101
|
Seo T, Park J, Lim C, Choe J. Inhibition of nuclear factor kappaB activity by viral interferon regulatory factor 3 of Kaposi's sarcoma-associated herpesvirus. Oncogene 2005; 23:6146-55. [PMID: 15208654 DOI: 10.1038/sj.onc.1207807] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that plays an important role in the immune system and cell death. Many viral proteins modulate NF-kappaB to escape host immune surveillance, promote cell survival, and enhance viral replication. In the present study, we show that NF-kappaB activity is downmodulated by viral interferon regulatory factor 3 (vIRF3), which is encoded by Kaposi's sarcoma-associated herpesvirus open-reading frame K10.5. vIRF3 repressed NF-kappaB-dependent transcription in a dose-dependent manner and inhibited the activation of NF-kappaB induced by tumor necrosis factor (TNF)-alpha. In vivo studies showed vIRF3 inhibited IkappaB kinase beta (IKKbeta) activity, but not IKKalpha activity, resulting in reduced IkappaB phosphorylation. Immunofluorescence assays showed that vIRF3 interfered with nuclear translocation of NF-kappaB. In addition, consistent with the inhibition of NF-kappaB activity, vIRF3 sensitized cells to TNF-alpha-induced apoptosis. While vIRF3 interacts with IKKbeta in vitro and in 293T cells, we were unable to demonstrate vIRF3-IKKbeta interaction in BCBL-1 cells. Our results indicate that vIRF3 can regulate the host immune system and apoptosis via inhibition of NF-kappaB activity.
Collapse
Affiliation(s)
- Taegun Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
102
|
Seo T, Park J, Choe J. Kaposi's Sarcoma–Associated Herpesvirus Viral IFN Regulatory Factor 1 Inhibits Transforming Growth Factor-β Signaling. Cancer Res 2005; 65:1738-47. [PMID: 15753369 DOI: 10.1158/0008-5472.can-04-2374] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus, also called human herpesvirus 8, has been implicated in the pathogenesis of Kaposi's sarcoma, body cavity-based primary effusion lymphoma, and some forms of multicentric Castleman's disease. The Kaposi's sarcoma-associated herpesvirus open reading frame K9 encodes viral IFN regulatory factor 1 (vIRF1), which functions as a repressor of IFN-mediated signal transduction. vIRF1 expression in NIH 3T3 cells leads to transformation and consequently induces malignant fibrosarcoma in nude mice, suggesting that vIRF1 is a strong oncoprotein. Here, we show that vIRF1 inhibited transforming growth factor-beta (TGF-beta) signaling via its targeting of Smad proteins. vIRF1 suppressed TGF-beta-mediated transcription and growth arrest. vIRF1 directly interacted with both Smad3 and Smad4, resulting in inhibition of their transactivation activity. Studies using vIRF1 deletion mutants showed that the central region of vIRF1 was required for vIRF1 association with Smad3 and Smad4 and that this region was also important for inhibition of TGF-beta signaling. In addition, we found that vIRF1 interfered with Smad3-Smad4 complex formation and inhibited Smad3/Smad4 complexes from binding to DNA. These results indicate that vIRF1 inhibits TGF-beta signaling via interaction with Smads. In addition, the data indicate the TGF-beta pathway is an important target for viral oncoproteins.
Collapse
Affiliation(s)
- Taegun Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
103
|
Weber F, Kochs G, Haller O. Inverse interference: how viruses fight the interferon system. Viral Immunol 2005; 17:498-515. [PMID: 15671747 DOI: 10.1089/vim.2004.17.498] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses need to multiply extensively in the infected host in order to ensure transmission to new hosts and survival as a population. This is a formidable task, given the powerful innate and adaptive immune responses of the host. In particular, the interferon (IFN) system plays an important role in limiting virus spread at an early stage of infection. It has become increasingly clear that viruses have evolved multiple strategies to escape the IFN system. They either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. The molecular mechanisms involved range from a broad shut-off of the host cell metabolism to fine-tuned elimination of key components of the IFN system. Type I (alpha/beta) IFNs are produced in direct response to virus infection and double-stranded RNA (dsRNA) molecules that are sensed as a danger signal by infected cells. IFNs induce the expression of a number of antiviral proteins, some of which are again activated by dsRNA. Therefore, many viruses produce dsRNA-binding proteins to sequester the danger signal or express virulence genes that target specific components of the IFN system, such as members of the IFN regulatory factor (IRF) family or components of the JAK-STAT signaling pathway. Finally, some viruses have adopted means to directly suppress the very antiviral effector proteins of the IFN-induced antiviral state directed against them. Evidently, viruses and their host's innate immune responses have coevolved, leading to a subtle balance between virus-promoting and virus-inhibiting factors. A better understanding of virus-host interactions is now emerging with great implications for vaccine development and drug design.
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
104
|
Klass CM, Krug LT, Pozharskaya VP, Offermann MK. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 2005; 105:4028-34. [PMID: 15687238 PMCID: PMC1895088 DOI: 10.1182/blood-2004-09-3569] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a B-cell lymphoma in which human herpesvirus-8 (HHV-8) is found within all tumor cells and represents a target for selectively destroying tumor cells. HHV-8 is latent in most PEL cells and, hence, resistant to antiviral agents that inhibit lytic replication. We demonstrate that PEL cell lines containing HHV-8 without and with coinfection with Epstein-Barr virus responded to the antiseizure medication valproate with entry into the lytic cascade and production of infectious virus. Minimal cell death occurred when noninfected BL-41 cells were incubated with valproate, whereas apoptosis occurred in response to valproate in PELs that supported lytic replication of HHV-8. The anti-viral agents ganciclovir and phosphonoformic acid (PFA) blocked valproate-induced production of infectious virus without blocking entry into the lytic cascade, and apoptosis occurred at levels that were as high as when virus production was not blocked. Ganciclovir and PFA also prevented most valproate-induced expression of the late lytic viral transcript open reading frame 26 (ORF-26), but they did not block the induction of either viral interleukin-6 (vIL-6) or viral G protein-coupled receptor (vGPCR). These studies provide evidence that incubation of PELs with valproate in the presence of ganciclovir or PFA can selectively target tumor cells for apoptosis without increasing viral load.
Collapse
Affiliation(s)
- Carmen M Klass
- Winship Cancer Institute, Emory University, 1365-B Clifton Rd NE, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
105
|
Kalvakolanu DV. The GRIMs: a new interface between cell death regulation and interferon/retinoid induced growth suppression. Cytokine Growth Factor Rev 2004; 15:169-94. [PMID: 15110800 DOI: 10.1016/j.cytogfr.2004.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytokines and vitamins play a central role in controlling neoplastic cell growth. The interferon (IFN) family of cytokines regulates antiviral, anti-tumor, antimicrobial, differentiation, and immune responses in mammals. Significant advances have been made with respect to IFN-induced signal transduction pathways and antiviral responses. However, the IFN-induced anti-tumor actions are poorly defined. Although IFNs themselves inhibit tumor growth, combination of IFNs with retinoids (a class of Vitamin A related compounds) strongly potentiates the IFN-regulated anti-tumor action in a number of cell types. To define the molecular mechanisms involved in IFN/retinoid (RA)-induced apoptosis we have employed a genetic approach and identified several critical genes. In this review, I provide the current picture of IFN- RA- and IFN/RA-regulated growth suppressive pathways. In particular, I focus on a novel set of genes, the genes-associated with retinoid-interferon induced mortality (GRIM). GRIMs may be novel types of tumor suppressors, useful as biological response markers and potentially novel targets for drug development.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cell Biology Graduate Program, Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
106
|
Dornan D, Eckert M, Wallace M, Shimizu H, Ramsay E, Hupp TR, Ball KL. Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol Cell Biol 2004; 24:10083-98. [PMID: 15509808 PMCID: PMC525491 DOI: 10.1128/mcb.24.22.10083-10098.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 1 (IRF-1) and p53 control distinct sets of downstream genes; however, these two antioncogenic transcription factors converge to regulate p21 gene expression and to inhibit tumor formation. Here we investigate the mechanism by which IRF-1 and p53 synergize at the p21 promoter and show that stimulation of p21 transcription by IRF-1 does not require its DNA-binding activity but relies on the ability of IRF-1 to bind the coactivator p300 and to stimulate p53-dependent transcription by an allosteric mechanism. Deletion of the p300-binding sites in IRF-1 eliminates the ability of IRF-1 to stimulate p53 acetylation and associated p53 activity. Complementing this, small peptides derived from the IRF-1-p300 interface can bind to p300, stabilize the binding of p300 to DNA-bound p53, stimulate p53 acetylation in trans, and up-regulate p53-dependent activity from the p21 promoter. The nonacetylatable p53 mutant (p53-6KR) cannot be stimulated by IRF-1, further suggesting that p53 acetylation is the mechanism whereby IRF-1 modifies p53 activity. These data expand the core p300-p53 protein LXXLL and PXXP interface by including an IRF-1-p300 interface as an allosteric modifier of DNA-dependent acetylation of p53 at the p21 promoter.
Collapse
Affiliation(s)
- David Dornan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
107
|
Melroe GT, DeLuca NA, Knipe DM. Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 2004; 78:8411-20. [PMID: 15280450 PMCID: PMC479070 DOI: 10.1128/jvi.78.16.8411-8420.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to viral infection, host cells elicit a number of responses, including the expression of alpha/beta interferon (IFN-alpha/beta). In these cells, IFN regulatory factor-3 (IRF-3) undergoes a sequence of posttranslational modifications that allow it to act as a potent transcriptional coactivator of specific IFN genes, including IFN-beta. We investigated the mechanisms by which herpes simplex virus 1 (HSV-1) inhibits the production of IFN-beta mediated by the IRF-3 signaling pathway. Here, we show that HSV-1 infection can block the accumulation of IFN-beta triggered by Sendai virus (SeV) infection. Our results indicate that HSV-1 infection blocks the nuclear accumulation of activated IRF-3 but does not block the initial virus-induced phosphorylation of IRF-3. The former effect was at least partly mediated by increased turnover of IRF-3 in HSV-1-infected cells. Using mutant viruses, we determined that the immediate-early protein ICP0 was necessary for the inhibition of IRF-3 nuclear accumulation. Expression of ICP0 also had the ability to reduce IFN-beta production induced by SeV infection. ICP0 has been shown previously to play a role in HSV-1 sensitivity to IFN and in the inhibition of antiviral gene production. However, we observed that an ICP0 mutant virus still retained the ability to inhibit the production of IFN-beta. These results argue that HSV-1 has multiple mechanisms to inhibit the production of IFN-beta, providing additional ways in which HSV-1 can block the IFN-mediated host response.
Collapse
Affiliation(s)
- Gregory T Melroe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
108
|
Pozharskaya VP, Weakland LL, Zimring JC, Krug LT, Unger ER, Neisch A, Joshi H, Inoue N, Offermann MK. Short duration of elevated vIRF-1 expression during lytic replication of human herpesvirus 8 limits its ability to block antiviral responses induced by alpha interferon in BCBL-1 cells. J Virol 2004; 78:6621-35. [PMID: 15163753 PMCID: PMC416518 DOI: 10.1128/jvi.78.12.6621-6635.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) encodes multiple proteins that disrupt the host antiviral response, including viral interferon (IFN) regulatory factor 1 (vIRF-1). The product of the vIRF-1 gene blocks responses to IFN when overexpressed by transfection, but the functional consequence of vIRF-1 that is expressed during infection with HHV-8 is not known. These studies demonstrate that BCBL-1 cells that were latently infected with HHV-8 expressed low levels of vIRF-1 that were associated with PML bodies, whereas much higher levels of vIRF-1 were transiently expressed during the lytic phase of HHV-8 replication. The low levels of vIRF-1 that were associated with PML bodies were insufficient to block alpha IFN (IFN-alpha)-induced alterations in gene expression, whereas cells that expressed high levels of vIRF-1 were resistant to some changes induced by IFN-alpha, including the expression of the double-stranded-RNA-activated protein kinase. High levels of vIRF-1 were expressed for only a short period during the lytic cascade, so many cells with HHV-8 in the lytic phase responded to IFN-alpha with increased expression of antiviral genes and enhanced apoptosis. Furthermore, the production of infectious virus was severely compromised when IFN-alpha was present early during the lytic cascade. These studies indicate that the transient expression of high levels of vIRF-1 is inadequate to subvert many of the antiviral effects of IFN-alpha so that IFN-alpha can effectively induce apoptosis and block production of infectious virus when present early in the lytic cascade of HHV-8.
Collapse
Affiliation(s)
- Veronika P Pozharskaya
- Winship Cancer Institute, Emory University, 1365-B Clifton Road N.E., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
More than a half a century ago, interferons (IFN) were identified as antiviral cytokines. Since that discovery, IFN have been in the forefront of basic and clinical cytokine research. The pleiotropic nature of these cytokines continues to engage a large number of investigators to define their actions further. IFN paved the way for discovery of Janus tyrosine kinase (JAK)-signal transducing activators of transcription (STAT) pathways. A number of important tumor suppressive pathways are controlled by IFN. Several infectious pathogens counteract IFN-induced signaling pathways. Recent studies indicate that IFN activate several new protein kinases, including the MAP kinase family, and downstream transcription factors. This review not only details the established IFN signaling paradigms but also provides insights into emerging alternate signaling pathways and mechanisms of pathogen-induced signaling interference.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cellular Biology Graduate Program, Greenebaum Cancer Center, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
110
|
Lubyova B, Kellum MJ, Frisancho AJ, Pitha PM. Kaposi's sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J Biol Chem 2003; 279:7643-54. [PMID: 14668346 DOI: 10.1074/jbc.m309485200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus has been linked to Kaposi's sarcoma, body cavity-based lymphoma, and Castleman's disease. The Kaposi's sarcoma-associated herpesvirus genome contains a cluster of open reading frames encoding proteins (vIRFs) with homology to the cellular transcription factors of the interferon regulatory factor family. vIRF-3, also called LANA2, is a latently expressed nuclear protein. Here we demonstrate that vIRF-3 directly interacts with cellular interferon regulatory factor (IRF) IRF-3, IRF-7, and the transcriptional co-activator CBP/p300. The mapping of the vIRF-3 binding domain revealed that vIRF-3 associates with both IRF-3 and IRF-7 through its C-terminal region. The p300 domain, which interacts with vIRF-3, is distinct from the previously identified IBiD domain, to which both vIRF-1 and IRF-3 bind. Thus, in contrast to vIRF-1, vIRF-3 neither blocks the interaction between IRF-3 and p300 nor inhibits the histone acetylation. Although vIRF-3 is not a DNA-binding protein, it is recruited to the IFNA promoters via its interaction with IRF-3 and IRF-7. The presence of vIRF-3 in the enhanceosome assembled on the IFNA promoters increases binding of IRF-3, IRF-7, and acetylated histone H3 to this promoter region. Consequently, vIRF-3 stimulates the IRF-3- and IRF-7-mediated activation of type I interferon (IFNA and IFNB) genes and the synthesis of biologically active type I interferons in infected B cells. These studies illustrate that vIRF-3 and vIRF-1 have clearly distinct functions. In addition to its co-repressor activity, vIRF-3 can also act as a transcriptional activator on genes controlled by cellular IRF-3 and IRF-7.
Collapse
Affiliation(s)
- Barbora Lubyova
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
111
|
Buryskova M, Pospisek M, Grothey A, Simmet T, Burysek L. Intracellular interleukin-1alpha functionally interacts with histone acetyltransferase complexes. J Biol Chem 2003; 279:4017-26. [PMID: 14612453 DOI: 10.1074/jbc.m306342200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1alpha (IL-1alpha) is an inflammatory cytokine acting extracellularly via membrane receptors. Interestingly, a significant portion of synthesized IL-1alpha is not secreted; instead, it is actively translocated into the cell nucleus. IL-1alpha was indeed shown to be involved in certain intracellular processes, such as control of proliferation, apoptosis, or migration, however, the mechanisms of such actions are not known. Here we show that intracellular IL-1alpha fused to the Gal4p DNA-binding domain (Gal4BD) possesses strong transactivation potential that can be boosted by overexpression of the transcriptional coactivator p300. We demonstrate that the IL-1alpha precursor interacts via its N-terminal peptide (IL-1NTP) with histone acetyltransferases p300, PCAF, Gcn5 and with the adaptor component Ada3, and that it integrates into the PCAF.p300 complex in a non-destructive manner. In analogy with known acidic coactivators, yeast strains expressing Gal4BD/IL-1NTP display a toxic phenotype that can be relieved by depletion of various components of the SAGA complex. Our data provide the first solid evidence for the nuclear target of the IL-1alpha precursor and suggest its novel function in transcriptional control.
Collapse
Affiliation(s)
- Miroslava Buryskova
- Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
112
|
Basler CF, Mikulasova A, Martinez-Sobrido L, Paragas J, Mühlberger E, Bray M, Klenk HD, Palese P, García-Sastre A. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 2003; 77:7945-56. [PMID: 12829834 PMCID: PMC161945 DOI: 10.1128/jvi.77.14.7945-7956.2003] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-beta) promoter and the IFN-stimulated ISG54 promoter (C. Basler et al., Proc. Natl. Acad. Sci. USA 97:12289-12294, 2000). We now show that VP35 inhibits virus infection-induced transcriptional activation of IFN regulatory factor 3 (IRF-3)-responsive mammalian promoters and that VP35 does not block signaling from the IFN-alpha/beta receptor. The ability of VP35 to inhibit this virus-induced transcription correlates with its ability to block activation of IRF-3, a cellular transcription factor of central importance in initiating the host cell IFN response. We demonstrate that VP35 blocks the Sendai virus-induced activation of two promoters which can be directly activated by IRF-3, namely, the ISG54 promoter and the ISG56 promoter. Further, expression of VP35 prevents the IRF-3-dependent activation of the IFN-alpha4 promoter in response to viral infection. The inhibition of IRF-3 appears to occur through an inhibition of IRF-3 phosphorylation. VP35 blocks virus-induced IRF-3 phosphorylation and subsequent IRF-3 dimerization and nuclear translocation. Consistent with these observations, Ebola virus infection of Vero cells activated neither transcription from the ISG54 promoter nor nuclear accumulation of IRF-3. These data suggest that in Ebola virus-infected cells, VP35 inhibits the induction of antiviral genes, including the IFN-beta gene, by blocking IRF-3 activation.
Collapse
Affiliation(s)
- Christopher F Basler
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 2003; 67:175-212, table of contents. [PMID: 12794189 PMCID: PMC156467 DOI: 10.1128/mmbr.67.2.175-212.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection.
Collapse
|
114
|
Cunningham C, Barnard S, Blackbourn DJ, Davison AJ. Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J Gen Virol 2003; 84:1471-1483. [PMID: 12771416 DOI: 10.1099/vir.0.19015-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human herpesvirus 8 (HHV-8) genome contains four tandemly arranged genes encoding viral interferon regulatory factors (vIRF-1 to 4) located between genes 57 and 58. Transcript mapping techniques were employed to determine the sizes, ends and splicing patterns of mRNAs specified by these genes in HHV-8-infected cell lines untreated or chemically induced into the lytic growth cycle. Depending on the cell line used, vIRF-3 transcription was minimally or not induced (i.e. expressed with latent kinetics), whereas the other vIRFs were inducible (i.e. expressed with lytic kinetics). Each gene possessed its own promoter (or promoters) and polyadenylation sites, and all but vIRF-1 were spliced from two exons. vIRF-1 was transcribed in uninduced and induced cells from a single initiation site preceded by a TATA box, with the possible use of an additional TATA box and initiation site in uninduced cells. In induced cells, vIRF-2 was transcribed from a single major initiation site preceded by a TATA box, and vIRF-4 was expressed from two sites each preceded by a TATA box. Transcripts for these genes were insufficiently abundant in uninduced cells to map the 5'-ends. vIRF-3 lacks an obvious TATA box and exhibited heterogeneous 5'-ends in uninduced and induced cells. These data clarify and extend our understanding of the structure and transcription of the HHV-8 vIRF genes.
Collapse
Affiliation(s)
- Charles Cunningham
- MRC Virology Unit, Institute of Biological and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Suzanne Barnard
- Division of Virology, Institute of Biological and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - David J Blackbourn
- Division of Virology, Institute of Biological and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Andrew J Davison
- MRC Virology Unit, Institute of Biological and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
115
|
Esteban M, García MA, Domingo-Gil E, Arroyo J, Nombela C, Rivas C. The latency protein LANA2 from Kaposi's sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. J Gen Virol 2003; 84:1463-1470. [PMID: 12771415 DOI: 10.1099/vir.0.19014-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) uses several strategies to counteract the interferon (IFN) system. In this study, the relationship of the protein LANA2 from KSHV to the IFN-activated protein kinase (PKR) and 2-5A system was analysed. It was found that LANA2 could not abrogate apoptosis or RNA degradation mediated by the 2-5A system. However, expression of LANA2 inhibited apoptosis triggered by PKR. LANA2 also counteracted the PKR-mediated inhibition of protein synthesis and partially blocked PKR-induced phosphorylation of eIF-2alpha. Analysis of PKR-induced activation of caspases 3 and 9 revealed that LANA2 abrogated activation of caspase 3 but not of caspase 9. These findings show that LANA2 is able to interfere with downstream events triggered by PKR. Hence, LANA2 should be considered as a KSHV defence protein against IFN.
Collapse
Affiliation(s)
- M Esteban
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M A García
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - E Domingo-Gil
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal sn, 28040 Madrid, Spain
| | - C Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal sn, 28040 Madrid, Spain
| | - C Rivas
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
116
|
Abstract
Kaposi's sarcoma (KS) is a disease characterized by proliferative vascular lesions, which almost invariably contain the KS-associated herpesvirus (KSHV), also called human herpesvirus 8. KSHV is a lymphotrophic and angiotrophic herpesvirus, whose genome encodes several proteins involved in proliferation, antiapoptotic functions, and inflammation. Most KS spindle cells express latent KSHV genes, but a few express lytic genes, which might be involved in angiogenic and paracrine mechanisms that contribute to KS pathogenesis. A number of tissue culture and mouse models have been established, but a comprehensive system that accurately portrays KS pathogenesis still does not exist.
Collapse
Affiliation(s)
- Darya Bubman
- Pharmacology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, Room C406, New York, NY 10021, USA
| | | |
Collapse
|
117
|
Barnes BJ, Field AE, Pitha-Rowe PM. Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes. J Biol Chem 2003; 278:16630-41. [PMID: 12600985 DOI: 10.1074/jbc.m212609200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the interferon regulatory factor (IRF) family have been identified as critical mediators of early inflammatory gene transcription in infected cells. We have shown previously that IRF-5, like IRF-3 and IRF-7, is a direct transducer of virus-mediated signaling and plays a role in the expression of multiple cytokines/chemokines. The present study is focused on the molecular mechanisms underlying the formation and function of IRF-5/IRF-7 heterodimers in infected cells. The interaction between IRF-5 and IRF-7 is not cooperative and results in a repression rather than enhancement of IFNA gene transcription. The formation of the IRF-5/IRF-7 heterodimer is dependent on IRF-7 phosphorylation, as shown by the glutathione S-transferase pull-down and immunoprecipitation assays. Mapping of the interaction domain revealed that formation of IRF-5/IRF-7 heterodimers occurs through the amino terminus resulting in a masking of the DNA binding domain, the consequent alteration of the composition of the enhanceosome complex binding to IFNA promoters in vivo, and modulation of the expression profile of IFNA subtypes. Thus, these results indicate that IRF-5 can act as both an activator and a repressor of IFN gene induction dependent on the IRF-interacting partner, and IRF-5 may be a part of the regulatory network that ensures timely expression of the immediate early inflammatory genes.
Collapse
Affiliation(s)
- Betsy J Barnes
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA.
| | | | | |
Collapse
|
118
|
Wang XP, Gao SJ. Auto-activation of the transforming viral interferon regulatory factor encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8). J Gen Virol 2003; 84:329-336. [PMID: 12560564 DOI: 10.1099/vir.0.18653-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8-encoded viral interferon regulatory factor (vIRF) transforms NIH3T3 cells, represses interferon signal transduction and regulates the expression of other KSHV genes. Here, we have shown that vIRF is a transcriptional activator and auto-activates its own expression. Ectopic expression of vIRF activated the vIRF promoter in KSHV-negative 293, COS7, HeLa and BJAB cell lines in a dose-dependent fashion in a reporter assay and the expression of vIRF transcripts from endogenous viral genomes in BCBL-1 and BC-1 cells latently infected with KSHV. Deletion analysis identified two cis elements, named Vac1 and Vac2, in the vIRF promoter that were responsive to vIRF activation. vIRF auto-activation via Vac1 but not Vac2 was repressed by Tis, a transcriptional silencer in the vIRF promoter. Neither Vac1 nor Vac2 contain any interferon-stimulated response element (ISRE)-like sequences and are unresponsive to induction with interferon-beta and -gamma. These results indicate that KSHV uses the mechanism of auto-activation to regulate the expression of a viral transforming protein to efficiently evade host tumour suppressor pathways.
Collapse
Affiliation(s)
- Xin-Ping Wang
- Departments of Pediatrics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Tumor Virology Program, Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Shou-Jiang Gao
- Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Departments of Pediatrics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- San Antonio Cancer Institute, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Microbiology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Tumor Virology Program, Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| |
Collapse
|
119
|
Rajcáni J, Kúdelová M. Gamma herpesviruses: pathogenesis of infection and cell signaling. Folia Microbiol (Praha) 2003; 48:291-318. [PMID: 12879740 DOI: 10.1007/bf02931360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Altered cell signaling is the molecular basis for cell proliferation occurring in association with several gamma herpesvirus infections. Three gamma herpesviruses, namely EBV/HHV-4, KSHV/HHV-8 and the MHV-68 (and/or MHV-72) and their unusual cell-pirated gene products are discussed in this respect. The EBV, KSHV as well as the MHV DNA may persist lifelong in an episomal form in the host carrier cells (mainly in lymphocytes but also in macrophages, in non-hornifying squamous epithelium and/or in blood vessel endothelial cells). Under conditions of extremely limited transcription, the EBV-infected cells express EBNA1 (EB nuclear antigen 1), the KSHV infected cells express LANA1 (latent nuclear antigen 1), while the MHV DNA carrier cells express the latency-associated protein M2. With the full set of latency-associated proteins expressed, EBV carrier cells synthesize additional EBNAs and at least one LMP (latent membrane protein 1). The latent KSHV carrier cells, in addition to LANA1, may express a viral cyclin, a viral Fas-DD-like ICE inhibitor protein (vFLIP) and a virus-specific transformation protein called kaposin (K12). In MHV latency with a wide expression of latency-associated proteins, the carrier cells express a LANA analogue (ORF73), the M3 protein, the K3/IE (immediate early) proteins and M11/bcl-2 homologue proteins. During the period of limited gene expression, the latency-associated proteins serve mainly for the maintenance of the latent episomal DNA (a typical example is EBNA1). In contrast, during latency with a broader spectrum gene expression, the virus-encoded products activate transcription of otherwise silenced cellular genes, which leads to the synthesis of enzymes capable of promoting not only viral but also cellular DNA replication. Thus, the latency-associated proteins block apoptosis and drive host cells towards division and immortalization. Proliferation of hemopoetic cells, which had become gamma herpesvirus DNA carriers, can be initiated and strongly enhanced in the presence of inflammatory cytokines and by virus-encoded analogues of interleukins, chemokines and IFN regulator proteins. At early stages of tumor formation, many proliferating hemopoetic and/or endothelium cells, which had became transcriptionally active under the influence of chemokines and cytokines, may not yet be infected. In contrast, at later stages of oncogenesis, the virus-encoded proteins, inducing false signaling and activating the proliferation pathways, bring the previously infected cells into full transformation burst.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Microbiology and Immunology, Jessenius Medical Faculty, Martin, Slovakia.
| | | |
Collapse
|
120
|
Means RE, Choi JK, Nakamura H, Chung YH, Ishido S, Jung JU. Immune evasion strategies of Kaposi's sarcoma-associated herpesvirus. Curr Top Microbiol Immunol 2002; 269:187-201. [PMID: 12224509 DOI: 10.1007/978-3-642-59421-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
To establish lifelong infection in the presence of an active host immune system, herpesviruses have acquired an impressive array of immune modulatory mechanisms that contribute to their success as long-term parasites. Kaposi's sarcoma-associated herpesvirus (KSHV) is the most recently discovered human tumor virus and is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV has acquired a battery of genes to assist in viral survival against the host immune response. These viral gene products target a variety of host immune surveillance mechanisms, including the cytokine-mediated immune response, apoptosis, natural killer (NK) cell killing and T cell-mediated responses. This review summarizes our understanding of the role of these viral proteins in the escape from host immune surveillance, which ultimately contributes to lifelong infection and pathogenesis of KSHV.
Collapse
Affiliation(s)
- R E Means
- Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Regional Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
HHV-8 is a recently identified human herpes virus that can produce tumors, most often in immune compromised hosts. The virus is most closely associated with Kaposi's sarcoma, but is also clearly associated with primary effusion lymphomas and multicentric Castleman's disease. The prevalence of HHV-8 infection varies considerably, but is highest among men who have sex with men and others with histories of sexually transmitted diseases and high numbers of lifetime sexual partners. HHV-8 is shed in saliva, and less commonly in genital secretions. Treatment of HHV-8 associated diseases includes reversal of immune compromise either via discontinuation of immunosuppressives or immune reconstitution via antiretroviral regimens. Specific antiviral drug inhibit HHV-8 replication, and can result in responses in certain HHV-8-associated conditions.
Collapse
Affiliation(s)
- Monica Gandhi
- Infectious Diseases Division, Department of Medicine, University of California, San Francisco, 405 Irving Street, Second Floor, San Francisco, CA 94122, USA
| | | |
Collapse
|
122
|
Gotoh B, Komatsu T, Takeuchi K, Yokoo J. Paramyxovirus strategies for evading the interferon response. Rev Med Virol 2002; 12:337-57. [PMID: 12410527 DOI: 10.1002/rmv.357] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two genera, the Respirovirus (Sendai virus (SeV) and human parainfluenza virus (hPIV3) and the Rubulavirus (simian virus (SV) 5, SV41, mumps virus and hPIV2), of the three in the subfamily Paramyxovirinae inhibit interferon (IFN) signalling to circumvent the IFN response. The viral protein responsible for the inhibition is the C protein for respirovirus SeV and the V protein for the rubulaviruses, both of which are multifunctional accessory proteins expressed from the P gene. SeV suppresses IFN-stimulated tyrosine phosphorylation of signal transducers and activators of transcription (STATs) at an early phase of infection and further inhibits the downstream signalling without degrading any of the signalling components in most cell lines. On the contrary, the Rubulavirus V protein targets Stat1 or Stat2 for degradation. Proteasome-mediated degradation appears to be involved in most cases. Studies on the molecular mechanisms by which paramyxoviruses evade the IFN response will offer important information for modulating the JAK-STAT pathway, designing novel antiviral drugs and recombinant live vaccines, and improving paramyxovirus expression vectors for gene therapy.
Collapse
Affiliation(s)
- Bin Gotoh
- Department of Microbiology, Fukui Medical University School of Medicine, Shimoaizuki 23-3, Matsuoka-cho, Yoshida-gun, Fukui 910-1193, Japan.
| | | | | | | |
Collapse
|
123
|
Seo T, Lee D, Shim YS, Angell JE, Chidambaram NV, Kalvakolanu DV, Choe J. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol 2002; 76:8797-807. [PMID: 12163600 PMCID: PMC136415 DOI: 10.1128/jvi.76.17.8797-8807.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 06/04/2002] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) plays a significant role in the development of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The KSHV open reading frame K9 encodes the viral interferon (IFN) factor 1 (vIRF1), which downregulates IFN- and IRF-mediated transcriptional activation, and leads to cellular transformation in rodent fibroblasts and induction of tumors in nude mice. Using the yeast two-hybrid assay, we identified genes associated with retinoid-IFN-induced mortality-19 (GRIM19), which interacts directly with vIRF1, both in vivo and in vitro. The N-terminal region of vIRF1 is required for binding GRIM19. Colocalization of vIRF1 and GRIM19 was observed in 293T cells. The vIRF1 protein deregulates GRIM19-induced apoptosis in the presence of IFN/all-trans-retinoic acid (RA) and inhibits IFN/RA-induced cell death. Another DNA tumor viral protein, human papillomavirus type 16 E6, also binds GRIM19, suggesting that this is a general target of viral proteins. Our results collectively indicate that vIRF1 modulates IFN/RA-cell death signals via interactions with GRIM19.
Collapse
Affiliation(s)
- Taegun Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
124
|
Barnes BJ, Kellum MJ, Field AE, Pitha PM. Multiple regulatory domains of IRF-5 control activation, cellular localization, and induction of chemokines that mediate recruitment of T lymphocytes. Mol Cell Biol 2002; 22:5721-40. [PMID: 12138184 PMCID: PMC133975 DOI: 10.1128/mcb.22.16.5721-5740.2002] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 05/01/2002] [Accepted: 05/13/2002] [Indexed: 11/20/2022] Open
Abstract
Transcription factors of the interferon regulatory factor (IRF) family have been identified as critical mediators of early inflammatory gene transcription in infected cells. We recently determined that, besides IRF-3 and IRF-7, IRF-5 serves as a direct transducer of virus-mediated signaling. In contrast to that mediated by the other two IRFs, IRF-5-mediated activation is virus specific. We show that, in addition to Newcastle disease virus (NDV) infection, vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) infection activates IRF-5, leading to the induction of IFNA gene subtypes that are distinct from subtypes induced by NDV. The IRF-5-mediated stimulation of inflammatory genes is not limited to IFNA since in BJAB/IRF-5-expressing cells IRF-5 stimulates transcription of RANTES, macrophage inflammatory protein 1 beta, monocyte chemotactic protein 1, interleukin-8, and I-309 genes in a virus-specific manner. By transient- transfection assay, we identified constitutive-activation (amino acids [aa] 410 to 489) and autoinhibitory (aa 490 to 539) domains in the IRF-5 polypeptide. We identified functional nuclear localization signals (NLS) in the amino and carboxyl termini of IRF-5 and showed that both of these NLS are sufficient for nuclear translocation and retention in infected cells. Furthermore, we demonstrated that serine residues 477 and 480 play critical roles in the response to NDV infection. Mutation of these residues from serine to alanine dramatically decreased phosphorylation and resulted in a substantial loss of IRF-5 transactivation in infected cells. Thus, this study defines the regulatory phosphorylation sites that control the activity of IRF-5 in NDV-infected cells and provides further insight into the structure and function of IRF-5. It also shows that the range of IRF-5 immunoregulatory target genes includes members of the cytokine and chemokine superfamilies.
Collapse
Affiliation(s)
- Betsy J Barnes
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
125
|
Sasaki S, Amara RR, Yeow WS, Pitha PM, Robinson HL. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J Virol 2002; 76:6652-9. [PMID: 12050378 PMCID: PMC136278 DOI: 10.1128/jvi.76.13.6652-6659.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 1 (IRF-1), IRF-3, and IRF-7 have been tested as genetic adjuvants for influenza virus hemagglutinin (HA) and nucleoprotein vaccine DNAs. Cotransfection of HA with IRF-3 and IRF-7 increased CD4 T-cell responses by 2- to 4-fold and CD8 T-cell responses by more than 10-fold. Following intramuscular deliveries of DNA, both CD4 and CD8 T cells were biased towards type 1 immune responses and the production of gamma interferon. Following gene gun bombardments of DNA, both were biased towards type 2 immune responses and the production of interleukin-4. The biases of the T-cell responses towards type 1 or type 2 were stronger for immunizations with IRF-3 as an adjuvant than for immunizations with IRF-7 as an adjuvant. Moderate adjuvant effects for antibody were observed. The isotypes of the antibody responses reflected the method of DNA delivery; intramuscular deliveries of DNA predominantly raised immunoglobulin G2a (IgG2a), whereas gene gun deliveries of DNA predominantly raised IgG1. These biases were enhanced by the codelivered IRFs. Overall, under the conditions of our experiments, IRF-3 had good activity for T cells, IRF-7 had good activity for both antibody and T cells, and IRF-1 had good activity for antibody.
Collapse
Affiliation(s)
- Shin Sasaki
- Division of Microbiology and Immunology, Yerkes National Primate Research Center and Vaccine Research Center, Emory University School of Medicine, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
126
|
Nehyba J, Hrdlicková R, Burnside J, Bose HR. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 2002; 22:3942-57. [PMID: 11997525 PMCID: PMC133824 DOI: 10.1128/mcb.22.11.3942-3957.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cloning and functional characterization of a novel interferon regulatory factor (IRF), IRF-10, are described. IRF-10 is most closely related to IRF-4 but differs in both its constitutive and inducible expression. The expression of IRF-10 is inducible by interferons (IFNs) and by concanavalin A. In contrast to that of other IRFs, the inducible expression of IRF-10 is characterized by delayed kinetics and requires protein synthesis, suggesting a unique role in the later stages of an antiviral defense. Accordingly, IRF-10 is involved in the upregulation of two primary IFN-gamma target genes (major histocompatibility complex [MHC] class I and guanylate-binding protein) and interferes with the induction of the type I IFN target gene for 2',5'-oligo(A) synthetase. IRF-10 binds the interferon-stimulated response element site of the MHC class I promoter. In contrast to that of IRF-1, which has some of the same functional characteristics, the expression of IRF-10 is not cytotoxic for fibroblasts or B cells. The expression of IRF-10 is induced by the oncogene v-rel, the proto-oncogene c-rel, and IRF-4 in a tissue-specific manner. Moreover, v-Rel and IRF-4 synergistically cooperate in the induction of IRF-10 in fibroblasts. The level of IRF-10 induction in lymphoid cell lines by Rel proteins correlates with Rel transformation potential. These results suggest that IRF-10 plays a role in the late stages of an immune defense by regulating the expression some of the IFN-gamma target genes in the absence of a cytotoxic effect. Furthermore, IRF-10 expression is regulated, at least in part, by members of the Rel/NF-kappa B and IRF families.
Collapse
Affiliation(s)
- Jirí Nehyba
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095,USA
| | | | | | | |
Collapse
|
127
|
Wong LH, Sim H, Chatterjee-Kishore M, Hatzinisiriou I, Devenish RJ, Stark G, Ralph SJ. Isolation and characterization of a human STAT1 gene regulatory element. Inducibility by interferon (IFN) types I and II and role of IFN regulatory factor-1. J Biol Chem 2002; 277:19408-17. [PMID: 11909852 DOI: 10.1074/jbc.m111302200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transcription factor STAT1 plays a pivotal role in signal transduction of type I and II interferons (IFNs). STAT1 activation leads to changes in expression of key regulatory genes encoding caspases and cell cycle inhibitors. Deficient STAT1 expression in human cancer cells and virally mediated inhibition of STAT1 function have been associated with cellular resistance to IFNs and mycobacterial infection in humans. Thus, given the relative importance of STAT1, we isolated and characterized a human STAT1 intronic enhancer region displaying IFN-regulated activity. Functional analyses by transient expression identified a repressor region and type I and II IFN-inducible elements within the STAT1 enhancer sequence. A candidate IRF-E/GAS/IRF-E (IGI) sequence containing GAAANN nucleotide repeats was shown by gel shift assay to bind to IFN regulatory factor-1 (IRF-1), but not to IFN-stimulated gene factor-3 (ISGF-3) or STAT1-3. An additional larger IGI-binding complex containing IRF-1 was identified. Mutation of the GAAANN repeats within the IGI DNA element eliminated IRF-1 binding and the IFN-regulated activity of the STAT1 intronic enhancer region. Transfection of the IFN-resistant MM96 cell line to express increased levels of IRF-1 protein also elevated STAT1, STAT2, and p48/IRF-9 expression and enhanced cellular responsiveness to IFN-beta. Reciprocating regulation between IRF-1 and STAT1 genes and encoded proteins indicates that an intracellular amplifier circuit exists controlling cellular responsiveness to the IFNs.
Collapse
MESH Headings
- Amino Acid Motifs
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 2
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Exons
- Genes, Reporter
- Genetic Vectors
- Humans
- Interferon Regulatory Factor-1
- Interferon Type I/pharmacology
- Interferon-gamma/pharmacology
- Introns
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phosphoproteins/metabolism
- Polymerase Chain Reaction
- Protein Binding
- STAT1 Transcription Factor
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
128
|
García-Sastre A. Mechanisms of inhibition of the host interferon alpha/beta-mediated antiviral responses by viruses. Microbes Infect 2002; 4:647-55. [PMID: 12048034 DOI: 10.1016/s1286-4579(02)01583-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex multicellular organisms have evolved sophisticated mechanisms to prevent and control infection by pathogens. Among these mechanisms, the type I interferon or interferon alpha/beta system represents one of the first lines of defense against viral infections. Typically, viral infection induces the synthesis and secretion of interferon alpha/beta by the infected cell, which in turn activates signaling pathways leading to an antiviral state. As a counter measure, many viruses have developed intriguing mechanisms to evade the interferon alpha/beta system of the host. In this review, we will summarize recent research developments in this interesting field of virus-host cell interactions.
Collapse
Affiliation(s)
- Adolfo García-Sastre
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
129
|
Wang XP, Zhang YJ, Deng JH, Pan HY, Zhou FC, Gao SJ. Transcriptional regulation of Kaposi's sarcoma-associated herpesvirus-encoded oncogene viral interferon regulatory factor by a novel transcriptional silencer, Tis. J Biol Chem 2002; 277:12023-31. [PMID: 11821384 DOI: 10.1074/jbc.m108026200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral interferon regulatory factor (vIRF) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) has been shown to transform NIH3T3 and Rat-1 cells, inhibit interferon signal transduction, and regulate the expression of KSHV genes. We had previously characterized the vIRF core promoter and defined a 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive region in the upstream regulatory sequence of vIRF gene. Here, we have further identified a novel transcriptional silencer, named Tis in this region. Tis represses the promoter activities of vIRF and heterologous herpes simplex virus thymidine kinase genes in both position- and orientation-independent manners. Deletion analysis has identified a cis-element of 23 nucleotides that is essential for the negative regulation. Two Tis-binding protein complexes, named vR1 and vR2, were observed by electrophoretic mobility shift assays using nuclear extracts from both KSHV-negative and -positive cell lines. A sequence fragment GAGTTAATAGGTAGAG in the cis-element was shown to be required for the DNA-protein interactions as well as the repression of vIRF promoter activity. Point-mutation analysis identified TTAAT and GTTAATAG as the core sequence motifs for the binding of vR1 and vR2, respectively. These results define the function of a novel transcriptional silencer in the regulation of vIRF gene expression.
Collapse
Affiliation(s)
- Xin-Ping Wang
- Departments of Pediatrics and Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
130
|
Jenner RG, Boshoff C. The molecular pathology of Kaposi's sarcoma-associated herpesvirus. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:1-22. [PMID: 11960692 DOI: 10.1016/s0304-419x(01)00040-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.
Collapse
Affiliation(s)
- Richard G Jenner
- Wohl Virion Centre, Windeyer Institute for Medical Research, Cleveland Street, UCL (University College London), London, UK.
| | | |
Collapse
|
131
|
Kirchhoff S, Sebens T, Baumann S, Krueger A, Zawatzky R, Li-Weber M, Meinl E, Neipel F, Fleckenstein B, Krammer PH. Viral IFN-regulatory factors inhibit activation-induced cell death via two positive regulatory IFN-regulatory factor 1-dependent domains in the CD95 ligand promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1226-34. [PMID: 11801659 DOI: 10.4049/jimmunol.168.3.1226] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD95 (also called APO-1/Fas) system plays a major role in the induction of apoptosis in lymphoid and nonlymphoid tissues. The CD95 ligand (CD95L) is induced in response to a variety of signals, including IFN-gamma and TCR/CD3 stimulation. Here we report the identification of two positive regulatory IFN-regulatory factor-dependent domains (PRIDDs) in the CD95L promoter and its 5' untranslated region, respectively. EMSAs demonstrate specific binding of IFN-gamma-induced IFN-regulatory factor 1 (IRF-1) to the PRIDD sequences. Ectopic IRF-1 expression induces CD95L promoter activity. Furthermore, we demonstrate that PRIDDs play an important role in TCR/CD3-mediated CD95L induction. Most interestingly, viral IRFs of human herpes virus 8 (HHV8) totally abolish IRF-1-mediated and strongly reduce TCR/CD3-mediated CD95L induction. We demonstrate here for the first time that viral IRFs inhibit activation-induced cell death. Thus, these results demonstrate an important mechanism of HHV8 to modulate the immune response by down-regulation of CD95L expression. Inhibition of CD95-dependent T cell function might contribute to the immune escape of HHV8.
Collapse
Affiliation(s)
- Sabine Kirchhoff
- Tumor Immunology Program, Tumorvirus-Immunology, German Cancer Research Center, D-16920 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Stürzl M, Zietz C, Monini P, Ensoli B. Human herpesvirus-8 and Kaposi's sarcoma: relationship with the multistep concept of tumorigenesis. Adv Cancer Res 2002; 81:125-59. [PMID: 11430594 DOI: 10.1016/s0065-230x(01)81004-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Kaposi's sarcoma (KS) develops through discrete inflammatory-angiogenic stages of polyclonal nature (early-stage lesions) to monomorphic nodules of spindle-shaped cells that can be clonal (late-stage lesions) and resemble true sarcomas. Molecular and epidemiological studies indicate that development of KS is tightly associated with infection by the human herpesvirus-8 (HHV-8). However, only individuals with specific conditions of immunodysregulation develop KS. In these individuals the systemic and tissue increase of Th-1-type cytokines (IC) reactivate HHV-8 infection, leading to increased viral load, antibody titers, and an expanded cell tropism that precedes the clinical appearance of KS. Recruitment of the virus into tissues by infected monocytes and other cell types is facilitated by the endothelial cell activation due to IC. In clinical lesions, HHV-8 infection increases with lesion stage and in late-stage lesions most of the spindle cells are latently infected, whereas only few lyrically infected cells are present, suggesting that latent genes may have a role in the transformation of the early inflammatory-hyperplastic lesion into a real sarcoma. The development of tumors, however, is regulated through a multistep process based on the acquisition by cells of several different capabilities leading to malignant growth. Here we review the available data on the expression of HHV-8-encoded genes in primary KS lesions and, in view of their biological activity, analyze their potential function in different steps of tumorigenesis. By this pragmatic approach interesting insights into potential key functions of HHV-8-encoded genes are found and steps of potential cooperativity with other viral factors (HIV-1-Tat) in the pathogenesis of KS are identified.
Collapse
Affiliation(s)
- M Stürzl
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Neuherberg, Germany.
| | | | | | | |
Collapse
|
133
|
Servant MJ, Tenoever B, Lin R. Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. J Interferon Cytokine Res 2002; 22:49-58. [PMID: 11846975 DOI: 10.1089/107999002753452656] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent molecular, biochemical, and gene disruption studies have demonstrated the essential role of interferon (IFN) regulatory factor-3, (IRF-3) and IRF-7 in the activation of type I IFN gene expression and the induction of the antiviral state. Both transcription factors share structural and functional properties, as well as a common mechanism of activation through C-terminal phosphorylation. The purpose of this review is to summarize recent investigations indicating that similar signalling pathways are likely involved in the activation of IRF-3 and IRF-7. Moreover, unique biochemical events, such as coactivator association and differential recognition of cis-acting elements, also illustrate the capacity of IRF-3 and IRF-7 to selectively regulate type I IFN and IFN-stimulated gene (ISG) expression.
Collapse
Affiliation(s)
- Marc J Servant
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, and Departments of Medicine, McGill University, Montreal, Canada
| | | | | |
Collapse
|
134
|
Abstract
Transcription factors of the interferon (IFN) regulatory factor (IRF) family have been shown to play an essential role in the regulated expression of type I IFN genes, IFN-stimulated genes (ISG), and other cytokines and chemokines. Three members of the IRF family, IRF-3, IRF-5, and IRF-7, have been identified as acting as direct transducers of virus-mediated signaling. In infected cells, these factors are activated by phosphorylation on the serine residues, transported to the nucleus, where they bind to the promoters of IFNA and IFNB genes and tether histone transacetylases to the transcription complex enhanceosome. IFNB and IFNA subtypes are expressed at different levels in infected cells. The ratio between the relative levels of IRF-3 and IRF-7 was shown to play an essential role in the inducible expression of type I IFN genes, whereas IRF-3 alone is sufficient for expression of the IFNB gene. IRF-5 was identified recently as another inducer of IFNA genes, which has two unique properties: (1) its activation is virus specific, and (2) the profile of IFNA genes induced by IRF-5 is distinct from that induced by IRF-7. Several viruses target functions of IRF to eliminate the early inflammatory response. Kaposi's sarcoma herpesvirus (KSHV) encodes a cluster of four genes with homology to cellular IRF. Three of these vIRF were shown to inhibit induction of IFN genes and ISG in infected cells and function as dominant negative mutants of cellular IRF. The unique properties of previously uncharacterized vIRF-2 and vIRF-3 are discussed.
Collapse
Affiliation(s)
- Betsy Barnes
- Johns Hopkins University, Department of Molecular Biology and Genetics, Oncology Research Center, Baltimore, MD 21231-1001, USA
| | | | | |
Collapse
|
135
|
Au WC, Pitha PM. Recruitment of multiple interferon regulatory factors and histone acetyltransferase to the transcriptionally active interferon a promoters. J Biol Chem 2001; 276:41629-37. [PMID: 11473119 DOI: 10.1074/jbc.m105121200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I interferon (IFN) plays a critical role in the innate immunity against viral infection. Expression of IFNA genes in infected cells is cell type-dependent and is regulated at the transcriptional level. The present study is focused on the molecular mechanism underlying the differential expression of human IFNA1 and A2 genes. Two nucleotides, at positions -98 and -81 of IFNA1 and A2 promoter, were pivotal to the differential expression. The DNA pull-down and chromatin precipitation assays have shown that nuclear interferon regulatory factor (IRF)-3 and IRF-7 as well as IRF-1 bind to IFNA1 virus-responsive element (VRE). Interestingly, overexpression of IRF-7 increased the otherwise weak binding of both IRF-3 and IRF-7 to IFNA2 VRE. These data together with the results of two-step chromatin immunoprecipitation strongly suggest that the IRF-3 and IRF-7 bind to IFNA1 promoter as a dimer. Furthermore, binding of IRF-3 and IRF-7 to IFNA VRE is associated with the presence of acetylated histone H3, suggesting that histone acetyltransferase(s) is tethered together with virus-activated IRF-3 and IRF-7 to the IFNA1 promoter. In addition, the constitutively active IRF-3 (5D) and IRF-7 (2D) mutants activate the endogenous IFNA genes in uninfected cells; however, the expression profile of IFNA is not identical to that induced by viral infection.
Collapse
Affiliation(s)
- W C Au
- Oncology Center and Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
136
|
Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001; 20:7274-86. [PMID: 11704856 DOI: 10.1038/sj.onc.1204854] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interferons (IFNs) are a family of secreted proteins with antiviral, antiproliferative and immunomodulatory activities. The different biological actions of IFN are believed to be mediated by the products of specifically induced cellular genes in the target cells. The promyelocytic leukaemia (PML) protein localizes both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). PML is essential for the proper formation and the integrity of the NBs. Modification of PML by the Small Ubiquitin MOdifier (SUMO) was shown to be required for its localization in NBs. The number and the intensity of PML NBs increase in response to interferon (IFN). Inactivation of the IFN-induced PML gene by its fusion to retinoic acid receptor alpha alters the normal localization of PML from the punctuate nuclear patterns of NBs to micro-dispersed tiny dots and results in uncontrolled growth in Acute Promyelocytic Leukaemia. The NBs-associated proteins, PML, Sp100, Sp140, Sp110, ISG20 and PA28 are induced by IFN suggesting that nuclear bodies could play a role in IFN response. Although the function of PML NBs is still unclear, some results indicate that they may represent preferential targets for viral infections and that PML could play a role in the mechanism of the antiviral action of IFNs. Viruses, which require the cellular machinery for their replication, have evolved different ways to counteract the action of IFN by inhibiting IFN signalling, by blocking the activities of specific antiviral mediators or by altering PML expression and/or localization on nuclear bodies.
Collapse
Affiliation(s)
- T Regad
- UPR 9045 CNRS, Institut André Lwoff, 7 rue Guy Moquet 94801, Villejuif, Cedex, France
| | | |
Collapse
|
137
|
Moore PS, Chang Y, Thlick AE, Ling PD, Yu J. Retraction. Proc Natl Acad Sci U S A 2001; 98:12313. [PMID: 11758493 PMCID: PMC59811 DOI: 10.1073/pnas.98.21.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
138
|
Preston CM, Harman AN, Nicholl MJ. Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J Virol 2001; 75:8909-16. [PMID: 11533154 PMCID: PMC114459 DOI: 10.1128/jvi.75.19.8909-8916.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of cellular interferon-stimulated genes (ISGs) after infection with herpes simplex virus type 1 (HSV-1) or human cytomegalovirus (HCMV) was investigated. The level of ISG54-specific RNA in human fetal lung (HFL) or human foreskin (BJ) fibroblasts increased substantially after infection with either virus in the presence of cycloheximide. HSV-1 particles lacking glycoprotein D or glycoprotein H failed to induce ISG54-specific RNA synthesis, demonstrating that entry of virus particles rather than binding of virions to the cell surface was required for the effect. A DNA-binding complex that recognized an interferon-responsive sequence motif was induced upon infection with HSV-1 or HCMV in the presence of cycloheximide, and the complex was shown to contain the cell proteins interferon response factor 3 (IRF-3) and CREB-binding protein. IRF-3 was modified after infection with HSV-1 or HCMV to a form of lower electrophoretic mobility, consistent with phosphorylation. De novo transcription of viral or cellular genes was not required for the activation of IRF-3, since the effect was not sensitive to inhibition by actinomycin D. Infection of HFL fibroblasts with HSV-1 under conditions in which viral replication proceeded normally resulted in severely reduced levels of the IRF-3-containing complex, defining the activation of IRF-3 as a target for viral interference with ISG induction. In BJ fibroblasts, however, significant activation of IRF-3 was detected even when the viral gene expression program progressed to later stages, demonstrating that the degree of inhibition of the response was dependent on host cell type. As a consequence of IRF-3 activation, endogenous interferon was released from BJ cells and was capable of triggering the appropriate signal transduction pathway in both infected and uninfected cells. Activation of ISG54-specific RNA synthesis was not detected after infection of human U-373MG glioblastoma cells, showing that the induction of the response by infection is cell type dependent.
Collapse
Affiliation(s)
- C M Preston
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland.
| | | | | |
Collapse
|
139
|
Lin CH, Hare BJ, Wagner G, Harrison SC, Maniatis T, Fraenkel E. A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol Cell 2001; 8:581-90. [PMID: 11583620 DOI: 10.1016/s1097-2765(01)00333-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The transcriptional coactivators CBP and p300 are critical regulators of metazoan gene expression. They associate with many different DNA-bound transcription factors through small, conserved domains. We have identified a compactly folded 46 residue domain in CBP and p300, the IRF-3 binding domain (IBiD), and we have determined its structure by NMR. It has a helical framework containing an apparently flexible polyglutamine loop that participates in ligand binding. Spectroscopic data indicate that induced folding accompanies association of IBiD with its partners, which exhibit no evident sequence similarities. We demonstrate the significance both in vitro and in vivo of interactions between IBiD and a number of diverse partners. Thus, IBiD is an important contributor to signal integration by CBP and p300.
Collapse
Affiliation(s)
- C H Lin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
140
|
Nakamura H, Li M, Zarycki J, Jung JU. Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 2001; 75:7572-82. [PMID: 11462029 PMCID: PMC114992 DOI: 10.1128/jvi.75.16.7572-7582.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Accepted: 05/08/2001] [Indexed: 01/18/2023] Open
Abstract
The irreversible cell cycle arrest and apoptosis induced by p53 are part of the host surveillance mechanisms for viral infection and tumor induction. Kaposi's sarcoma-associated herpesvirus (KSHV), the most recently discovered human tumor virus, is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The K9 open reading frame of KSHV encodes a viral interferon (IFN) regulatory factor (vIRF) which functions as a repressor for cellular IFN-mediated signal transduction and as an oncoprotein to induce cell growth transformation. Here, we demonstrate that KSHV vIRF interacts with the cellular p53 tumor suppressor through the putative DNA binding region of vIRF and the central region of p53. This interaction suppresses the level of phosphorylation and acetylation of p53 and inhibits transcriptional activation of p53. As a consequence, vIRF efficiently prevents p53-mediated apoptosis. These results suggest that KSHV vIRF interacts with and inhibits the p53 tumor suppressor to circumvent host growth surveillance and to facilitate uncontrolled cell proliferation.
Collapse
Affiliation(s)
- H Nakamura
- Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | |
Collapse
|
141
|
Seo T, Park J, Lee D, Hwang SG, Choe J. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J Virol 2001; 75:6193-8. [PMID: 11390621 PMCID: PMC114335 DOI: 10.1128/jvi.75.13.6193-6198.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Accepted: 03/30/2001] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is related to the development of Kaposi's sarcoma. Open reading frame K9 of KSHV encodes viral interferon regulatory factor 1 (vIRF1), which functions as a repressor of interferon- and IRF1-mediated signal transduction. In addition, vIRF1 acts as an oncogene to induce cellular transformation. Here we show that vIRF1 directly associates with the tumor suppressor p53 and represses its functions. The vIRF1 interaction domains of p53 are the DNA binding domain (amino acids [aa] 100 to 300) and the tetramerization domain (aa 300 to 393). p53 interacts with the central region (aa 152 to 360) of vIRF1. vIRF1 suppresses p53-dependent transcription and deregulates its apoptotic activity. These results suggest that vIRF1 may regulate cellular function by inhibiting p53.
Collapse
Affiliation(s)
- T Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
142
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is associated with two lymphoproliferative disorders in the AIDS setting, primary effusion lymphoma (PEL) and the plasma cell variant of multicentric Castleman's disease (MCD). In PEL, KSHV persists in a latent form in most lymphoma cells, although viral production has been seen infrequently. In MCD, the viral gene expression pattern is less restrictive, virus production appears to occur and to correlate with the severity of this disease. Several viral genes may contribute to the particular features of these two disorders: among them a viral homologue of interleukin 6 (vIL6) has attracted much attention and been shown to promote the growth of plasma cells. It is thought that its activity is important in the pathogenesis of both PEL and MCD. Other viral genes, in particular a D-type cyclin homologue, the latent nuclear antigen LANA, and one or more of the viral homologues of interferon regulatory factors (vIRFs) may also contribute. Although it is conceivable that viral infection per se could explain much, if not all, of the features of MCD, it is likely that additional genetic alterations play a role in the pathogenesis of PEL.
Collapse
Affiliation(s)
- T F Schulz
- Department of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
143
|
Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 2001; 276:23382-90. [PMID: 11303025 DOI: 10.1074/jbc.m101216200] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interferon regulatory factor (IRF) genes encode DNA-binding proteins that are involved in the innate immune response to infection. Two of these proteins, IRF-3 and IRF-7, serve as direct transducers of virus-mediated signaling and play critical roles in the induction of type I interferon genes. We have now shown that another factor, IRF-5, participates in the induction of interferon A (IFNA) and IFNB genes and can replace the requirement for IRF-7 in the induction of IFNA genes. We demonstrate that, despite the functional similarity, IRF-5 possesses unique characteristics and does not have a redundant role. Thus, 1) activation of IRF-5 by phosphorylation is virus-specific, and its in vivo association with the IFNA promoter can be detected only in cells infected with NDV, not Sendai virus, while both viruses activate IRF-3 and IRF-7, and 2) NDV infection of IRF-5-overexpressing cells preferentially induced the IFNA8 subtype, while IFNA1 was primarily induced in IRF-7 expressing cells. These data indicate that multiple signaling pathways induced by infection may be differentially recognized by members of the IRF family and modulate transcription of individual IFNA genes in a virus and cell type-specific manner.
Collapse
Affiliation(s)
- B J Barnes
- Oncology Center and the Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
144
|
Masumi A, Ozato K. Coactivator p300 acetylates the interferon regulatory factor-2 in U937 cells following phorbol ester treatment. J Biol Chem 2001; 276:20973-80. [PMID: 11304541 DOI: 10.1074/jbc.m101707200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factor-2 (IRF-2) is a transcription factor of the IRF family that represses interferon-mediated gene expression. In the present study, we show that human monocytic U937 cells express truncated forms of IRF-2 containing the DNA binding domain but lacking much of the C-terminal regulatory domain. U937 cells are shown to respond to phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to induce expression of histone acetylases p300 and p300/CBP-associated factor (PCAF). In addition, TPA treatment led to the appearance of full-length IRF-2, along with a reduction of the truncated protein. Interestingly, full-length IRF-2 in TPA-treated U937 cells occurred as a complex with p300 as well as PCAF and was itself acetylated. Consistent with these results, recombinant IRF-2 was acetylated by p300 and to a lesser degree by PCAF in vitro. Another IRF member, IRF-1, an activator of interferon-mediated transcription, was also acetylated in vitro by these acetylases. Finally, we demonstrate that the addition of IRF-2 but not IRF-1 inhibits core histone acetylation by p300 in vitro. The addition of IRF-2 also inhibited acetylation of nucleosomal histones in TPA-treated U937 cells. Acetylated IRF-2 may affect local chromatin structure in vivo by inhibiting core histone acetylation and may serve as a mechanism by which IRF-2 negatively regulates interferon-inducible transcription.
Collapse
Affiliation(s)
- A Masumi
- Department of Safety Research on Biologics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | |
Collapse
|
145
|
Choi J, Means RE, Damania B, Jung JU. Molecular piracy of Kaposi's sarcoma associated herpesvirus. Cytokine Growth Factor Rev 2001; 12:245-57. [PMID: 11325605 DOI: 10.1016/s1359-6101(00)00029-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kaposi's Sarcoma associated Herpesvirus (KSHV) is the most recently discovered human tumor virus and is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and Multicentric Casttleman's disease. KSHV contains numerous open reading frames with striking homology to cellular genes. These viral gene products play a variety of roles in KSHV-associated pathogenesis by disrupting cellular signal transduction pathways, which include interferon-mediated anti-viral responses, cytokine-regulated cell growth, apoptosis, and cell cycle control. In this review, we will attempt to cover our understanding of how viral proteins deregulate cellular signaling pathways, which ultimately contribute to the conversion of normal cells to cancerous cells.
Collapse
Affiliation(s)
- J Choi
- Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Regional Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | |
Collapse
|
146
|
Moore PS, Chang Y. Molecular virology of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 2001; 356:499-516. [PMID: 11313008 PMCID: PMC1088441 DOI: 10.1098/rstb.2000.0777] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the most recently discovered human tumour virus, is the causative agent of Kaposi's sarcoma, primary effusion lymphoma and some forms of Castleman's disease. KSHV is a rhadinovirus, and like other rhadinoviruses, it has an extensive array of regulatory genes obtained from the host cell genome. These pirated KSHV proteins include homologues to cellular CD21, three different beta-chemokines, IL-6, BCL-2, several different interferon regulatory factor homologues, Fas-ligand ICE inhibitory protein (FLIP), cyclin D and a G-protein-coupled receptor, as well as DNA synthetic enzymes including thymidylate synthase, dihydrofolate reductase, DNA polymerase, thymidine kinase and ribonucleotide reductases. Despite marked differences between KSHV and Epstein-Barr virus, both viruses target many of the same cellular pathways, but use different strategies to achieve the same effects. KSHV proteins have been identified which inhibit cell-cycle regulation checkpoints, apoptosis control mechanisms and the immune response regulatory machinery. Inhibition of these cellular regulatory networks app ears to be a defensive means of allowing the virus to escape from innate antiviral immune responses. However, due to the overlapping nature of innate immune and tumour-suppressor pathways, inhibition of these regulatory networks can lead to unregulated cell proliferation and may contribute to virus-induced tumorigenesis.
Collapse
Affiliation(s)
- P S Moore
- School of Public Health and Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
147
|
Zhang YJ, Wang XP, Deng JH, Salinas RA, Oishi N, Gao SJ. Suppression of oncogenic viral interferon regulatory factor (vIRF) of Kaposi's sarcoma-associated herpesvirus by ribozyme-mediated cleavage. Cancer Gene Ther 2001; 8:285-93. [PMID: 11393281 DOI: 10.1038/sj.cgt.7700299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8) has been etiologically associated with several malignancies including Kaposi's sarcoma and primary effusion lymphoma. Oncogenic viral interferon regulatory factor (vIRF) encoded by KSHV ORF-K9 is a homologue of cellular interferon regulatory factor (IRF), and has been demonstrated to inhibit type I/II interferon signal transduction and transform NIH3T3 cells through the interactions with IRF-1, IRF-3, and CBP/p300 proteins. To counteract vIRF's pathogenic role, we have developed five ribozymes targeting ORF-K9 mRNA to suppress vIRF expression. The vIRF RNA substrates were cleaved up to 80% in a substrate-specific manner in transcript cleavage assays in vitro. In a transient transfection assay, two of the ribozymes efficiently suppressed the expression of vIRF protein measured by dual-color immunofluorescence assay that simultaneously detects the expression of both vIRF protein and ribozyme. Flow cytometry analysis showed that these ribozymes reduced vIRF expression up to 76%. A mutant ribozyme had no cleavage activity in vitro, but exhibited antisense effect in vivo. These results suggest that the ribozymes may provide a new approach for functional knockout of vIRF gene, and are potential candidates of antiviral therapy for KSHV-related malignancies.
Collapse
Affiliation(s)
- Y J Zhang
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Virus infections induce a proinflammatory response including expression of cytokines and chemokines. The subsequent leukocyte recruitment and antiviral effector functions contribute to the first line of defense against viruses. The molecular virus-cell interactions initiating these events have been studied intensively, and it appears that viral surface glycoproteins, double-stranded RNA, and intracellular viral proteins all have the capacity to activate signal transduction pathways leading to the expression of cytokines and chemokines. The signaling pathways activated by viral infections include the major proinflammatory pathways, with the transcription factor NF-kappaB having received special attention. These transcription factors in turn promote the expression of specific inducible host proteins and participate in the expression of some viral genes. Here we review the current knowledge of virus-induced signal transduction by seven human pathogenic viruses and the most widely used experimental models for viral infections. The molecular mechanisms of virus-induced expression of cytokines and chemokines is also analyzed.
Collapse
Affiliation(s)
- T H Mogensen
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
149
|
Burýsek L, Pitha PM. Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J Virol 2001; 75:2345-52. [PMID: 11160738 PMCID: PMC114818 DOI: 10.1128/jvi.75.5.2345-2352.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma herpesvirus) encodes four open reading frames with homology to cellular proteins of interferon regulatory factor (IRF) family. Three of them, viral IRF-1 (vIRF-1), vIRF-2, and vIRF-3, have been cloned and found, when overexpressed, to down-regulate the transcriptional activity of interferon type I gene promoters in infected cells by interfering with the transactivating activity of cellular IRFs. In this study, we have further characterized vIRF-2 and shown that it is a nuclear protein which is constitutively expressed in HHV-8-positive pleural effusion lymphoma cell lines. Nuclear localization of vIRF-2 was confirmed by in situ detection of ectopically expressed enhanced green fluorescent protein/vIRF-2 fusion protein. We found that the expression of vIRF-2 in HEK293 cells inhibited the antiviral effect of interferon and rescued translation of vesicular stomatitis virus mRNA from interferon-induced translational block. To provide insight into the mechanism of this effect we have demonstrated that vIRF-2 physically interacts with PKR consequently inhibiting autophosphorylation of double-stranded RNA-activated protein kinase (PKR) and blocking phosphorylation of PKR substrates histone 2A and eukaryotic translation initiation factor 2alpha. These results suggest that the latently expressed vIRF-2 has a role in viral mimicry which targets the activity of interferon-induced PKR kinase. By inhibiting the kinase activity of PKR and consequent down-modulation of protein synthesis, HHV-8 has evolved a mechanism by which it can overcome the interferon-mediated antiviral effect. Thus, the anti-interferon functions of vIRF-2 may contribute to the establishment of a chronic or latent infection.
Collapse
Affiliation(s)
- L Burýsek
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
150
|
Lin R, Genin P, Mamane Y, Sgarbanti M, Battistini A, Harrington WJ, Barber GN, Hiscott J. HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 2001; 20:800-11. [PMID: 11314014 DOI: 10.1038/sj.onc.1204163] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2000] [Revised: 11/29/2000] [Accepted: 12/07/2000] [Indexed: 11/10/2022]
Abstract
Human herpes virus 8 (HHV-8) has developed unique mechanisms for altering cellular proliferative and apoptotic control pathways by incorporating viral homologs to several cellular regulatory genes into its genome. One of the important pirated genes encoded by the ORF K9 reading frame is a viral homolog of the interferon regulatory factors (IRF), a family of cellular transcription proteins that regulates expression of genes involved in pathogen response, immune modulation and cell proliferation. vIRF-1 has been shown to downregulate the interferon- and IRF-mediated transcriptional activation of ISG and murine IFNA4 gene promoters. In this study we demonstrate that vIRF-1 efficiently inhibited virus-induced expression of endogenous interferon B, CC chemokine RANTES and CXC chemokine IP-10 genes. Co-expression analysis revealed that vIRF-1 selectively blocked IRF-3 but not IRF-7-mediated transactivation. vIRF-1 was able to bind to both IRF-3 and IRF-7 in vivo as detected by coimmunoprecipitation analysis, but did not affect IRF-3 dimerization, nuclear translocation and DNA binding activity. Rather, vIRF-1 interacted with the CBP/p300 coactivators and efficiently inhibited the formation of transcriptionally competent IRF-3-CBP/p300 complexes. These results illustrate that vIRF-1 is able to block the early stages of the IFN response to virus infection by interfering with the activation of IRF-3 responsive, immediate early IFN genes.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T IE2, Canada
| | | | | | | | | | | | | | | |
Collapse
|