101
|
Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct 2018; 8:3576-3586. [PMID: 28884178 DOI: 10.1039/c7fo00679a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was designed to analyze the anti-adipogenic effect of fifteen phenolic compounds from various chemical groups in 3T3-L1 pre-adipocytes. Cells were treated with 25 μM, 10 μM or 1 μM of apigenin, luteolin, catechin, epicatechin, epigallocatechin, genistein, daizein, naringenin, hesperidin, quercetin, kaempferol, resveratrol, vanillic acid, piceatannol and pterostilbene for 8 days. At 25 μM lipid accumulation was reduced by all the compounds, with the exception of catechin, epicatechin and epigallocatechin. At a dose of 10 μM apigenin, luteolin, naringenin, hesperidin, quercetin and kaempferol induced significant reductions, and at 1 μM only naringenin, hesperidin and quercetin were effective. The expression of c/ebpα was not. C/ebpβ was significantly reduced by genistein and kaempferol, pparγ by genistein and pterostilbene, srebp1c by luteolin, genistein, hesperidin, kaempferol, pterostilbene and vanillic acid, and lpl by kaempferol. In conclusion, the most effective phenolic compounds are naringenin, hesperidin and quercetin. Differences were found in terms of effects on the expression of genes involved in adipogenesis among the analyzed compounds.
Collapse
Affiliation(s)
- Andrea Mosqueda-Solís
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray, Vitoria, Spain.
| | | | | | | | | | | |
Collapse
|
102
|
Park S, No K, Lee J. Anti-Obesity Effect ofAllium hookeriLeaf Extract in High-Fat Diet-Fed Mice. J Med Food 2018; 21:254-260. [DOI: 10.1089/jmf.2017.3962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Kihoon No
- Department of Food and Nutrition, Chosun University, Gwangju, Korea
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Korea
| |
Collapse
|
103
|
Misawa N, Hosoya T, Yoshida S, Sugimoto O, Yamada-Kato T, Kumazawa S. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation. Phytother Res 2018; 32:1304-1310. [DOI: 10.1002/ptr.6060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/27/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Naoki Misawa
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Takahiro Hosoya
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Shuhei Yoshida
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Osamu Sugimoto
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Tomoe Yamada-Kato
- Research and Development Division; Kinjirushi Co. Ltd.; 2-61 Yahata-hontori, Nakagawa-ku Nagoya 454-8526 Japan
| | - Shigenori Kumazawa
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| |
Collapse
|
104
|
Sugimoto R, Ishibashi-Ohgo N, Atsuji K, Miwa Y, Iwata O, Nakashima A, Suzuki K. Euglena extract suppresses adipocyte-differentiation in human adipose-derived stem cells. PLoS One 2018; 13:e0192404. [PMID: 29447191 PMCID: PMC5813920 DOI: 10.1371/journal.pone.0192404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
Euglena gracilis Z (Euglena) is a unicellular, photosynthesizing, microscopic green alga. It contains several nutrients such as vitamins, minerals, and unsaturated fatty acids. In this study, to verify the potential role of Euglena consumption on human health and obesity, we evaluated the effect of Euglena on human adipose-derived stem cells. We prepared a Euglena extract and evaluated its effect on cell growth and lipid accumulation, and found that cell growth was promoted by the addition of the Euglena extract. Interestingly, intracellular lipid accumulation was inhibited in a concentration-dependent manner. Quantitative real-time PCR analysis and western blotting analysis indicated that the Euglena extract suppressed adipocyte differentiation by inhibiting the gene expression of the master regulators peroxisome proliferator-activated receptor-γ (PPARγ) and one of three CCAAT-enhancer-binding proteins (C/EBPα). Further Oil Red O staining experiments indicated that the Euglena extract inhibited the early stage of adipocyte-differentiation. Consistent with these results, we observed that down-regulation of gene expression was involved in the early stage of adipogenesis represented by the sterol regulatory element binding protein 1 c (SREBP1c), two of three CCAAT-enhancer-binding proteins (C/EBPβ, C/EBPδ), and the cAMP regulatory element-binding protein (CREB). Taken together, these data suggest that Euglena extract is a promising candidate for the development of a new therapeutic treatment for obesity.
Collapse
Affiliation(s)
- Ryota Sugimoto
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Naoko Ishibashi-Ohgo
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Kohei Atsuji
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Yuko Miwa
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Osamu Iwata
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Ayaka Nakashima
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
- * E-mail:
| | - Kengo Suzuki
- Department of Research and Development, euglena Co., Ltd., Minato-ku, Tokyo, Japan
| |
Collapse
|
105
|
Longo M, Raciti GA, Zatterale F, Parrillo L, Desiderio A, Spinelli R, Hammarstedt A, Hedjazifar S, Hoffmann JM, Nigro C, Mirra P, Fiory F, Formisano P, Miele C, Smith U, Beguinot F. Epigenetic modifications of the Zfp/ZNF423 gene control murine adipogenic commitment and are dysregulated in human hypertrophic obesity. Diabetologia 2018; 61:369-380. [PMID: 29067487 PMCID: PMC6448963 DOI: 10.1007/s00125-017-4471-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Subcutaneous adipocyte hypertrophy is associated with insulin resistance and increased risk of type 2 diabetes, and predicts its future development independent of obesity. In humans, subcutaneous adipose tissue hypertrophy is a consequence of impaired adipocyte precursor cell recruitment into the adipogenic pathway rather than a lack of precursor cells. The zinc finger transcription factor known as zinc finger protein (ZFP) 423 has been identified as a major determinant of pre-adipocyte commitment and maintained white adipose cell function. Although its levels do not change during adipogenesis, ectopic expression of Zfp423 in non-adipogenic murine cells is sufficient to activate expression of the gene encoding peroxisome proliferator-activated receptor γ (Pparγ; also known as Pparg) and increase the adipogenic potential of these cells. We investigated whether the Zfp423 gene is under epigenetic regulation and whether this plays a role in the restricted adipogenesis associated with hypertrophic obesity. METHODS Murine 3T3-L1 and NIH-3T3 cells were used as fibroblasts committed and uncommitted to the adipocyte lineage, respectively. Human pre-adipocytes were isolated from the stromal vascular fraction of subcutaneous adipose tissue of 20 lean non-diabetic individuals with a wide adipose cell size range. mRNA levels were measured by quantitative real-time PCR, while methylation levels were analysed by bisulphite sequencing. Chromatin structure was analysed by micrococcal nuclease protection assay, and DNA-methyltransferases were chemically inhibited by 5-azacytidine. Adipocyte differentiation rate was evaluated by Oil Red O staining. RESULTS Comparison of uncommitted (NIH-3T3) and committed (3T3-L1) adipose precursor cells revealed that Zfp423 expression increased (p < 0.01) in parallel with the ability of the cells to differentiate into mature adipocytes owing to both decreased promoter DNA methylation (p < 0.001) and nucleosome occupancy (nucleosome [NUC] 1 p < 0.01; NUC2 p < 0.001) in the 3T3-L1 compared with NIH-3T3 cells. Interestingly, non-adipogenic epigenetic profiles can be reverted in NIH-3T3 cells as 5-azacytidine treatment increased Zfp423 mRNA levels (p < 0.01), reduced DNA methylation at a specific CpG site (p < 0.01), decreased nucleosome occupancy (NUC1, NUC2: p < 0.001) and induced adipocyte differentiation (p < 0.05). These epigenetic modifications can also be initiated in response to changes in the pre-adipose cell microenvironment, in which bone morphogenetic protein 4 (BMP4) plays a key role. We finally showed that, in human adipocyte precursor cells, impaired epigenetic regulation of zinc nuclear factor (ZNF)423 (the human orthologue of murine Zfp423) was associated with inappropriate subcutaneous adipose cell hypertrophy. As in NIH-3T3 cells, the normal ZNF423 epigenetic profile was rescued by 5-azacytidine exposure. CONCLUSIONS/INTERPRETATION Our results show that epigenetic events regulate the ability of precursor cells to commit and differentiate into mature adipocytes by modulating ZNF423, and indicate that dysregulation of these mechanisms accompanies subcutaneous adipose tissue hypertrophy in humans.
Collapse
Affiliation(s)
- Michele Longo
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Gregory A Raciti
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Federica Zatterale
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Luca Parrillo
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Antonella Desiderio
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Rosa Spinelli
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Ann Hammarstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahram Hedjazifar
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny M Hoffmann
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Nigro
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Paola Mirra
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Francesca Fiory
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Beguinot
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
106
|
Shafei AES, Nabih ES, Shehata KA, Abd Elfatah ESM, Sanad ABA, Marey MY, Hammouda AAMA, Mohammed MMM, Mostafa R, Ali MA. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes 2018; 14:18-25. [PMID: 29019419 DOI: 10.1089/chi.2017.0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is a global health problem. It is characterized by excess adipose tissue that results from either increase in the number of adipocytes or increase in adipocytes size. Adipocyte differentiation is a highly regulated process that involves the activation of several transcription factors culminating in the removal of adipocytes from the cell cycle and induction of highly specific proteins. Several other factors, including hormones, genes, and epigenetics, are among the most important triggers of the differentiation process. Although the main contributing factors to obesity are high caloric intake, a sedentary lifestyle, and genetic predisposition, strong evidence supports a role for life exposure to environmental pollutants. Endocrine-disrupting chemicals are exogenous, both natural and man-made, chemicals that disrupt the body signaling processes, thus interfering with the endocrine system. Several studies have shown that prenatal exposure to endocrine disruptors modulates the mechanisms, by which multipotent mesenchymal stem cells differentiate into adipocytes. This review discusses adipocytes differentiation and highlights the possible mechanisms of prenatal exposure to endocrine disruptors in reprogramming of adipogenesis and induction of obesity later in life. Therefore, this review provides knowledge that reduction of early life exposure to these chemicals could open the door for new strategies in the prevention of obesity, especially during childhood.
Collapse
Affiliation(s)
- Ayman El-Sayed Shafei
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Enas Samir Nabih
- 2 Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | | | | | | | | | | | | | - Randa Mostafa
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Mahmoud A Ali
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| |
Collapse
|
107
|
YAMASHITA Y, MITANI T, WANG L, ASHIDA H. Methylxanthine Derivative-Rich Cacao Extract Suppresses Differentiation of Adipocytes through Downregulation of PPARγ and C/EBPs. J Nutr Sci Vitaminol (Tokyo) 2018; 64:151-160. [DOI: 10.3177/jnsv.64.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yoko YAMASHITA
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Takakazu MITANI
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Liuqing WANG
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Hitoshi ASHIDA
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
108
|
Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2438-2448. [DOI: 10.1016/j.bbamcr.2017.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
|
109
|
Yanting C, Yang QY, Ma GL, Du M, Harrison JH, Block E. Dose- and type-dependent effects of long-chain fatty acids on adipogenesis and lipogenesis of bovine adipocytes. J Dairy Sci 2017; 101:1601-1615. [PMID: 29153512 DOI: 10.3168/jds.2017-13312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
Differentiation and lipid metabolism of adipocytes have a great influence on milk performance, health, and feed efficiency of dairy cows. The effects of dietary long-chain fatty acids (FA) on adipogenesis and lipogenesis of dairy cows are often confounded by other nutritional and physiological factors in vivo. Therefore, this study used an in vitro approach to study the effect of dose and type of long-chain FA on adipogenesis and lipogenesis of bovine adipocytes. Stromal vascular cells were isolated from adipose tissue of dairy cows and induced into mature adipocytes in the presence of various long-chain FA including myristic, palmitic, stearic, oleic, or linoleic acid. When concentrations of myristic, palmitic, and oleic acids in adipogenic mediums were 150 and 200 μM, the induced mature adipocytes had greater lipid content compared with other concentrations of FA. In addition, mature adipocytes induced at 100 μM stearic acid and 300 μM linoleic acid had the greatest content of lipid than at other concentrations. High concentrations of saturated FA were more toxic for cells than the same concentration of unsaturated FA during the induction. When commitment stage was solely treated with FA, the number of differentiated mature adipocytes was greater for oleic and linoleic acids than other FA. When the maturation stage was treated with FA, the number of mature adipocytes was not affected, but the lipid content in adipocytes was affected and ranked oleic > linoleic > myristic > stearic > palmitic. In summary, this study showed that adipogenesis and lipogenesis of bovine adipocytes were differentially affected by long-chain FA, with unsaturated FA more effective than saturated FA.
Collapse
Affiliation(s)
- Chen Yanting
- Department of Animal Science, Washington State University, Pullman 99164
| | - Q Y Yang
- Department of Animal Science, Washington State University, Pullman 99164
| | - G L Ma
- Department of Animal Science, Washington State University, Pullman 99164
| | - M Du
- Department of Animal Science, Washington State University, Pullman 99164
| | - J H Harrison
- Department of Animal Science, Washington State University, Puyallup 98731.
| | - E Block
- Church and Dwight Animal Nutrition, Princeton, NJ 08543
| |
Collapse
|
110
|
Lecarpentier Y, Schussler O, Claes V, Vallée A. The Myofibroblast: TGFβ-1, A Conductor which Plays a Key Role in Fibrosis by Regulating the Balance between PPARγ and the Canonical WNT Pathway. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEP), Meaux, France
| | - Olivier Schussler
- Department of Cardiovascular Surgery, Cardiovascular Research Laboratory, HUG/CMU, Geneva, Switzerland
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
| |
Collapse
|
111
|
The effects of flavonoid compound from Agrimonia pilosa Ledeb on promotting 3T3-L1 preadipocytes differentiation by activating PPARγ partially. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1991-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
112
|
Buerger F, Müller S, Ney N, Weiner J, Heiker JT, Kallendrusch S, Kovacs P, Schleinitz D, Thiery J, Stadler SC, Burkhardt R. Depletion of Jmjd1c impairs adipogenesis in murine 3T3-L1 cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1709-1717. [DOI: 10.1016/j.bbadis.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023]
|
113
|
Chu W, Wei W, Han H, Gao Y, Liu K, Tian Y, Jiang Z, Zhang L, Chen J. Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue. Sci Rep 2017; 7:510. [PMID: 28360421 PMCID: PMC5428816 DOI: 10.1038/s41598-017-00615-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
Intramuscular adipose is conducive to good pork quality, whereas subcutaneous adipose is considered as waste in pig production. So uncovering the regulation differences between these two adiposes is helpful to tissue-specific control of fat deposition. In this study, we found the sensitivity to glucocorticoids (GCs) was lower in intramuscular adipocytes (IMA) compared with subcutaneous adipocytes (SA). Comparison of glucocorticoid receptor (GR) revealed that IMA had lower GR level which contributed to its reduced GCs sensitivity. Higher methylation levels of GR promotor 1-C and 1-H were detected in IMA compared with SA. GR expression decrease was also found in adipocytes when treated with muscle conditioned medium (MCM) in vitro, which resulted in significant inhibition of adipocytes proliferation and differentiation. Since abundant myostatin (MSTN) was detected in MCM by ELISA assay, we further investigated the effect of this myokine on adipocytes. MSTN treatment suppressed adipocytes GR expression, cell proliferation and differentiation, which mimicked the effects of MCM. The methylation levels of GR promotor 1-C and 1-H were also elevated after MSTN treatment. Our study reveals the role of GR in muscle fiber inhibition on intramuscular adipocytes, and identifies myostatin as a muscle-derived modulator for adipose GR level.
Collapse
Affiliation(s)
- Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, P.R. China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ying Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zaohang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
114
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
115
|
Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1. PLoS One 2017; 12:e0173264. [PMID: 28282409 PMCID: PMC5345824 DOI: 10.1371/journal.pone.0173264] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis.
Collapse
|
116
|
Mazumder M, Ponnan P, Das U, Gourinath S, Khan HA, Yang J, Sakharkar MK. Investigations on Binding Pattern of Kinase Inhibitors with PPAR γ: Molecular Docking, Molecular Dynamic Simulations, and Free Energy Calculation Studies. PPAR Res 2017; 2017:6397836. [PMID: 28321247 PMCID: PMC5340984 DOI: 10.1155/2017/6397836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a potential target for the treatment of several disorders. In view of several FDA approved kinase inhibitors, in the current study, we have investigated the interaction of selected kinase inhibitors with PPARγ using computational modeling, docking, and molecular dynamics simulations (MDS). The docked conformations and MDS studies suggest that the selected KIs interact with PPARγ in the ligand binding domain (LBD) with high positive predictive values. Hence, we have for the first time shown the plausible binding of KIs in the PPARγ ligand binding site. The results obtained from these in silico investigations warrant further evaluation of kinase inhibitors as PPARγ ligands in vitro and in vivo.
Collapse
Affiliation(s)
- Mohit Mazumder
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prija Ponnan
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5C9
| | - Umashankar Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5C9
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5C9
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
117
|
Inhibition of Protein Kinase CK2 Prevents Adipogenic Differentiation of Mesenchymal Stem Cells Like C3H/10T1/2 Cells. Pharmaceuticals (Basel) 2017; 10:ph10010022. [PMID: 28208768 PMCID: PMC5374426 DOI: 10.3390/ph10010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Protein kinase CK2 as a holoenzyme is composed of two catalytic α- or α'-subunits and two non-catalytic β-subunits. Knock-out experiments revealed that CK2α and CK2β are required for embryonic development. Little is known about the role of CK2 during differentiation of stem cells. Mesenchymal stem cells (MSCs) are multipotent cells which can be differentiated into adipocytes in vitro. Thus, MSCs and in particular C3H/10T1/2 cells are excellent tools to study a possible role of CK2 in adipogenesis. We found downregulation of the CK2 catalytic subunits as well as a decrease in CK2 kinase activity with progression of differentiation. Inhibition of CK2 using the potent inhibitor CX-4945 impeded differentiation of C3H/10T1/2 cells into adipocytes. The inhibited cells lacked the observed decrease in CK2 expression, but showed a constant expression of all three CK2 subunits. Furthermore, inhibition of CK2 resulted in decreased cell proliferation in the early differentiation phase. Analysis of the main signaling cascade revealed an elevated expression of C/EBPβ and C/EBPδ and reduced expression of the adipogenic master regulators C/EBPα and PPARγ2. Thus, CK2 seems to be implicated in the regulation of different steps early in the adipogenic differentiation of MSC.
Collapse
|
118
|
Choi YJ, Lee KY, Jung SH, Kim HS, Shim G, Kim MG, Oh YK, Oh SH, Jun DW, Lee BH. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice. Toxicol Appl Pharmacol 2017; 316:74-82. [PMID: 28038998 DOI: 10.1016/j.taap.2016.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 01/05/2023]
Abstract
Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kang-Yo Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung-Hwan Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Gayong Shim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mi-Gyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seon-Hee Oh
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Republic of Korea
| | - Dae Won Jun
- Internal Medicine, Hanyang University School of Medicine, Seoul 133-791, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
119
|
Kelmendi-Doko A, Rubin JP, Klett K, Mahoney C, Wang S, Marra KG. Controlled dexamethasone delivery via double-walled microspheres to enhance long-term adipose tissue retention. J Tissue Eng 2017; 8:2041731417735402. [PMID: 29051810 PMCID: PMC5638157 DOI: 10.1177/2041731417735402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/13/2017] [Indexed: 11/26/2022] Open
Abstract
Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair.
Collapse
Affiliation(s)
- Arta Kelmendi-Doko
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katarina Klett
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher Mahoney
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sheri Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
120
|
Glucocorticoid-Induced Leucine Zipper in Central Nervous System Health and Disease. Mol Neurobiol 2016; 54:8063-8070. [PMID: 27889894 DOI: 10.1007/s12035-016-0277-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/30/2016] [Indexed: 12/31/2022]
Abstract
The central nervous system (CNS) is a large network of intercommunicating cells that function to maintain tissue health and homeostasis. Considerable evidence suggests that glucocorticoids exert both neuroprotective and neurodegenerative effects on the CNS. Glucocorticoids act by binding two related receptors in the cytoplasm, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The glucocorticoid receptor complex mediates cellular responses by transactivating target genes and by protein: protein interactions. The paradoxical effects of glucocorticoids on neuronal survival and death have been attributed to the concentration and the ratio of mineralocorticoid to glucocorticoid receptor activation. Glucocorticoid-induced leucine zipper (GILZ) is a recently identified protein transcriptionally upregulated by glucocorticoids. Constitutively, expressed in many tissues including brain, GILZ mediates many of the actions of glucocorticoids. It mimics the anti-inflammatory and anti-proliferative effects of glucocorticoids but exerts differential effects on stem cell differentiation and lineage development. Recent experimental data on the effects of GILZ following induced stress or trauma suggest potential roles in CNS diseases. Here, we provide a short overview of the role of GILZ in CNS health and discuss three potential rationales for the role of GILZ in Alzheimer's disease pathogenesis.
Collapse
|
121
|
Shen Y, Zhou H, Jin W, Lee HJ. Acute exercise regulates adipogenic gene expression in white adipose tissue. Biol Sport 2016; 33:381-391. [PMID: 28090143 PMCID: PMC5143777 DOI: 10.5604/20831862.1224395] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/09/2016] [Accepted: 06/19/2016] [Indexed: 12/31/2022] Open
Abstract
White adipose tissue expansion is associated with both hypertrophy and hyperplasia of adipocytes. Exercise training results in adipocyte hypotrophy by activating lipolysis, but it is poorly understood whether exercise regulates adipogenesis by altering adipogenic gene expression. The purpose of this study was to evaluate the effect of a single bout of swimming exercise on adipogenic gene expression in white adipose tissue (WAT). Male C57BL/6J mice were divided into two groups: a sedentary control group and a 120-minute swimming exercise group. Immediately after acute exercise, adipogenic gene expression in WAT was analysed by RT-PCR, and tdTomato positive cells in WAT from UCP1-cre-tdTomato mice were observed under a confocal microscope. In epididymal white adipose tissue (eWAT), PPARγ2 and C/EBPα expression at the mRNA level was significantly decreased with high induction of Wnt10b and KLFs (KLF2, KLF3, KLF7, KLF6, KLF9 and KLF15), whereas PPARγ2, not C/EBPα, was decreased with high induction of Wnt6 and KLFs (KLF2, KLF3, KLF7, KLF6 and KLF9) in inguinal white adipose tissue (iWAT) after acute exercise. The expression of C/EBPβ and C/EBPδ was upregulated in both WATs with a high level of PGC-1α expression. Expression level of UCP1 was increased only in adipocytes of eWAT, while beige cell specific gene expression was comparable between groups and tdTomato positive cells were not found in WAT of UCP1-cre-tdTomato reporter mouse immediately after acute exercise. These results suggest that acute exercise suppresses adipogenic gene expression and may regulate thermogenesis by activating C/EBPβ, PGC-1α and UCP1 in WAT.
Collapse
Affiliation(s)
- Y Shen
- University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - H Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - W Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - H J Lee
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
122
|
The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. Int J Obes (Lond) 2016; 41:299-308. [PMID: 27780975 PMCID: PMC5309343 DOI: 10.1038/ijo.2016.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/01/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022]
Abstract
Background: Obesity is a risk factor for metabolic diseases, while preadipocyte differentiation or adipogenesis is closely related to obesity occurrence. Long noncoding RNAs (lncRNAs) are a unique class of transcripts in regulation of a variety of biological processes. Using cDNA microarray, we found lncRNA U90926 is negatively correlated with 3T3-L1 preadipocyte differentiation. Objective: The aim of this study was to explore the role of lncRNA U90926 (lnc-U90926) in adipogenesis and the underlying mechanisms. Methods: Quantitative real-time PCR (qPCR) was performed to determine lnc-U90926 expression in 3T3-L1 preadipocytes, differentiated adipocytes, and in adipose tissues form mice. RNA fluorescent in situ hybridization (FISH) was performed to determine the localization of lnc-U90926 in 3T3-L1 preadipocytes. The effects of lnc-U90926 on 3T3-L1 adipogenesis were analyzed with lentivirus-mediated gain- and loss-of-function experiments. Lipid accumulation was evaluated by oil red O staining; several adipogenesis makers were analyzed by qPCR and western blotting. Dual luciferase assay was applied to explore the transactivation of target genes modulated by lnc-U90926. All measurements were performed at least for three times. Results: Lnc-U90926 expression decreased along the differentiation of 3T3-L1 preadipocytes. In mice, lnc-U90926 is predominantly expressed in adipose tissue. Obese mice have lower lnc-U90926 expression in subcutaneous and visceral adipose tissue than non-obese mice. FISH results showed that lnc-U90926 was mainly located in the cytoplasm. Overexpression lnc-U90926 attenuated 3T3-L1 adipocyte differentiation as evidenced by its ability to inhibit lipid accumulation, to decrease the mRNA levels of peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid binding protein 4 (FABP4) and adiponectin (AdipoQ) as well as to reduce the protein levels of PPARγ and FABP4 (P<0.05). Knockdown of lnc-U90926 showed opposite effects, which increased mRNA expression of PPARγ2, FABP4, CCAAT/enhancer-binding proteinα (C/EBPα) and AdipoQ. Conclusion: Lnc-U90926 attenuates 3T3-L1 adipocyte differentiation via inhibiting the transactivation of PPARγ2 or PPARγ.
Collapse
|
123
|
Osterix represses adipogenesis by negatively regulating PPARγ transcriptional activity. Sci Rep 2016; 6:35655. [PMID: 27752121 PMCID: PMC5067693 DOI: 10.1038/srep35655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression suppressed this process and inhibited the expression of adipogenic markers including CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). Further studies indicated that Osterix significantly decreased PPARγ-induced transcriptional activity. Using co-immunoprecipitation and GST-pull down analysis, we found that Osterix directly interacts with PPARγ. The ligand-binding domain (LBD) of PPARγ was responsible for this interaction, which was followed by repression of PPARγ-induced transcriptional activity, even in the presence of rosiglitazone. Taken together, we identified the Osterix has an important regulatory role on PPARγ activity, which contributed to the mechanism of adipogenesis.
Collapse
|
124
|
Wang Y, Zhang L, Yu J, Huang S, Wang Z, Chun KA, Lee TL, Chen YT, Gallo RL, Huang CM. A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation. J Invest Dermatol 2016; 137:46-56. [PMID: 27498050 DOI: 10.1016/j.jid.2016.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/28/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022]
Abstract
We show that Staphylococcus epidermidis, a commensal bacterium in the human skin microbiome, produces short-chain fatty acids by glycerol fermentation that can induce adipogenesis. Although the antimicrobial and anti-inflammatory activities of short-chain fatty acids have been previously well characterized, little is known about the contribution of short-chain fatty acids to the adipogenic differentiation of adipose-derived stem cells (ADSCs). We show that ADSCs differentiated into adipocytes and accumulated lipids in the cytoplasm when cultured with butyric acid, a principal short-chain fatty acid in the fermentation metabolites of S. epidermidis. Additionally, a co-drug, butyric acid 2-(2-butyryloxyethoxy) ethyl ester (BA-DEG-BA), released active butyric acid when it was intradermally injected into mouse ears and induced ADSC differentiation, characterized by an increased expression of cytoplasmic lipids and perilipin A. The BA-DEG-BA-induced adipogenic differentiation was mediated via peroxisome proliferator-activated receptor gamma. Furthermore, intradermal injection of ADSCs along with BA-DEG-BA into mouse ears markedly enhanced the adipogenic differentiation of ADSCs, leading to dermal augmentation. Our study introduces BA-DEG-BA as an enhancer of ADSC adipogenesis and suggests an integral interaction between the human skin microbiome and ADSCs.
Collapse
Affiliation(s)
- Yanhan Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA
| | - Lingjuan Zhang
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA
| | - Jinghua Yu
- Sanford-Burnham Institute for Medical Research, La Jolla, California, USA
| | - Stephen Huang
- Surface Bioadvances Incorporated, San Diego, California, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA
| | - Kimberly Ann Chun
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA
| | - Tammy Ling Lee
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA
| | - Ying-Tung Chen
- Nerd SkinCare Incorporated, San Francisco, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA
| | - Chun-Ming Huang
- Department of Dermatology, School of Medicine, University of California, San Diego, California, USA; Moores Cancer Center, University of California, San Diego, California, USA.
| |
Collapse
|
125
|
Jung DW, Lee OH, Kang IJ. Sanguisorba officinalis L. Extracts Exert Antiobesity Effects in 3T3-L1 Adipocytes and C57BL/6J Mice Fed High-Fat Diets. J Med Food 2016; 19:768-79. [DOI: 10.1089/jmf.2016.3704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Da-Woon Jung
- Department of Food Science and Nutrition, Hallym University, Gangwon, Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Gangwon, Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Gangwon, Korea
| |
Collapse
|
126
|
|
127
|
Wojciechowicz T, Skrzypski M, Szczepankiewicz D, Hertig I, Kołodziejski PA, Billert M, Strowski MZ, Nowak KW. Original Research: Orexins A and B stimulate proliferation and differentiation of porcine preadipocytes. Exp Biol Med (Maywood) 2016; 241:1786-95. [PMID: 27190275 DOI: 10.1177/1535370216649261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Orexin A (OXA) and B (OXB) are neuropeptides which regulate appetite, energy expenditure, and arousal via G-protein coupled receptors termed as OXR1 and OXR2. The aim of this study was to characterize the effects of OXA and OXB on proliferation and differentiation of porcine preadipocytes. Porcine preadipocytes express both OXRs. OXA and OXB enhance porcine preadipocyte proliferation by 54.8% or 63.2 %, respectively. OXA and OXB potentiate differentiation of porcine preadipocytes, as judged by the increased lipid accumulation and expression of proadipogenic genes. Cellular lipid content after exposure of preadipocytes for six days to 100 nM OXA or OXB increased by 82.2% or 59.2%, respectively. OXA and OXB suppressed glycerol release by 23.9% or 24.9% in preadipocytes differentiated for six days. OXA (100 nM) increased peroxisome proliferator-activated receptor gamma (PPARγ) expression in cells differentiated for 24 h by 100.5%. PPARγ expression was also stimulated in preadipocytes differentiated in the presence of 10 nM (58.3%) or 100 nM OXA (50.6%) for three days. OXB potentiated PPARγ mRNA expression at 1 nM (59%), 10 nM (53.2%), and 100 nM (73.9%) in cells differentiated for three days. OXA increased CCAAT/enhancer binding protein alpha expression in preadipocytes differentiated for six days by 65%. OXB stimulated CCAAT/enhancer binding protein beta expression in preadipocytes differentiated for three days at 10 nM (149.5%) as well as 100 nM (207.2%). Lipoprotein lipase mRNA expression increased in cells treated with 10 nM OXA by 152.6% and 100 nM OXA by 162%. Lipoprotein lipase expression increased by 134% at 100 nM OXB. Furthermore, OXA (100 nM) and OXB (100 nM) increased leptin mRNA expression in preadipocytes differentiated for three days by 49.9% or 71.3%, respectively. These data indicate that orexin receptors may be relevant in the context of white adipose tissue formation.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Dawid Szczepankiewicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Iwona Hertig
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Maria Billert
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology and Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charite-University Medicine Berlin, Berlin 13353, Germany Department of Gastroenterology, Medical Clinic, Elblandklinik, Meissen 01662, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań 60-637, Poland
| |
Collapse
|
128
|
Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans. J Ginseng Res 2016; 41:257-267. [PMID: 28701865 PMCID: PMC5489751 DOI: 10.1016/j.jgr.2016.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 01/11/2023] Open
Abstract
Background Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with 10 μg/mL of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment downregulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype γ (PPARγ) and CCAAT/enhancer-binding protein-alpha (C/EBPα) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of PPARγ and C/EBPα, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.
Collapse
|
129
|
Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol 2016; 214:559-65. [PMID: 26829510 DOI: 10.1016/j.ajog.2016.01.182] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 01/22/2016] [Indexed: 01/18/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous chemicals, or mixtures of chemicals, that can interfere with any aspect of hormone action. The field of endocrine disruption is historically rooted in wildlife biology and reproductive endocrinology where EDCs are demonstrated contributors to infertility, premature puberty, endometriosis, and other disorders. Recently, EDCs have been implicated in metabolic syndrome and obesity. Adipose tissue is a true endocrine organ and, therefore, an organ that is highly susceptible to disturbance by EDCs. A subset of EDCs, called "obesogens," promote adiposity by altering programming of fat cell development, increasing energy storage in fat tissue, and interfering with neuroendocrine control of appetite and satiety. Obesity adds more than $200 billion to US healthcare costs and the number of obese individuals continues to increase. Hence, there is an urgent, unmet need to understand the mechanisms underlying how exposures to certain EDCs may predispose our population to be obese. In this review, we discuss the history of obesogen discovery from its origins in reproductive biology to its latest role in the transgenerational inheritance of obesity in mice. We discuss the development of adipose tissue in an embryo, maintenance of adipocyte number in adults, how EDC disruption programs stem cells to preferentially make more adipocytes, the mechanisms by which chemicals can permanently alter the germline epigenome, and whether there are barriers to EDCs in the gametes.
Collapse
Affiliation(s)
- Amanda S Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California.
| |
Collapse
|
130
|
Huttala O, Mysore R, Sarkanen JR, Heinonen T, Olkkonen VM, Ylikomi T. Differentiation of human adipose stromal cells in vitro into insulin-sensitive adipocytes. Cell Tissue Res 2016; 366:63-74. [DOI: 10.1007/s00441-016-2409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
|
131
|
Xi Y, Shen W, Ma L, Zhao M, Zheng J, Bu S, Hino S, Nakao M. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ. Biochem Biophys Res Commun 2016; 472:617-23. [PMID: 26966068 DOI: 10.1016/j.bbrc.2016.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 12/11/2022]
Abstract
Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2 transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity.
Collapse
Affiliation(s)
- Yang Xi
- Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Wanjing Shen
- Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lili Ma
- Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Ming Zhao
- Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiachen Zheng
- Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Shizhong Bu
- Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
132
|
Song YS, Lee DH, Yu JH, Oh DK, Hong JT, Yoon DY. Promotion of adipogenesis by 15-(S)-hydroxyeicosatetraenoic acid. Prostaglandins Other Lipid Mediat 2016; 123:1-8. [DOI: 10.1016/j.prostaglandins.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
133
|
Kang MC, Kang N, Kim SY, Lima IS, Ko SC, Kim YT, Kim YB, Jeung HD, Choi KS, Jeon YJ. Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity. Food Chem Toxicol 2016; 90:181-7. [PMID: 26911551 DOI: 10.1016/j.fct.2016.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 02/03/2023]
Abstract
The popular edible seaweed, Gelidium amansii is broadly used as food worldwide. To determine whether G. amansii extract (GAE) has protective effects on obesity, mice fed a high-fat diet (HFD) treated with GAE (1 and 3 %) were studied. After 12 weeks of GAE treatment, body weight was greatly decreased in mice fed a high-fat diet. This effect could be due to decreased adipogenesis, as evidenced by the fact that GAE suppressed adipogenic gene expression in adipocytes. In addition, blood glucose and serum insulin levels were reduced by GAE treatment in mice fed a high-fat diet, suggesting improvement in glucose metabolism. GAE supplementation also led to a significant decrease in total cholesterol and triglyceride levels. These data are further confirmed by H&E staining. Our findings indicate that Gelidium amansii prevents against the development of diet-induced obesity, and further implicate that GAE supplementation could be the therapeutical option for treatment of metabolic disorder such as obesity.
Collapse
Affiliation(s)
- Min-Cheol Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nalae Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Seo-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Inês S Lima
- Centro de Estudos de Doenças Crónicas CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 608-737, Republic of Korea; Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737, Republic of Korea
| | - Young-Tae Kim
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan 573-701, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hee-Do Jeung
- Tidal Flat Research Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), 11 Seollim-gill, 54014 Gunsan, Republic of Korea
| | - Kwang-Sik Choi
- School of Marine Biomedical Science, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
134
|
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous chemicals, or mixtures of chemicals, that can interfere with any aspect of hormone action. The field of endocrine disruption is historically rooted in wildlife biology and reproductive endocrinology where EDCs are demonstrated contributors to infertility, premature puberty, endometriosis, and other disorders. Recently, EDCs have been implicated in metabolic syndrome and obesity. Adipose tissue is a true endocrine organ and, therefore, an organ that is highly susceptible to disturbance by EDCs. A subset of EDCs, called "obesogens," promote adiposity by altering programming of fat cell development, increasing energy storage in fat tissue, and interfering with neuroendocrine control of appetite and satiety. Obesity adds more than $200 billion to US healthcare costs and the number of obese individuals continues to increase. Hence, there is an urgent, unmet need to understand the mechanisms underlying how exposures to certain EDCs may predispose our population to be obese. In this review, we discuss the history of obesogen discovery from its origins in reproductive biology to its latest role in the transgenerational inheritance of obesity in mice. We discuss the development of adipose tissue in an embryo, maintenance of adipocyte number in adults, how EDC disruption programs stem cells to preferentially make more adipocytes, the mechanisms by which chemicals can permanently alter the germline epigenome, and whether there are barriers to EDCs in the gametes.
Collapse
Affiliation(s)
- Amanda S Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California.
| |
Collapse
|
135
|
Melatonin attenuated adipogenesis through reduction of the CCAAT/enhancer binding protein beta by regulating the glycogen synthase 3 beta in human mesenchymal stem cells. J Physiol Biochem 2016; 72:145-55. [PMID: 26797706 DOI: 10.1007/s13105-015-0463-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
Adipogenic differentiation is characterized by an increase in two major transcription factors: peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT/enhancer binding protein alpha (C/EBPα). These two signals are influenced by C/EBPβ and C/EBPδ and cross-regulate each other's expression during the initial stages of adipogenesis. Melatonin has been known to act as not only a direct scavenger of free radicals but also an inhibitor of glycogen synthase kinase 3β (GSK-3β). Here, we report that melatonin inhibits the adipogenic differentiation of human mesenchymal stem cells (hMSCs) which is due to the regulations of C/EBPβ in the early stage of adipogenic differentiation. Melatonin reduced the lipid accumulation, adiponectin, and lipoprotein lipase (LPL) during the adipogenic differentiation of hMSCs. Since C/EBPβ has been associated with the activation of PPARγ and the consensus site of ERK/GSK-3β, PPARγ and β-catenin were detected by immunofluorescence staining after pretreatment of melatonin. Melatonin blocked the activation of PPARγ which induced the degradation of β-catenin. Melatonin also decreased the levels of cyclic adenosine-3,5-monophosphate (cAMP) and reactive oxygen species (ROS). The cAMP triggered the activity of C/EBPβ which is a critical inducer of PPARγ and C/EBPα activation in the early stage of adipogenic differentiation, and this is further affected by ROS production. The adipogenic marker proteins such as PPARγ, C/EBPα, C/EBPβ, and pERK were also decreased by melatonin. In summary, melatonin inhibited the cAMP synthesis through ROS reduction and the phosphorylation of the ERK/GSK-3β site which is known to be responsible for C/EBPβ activation for adipogenic differentiation in hMSCs.
Collapse
|
136
|
Moseti D, Regassa A, Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17:ijms17010124. [PMID: 26797605 PMCID: PMC4730365 DOI: 10.3390/ijms17010124] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Woo-Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA 30602-2772, USA.
| |
Collapse
|
137
|
Funakoshi-Tago M, Hattori T, Ueda F, Tago K, Ohe T, Mashino T, Tamura H. A proline-type fullerene derivative inhibits adipogenesis by preventing PPARγ activation. Biochem Biophys Rep 2016; 5:259-265. [PMID: 28955832 PMCID: PMC5600428 DOI: 10.1016/j.bbrep.2016.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 11/17/2022] Open
Abstract
Obesity and its associated metabolic diseases represent some of the most rapidly expanding health issues worldwide, and, thus, the development of a novel chemical compound to suppress adipogenesis is strongly expected. We herein investigated the effects of water-soluble fullerene derivatives: a bis-malonic acid derivative and three types of proline-type fullerene derivatives, on adipogenesis using NIH-3T3 cells overexpressing PPARγ. One of the proline-type fullerene derivatives (P3) harboring three carboxy groups significantly inhibited lipid accumulation and the expression of adipocyte-specific genes, such as aP2, induced by the PPARγ agonist rosiglitazone. On the other hand, the bis-malonic acid derivative (M) and the 2 other proline-type fullerene derivatives (P1, P2), which have two carboxy groups, had no effect on PPARγ-mediated lipid accumulation or the expression of aP2. P3 fullerene also inhibited lipid accumulation induced by the combined stimulation with 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, and insulin in 3T3-L1 preadipocytes. During the differentiation of 3T3-L1 cells into adipocytes, P3 fullerene did not affect the expression of C/EBPδ, C/EBPβ, or PPARγ, but markedly inhibited that of aP2 mRNA. These results suggest that P3 fullerene exhibits anti-obesity activity by preventing the activation of PPARγ. Fullerene derivative inhibits the rosiglitazone-induced adipogenesis. Fullerene derivative inhibits the rosiglitazone-induced expression of aP2 mRNA. Fullerene derivative inhibits adipogenesis of 3T3-L1 preadipocyte. Fullerene derivative inhibits the activation of PPARγ in 3T3-L1 preadipocyte.
Collapse
Key Words
- Adipogenesis
- C/EBPs, CCAAT/enhancer-binding proteins
- DMSO, dimethyl sulfoxide
- FBS, fetal bovine serum
- Fullerene
- HIV, human immunodeficiency virus
- IBMX, 3-isobutyl-1-methylxanthine
- NF-κB, nuclear factor kappa B
- Obesity
- PBS, phosphate-buffered saline
- PPARγ
- PPARγ, peroxisome proliferator-activated receptor γ
- ROS, reactive oxygen species
- RT-PCR, reverse transcription-polymerase chain reaction.
- aP2, adipocyte Protein 2
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Correspondence to: Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.Graduate School of Pharmaceutical Sciences, Keio University1-5-30 ShibakoenMinato-kuTokyo105-8512Japan
| | - Takahiro Hattori
- Department of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Fumihito Ueda
- Department of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | - Tomoyuki Ohe
- Department of Bioorganic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tadahiko Mashino
- Department of Bioorganic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroomi Tamura
- Department of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
138
|
Namwanje M, Bournat JC, Brown CW. Isolation and Manipulation of Adipogenic Cells to Assess TGF-β Superfamily Functions. Methods Mol Biol 2016; 1344:205-17. [PMID: 26520126 DOI: 10.1007/978-1-4939-2966-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A variety of TGF-β superfamily members affect adipocyte differentiation and function with consequential effects on energy metabolism. There has been a growing interest in this area because of the apparent influence of the BMP subgroup on brown adipose characteristics and potential application to the treatment of human obesity. In this chapter we describe methods that are useful in allowing one to assess the roles of specific members of the superfamily on adipocyte differentiation and mature adipocyte function, including the isolation and differentiation of mouse embryo fibroblasts (MEFs) to examine cell autonomous effects and the efficient transfection of two commonly used (but difficult to transfect) adipogenic cell lines, C3H/10T1/2 and 3T3-L1.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Juan C Bournat
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
139
|
Lee DS, Choi H, Han BS, Kim WK, Lee SC, Oh KJ, Bae KH. c-Jun regulates adipocyte differentiation via the KLF15-mediated mode. Biochem Biophys Res Commun 2015; 469:552-8. [PMID: 26692489 DOI: 10.1016/j.bbrc.2015.12.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Abnormal adipocyte differentiation is implicated in the development of metabolic disorders such as obesity and type II diabetes. Thus, an in-depth understanding of the molecular mechanisms associated with adipocyte differentiation is the first step in overcoming obesity and its related metabolic diseases. Here, we examined the role of c-Jun as a transcription factor in adipocyte differentiation. c-Jun overexpression in murine 3T3-L1 preadipocytes significantly inhibited adipocyte differentiation. In addition, the expression level of KLF15, an upstream effector of the key adipogenic factors C/EBPα and PPARγ, was decreased upon the ectopic expression of c-Jun. We found that c-Jun inhibited basal and glucocorticoid receptor (GR)-induced promoter activities of KLF15. c-Jun directly bound near the glucocorticoid response element (GRE) sites in the KLF15 promoter and inhibited adjacent promoter occupancies of GR. Furthermore, the restoration of KLF15 expression in 3T3-L1 cells with the stable ectopic expression of c-Jun partially rescued adipocyte differentiation. Our results demonstrate that c-Jun can suppress adipocyte differentiation through the down-regulation of KLF15 at the transcriptional level. This study proposes a novel mechanism by which c-Jun regulates adipocyte differentiation.
Collapse
Affiliation(s)
- Da Som Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hyeonjin Choi
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Baek Soo Han
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Won Kon Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hee Bae
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea.
| |
Collapse
|
140
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
141
|
Ferguson BS, Nam H, Stephens JM, Morrison RF. Mitogen-Dependent Regulation of DUSP1 Governs ERK and p38 Signaling During Early 3T3-L1 Adipocyte Differentiation. J Cell Physiol 2015; 231:1562-74. [PMID: 26566083 DOI: 10.1002/jcp.25248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023]
Abstract
Knowledge concerning mechanisms that control proliferation and differentiation of preadipocytes is essential to our understanding of adipocyte hyperplasia and the development of obesity. Evidence has shown that temporal regulation of mitogen-activated protein kinase (MAPK) phosphorylation and dephosphorylation is critical for coupling extracellular stimuli to cellular growth and differentiation. Using differentiating 3T3-L1 preadipocytes as a model of adipocyte hyperplasia, we examined a role for dual-specificity phosphatase 1 (DUSP1) on the timely modulation of MAPK signaling during states of growth arrest, proliferation, and differentiation. Using real-time reverse transcription PCR (qRT-PCR), we report that DUSP1 is induced during early preadipocyte proliferation concomitant with ERK and p38 dephosphorylation. As deactivation of ERK and p38 is essential for the progression of adipocyte differentiation, we further showed that de novo mRNA synthesis was required for ERK and p38 dephosphorylation, suggesting a role for "inducible" phosphatases in regulating MAPK signaling. Pharmacological and genetic inhibition of DUSP1 markedly increased ERK and p38 phosphorylation during early adipocyte differentiation. Based on these findings, we postulated that loss of DUSP1 would block adipocyte hyperplasia. However, genetic loss of DUSP1 was not sufficient to prevent preadipocyte proliferation or differentiation, suggesting a role for other phosphatases in the regulation of adipogenesis. In support of this, qRT-PCR identified several MAPK-specific DUSPs induced during early (DUSP2, -4, -5, & -6), mid (DUSP4 & -16) and late (DUSP9) stages of adipocyte differentiation. Collectively, these data suggest an important role for DUSPs in regulating MAPK dephosphorylation, with an emphasis on DUSP1, during early adipogenesis.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Heesun Nam
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Jacqueline M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Ron F Morrison
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
142
|
Yang Z, Hong LK, Follett J, Wabitsch M, Hamilton NA, Collins BM, Bugarcic A, Teasdale RD. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation. FASEB J 2015; 30:1037-50. [PMID: 26581601 DOI: 10.1096/fj.15-274704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Lee Kian Hong
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Jordan Follett
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Martin Wabitsch
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Nicholas A Hamilton
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Brett M Collins
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Bugarcic
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Rohan D Teasdale
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
143
|
Park SB, Park JS, Jung WH, Park A, Jo SR, Kim HY, Dal Rhee S, Ryu SY, Jeong HG, Park S, Lee H, Kim KY. Identification of a novel 11β-HSD1 inhibitor from a high-throughput screen of natural product extracts. Pharmacol Res 2015; 102:245-53. [PMID: 26515507 DOI: 10.1016/j.phrs.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/22/2023]
Abstract
Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential as a treatment for metabolic syndrome including type 2 diabetes mellitus and obesity. To identify 11β-HSD1 inhibitors, we conducted high-throughput screening (HTS) of active natural product extracts from the Korea Chemical Bank, including Tanshinone I, Tanshinone IIA, and flavanone derivatives, and 2- and 3-phenyl-4H-chromen-4-one. Then Tanshinone IIA and its derivatives were targeted for the development of a lead compound according to the HTS results. However, the mechanism for anti-adipogenic effect through 11β-HSD1 enzyme inhibition by Tanshinone IIA is not clear. Tanshinone IIA (2a) concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 overexpressed cells and 3T3-L1 adipocytes. Tanshinone IIA (2a) also inhibited 11β-HSD1 enzyme activities in murine liver and fats. Furthermore, Tanshinone IIA (2a)-suppressed adipocyte differentiation of cortisone-induced adipogenesis in 3T3-L1 cells was associated with the suppression of the cortisone-induced adipogenesis-specific markers mRNA and protein expression. In 3T3-L1 preadipocytes, Tanshinone IIA (2a)-inhibited cortisone induced reactive oxygen species formation in a concentration-dependent manner. Thus, these results support the therapeutic potential of Tanshinone IIA (2a) as a 11β-HSD1 inhibitor in metabolic syndrome patients.
Collapse
Affiliation(s)
- Sung Bum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Ji Seon Park
- Department of Human and Environmental Toxicology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Won Hoon Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Areum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Sae Rom Jo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Hee Youn Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Sang Dal Rhee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Shi Yong Ryu
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Seongsoon Park
- Department of Chemistry, Center for NanoBio Applied Technology, Institute of Basic Sciences, Sungshin Women's University, 55 Dobon-ro 76ga-gil, Gangbuk-gu, Seoul 142-732, Republic of Korea
| | - Hyuk Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea.
| | - Ki Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
144
|
Abstract
Infantile hemangiomas (IHs) are the most common tumors of childhood. Unlike other tumors, they have the unique ability to involute after proliferation, often leading primary care providers to assume they will resolve without intervention or consequence. Unfortunately, a subset of IHs rapidly develop complications, resulting in pain, functional impairment, or permanent disfigurement. As a result, the primary clinician has the task of determining which lesions require early consultation with a specialist. Although several recent reviews have been published, this clinical report is the first based on input from individuals representing the many specialties involved in the treatment of IH. Its purpose is to update the pediatric community regarding recent discoveries in IH pathogenesis, treatment, and clinical associations and to provide a basis for clinical decision-making in the management of IH.
Collapse
|
145
|
Snyder CA, Goodson ML, Schroeder AC, Privalsky ML. Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling. Mol Cell Endocrinol 2015; 413:228-35. [PMID: 26166430 PMCID: PMC4556269 DOI: 10.1016/j.mce.2015.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022]
Abstract
Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRω isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models. We report here that dexamethasone, a powerful regulator of metabolism and of adipocyte differentiation, confers this change in NCoR mRNA splicing in cultured adipocytes. We also demonstrate that changes in dietary components can consistently, if moderately, modulate the total transcript levels and the mRNA splicing of NCoR and SMRT in both cultured cells and intact mice. This ability of alternative corepressor mRNA splicing to respond to nutritional changes confirms its importance in regulating glucose and lipid metabolism, and its promise as a therapeutic candidate for metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Chelsea A Snyder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| | - Michael L Goodson
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| | - Amy C Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| |
Collapse
|
146
|
Kenanidis E, Potoupnis ME, Kakoulidis P, Leonidou A, Sakellariou GT, Sayegh FE, Tsiridis E. Management of glucocorticoid-induced osteoporosis: clinical data in relation to disease demographics, bone mineral density and fracture risk. Expert Opin Drug Saf 2015; 14:1035-53. [PMID: 25952267 DOI: 10.1517/14740338.2015.1040387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Patient selection and the treatment choice remain to be controversial. None of the proposed management guidelines are widely accepted. We evaluate the available clinical data, the efficacy of current medication and we propose an overall algorithm for managing GIOP. AREAS COVERED This article provides a critical review of in vivo and clinical evidence regarding GIOP and developing evidence-based algorithm of treatment. Data base used includes MEDLINE® (1950 to May 2014). EXPERT OPINION Patient-specific treatment is the gold standard of care. Glucocorticoid (GC)-treated patients must comply with a healthy lifestyle and receive 1000 mg of calcium and at least 800 mg of Vitamin D daily. Bisphosphonate (BP) therapy is the current standard of care for prevention and treatment of GIOP. Most of bisphosphonates demonstrated benefit in lumbar bone mineral density (BMD) and some in hip BMD. Alendronate, risedronate and zoledronate showed vertebral anti-fracture efficacy in postmenopausal women and men. Scarce data however when compared head to head with BP efficacy. In post-menopausal women, early antiresorptive BP treatment appears to be efficient and safe. In premenopausal women and patients at high risk of fracture receiving long-term GC therapy however, teriparitide may be advised alternatively.
Collapse
Affiliation(s)
- Eustathios Kenanidis
- Aristotle University Medical School, Academic Orthopaedic Unit , Thessaloniki , Greece
| | | | | | | | | | | | | |
Collapse
|
147
|
Yamamoto J, Yamane T, Oishi Y, Shimizu M, Tadaishi M, Kobayashi-Hattori K. Chrysanthemum Promotes Adipocyte Differentiation, Adiponectin Secretion and Glucose Uptake. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:255-67. [DOI: 10.1142/s0192415x15500172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The adipose tissue is an endocrine organ, and its endocrine function is closely related to type 2 diabetes. Edible Chrysanthemum morifolium Ramat. (ECM) possesses several biological properties; however, its effect on adipocytes remains unclear. We investigated the effect of the hot water extract of ECM (HW-ECM) on 3T3-L1 adipocytes. HW-ECM enhanced adipocyte differentiation, adiponectin secretion, and glucose uptake in 3T3-L1 cells. It also increased the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation, adiponectin transcription, and GLUT4 expression. In addition, HW-ECM increased the mRNA levels of CCAAT/enhancer-binding protein-delta (C/EBPδ), which induces PPARγ expression, but not C/EBPβ, during early adipocyte differentiation. These results suggest that HW-ECM enhances adipocyte differentiation, adiponectin secretion, and glucose uptake through C/EBPδ-induced PPARγ expression. These effects of HW-ECM on adipocytes suggest that HW-ECM is potentially beneficial for type 2 diabetes.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takumi Yamane
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuichi Oishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
148
|
Conversion of non-adipogenic fibroblasts into adipocytes by a defined hormone mixture. Biochem J 2015; 467:487-94. [DOI: 10.1042/bj20140727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Non-adipogenic fibroblasts were induced into adipocytes by treatment with a defined hormone mixture including epidermal growth factor, hepatocyte growth factor, dexamethasone and insulin. Non-adipogenic fibroblasts were directly converted into adipocytes without a pre-adipocyte stage.
Collapse
|
149
|
Ratziu V, Goodman Z, Sanyal A. Current efforts and trends in the treatment of NASH. J Hepatol 2015; 62:S65-75. [PMID: 25920092 DOI: 10.1016/j.jhep.2015.02.041] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
Of all the aspects of non-alcoholic fatty liver disease (NAFLD), the slowest advances have occurred in the therapeutic field. Thirty-five years after its formal description and after 15 years of intense scrutiny from researchers worldwide, there is still no approved drug for the treatment of non-alcoholic steatohepatits (NASH). In the meantime, progress in the understanding of pathophysiology, diagnosis - both invasive and non-invasive, epidemiology and even natural history have been substantial or, at times, spectacular. In contrast, hepatitis C virus (HCV) therapy underwent constant improvement and even before the great acceleration of the past few years, patients were already being offered approved therapies that were increasingly more efficient. What then explains such a slow pace of therapeutic advances in NASH, and will this change in the near future? Here we will review commonly-held myths that have diverted attention from therapy of NASH, obstacles that have slowed down industrial development of drugs for this indication, and recent achievements that will create better conditions for drug development programs. We will also briefly review current knowledge of non-pharmacological and pharmacological management in this early era of NASH therapies.
Collapse
Affiliation(s)
- Vlad Ratziu
- Université Pierre et Marie Curie, ICAN - Institute for Cardiometabolism and Nutrition, Hôpital Pitié Salpêtrière, Paris, France.
| | - Zachary Goodman
- Center for Liver Diseases, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
150
|
Qi S, Huang H, Huang J, Wang Q, Wei Q. Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|