IFN-gamma responses in PP to reovirus at 3 and 5 days as compared to infected controls, while IL-2 mRNA concentrations were unaffected. Although reovirus alone did not induce Th2 cytokine mRNAs in PP, DON exposure significantly elevated IL-4, IL-6, and IL-10 mRNA expression at various times during the infection. ELISPOT revealed that mRNA expression data corresponded to suppression of IFN-gamma- and enhancement of IL-4-producing cell responses in PP cultures from DON-treated mice. Taken together, these data suggest that DON transiently increased both severity of the reovirus infection and shedding in feces as well as elevated reovirus IgA responses. These effects corresponded to suppressed Th1 and enhanced Th2 cytokine expression.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
127
|
Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 2005; 11:522-30. [PMID: 15852016 PMCID: PMC1458527 DOI: 10.1038/nm1240] [Citation(s) in RCA: 412] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 03/30/2005] [Indexed: 02/06/2023]
Abstract
Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.
Collapse
Affiliation(s)
- Theodore Oliphant
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Michael Engle
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Grant E Nybakken
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Chris Doane
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Syd Johnson
- MacroGenics, 1500 East Guide Drive, Rockville, 20850 Maryland USA
| | - Ling Huang
- MacroGenics, 1500 East Guide Drive, Rockville, 20850 Maryland USA
| | - Sergey Gorlatov
- MacroGenics, 1500 East Guide Drive, Rockville, 20850 Maryland USA
| | - Erin Mehlhop
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Anantha Marri
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Kyung Min Chung
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Gregory D Ebel
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, 12159 New York USA
| | - Laura D Kramer
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, 12159 New York USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| |
Collapse
|
128
|
Hoyt CC, Richardson-Burns SM, Goody RJ, Robinson BA, Debiasi RL, Tyler KL. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. J Virol 2005; 79:2743-53. [PMID: 15708993 PMCID: PMC548430 DOI: 10.1128/jvi.79.5.2743-2753.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 10/11/2004] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which viruses kill susceptible cells in target organs and ultimately produce disease in the infected host remain poorly understood. Dependent upon the site of inoculation and strain of virus, experimental infection of neonatal mice with reoviruses can induce fatal encephalitis or myocarditis. Reovirus-induced apoptosis is a major mechanism of tissue injury, leading to disease development in both the brain and heart. In cultured cells, differences in the capacity of reovirus strains to induce apoptosis are determined by the S1 gene segment, which also plays a major role as a determinant of viral pathogenesis in both the heart and the central nervous system (CNS) in vivo. The S1 gene is bicistronic, encoding both the viral attachment protein sigma-1 and the nonstructural protein sigma-1-small (sigma1s). Although sigma1s is dispensable for viral replication in vitro, we wished to investigate the expression of sigma1s in the infected heart and brain and its potential role in reovirus pathogenesis in vivo. Two-day-old mice were inoculated intramuscularly or intracerebrally with either sigma1s(-) or sigma1s(+) reovirus strains. While viral replication in target organs did not differ between sigma1s(-) and sigma1s(+) viral strains, virus-induced caspase-3 activation and resultant histological tissue injury in both the heart and brain were significantly reduced in sigma1s(-) reovirus-infected animals. These results demonstrate that sigma1s is a determinant of the magnitude and extent of reovirus-induced apoptosis in both the heart and CNS and thereby contributes to reovirus pathogenesis and virulence.
Collapse
Affiliation(s)
- Cristen C Hoyt
- Department of Neurology (B-182), University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
129
|
Montufar-Solis D, Klein JR. Experimental intestinal reovirus infection of mice: what we know, what we need to know. Immunol Res 2005; 33:257-65. [PMID: 16462002 PMCID: PMC2745836 DOI: 10.1385/ir:33:3:257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reovirus, a member of the Reoviridae family, is a ubiquitous virus in vertebrate hosts. Although disease caused by reovirus infection is for the most part mild, studies of reovirus have particularly been valuable as a model for understanding the local host response to replicating foreign antigen in intestinal and respiratory sites. In this article, a brief overview is presented of the basic features of reovirus infection, as will the host's humoral and cellular immune response during the infectious cycle. New information regarding the interactions and involvement of immune response molecules during reovirus infection will be presented based on multiple analyte array studies from our laboratory.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
130
|
Helander A, Miller CL, Myers KS, Neutra MR, Nibert ML. Protective immunoglobulin A and G antibodies bind to overlapping intersubunit epitopes in the head domain of type 1 reovirus adhesin sigma1. J Virol 2004; 78:10695-705. [PMID: 15367636 PMCID: PMC516417 DOI: 10.1128/jvi.78.19.10695-10705.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonfusogenic mammalian orthoreovirus (reovirus) is an enteric pathogen of mice and a useful model for studies of how an enteric virus crosses the mucosal barrier of its host and is subject to control by the mucosal immune system. We recently generated and characterized a new murine immunoglobulin A (IgA)-class monoclonal antibody (MAb), 1E1, that binds to the adhesin fiber, sigma1, of reovirus type 1 Lang (T1L) and thereby neutralizes the infectivity of that strain in cell culture. 1E1 is produced in hybridoma cultures as a mixture of monomers, dimers, and higher polymers and is protective against peroral challenges with T1L either when the MAb is passively administered or when it is secreted into the intestines of mice bearing subcutaneous hybridoma tumors. In the present study, selection and analysis of mutants resistant to neutralization by 1E1 identified the region of T1L sigma1 to which the MAb binds. The region bound by a previously characterized type 1 sigma1-specific neutralizing IgG MAb, 5C6, was identified in the same way. Each of the 15 mutants isolated and analyzed was found to be much less sensitive to neutralization by either 1E1 or 5C6, suggesting the two MAbs bind to largely overlapping regions of sigma1. The tested mutants retained the capacity to recognize specific glycoconjugate receptors on rabbit M cells and cultured epithelial cells, even though viral binding to epithelial cells was inhibited by both MAbs. S1 sequence determinations for 12 of the mutants identified sigma1 mutations at four positions between residues 415 and 447, which contribute to forming the receptor-binding head domain. When aligned with the sigma1 sequence of reovirus type 3 Dearing (T3D) and mapped onto the previously reported crystal structure of the T3D sigma1 trimer, the four positions cluster on the side of the sigma1 head, across the interface between two subunits. Three such interface-spanning epitopes are thus present per sigma1 trimer and require the intact quaternary structure of the head domain for MAb binding. Identification of these intersubunit epitopes on sigma1 opens the way for further studies of the mechanisms of antibody-based neutralization and protection with type 1 reoviruses.
Collapse
Affiliation(s)
- Anna Helander
- GI Cell Biology Laboratory, Children's Hospital, Department of Pediatrics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
131
|
Richardson-Burns SM, Tyler KL. Regional differences in viral growth and central nervous system injury correlate with apoptosis. J Virol 2004; 78:5466-75. [PMID: 15113925 PMCID: PMC400348 DOI: 10.1128/jvi.78.10.5466-5475.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of neonatal mice with reovirus T3 Dearing (T3D), the prototypic neurotropic reovirus, causes fatal encephalitis associated with neuronal injury and virus-induced apoptosis throughout the brain. T3D variant K (VarK) is an antigenic variant that has a nearly 1 million-fold reduction in neurovirulence following intracerebral (i.c.) inoculation compared to T3D and a restricted pattern of central nervous system injury with damage limited to the hippocampus, sparing other brain regions. We wished to determine whether the restricted pattern of VarK-induced injury was due to a reduced capacity to replicate in or injure cortical, as opposed to hippocampal, tissue. We found that following i.c. inoculation, VarK grew to similar titers as T3D in the hippocampus but had significantly lower titers in the cortex. Both viruses grew to identical titers and infected the same percentage of cells in mouse primary hippocampal cultures (MHC). In mouse primary cortical cultures (MCC) both the number of infected cells and the viral yield per infected cell were significantly lower for VarK than T3D. VarK-induced apoptosis was limited to the hippocampus in vivo, and in vitro both viruses induced apoptosis equally in MHC but VarK induced significantly less apoptosis than T3D in MCC. Growth of T3D in MCC was reduced to levels comparable to those of VarK following treatment of MCC with caspase inhibitors. Conversely, induction of apoptosis in VarK-infected MCC with fatty acid synthase-activating antibody significantly enhanced viral yield. These results suggest that the decreased neurovirulence of VarK may be due to its failure to efficiently induce apoptosis in cortical neurons.
Collapse
Affiliation(s)
- Sarah M Richardson-Burns
- Neuroscience Program, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
132
|
Saito T, Shinozaki K, Matsunaga T, Ogawa T, Etoh T, Muramatsu T, Kawamura K, Yoshida H, Ohnuma N, Shirasawa H. Lack of evidence for reovirus infection in tissues from patients with biliary atresia and congenital dilatation of the bile duct. J Hepatol 2004; 40:203-11. [PMID: 14739089 DOI: 10.1016/j.jhep.2003.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIMS To clarify the association between the reovirus infection of the hepatobiliary tree and the development of infantile obstructive cholangiopathy (IOC) including biliary atresia (BA) and congenital dilatation of the bile duct (CBD). METHODS We designed reovirus common primers for nested RT-PCR based on the L3 gene segment. The spectrum and the sensitivity of common primers were evaluated with purified reoviral RNAs and reovirus mixed with stool samples. Then, nested RT-PCRs were performed with hepatobiliary and fecal samples obtained from patients with BA, CBD, and control diseases. Additionally, electron microscopy of stool samples was performed. RESULTS The L3 common primers could amplify cDNAs synthesized from RNAs of three prototypes of reovirus, and detect as much as 5.0x10(3) plaque forming unit of serotype 3 Dearing strain in 100 mg of fecal samples. However, no amplification product was detected in 136 hepatobiliary tissues taken from 67 patients including 26 BAs and 28 CBDs, or in 65 fecal samples obtained from 15 patients including 10 BAs and 1 CBD. Additionally, viral particles were not found in any stool specimens by the electron microscope. CONCLUSIONS These data do not suggest that reoviruses play a major role in the etiology of IOC or BA.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Pediatric Surgery (E6), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J Virol 2004; 78:947-57. [PMID: 14694126 PMCID: PMC368743 DOI: 10.1128/jvi.78.2.947-957.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 10/02/2003] [Indexed: 12/18/2022] Open
Abstract
Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the sigma1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-sigma1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2(BBe) intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-sigma1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-sigma1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the sigma1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.
Collapse
Affiliation(s)
- Amy B Hutchings
- GI Cell Biology Laboratory, Children's Hospital, Departments of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Golden JW, Bahe JA, Lucas WT, Nibert ML, Schiff LA. Cathepsin S supports acid-independent infection by some reoviruses. J Biol Chem 2003; 279:8547-57. [PMID: 14670972 DOI: 10.1074/jbc.m309758200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
135
|
Forrest JC, Campbell JA, Schelling P, Stehle T, Dermody TS. Structure-function analysis of reovirus binding to junctional adhesion molecule 1. Implications for the mechanism of reovirus attachment. J Biol Chem 2003; 278:48434-44. [PMID: 12966102 DOI: 10.1074/jbc.m305649200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses are nonenveloped viruses with a long, filamentous attachment protein that dictates disease phenotypes following infection of newborn mice and is a structural homologue of the adenovirus attachment protein. Reoviruses use junctional adhesion molecule 1 (JAM1) as a serotype-independent cellular receptor. JAM1 is a broadly expressed immunoglobulin superfamily protein that forms stable homodimers and regulates tight-junction permeability and lymphocyte trafficking. We employed a series of structure-guided binding and infection experiments to define residues in human JAM1 (hJAM1) important for reovirus-receptor interactions and to gain insight into mechanisms of reovirus attachment. Binding and infection experiments using chimeric and domain deletion mutant receptor molecules indicate that the amino-terminal D1 domain of hJAM1 is required for reovirus attachment, infection, and replication. Reovirus binding to hJAM1 occurs more rapidly than homotypic hJAM1 association and is competed by excess hJAM1 in vitro and on cells. Cross-linking hJAM1 diminishes the capacity of reovirus to bind hJAM1 in vitro and on cells and negates the competitive effects of soluble hJAM1 on reovirus attachment. Finally, mutagenesis studies demonstrate that residues intimately associated with the hJAM1 dimer interface are critical for reovirus interactions with hJAM1. These results suggest that reovirus attachment disrupts hJAM1 dimers and highlight similarities between the attachment strategies of reovirus and adenovirus.
Collapse
Affiliation(s)
- J Craig Forrest
- Department of Microbiology and Immunology, and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
136
|
Mozdzanowska K, Feng J, Gerhard W. Virus-neutralizing activity mediated by the Fab fragment of a hemagglutinin-specific antibody is sufficient for the resolution of influenza virus infection in SCID mice. J Virol 2003; 77:8322-8. [PMID: 12857901 PMCID: PMC165237 DOI: 10.1128/jvi.77.15.8322-8328.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 05/13/2003] [Indexed: 11/20/2022] Open
Abstract
Antibodies (Abs) contribute to the control of influenza virus infection in vivo by reducing progeny virus yield from infected cells (yield reduction [YR]) and by inhibiting progeny virus from spreading the infection to new host cells (virus neutralization [VN]). Previous studies showed that the infection could be resolved in severe combined immunodeficiency (SCID) mice by treatment with hemagglutinin (HA)-specific monoclonal antibodies (MAbs) that exhibit both VN and YR activities but not by MAbs that exhibited only YR activity. To determine whether virus clearance requires both activities, we measured the therapeutic activity of an HA-specific MAb (VN and YR) and its Fab fragment (VN) by intranasal (i.n.) administration to infected SCID mice. Immunoglobulin G (IgG) and Fab cleared the infection with i.n. 50% effective doses (ED(50)s) of 16 and 90 pmol, respectively. To resolve an established infection solely by VN activity, Fab must be present in the respiratory tract at an effective threshold concentration until all infected cells have died and production of virus has ceased. Because IgG and Fab had different half-lives in the respiratory tract (22 and 8 h, respectively) and assuming that both operated mainly or solely by VN, it could be estimated that clearance was achieved 24 h after Ab treatment when both reagents were present in the respiratory tract at approximately 10 pmol. This dose was approximately 200 times larger than the respiratory tract-associated Ab dose resulting from administration of the intraperitoneal ED(50) (270 pmol) of IgG. This indicated that our procedure of i.n. administration of Ab did not make optimal use of the Ab's therapeutic activity.
Collapse
|
137
|
Barton ES, Youree BE, Ebert DH, Forrest JC, Connolly JL, Valyi-Nagy T, Washington K, Wetzel JD, Dermody TS. Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease. J Clin Invest 2003; 111:1823-33. [PMID: 12813018 PMCID: PMC161418 DOI: 10.1172/jci16303] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infection of neonatal mice with some reovirus strains produces a disease similar to infantile biliary atresia, but previous attempts to correlate reovirus infection with this disease have yielded conflicting results. We used isogenic reovirus strains T3SA- and T3SA+, which differ solely in the capacity to bind sialic acid as a coreceptor, to define the role of sialic acid in reovirus encephalitis and biliary tract infection in mice. Growth in the intestine was equivalent for both strains following peroral inoculation. However, T3SA+ spread more rapidly from the intestine to distant sites and replicated to higher titers in spleen, liver, and brain. Strikingly, mice infected with T3SA+ but not T3SA- developed steatorrhea and bilirubinemia. Liver tissue from mice infected with T3SA+ demonstrated intense inflammation focused at intrahepatic bile ducts, pathology analogous to that found in biliary atresia in humans, and high levels of T3SA+ antigen in bile duct epithelial cells. T3SA+ bound 100-fold more efficiently than T3SA- to human cholangiocarcinoma cells. These observations suggest that the carbohydrate-binding specificity of a virus can dramatically alter disease in the host and highlight the need for epidemiologic studies focusing on infection by sialic acid-binding reovirus strains as a possible contributor to the pathogenesis of neonatal biliary atresia.
Collapse
Affiliation(s)
- Erik S Barton
- Department of Microbiology and Immunology and Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wilson GJ, Nason EL, Hardy CS, Ebert DH, Wetzel JD, Venkataram Prasad BV, Dermody TS. A single mutation in the carboxy terminus of reovirus outer-capsid protein sigma 3 confers enhanced kinetics of sigma 3 proteolysis, resistance to inhibitors of viral disassembly, and alterations in sigma 3 structure. J Virol 2002; 76:9832-43. [PMID: 12208961 PMCID: PMC136532 DOI: 10.1128/jvi.76.19.9832-9843.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian reoviruses undergo acid-dependent proteolytic disassembly within endosomes, resulting in formation of infectious subvirion particles (ISVPs). ISVPs are obligate intermediates in reovirus disassembly that mediate viral penetration into the cytoplasm. The initial biochemical event in the reovirus disassembly pathway is the proteolysis of viral outer-capsid protein sigma 3. Mutant reoviruses selected during persistent infection of murine L929 cells (PI viruses) demonstrate enhanced kinetics of viral disassembly and resistance to inhibitors of endocytic acidification and proteolysis. To identify sequences in sigma 3 that modulate acid-dependent and protease-dependent steps in reovirus disassembly, the sigma 3 proteins of wild-type strain type 3 Dearing; PI viruses L/C, PI 2A1, and PI 3-1; and four novel mutant sigma 3 proteins were expressed in insect cells and used to recoat ISVPs. Treatment of recoated ISVPs (rISVPs) with either of the endocytic proteases cathepsin L or cathepsin D demonstrated that an isolated tyrosine-to-histidine mutation at amino acid 354 (Y354H) enhanced sigma 3 proteolysis during viral disassembly. Yields of rISVPs containing Y354H in sigma3 were substantially greater than those of rISVPs lacking this mutation after growth in cells treated with either acidification inhibitor ammonium chloride or cysteine protease inhibitor E64. Image reconstructions of electron micrographs of virus particles containing wild-type or mutant sigma 3 proteins revealed structural alterations in sigma 3 that correlate with the Y354H mutation. These results indicate that a single mutation in sigma 3 protein alters its susceptibility to proteolysis and provide a structural framework to understand mechanisms of sigma 3 cleavage during reovirus disassembly.
Collapse
Affiliation(s)
- Gregory J Wilson
- Departments of Pediatrics and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
139
|
Richardson-Burns SM, Kominsky DJ, Tyler KL. Reovirus-induced neuronal apoptosis is mediated by caspase 3 and is associated with the activation of death receptors. J Neurovirol 2002; 8:365-80. [PMID: 12402163 DOI: 10.1080/13550280260422677] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reovirus infection of the central nervous system (CNS) is an important experimental system for understanding the pathogenesis of neurotropic viral infection. Infection of neonatal mice with T3 reoviruses causes lethal encephalitis in which injury results from virus-induced apoptosis. We now show that this apoptosis in vivo is associated with activation of caspase 3, and use neuroblastoma and primary neuronal cultures to identify the cellular pathways involved. Reovirus-induced apoptosis in neuronal cultures is initiated by activation of the tumor necrosis factor (TNF) receptor superfamily death receptors and is inhibited by treatment with soluble death receptors (DRs). The DR-associated initiator caspase, caspase 8, is activated following infection, this activation is inhibited by a cell-permeable peptide inhibitor (IETD-CHO). In contrast to our previous findings in non-neuronal cell lines, reovirus-induced neuronal apoptosis is not accompanied by significant release of cytochrome c from the mitochondria or with caspase 9 activation following infection. This suggests that in neuronal cells, unlike their non-neuronal counterparts, the mitochondria-mediated apoptotic pathway associated with cytochrome c release and caspase 9 activation does not play a significant role in augmenting reovirus-induced apoptosis. Consistent with these results, peptide caspase inhibitors show a hierarchy of efficacy in inhibiting reovirus-induced apoptosis, with inhibitors of caspase 3 > caspase 8 >>> caspase 9. These studies provide a comprehensive profile of the pattern of virus-induced apoptotic pathway activation in neuronal culture.
Collapse
Affiliation(s)
- Sarah M Richardson-Burns
- Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
140
|
Golden JW, Linke J, Schmechel S, Thoemke K, Schiff LA. Addition of exogenous protease facilitates reovirus infection in many restrictive cells. J Virol 2002; 76:7430-43. [PMID: 12097555 PMCID: PMC136394 DOI: 10.1128/jvi.76.15.7430-7443.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
141
|
Ebert DH, Deussing J, Peters C, Dermody TS. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 2002; 277:24609-17. [PMID: 11986312 DOI: 10.1074/jbc.m201107200] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After attachment to receptors, reovirus virions are internalized by endocytosis and exposed to acid-dependent proteases that catalyze viral disassembly. Previous studies using the cysteine protease inhibitor E64 and a mutant cell line that does not support reovirus disassembly suggest a requirement for specific endocytic proteases in reovirus entry. This study identifies the endocytic proteases that mediate reovirus disassembly in murine fibroblast cells. Infection of both L929 cells treated with the cathepsin L inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone and cathepsin L-deficient mouse embryo fibroblasts resulted in inefficient proteolytic disassembly of viral outer-capsid proteins and decreased viral yields. In contrast, both L929 cells treated with the cathepsin B inhibitor CA-074Me and cathepsin B-deficient mouse embryo fibroblasts support reovirus disassembly and growth. However, removal of both cathepsin B and cathepsin L activity completely abrogates disassembly and growth of reovirus. Concordantly, cathepsin L mediates reovirus disassembly more efficiently than cathepsin B in vitro. These results demonstrate that either cathepsin L or cathepsin B is required for reovirus entry into murine fibroblasts and indicate that cathepsin L is the primary mediator of reovirus disassembly. Moreover, these findings suggest that specific endocytic proteases can determine host cell susceptibility to infection by intracellular pathogens.
Collapse
Affiliation(s)
- Daniel H Ebert
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
142
|
Jané-Valbuena J, Breun LA, Schiff LA, Nibert ML. Sites and determinants of early cleavages in the proteolytic processing pathway of reovirus surface protein sigma3. J Virol 2002; 76:5184-97. [PMID: 11967333 PMCID: PMC136125 DOI: 10.1128/jvi.76.10.5184-5197.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry of mammalian reovirus virions into target cells requires proteolytic processing of surface protein sigma3. In the virion, sigma3 mostly covers the membrane-penetration protein mu1, appearing to keep it in an inactive form and to prevent it from interacting with the cellular membrane until the proper time in infection. The molecular mechanism by which sigma3 maintains mu1 in this inactive state and the structural changes that accompany sigma3 processing and mu1 activation, however, are not well understood. In this study we characterized the early steps in sigma3 processing and determined their effects on mu1 function and particle infectivity. We identified two regions of high protease sensitivity, "hypersensitive" regions located at residues 208 to 214 and 238 to 244, within which all proteases tested selectively cleaved sigma3 as an early step in processing. Further processing of sigma3 was required for infection, consistent with the fact that the fragments resulting from these early cleavages remained bound to the particles. Reovirus type 1 Lang (T1L), type 3 Dearing (T3D), and T1L x T3D reassortant virions differed in the sites of early sigma3 cleavage, with T1L sigma3 being cleaved mainly at residues 238 to 244 and T3D sigma3 being cleaved mainly at residues 208 to 214. These virions also differed in the rates at which the early cleavages occurred, with cleavage of T1L sigma3 occurring faster than cleavage of T3D sigma3. Analyses using chimeric and site-directed mutants of recombinant sigma3 identified carboxy-proximal residues 344, 347, and 353 as the primary determinants of these strain differences. The spatial relationships between these more carboxy-proximal residues and the hypersensitive regions were discerned from the sigma3 crystal structure. The results indicate that proteolytic processing of sigma3 during reovirus disassembly is a multistep pathway with a number of molecular determinants.
Collapse
Affiliation(s)
- Judit Jané-Valbuena
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
143
|
Leary TP, Erker JC, Chalmers ML, Cruz AT, Wetzel JD, Desai SM, Mushahwar IK, Dermody TS. Detection of mammalian reovirus RNA by using reverse transcription-PCR: sequence diversity within the lambda3-encoding L1 gene. J Clin Microbiol 2002; 40:1368-75. [PMID: 11923358 PMCID: PMC140344 DOI: 10.1128/jcm.40.4.1368-1375.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reoviruses infect virtually all mammalian species, and infection of humans is associated with mild gastrointestinal or upper respiratory illnesses. To improve reovirus detection strategies, we developed a reverse transcription-PCR technique to amplify a fragment of the reovirus L1 gene segment. This assay was capable of detecting 44 of 44 reovirus field isolate strains and was sufficiently sensitive to detect nearly a single viral particle (1.16 +/- 0.13) per PCR of prototype strain type 3 Dearing. Pairwise comparisons of the 44 partial L1 gene sequences revealed that nucleotide variability ranged from 0 to 24.7%, with most of the nucleotide polymorphism occurring at synonymous positions. Phylogenetic trees generated from amplified L1 gene sequences suggest that multiple alleles of the L1 gene cocirculate in nature and that genetic diversity of the L1 gene is largely independent of the host species, geographic locale, or date of isolation. Phylogenetic trees constructed from the L1 gene sequences are distinct from those constructed from the four reovirus S-class gene segments, which supports the hypothesis that reovirus gene segments reassort in nature. This study establishes a new sensitive and specific technique for the identification of mammalian reoviruses and enhances our understanding of reovirus evolution.
Collapse
Affiliation(s)
- Thomas P Leary
- Virus Discovery Group, Abbott Diagnostics Division, Abbott Laboratories, North Chicago, Illinois 60064-6269, USA.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Reovirus infection leads to apoptosis in cultured cells and in vivo. Binding of viral attachment protein final sigma 1 to both sialic acid and junction adhesion molecule is required for induction of apoptosis. However, it is not known whether viral engagement of receptors is sufficient to elicit this cellular response. To determine whether steps in reovirus replication subsequent to viral attachment are required for reovirus-induced apoptosis, we used inhibitors of viral disassembly and RNA synthesis, viral disassembly intermediates, temperature-sensitive (ts) reovirus mutants, and reovirus particles deficient in genomic double-stranded RNA (dsRNA). We found that reovirus-induced apoptosis is abolished in the presence of the viral disassembly inhibitors ammonium chloride and E64. Infectious subvirion particles (ISVPs), which are intermediates in reovirus disassembly that can be generated in vitro by protease treatment, are capable of inducing apoptosis in the presence or absence of these inhibitors. Treatment of cells with the viral RNA synthesis inhibitor ribavirin does not diminish the capacity of reovirus to induce apoptosis, and reovirus ts mutants arrested at defined steps in viral replication produce apoptosis with efficiency similar to that of wild-type virus. Furthermore, reovirus particles lacking dsRNA are capable of inducing apoptosis. Finally, we found that viral attachment and disassembly must occur within the same cellular compartment for reovirus to elicit an apoptotic response. These results demonstrate that disassembly of reovirus virions to form ISVPs, but not viral transcription or subsequent steps in viral replication, is required for reovirus to induce apoptosis.
Collapse
Affiliation(s)
- Jodi L Connolly
- Department of Pediatrics and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
145
|
Silvey KJ, Hutchings AB, Vajdy M, Petzke MM, Neutra MR. Role of immunoglobulin A in protection against reovirus entry into Murine Peyer's patches. J Virol 2001; 75:10870-9. [PMID: 11602727 PMCID: PMC114667 DOI: 10.1128/jvi.75.22.10870-10879.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 08/11/2001] [Indexed: 12/23/2022] Open
Abstract
Reovirus type 1 Lang (T1L) infects the mouse intestinal mucosa by adhering specifically to epithelial M cells and exploiting M-cell transport to enter the Peyer's patches. Oral inoculation of adult mice has been shown to elicit cellular and humoral immune responses that clear the infection within 10 days. This study was designed to determine whether adult mice that have cleared a primary infection are protected against viral entry upon oral rechallenge and, if so, whether antireovirus secretory immunoglobulin A (S-IgA) is a necessary component of protection. Adult BALB/c mice that were orally inoculated on day 0 with reovirus T1L produced antiviral S-IgA in feces and IgG in serum directed primarily against the reovirus sigma1 attachment protein. Eight hours after oral reovirus challenge on day 21, the Peyer's patches of previously exposed mice contained no detectable virus whereas Peyer's patches of naive controls contained up to 2,300 PFU of reovirus/mg of tissue. Orally inoculated IgA knockout (IgA(-/-)) mice cleared the initial infection as effectively as wild-type mice and produced higher levels of reovirus-specific serum IgG and secretory IgM than C57BL/6 wild-type mice. When IgA(-/-) mice were rechallenged on day 21, however, their Peyer's patches became infected. These results indicate that intestinal S-IgA is an essential component of immune protection against reovirus entry into Peyer's patch mucosa.
Collapse
Affiliation(s)
- K J Silvey
- GI Cell Biology Laboratory, Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
146
|
Mochow-Grundy M, Dermody TS. The reovirus S4 gene 3' nontranslated region contains a translational operator sequence. J Virol 2001; 75:6517-26. [PMID: 11413319 PMCID: PMC114375 DOI: 10.1128/jvi.75.14.6517-6526.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus mRNAs are efficiently translated within host cells despite the absence of 3' polyadenylated tails. The 3' nontranslated regions (3'NTRs) of reovirus mRNAs contain sequences that exhibit a high degree of gene-segment-specific conservation. To determine whether the 3'NTRs of reovirus mRNAs serve to facilitate efficient translation of viral transcripts, we used T7 RNA polymerase to express constructs engineered with full-length S4 gene cDNA or truncation mutants lacking sequences in the 3'NTR. Full-length and truncated s4 mRNAs were translated using rabbit reticulocyte lysates, and translation product sigma3 was quantitated by phosphorimager analysis. In comparison to full-length s4 mRNA, translation of the s4 mRNA lacking the 3'NTR resulted in a 20 to 50% decrease in sigma3 produced. Addition to translation reactions of an RNA oligonucleotide corresponding to the S4 3'NTR significantly enhanced translation of full-length s4 mRNA but had no effect on s4 mRNA lacking 3'NTR sequences. Translation of s4 mRNAs with smaller deletions within the 3'NTR identified a discrete region capable of translational enhancement and a second region capable of translational repression. Differences in translational efficiency of full-length and deletion-mutant mRNAs were independent of RNA stability. Protein complexes in reticulocyte lysates that specifically interact with the S4 3'NTR were identified by RNA mobility shift assays. RNA oligonucleotides lacking either enhancer or repressor sequences did not efficiently compete the binding of these complexes to full-length 3'NTR. These results indicate that the reovirus S4 gene 3'NTR contains a translational operator sequence that serves to regulate translational efficiency of the s4 mRNA. Moreover, these findings suggest that cellular proteins interact with reovirus 3'NTR sequences to regulate translation of the nonpolyadenylated reovirus mRNAs.
Collapse
Affiliation(s)
- M Mochow-Grundy
- Department of Microbiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
147
|
Chandran K, Zhang X, Olson NH, Walker SB, Chappell JD, Dermody TS, Baker TS, Nibert ML. Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein. J Virol 2001; 75:5335-42. [PMID: 11333914 PMCID: PMC114938 DOI: 10.1128/jvi.75.11.5335-5342.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian reoviruses, prototype members of the Reoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins--sigma1, mu1, and sigma3--to enter host cells. sigma1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of sigma1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by "recoating" genome-containing core particles that lacked sigma1, mu1, and sigma3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to sigma1. The recoated particles bound to and infected cultured cells in a sigma1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant sigma1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the sigma1 protein. Additional experiments showed that recoated particles containing sigma1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound sigma1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of sigma1 with respect to its structure, assembly into particles, and roles in entry.
Collapse
Affiliation(s)
- K Chandran
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Connolly JL, Barton ES, Dermody TS. Reovirus binding to cell surface sialic acid potentiates virus-induced apoptosis. J Virol 2001; 75:4029-39. [PMID: 11287552 PMCID: PMC114148 DOI: 10.1128/jvi.75.9.4029-4039.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Accepted: 01/29/2001] [Indexed: 11/20/2022] Open
Abstract
Reovirus induces apoptosis in cultured cells and in vivo. Genetic studies indicate that the efficiency with which reovirus strains induce apoptosis is determined by the viral S1 gene, which encodes attachment protein sigma1. However, the biochemical properties of sigma1 that influence apoptosis induction are unknown. To determine whether the capacity of sigma1 to bind cell surface sialic acid determines the magnitude of the apoptotic response, we used isogenic reovirus mutants that differ in the capacity to engage sialic acid. We found that T3SA+, a virus capable of binding sialic acid, induces high levels of apoptosis in both HeLa cells and L cells. In contrast, non-sialic-acid-binding strain T3SA- induces little or no apoptosis in these cell types. Differences in the capacity of T3SA- and T3SA+ to induce apoptosis are not due to differences in viral protein synthesis or production of viral progeny. Removal of cell surface sialic acid with neuraminidase abolishes the capacity of T3SA+ to induce apoptosis. Similarly, incubation of T3SA+ with sialyllactose, a trisaccharide comprised of lactose and sialic acid, blocks apoptosis. These findings demonstrate that reovirus binding to cell surface sialic acid is a critical requirement for the efficient induction of apoptosis and suggest that virus receptor utilization plays an important role in regulating cell death.
Collapse
Affiliation(s)
- J L Connolly
- Departments of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
149
|
Ebert DH, Wetzel JD, Brumbaugh DE, Chance SR, Stobie LE, Baer GS, Dermody TS. Adaptation of reovirus to growth in the presence of protease inhibitor E64 segregates with a mutation in the carboxy terminus of viral outer-capsid protein sigma3. J Virol 2001; 75:3197-206. [PMID: 11238846 PMCID: PMC114113 DOI: 10.1128/jvi.75.7.3197-3206.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus virions are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis leading to degradation of sigma3 protein and proteolytic cleavage of micro1/micro1C protein. E64 is a specific inhibitor of cysteine-containing proteases that blocks disassembly of reovirus virions. To identify domains in reovirus proteins that influence susceptibility to E64-mediated inhibition of disassembly, we selected variant viruses by serial passage of strain type 3 Dearing (T3D) in murine L929 cells treated with E64. E64-adapted variant viruses (D-EA viruses) produced 7- to 17-fold-greater yields than T3D did after infection of cells treated with 100 microM E64. Viral genes that segregate with growth of D-EA viruses in the presence of E64 were identified by using reassortant viruses isolated from independent crosses of E64-sensitive strain type 1 Lang and two prototype D-EA viruses. Growth of reassortant viruses in the presence of E64 segregated with the S4 gene, which encodes outer-capsid protein sigma3. Sequence analysis of S4 genes of three D-EA viruses isolated from independent passage series revealed a common tyrosine-to-histidine mutation at amino acid 354 in the deduced amino acid sequence of sigma3. Proteolysis of D-EA virions by endocytic protease cathepsin L occurred with faster kinetics than proteolysis of wild-type T3D virions. Treatment of D-EA virions, but not T3D virions, with cathepsin D resulted in proteolysis of sigma3, a property that also was found to segregate with the D-EA S4 gene. These results indicate that a region in sigma3 protein containing amino acid 354 influences susceptibility of sigma3 to proteolysis during reovirus disassembly.
Collapse
Affiliation(s)
- D H Ebert
- Departments of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104:441-51. [PMID: 11239401 DOI: 10.1016/s0092-8674(01)00231-8] [Citation(s) in RCA: 481] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.
Collapse
Affiliation(s)
- E S Barton
- Department of Microbiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|