101
|
Black SA, Trackman PC. Transforming growth factor-beta1 (TGFbeta1) stimulates connective tissue growth factor (CCN2/CTGF) expression in human gingival fibroblasts through a RhoA-independent, Rac1/Cdc42-dependent mechanism: statins with forskolin block TGFbeta1-induced CCN2/CTGF expression. J Biol Chem 2008; 283:10835-47. [PMID: 18287089 DOI: 10.1074/jbc.m710363200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of connective tissue growth factor (CCN2/CTGF) in gingival fibroblasts is unique and may provide therapeutic opportunities to treat oral fibrotic diseases. RhoA was previously implicated in mediating the expression of CCN2/CTGF. We now present evidence that Rho family GTPases Rac1 and Cdc42 are the principal mediators of the transforming growth factor-beta1 (TGFbeta1)-stimulated expression of CCN2/CTGF in primary human gingival fibroblasts. TGFbeta1 does not stimulate RhoA activation in gingival fibroblasts, and the overexpression of dominant-negative RhoA does not reduce CCN2/CTGF expression in response to TGFbeta1. In contrast, the overexpression of dominant-negative forms of Cdc42 or Rac1 results in a dramatic reduction of CCN2/CTGF protein levels. Lovastatin and a geranylgeranyltransferase inhibitor reduce the TGFbeta1-stimulated levels of CCN2/CTGF protein by approximately 75 and 100%, respectively. We previously demonstrated that JNK1 phosphorylation by TGFbeta1 is also critical for TGFbeta1-induced CCN2/CTGF expression, and forskolin partially reduces levels of phosphorylated JNK1. Inhibition of geranylgeranyltransferase has no effect on levels of JNK phosphorylation in response to TGFbeta1 suggesting Rho-GTPases act independently of JNK1. The combination of lovastatin and forskolin results in a greater inhibitory effect than each agent alone and reduces CCN2/CTGF mRNA and protein expression by greater than 90%. This novel combination has additive inhibitory effects on the TGFbeta1-stimulated expression of CCN2/CTGF in human gingival fibroblasts through the simultaneous disruption of Rho- and JNK1-mediated pathways, respectively. This combination of available therapeutic compounds may therefore be useful in designing treatment strategies for oral fibrotic conditions in which gingival CCN2/CTGF is elevated.
Collapse
Affiliation(s)
- Samuel A Black
- Department of Periodontology and Oral Biology, Division of Oral Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
102
|
Choi SH, Czifra G, Kedei N, Lewin NE, Lazar J, Pu Y, Marquez VE, Blumberg PM. Characterization of the interaction of phorbol esters with the C1 domain of MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase) alpha/beta. J Biol Chem 2008; 283:10543-9. [PMID: 18263588 DOI: 10.1074/jbc.m707463200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
C1 domains mediate the recognition and subsequent signaling response to diacylglycerol and phorbol esters by protein kinase C (PKC) and by several other families of signal-transducing proteins such as the chimerins or RasGRP. MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase), a member of the dystrophia myotonica protein kinase family that functions downstream of Cdc42, contains a C1 domain with substantial homology to that of the diacylglycerol/phorbol ester-responsive C1 domains and has been reported to bind phorbol ester. We have characterized here the interaction of the C1 domains of the two MRCK isoforms alpha and beta with phorbol ester. The MRCK C1 domains bind [20-(3)H]phorbol 12,13-dibutyrate with K(d) values of 10 and 17 nm, respectively, reflecting 60-90-fold weaker affinity compared with the protein kinase C delta C1b domain. In contrast to binding by the C1b domain of PKCdelta, the binding by the C1 domains of MRCK alpha and beta was fully dependent on the presence of phosphatidylserine. Comparison of ligand binding selectivity showed resemblance to that by the C1b domain of PKCalpha and marked contrast to that of the C1b domain of PKCdelta. In intact cells, as in the binding assays, the MRCK C1 domains required 50-100-fold higher concentrations of phorbol ester for induction of membrane translocation. We conclude that additional structural elements within the MRCK structure are necessary if the C1 domains of MRCK are to respond to phorbol ester at concentrations comparable with those that modulate PKC.
Collapse
Affiliation(s)
- Sung Hee Choi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Garton AJ, Castaldo L, Pachter JA. Quantitative high-throughput cell-based assays for inhibitors of ROCK kinases. Methods Enzymol 2008; 439:491-500. [PMID: 18374184 DOI: 10.1016/s0076-6879(07)00433-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The serine/threonine kinases ROCK1 and ROCK2 are direct targets of activated rho GTPases, and aberrant rho/ROCK signaling has been implicated in a number of human diseases. We have developed novel methods for high-throughput assays of ROCK inhibitors that provide for quantitative evaluation of the ability of small molecules to inhibit the function of ROCK kinases in intact cells. Conditions for extraction of known phosphorylated substrates of ROCK were identified, and the involvement of ROCK in phosphorylation of these substrates was evaluated using small interfering RNA (siRNA). Of the potential substrates tested, MYPT1 was identified as a substrate whose phosphorylation was reduced markedly in the combined absence of ROCK1 and ROCK2 proteins, and ELISA methods were developed to allow quantitative measurement of the degree of phosphorylation of MYPT1 at residue T853 in cells grown in 96-well plates. These methods are amenable to high-throughput assays for identification of ROCK inhibitors within libraries of small molecules and can be used to compare compound potencies to prioritize compounds of interest for additional evaluation. These methods should be useful in drug discovery efforts directed toward identifying potent ROCK inhibitors for potential treatment of cancer, hypertension, or other diseases involving rho/ROCK signaling.
Collapse
|
104
|
Prag S, Parsons M, Keppler MD, Ameer-Beg SM, Barber P, Hunt J, Beavil AJ, Calvert R, Arpin M, Vojnovic B, Ng T. Activated ezrin promotes cell migration through recruitment of the GEF Dbl to lipid rafts and preferential downstream activation of Cdc42. Mol Biol Cell 2007; 18:2935-48. [PMID: 17538024 PMCID: PMC1949366 DOI: 10.1091/mbc.e06-11-1031] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Establishment of polarized cell morphology is a critical factor for migration and requires precise spatial and temporal activation of the Rho GTPases. Here, we describe a novel role of the actin-binding ezrin/radixin/moesin (ERM)-protein ezrin to be involved in recruiting Cdc42, but not Rac1, to lipid raft microdomains, as well as the subsequent activation of this Rho GTPase and the downstream effector p21-activated kinase (PAK)1, as shown by fluorescence lifetime imaging microscopy. The establishment of a leading plasma membrane and the polarized morphology necessary for random migration are also dependent on ERM function and Cdc42 in motile breast carcinoma cells. Mechanistically, we show that the recruitment of the ERM-interacting Rho/Cdc42-specific guanine nucleotide exchange factor Dbl to the plasma membrane and to lipid raft microdomains requires the phosphorylated, active conformer of ezrin, which serves to tether the plasma membrane or its subdomains to the cytoskeleton. Together these data suggest a mechanism whereby precise spatial guanine nucleotide exchange of Cdc42 by Dbl is dependent on functional ERM proteins and is important for directional cell migration.
Collapse
Affiliation(s)
- Soren Prag
- *Richard Dimbleby Department of Cancer Research
- Randall Division of Cell and Molecular Biophysics, and
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, and
| | - Melanie D. Keppler
- *Richard Dimbleby Department of Cancer Research
- Randall Division of Cell and Molecular Biophysics, and
| | - Simon M. Ameer-Beg
- *Richard Dimbleby Department of Cancer Research
- Randall Division of Cell and Molecular Biophysics, and
| | - Paul Barber
- Gray Cancer Institute, Oxford University, Mount Vernon Hospital, Northwood, Middlesex, HA6 2JR, United Kingdom; and
| | - James Hunt
- Randall Division of Cell and Molecular Biophysics, and
- Division of Asthma, Allergy, and Lung Biology, King's College London, Guy's Medical School Campus, London SE1 1UL, United Kingdom
| | - Andrew J. Beavil
- Randall Division of Cell and Molecular Biophysics, and
- Division of Asthma, Allergy, and Lung Biology, King's College London, Guy's Medical School Campus, London SE1 1UL, United Kingdom
| | - Rosy Calvert
- Randall Division of Cell and Molecular Biophysics, and
- Division of Asthma, Allergy, and Lung Biology, King's College London, Guy's Medical School Campus, London SE1 1UL, United Kingdom
| | - Monique Arpin
- Laboratoire de Morphogenese et Signalisation Cellulaires, Institut Curie, 75248 Paris Cedex 05, France
| | - Borivoj Vojnovic
- Gray Cancer Institute, Oxford University, Mount Vernon Hospital, Northwood, Middlesex, HA6 2JR, United Kingdom; and
| | - Tony Ng
- *Richard Dimbleby Department of Cancer Research
- Randall Division of Cell and Molecular Biophysics, and
| |
Collapse
|
105
|
Groeger G, Nobes C. Co-operative Cdc42 and Rho signalling mediates ephrinB-triggered endothelial cell retraction. Biochem J 2007; 404:23-9. [PMID: 17300218 PMCID: PMC1868826 DOI: 10.1042/bj20070146] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell repulsion responses to Eph receptor activation are linked to rapid actin cytoskeletal reorganizations, which in turn are partially mediated by Rho-ROCK (Rho kinase) signalling, driving actomyosin contractility. In the present study, we show that Rho alone is not sufficient for this repulsion response. Rather, Cdc42 (cell division cycle 42) and its effector MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) are also critical for ephrinB-induced cell retraction. Stimulation of endothelial cells with ephrinB2 triggers rapid, but transient, cell retraction. We show that, although membrane retraction is fully blocked by blebbistatin (a myosin-II ATPase inhibitor), it is only partially blocked by inhibiting Rho-ROCK signalling, suggesting that there is ROCK-independent signalling to actomyosin contractility downstream of EphBs. We find that a combination of either Cdc42 or MRCK inhibition with ROCK inhibition completely abolishes the repulsion response. Additionally, endocytosis of ephrin-Eph complexes is not required for initial cell retraction, but is essential for subsequent Rac-mediated re-spreading of cells. Our data reveal a complex interplay of Rho, Rac and Cdc42 in the process of EphB-mediated cell retraction-recovery responses.
Collapse
Affiliation(s)
- Gillian Groeger
- *Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Catherine D. Nobes
- *Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- †Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
106
|
Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007; 21:562-77. [PMID: 17344417 PMCID: PMC1820898 DOI: 10.1101/gad.1484707] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Little is known about the regulation and function of the Notch1 gene in negative control of human tumors. Here we show that Notch1 gene expression and activity are substantially down-modulated in keratinocyte cancer cell lines and tumors, with expression of this gene being under p53 control in these cells. Genetic suppression of Notch signaling in primary human keratinocytes is sufficient, together with activated ras, to cause aggressive squamous cell carcinoma formation. Similar tumor-promoting effects are also caused by in vivo treatment of mice, grafted with keratinocytes expressing oncogenic ras alone, with a pharmacological inhibitor of endogenous Notch signaling. These effects are linked with a lesser commitment of keratinocytes to differentiation, an expansion of stem cell populations, and a mechanism involving up-regulation of ROCK1/2 and MRCKalpha kinases, two key effectors of small Rho GTPases previously implicated in neoplastic progression. Thus, the Notch1 gene is a p53 target with a role in human tumor suppression through negative regulation of Rho effectors.
Collapse
Affiliation(s)
- Karine Lefort
- Department of Biochemistry, University of Lausanne, Epalinges CH-1066, Switzerland
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Paola Ostano
- Laboratory of Cancer Pharmacogenomics, Fondo “Edo Tempia,” Biella 13900, Italy
| | - Vihren Kolev
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Valerie Calpini
- Department of Biochemistry, University of Lausanne, Epalinges CH-1066, Switzerland
| | - Ingrid Kolfschoten
- Department of Biochemistry, University of Lausanne, Epalinges CH-1066, Switzerland
| | - Vikram Devgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Jocelyn Lieb
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Wassim Raffoul
- Department of Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne CH-1011, Switzerland
| | - Daniel Hohl
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne CH-1011, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jonathan Garlick
- Division of Cancer Biology and Tissue Engineering, Tufts University Dental School, Boston, Massachusetts 02111, USA
| | - Giovanna Chiorino
- Laboratory of Cancer Pharmacogenomics, Fondo “Edo Tempia,” Biella 13900, Italy
| | - G. Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges CH-1066, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Corresponding author.E-MAIL ; FAX 41-21-692-5705
| |
Collapse
|
107
|
Watanabe T, Hosoya H, Yonemura S. Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cell 2006; 18:605-16. [PMID: 17151359 PMCID: PMC1783795 DOI: 10.1091/mbc.e06-07-0590] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonmuscle myosin II, an actin-based motor protein, plays an essential role in actin cytoskeleton organization and cellular motility. Although phosphorylation of its regulatory light chain (MRLC) is known to be involved in myosin II filament assembly and motor activity in vitro, it remains unclear exactly how MRLC phosphorylation regulates myosin II dynamics in vivo. We established clones of Madin Darby canine kidney II epithelial cells expressing MRLC-enhanced green fluorescent protein or its mutants. Time-lapse imaging revealed that both phosphorylation and dephosphorylation are required for proper dynamics of myosin II. Inhibitors affecting myosin phosphorylation and MRLC mutants indicated that monophosphorylation of MRLC is required and sufficient for maintenance of stress fibers. Diphosphorylated MRLC stabilized myosin II filaments and was distributed locally in regions of stress fibers where contraction occurs, suggesting that diphosphorylation is involved in the spatial regulation of myosin II assembly and contraction. We further found that myosin phosphatase or Zipper-interacting protein kinase localizes to stress fibers depending on the activity of myosin II ATPase.
Collapse
Affiliation(s)
- Toshiyuki Watanabe
- *RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan; and
| | - Hiroshi Hosoya
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | | |
Collapse
|
108
|
Lin Q, Yang W, Baird D, Feng Q, Cerione RA. Identification of a DOCK180-related Guanine Nucleotide Exchange Factor That Is Capable of Mediating a Positive Feedback Activation of Cdc42. J Biol Chem 2006; 281:35253-62. [PMID: 16968698 DOI: 10.1074/jbc.m606248200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cdc42, a member of the Rho subfamily of small GTPases, influences a wide range of activities including the establishment of cell polarity, migration, and the regulation of cell growth and differentiation. Here we describe the identification of an approximately 220-kDa protein that formed a stable complex with activated forms of Cdc42 and thereby showed characteristics of a downstream target/effector for this GTPase. However, molecular cloning of the cDNA encoding this protein (p220) revealed that it was highly related to Zizimin-1 and identical in sequence to a gene product in the data base designated DOCK11, which are members of the DOCK180 family of guanine nucleotide exchange factors (GEFs) for Cdc42 and Rac. Biochemical characterization shows that p220 is a specific GEF for Cdc42, with the GEF activity originating from its DHR2 (for DOCK homology region 2) domain. Nucleotide-depleted Cdc42 forms a stable complex with the DHR2 domain, whereas the binding of activated Cdc42 requires both the DHR2 domain and residues 66-126 within the amino-terminal portion of p220. Moreover, the full-length protein shows markedly higher GEF activity than the isolated DHR2 domain, whereas removal of the amino-terminal 126 amino acids necessary for binding-activated Cdc42 dramatically diminishes the activity. These and other results point to activated Cdc42 providing a positive feedback regulation of the GEF activity of p220. Thus, we refer to p220/DOCK11 as activated Cdc42-associated GEF, befitting its functional activity.
Collapse
Affiliation(s)
- Qiong Lin
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
109
|
Yong J, Tan I, Lim L, Leung T. Phosphorylation of Myosin Phosphatase Targeting Subunit 3 (MYPT3) and Regulation of Protein Phosphatase 1 by Protein Kinase A. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84033-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
110
|
Yong J, Tan I, Lim L, Leung T. Phosphorylation of myosin phosphatase targeting subunit 3 (MYPT3) and regulation of protein phosphatase 1 by protein kinase A. J Biol Chem 2006; 281:31202-11. [PMID: 16920702 DOI: 10.1074/jbc.m607287200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin phosphatase targeting subunit 3 (MYPT3) and transforming growth factor-beta-inhibited membrane-associated protein (TIMAP) are two closely related myosin-binding targeting subunits of protein phosphatase 1 (PP1c) with a characteristic CAAX (where AA indicates aliphatic amino acid) box at the C termini. Here we show that MYPT3 can be a substrate for protein kinase A (PKA). We first mapped the multiple phosphorylation sites within a central conserved motif. Deletion or mutations of this motif resulted in enhancement of the associated PP1c activity, suggesting that phosphorylation of MYPT3 may play an important role in regulating PP1c catalytic activity. However, unlike the other known MYPTs, which upon phosphorylation inhibit PP1c, PKA phosphorylation of MYPT3 resulted in PP1c activation, indicating a different mode of action. There is a direct interaction between the central conserved phosphorylated site motif with the N-terminal ankyrin repeat region; this interaction was significantly reduced with MYPT3 phosphorylation or acidic phosphorylation site mutations, with concomitant alterations in biochemical and morphological consequences. We therefore propose a novel mechanism for the phosphorylation of MYPT3 by PKA and activation of the catalytic activity through direct interaction of a central region of MYPT3 with its N-terminal region.
Collapse
Affiliation(s)
- Jeffery Yong
- GSK-IMCB Group, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | | | | |
Collapse
|
111
|
Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 2006; 55:2171-9. [PMID: 16873679 DOI: 10.2337/db06-0148] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The insulin-signaling network regulates blood glucose levels, controls metabolism, and when dysregulated, may lead to the development of type 2 diabetes. Although the role of tyrosine phosphorylation in this network is clear, only a limited number of insulin-induced tyrosine phosphorylation sites have been identified. To address this issue and establish temporal response, we have, for the first time, carried out an extensive, quantitative, mass spectrometry-based analysis of tyrosine phosphorylation in response to insulin. The study was performed with 3T3-L1 adipocytes stimulated with insulin for 0, 5, 15, and 45 min. It has resulted in the identification and relative temporal quantification of 122 tyrosine phosphorylation sites on 89 proteins. Insulin treatment caused a change of at least 1.3-fold in tyrosine phosphorylation on 89 of these sites. Among the responsive sites, 20 were previously known to be tyrosine phosphorylated with insulin treatment, including sites on the insulin receptor and insulin receptor substrate-1. The remaining 69 responsive sites have not previously been shown to be altered by insulin treatment. They were on proteins with a wide variety of functions, including components of the trafficking machinery for the insulin-responsive glucose transporter GLUT4. These results show that insulin-elicited tyrosine phosphorylation is extensive and implicate a number of hitherto unrecognized proteins in insulin action.
Collapse
Affiliation(s)
- Katrin Schmelzle
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | | |
Collapse
|
112
|
Garcia P, Ucurum Z, Bucher R, Svergun DI, Huber T, Lustig A, Konarev PV, Marino M, Mayans O. Molecular insights into the self-assembly mechanism of dystrophia myotonica kinase. FASEB J 2006; 20:1142-51. [PMID: 16770013 DOI: 10.1096/fj.05-5262com] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Self-assembly via coiled-coil domains (CC) is crucial for the regulation of the dystrophia myotonica kinase (DMPK) -related family of kinases. These CC domains are thought to form dimeric arrangements and thus to mediate dimerization in these enzymes. Using size exclusion chromatography combined with multiangle static light scattering, we analyzed the oligomeric state of DMPK as well as that of a truncated variant lacking the CC fraction. Remarkably, both forms were found to assemble into robust dimers. In contrast, the CC domain in isolation yielded trimeric assemblies, indicating that the oligomerization properties of CC domains from this kinase family are more diversified than anticipated. The crystal structure of this CC has been elucidated to 1.6 angstroms resolution and its properties in solution established using sedimentation equilibrium and thermal denaturation. These data show that, contrary to expectations, the self-assembly of DMPK is not dictated by the association properties of its CC domain. Instead, it appears to be driven by sequence segments flanking both N and C termini of the catalytic kinase fraction, as suggested by models of head-to-head dimers based on small angle X-ray scattering data. Our findings support a shared pattern of assembly across DMPK, ROCKs, and MRCK members of this family.
Collapse
Affiliation(s)
- Pilar Garcia
- Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstr. 70, Basel CH-4056, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Chaigne-Delalande B, Deuve L, Reuzeau E, Basoni C, Lafarge D, Varon C, Tatin F, Anies G, Garand R, Kramer I, Génot E. RhoGTPases and p53 are involved in the morphological appearance and interferon-alpha response of hairy cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:562-73. [PMID: 16436670 PMCID: PMC1606488 DOI: 10.2353/ajpath.2006.050345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hairy cell leukemia is an uncommon B-cell lymphoproliferative disease of unknown etiology in which tumor cells display characteristic microfilamentous membrane projections. Another striking feature of the disease is its exquisite sensitivity to interferon (IFN)-alpha. So far, none of the known IFN-alpha regulatory properties have explained IFN-alpha responsiveness nor have they taken into account the morphological characteristics of hairy cells. IFN-alpha profoundly alters cytoskeletal organization of hairy cells and causes reversion of the hairy appearance into a rounded morphology. Because cytoskeletal rearrangements are controlled by the Rho family of GTPases, we investigated the GTPase activation status in hairy cells and their regulation by IFN-alpha. Using immunolocalization techniques and biochemical assays, we demonstrate that hairy cells display high levels of active Cdc42 and Rac1 and that IFN-alpha down-regulates these activities. In sharp contrast, RhoA activity was low in hairy cells but was increased by IFN-alpha treatment. Finally, IFN-alpha-mediated morphological changes also implicated a p53-induced response. These observations shed light on the mechanism of action of IFN-alpha in hairy cell leukemia and are of potential relevance for the therapeutical applications of this cytokine.
Collapse
|
114
|
van Herpen REMA, Tjeertes JV, Mulders SAM, Oude Ophuis RJA, Wieringa B, Wansink DG. Coiled-coil interactions modulate multimerization, mitochondrial binding and kinase activity of myotonic dystrophy protein kinase splice isoforms. FEBS J 2006; 273:1124-36. [PMID: 16519679 DOI: 10.1111/j.1742-4658.2006.05138.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein kinase isoforms exist in high-molecular-weight complexes controlled by homo- and heteromultimerization. This multimerization is mediated by coiled-coil interactions in the tail-proximal domain and occurs independently of alternatively spliced protein segments or myotonic dystrophy protein kinase activity. Complex formation was impaired in myotonic dystrophy protein kinase mutants in which three leucines at positions a and d in the coiled-coil heptad repeats were mutated to glycines. These coiled-coil mutants were still capable of autophosphorylation and transphosphorylation of peptides, but the rates of their kinase activities were significantly lowered. Moreover, phosphorylation of the natural myotonic dystrophy protein kinase substrate, myosin phosphatase targeting subunit, was preserved, even though binding of the myotonic dystrophy protein kinase to the myosin phosphatase targeting subunit was strongly reduced. Furthermore, the association of myotonic dystrophy protein kinase isoform C to the mitochondrial outer membrane was weakened when the coiled-coil interaction was perturbed. Our findings indicate that the coiled-coil domain modulates myotonic dystrophy protein kinase multimerization, substrate binding, kinase activity and subcellular localization characteristics.
Collapse
Affiliation(s)
- René E M A van Herpen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, the Netherlands
| | | | | | | | | | | |
Collapse
|
115
|
Cmejla R, Petrak J, Cmejlova J. A novel iron responsive element in the 3'UTR of human MRCKalpha. Biochem Biophys Res Commun 2006; 341:158-66. [PMID: 16412980 DOI: 10.1016/j.bbrc.2005.12.155] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Accepted: 12/22/2005] [Indexed: 12/22/2022]
Abstract
Human untranslated region (UTR) databases were searched to identify novel proteins potentially regulated by an iron responsive element (IRE), and found two candidates-cell cycle phosphatase Cdc14A variant 1 and myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), both possessing a putative IRE in their 3'UTR. In further experiments, we focused on MRCKalpha. Biochemical analyses of the MRCKalpha IRE revealed that it was functional and mediated the response to iron level in the same way as transferrin receptor 1 IREs (TfR) did. Similarly to TfR mRNA, MRCKalpha mRNA is stabilized, when iron supply is low, while it is destabilized under iron-rich conditions. The expression of MRCKalpha mRNA was found to be ubiquitous; the highest levels were noted in testes, the lowest in skeletal muscle. The level of MRCKalpha mRNA in various tissues strongly positively correlates with the level of TfR mRNA, indicating its possible role in the transferrin iron uptake pathway.
Collapse
Affiliation(s)
- Radek Cmejla
- Institute of Hematology and Blood Transfusion, Department of Cell Physiology, U Nemocnice 1, Prague, Czech Republic.
| | | | | |
Collapse
|
116
|
Reese BE, Krissinger D, Yun JK, Billingsley ML. Elucidation of stannin function using microarray analysis: implications for cell cycle control. Gene Expr 2006; 13:41-52. [PMID: 16572589 PMCID: PMC6032450 DOI: 10.3727/000000006783991944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stannin (Snn) is a highly conserved, vertebrate protein whose cellular function is unclear. We have recently demonstrated in human umbilical vein endothelial cells (HUVECs) that Snn gene expression is significantly induced by tumor necrosis factor-alpha (TNF-alpha) in a protein kinase C-epsilon (PKC-epsilon)-dependent manner. In HUVEC, TNF-alpha stimulation of HUVECs results in altered gene expression, and a slowing or halting of cell growth. An initial set of experiments established that Snn knockdown via siRNA, prior to TNF-alpha treatment, resulted in a significant inhibition of HUVEC growth compared to TNF-alpha treatment alone. In order to assess how Snn may be involved in TNF-alpha signaling in HUVEC growth arrest, we performed microarray analysis of TNF-alpha-stimulated HUVECs with and without Snn knockdown via siRNA. The primary comparison made was between TNF-alpha-stimulated HUVECs and TNF-alpha-exposed HUVECs that had Snn knocked down via Snn-specific siRNAs. Ninety-six genes were differentially expressed between these two conditions. Of particular interest was the significant upregulation of several genes associated with control of cell growth and/or the cell cycle, including interleukin-4, p29, WT1/PRKC, HRas-like suppressor, and MDM4. These genes act upon cyclin D1 and/or p53, both of which are key regulators of the G1 phase of the cell cycle. Functional studies further supported the role of Snn in cell growth, as cell cycle analysis using flow cytometry shows a significant increase of G1 cell cycle arrest in HUVECs with Snn knockdown in response to TNF-alpha treatment. Together these studies suggest a functional role of Snn in regulation of TNF-alpha-induced signaling associated with HUVEC growth arrest.
Collapse
Affiliation(s)
- Brian E Reese
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
117
|
Koh CG. Rho GTPases and Their Regulators in Neuronal Functions and Development. Neurosignals 2006; 15:228-37. [PMID: 17409776 DOI: 10.1159/000101527] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/15/2007] [Indexed: 12/16/2022] Open
Abstract
Neurons are specialized cell types which send out processes in order to communicate with other cells, which can be immediate neighbors or whose cell bodies are far distant. Neuronal morphology as in all cells is determined in large part through the regulation of the cytoskeleton. One of the key regulators of the actin cytoskeleton is the Rho family of GTPases. The Rho GTPases function as molecular switches to turn on or off downstream biochemical pathways depending on the stimuli. Their activities and their regulation are controlled by many other proteins such as the guanine nucleotide exchange factors and the GTPase-activating proteins. The activities of some of the Rho family members are reported to be antagonistic to one another. In general, Rac and Cdc42 promote neurite outgrowth while RhoA stimulates retraction. The balance of these opposing activities of the different Rho GTPases is crucial for the morphology and function of the neurons.
Collapse
Affiliation(s)
- Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
118
|
Gomes ER, Jani S, Gundersen GG. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 2005; 121:451-63. [PMID: 15882626 DOI: 10.1016/j.cell.2005.02.022] [Citation(s) in RCA: 476] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 02/08/2005] [Accepted: 02/16/2005] [Indexed: 12/27/2022]
Abstract
The microtubule-organizing center (MTOC) is reoriented between the nucleus and the leading edge in many migrating cells and contributes to directional migration. Models suggest that the MTOC is moved to its position during reorientation. By direct imaging of wound-edge fibroblasts after triggering MTOC reorientation with soluble factors, we found instead that the nucleus moved away from the leading edge to reorient the MTOC, while the MTOC remained stationary. Rearward nuclear movement was coupled with actin retrograde flow and was regulated by a pathway involving Cdc42, MRCK, myosin, and actin. Nuclear movement was unaffected by the inhibition of dynein, Par6, or PKCzeta, yet these components were essential for MTOC reorientation, as they maintained the MTOC at the cell centroid. These results show that nuclear repositioning is an initial polarizing event in migrating cells and that the positions of the nucleus and the MTOC are established by separate regulatory pathways.
Collapse
Affiliation(s)
- Edgar R Gomes
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
119
|
Friedman RS, Jacobelli J, Krummel MF. Mechanisms of T cell motility and arrest: deciphering the relationship between intra- and extracellular determinants. Semin Immunol 2005; 17:387-99. [PMID: 16219473 DOI: 10.1016/j.smim.2005.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T lymphocytes are capable of rapid motility in vitro and in vivo. Upon antigen recognition, they may stop crawling and form a stable cell-cell contact called the 'immunological synapse' (IS). However, it is becoming clear that this outcome may not occur with the reliability that was once presumed. T cells, particularly naïve cells, are apparently triggered partly 'on the fly' during short contacts with peptide-MHC (pMHC) bearing antigen-presenting cells (APCs) and are also influenced in both activity and synapse duration by a multitude of external cues. Underlying the emerging issues is a paucity of data concerning the cell biology of T lymphocytes. Here, we review the molecular mechanisms of crawling and adhesion versus the various potential modes of 'stopping' in T lymphocytes. Both motility and arrest involve similar processes: adhesion, actin elongation and internal tension control, but with different coordination. We will attempt to integrate this with the known and potential external cues that signal for T cell motility versus stopping to form a synapse in vivo. Finally, we discuss how this interplay may give rise to unexpectedly complex motile and morphological behavior.
Collapse
Affiliation(s)
- Rachel S Friedman
- Department of Pathology, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | | | | |
Collapse
|
120
|
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2005; 18:276-84. [PMID: 16109477 DOI: 10.1016/j.cellsig.2005.07.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
Collapse
Affiliation(s)
- Christer Larsson
- Lund University, Dept of Laboratory Medicine, Molecular Medicine, Entrance 78, 3rd floor, UMAS SE-205 02, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|
121
|
Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 2005; 15:371-7. [PMID: 15935670 DOI: 10.1016/j.tcb.2005.05.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/29/2005] [Accepted: 05/16/2005] [Indexed: 11/16/2022]
Abstract
Cellular myosin II is the principal motor responsible for cytokinesis. In higher eukaryotes, phosphorylation of the regulatory light chain (MLC) of myosin II is a primary means of activating myosin II and is known to be crucial for the execution of cell division. Because signals transmitted by the mitotic spindle coordinate key spatial and temporal aspects of cytokinesis, such signals should ultimately function to activate myosin II. Thus, it follows that identification of regulatory factors involved in MLC phosphorylation should elucidate the nature of spindle-derived regulatory signals and lead to a model for how they control cytokinesis. However, the identity of these upstream molecules remains elusive. This review (which is part of the Cytokinesis series) summarizes current views of the regulatory pathway controlling MLC phosphorylation and features four candidate molecules that are likely immediate upstream myosin regulators. I discuss proposed functions for MLCK, ROCK, citron kinase and myosin phosphatase during cytokinesis and consider the possibility of a link between these molecules and the signals transmitted by the mitotic spindle.
Collapse
Affiliation(s)
- Fumio Matsumura
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Piscataway, NJ 08855, USA.
| |
Collapse
|
122
|
Johndrow JE, Magie CR, Parkhurst SM. Rho GTPase function in flies: insights from a developmental and organismal perspective. Biochem Cell Biol 2005; 82:643-57. [PMID: 15674432 DOI: 10.1139/o04-118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development.
Collapse
Affiliation(s)
- James E Johndrow
- Division of Basic Sciences, A1-162, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109, USA
| | | | | |
Collapse
|
123
|
van Herpen REMA, Oude Ophuis RJA, Wijers M, Bennink MB, van de Loo FAJ, Fransen J, Wieringa B, Wansink DG. Divergent mitochondrial and endoplasmic reticulum association of DMPK splice isoforms depends on unique sequence arrangements in tail anchors. Mol Cell Biol 2005; 25:1402-14. [PMID: 15684391 PMCID: PMC548020 DOI: 10.1128/mcb.25.4.1402-1414.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell types, including C(2)C(12) and DMPK(-/-) myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes. Mouse DMPK A and C were found to associate specifically with either the endoplasmic reticulum (ER) or the mitochondrial outer membrane, whereas the corresponding human DMPK A and C proteins both localized to mitochondria. Expression of mouse and human DMPK A-but not C-isoforms in mammalian cells caused clustering of ER or mitochondria. Membrane association of DMPK isoforms was resistant to alkaline conditions, and mutagenesis analysis showed that proper anchoring was differentially dependent on basic residues flanking putative transmembrane domains, demonstrating that DMPK tails form unique tail anchors. This work identifies DMPK as the first kinase in the class of tail-anchored proteins, with a possible role in organelle distribution and dynamics.
Collapse
Affiliation(s)
- René E M A van Herpen
- Department of Cell Biology, NCMLS, Geert Grooteplein 28, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Zhao ZS, Manser E. PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. Biochem J 2005; 386:201-14. [PMID: 15548136 PMCID: PMC1134783 DOI: 10.1042/bj20041638] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/09/2004] [Accepted: 11/17/2004] [Indexed: 11/17/2022]
Abstract
The Rho GTPases are a family of molecular switches that are critical regulators of signal transduction pathways in eukaryotic cells. They are known principally for their role in regulating the cytoskeleton, and do so by recruiting a variety of downstream effector proteins. Kinases form an important class of Rho effector, and part of the biological complexity brought about by switching on a single GTPase results from downstream phosphorylation cascades. Here we focus on our current understanding of the way in which different Rho-associated serine/threonine kinases, denoted PAK (p21-activated kinase), MLK (mixed-lineage kinase), ROK (Rho-kinase), MRCK (myotonin-related Cdc42-binding kinase), CRIK (citron kinase) and PKN (protein kinase novel), interact with and are regulated by their partner GTPases. All of these kinases have in common an ability to dimerize, and in most cases interact with a variety of other proteins that are important for their function. A diversity of known structures underpin the Rho GTPase-kinase interaction, but only in the case of PAK do we have a good molecular understanding of kinase regulation. The ability of Rho GTPases to co-ordinate spatial and temporal phosphorylation events explains in part their prominent role in eukaryotic cell biology.
Collapse
Key Words
- cdc42
- mlk (mixed-lineage kinase)
- pak (p21-activated kinase)
- rac
- rho
- rok (rho-kinase)
- acc, anti-parallel coiled-coil
- crib, cdc42 and rac interactive binding
- crik, citron kinase
- crmp, collapsin response mediator protein
- dmpk, myotonic dystrophy kinase
- gef, guanine nucleotide exchange factor
- git1, g-protein-coupled receptor kinase-interacting target 1
- hsp90, heat shock protein 90
- jnk, c-jun n-terminal kinase
- ki, kinase inhibitory
- kim, ki motif
- limk, lim domain kinase
- mapk, mitogen-activated protein kinase
- mbs, myosin-binding subunit
- mekk, mapk/erk (extracellular-signal-regulated kinase) kinase kinase
- mkk, mapk kinase
- mlk, mixed-lineage kinase
- mrck, myotonin-related cdc42-binding kinase
- pak, p21-activated kinase
- pbd, p21-binding domain
- pdk1, 3-phosphoinositide-dependent kinase 1
- ph, pleckstrin homology
- pix, pak-interacting exchange factor
- pkc, protein kinase c
- pkn, protein kinase novel
- pp1, protein phosphatase type 1
- r-mlc, regulatory myosin light chain
- rok, rho-kinase
- sh3, src homology 3
Collapse
Affiliation(s)
- Zhou-shen Zhao
- GSK-IMCB Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore 138673
| | - Ed Manser
- GSK-IMCB Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore 138673
| |
Collapse
|
125
|
Wilkinson S, Paterson HF, Marshall CJ. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005; 7:255-61. [PMID: 15723050 DOI: 10.1038/ncb1230] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 12/26/2004] [Indexed: 11/09/2022]
Abstract
Actomyosin contractility is a mechanism by which cells exert locomotory force against their environment. Signalling downstream of the small GTPase Rho increases contractility through Rho-kinase (ROCK)-mediated regulation of myosin-II light chain (MLC2) phosphorylation. Cdc42 signalling has been shown to control cell polarity. Tumour cells can move through a three-dimensional matrix with either a rounded morphology characterized by Rho-ROCK dependence or with an elongated morphology characterized by Rho-ROCK independence. Here we show that contractility necessary for elongated morphology and invasion can be generated by Cdc42-MRCK signalling. MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) cooperates with ROCK in the maintenance of elongated morphology and invasion and either MRCK or ROCK is sufficient for MLC2 phosphorylation, through the inhibitory phosphorylation of myosin phosphatase. By contrast, in rounded ROCK-dependent movement, where MLC2 phosphorylation is higher, MRCK has a smaller role. Our data show that a Cdc42-MRCK signal mediates myosin-dependent cell motility and highlight convergence between Rho and Cdc42 signalling.
Collapse
Affiliation(s)
- Simon Wilkinson
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
126
|
Zhou YT, Guy GR, Low BC. BNIP-2 induces cell elongation and membrane protrusions by interacting with Cdc42 via a unique Cdc42-binding motif within its BNIP-2 and Cdc42GAP homology domain. Exp Cell Res 2005; 303:263-74. [PMID: 15652341 DOI: 10.1016/j.yexcr.2004.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/23/2004] [Accepted: 08/18/2004] [Indexed: 01/20/2023]
Abstract
The Cdc42 small GTPase regulates cytoskeletal reorganization and cell morphological changes that result in cellular extensions, migration, or cytokinesis. We previously showed that BNIP-2 interacted with Cdc42 and its cognate inactivator, p50RhoGAP/Cdc42GAP via its BNIP-2 and Cdc42GAP homology (BCH) domain, but its cellular and physiological roles still remain unclear. We report here that following transient expression of BNIP-2 in various cells, the expressed protein was located in irregular spots throughout the cytoplasm and concentrated at the leading edge of cellular extensions. The induced cell elongation and membrane protrusions required an intact BCH domain and were variously inhibited by coexpression of dominant negative mutants of Cdc42 (completely inhibited), Rac1 (partially inhibited), and RhoA (least inhibited). Presence of the Cdc42/Rac1 interactive binding (CRIB) motif alone as the dominant negative mutant of p21-activated kinase also inhibited the BNIP-2 effect. Bioinformatic analyses together with progressive deletional mutagenesis and binding studies revealed that a distal part of the BNIP-2 BCH domain contained a sequence with low homology to CRIB motif. However, in contrary to most effectors, BNIP-2 binding to Cdc42 was mediated exclusively via the unique sequence motif 285VPMEYVGI292. Cells expressing the BNIP-2 mutants devoid of this motif or/and the 34-amino acids immediately upstream to this sequence failed to elicit cell elongation and membrane protrusions despite that the protein still remained in the cytoplasm and interacted with Cdc42GAP. Evidence is presented where BNIP-2 in vivo induces cell dynamics by recruiting Cdc42 via its BCH domain, thus providing a novel mechanism for regulating Cdc42 signaling pathway.
Collapse
Affiliation(s)
- Yi Ting Zhou
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, The National University of Singapore, Singapore 117543
| | | | | |
Collapse
|
127
|
Lieberman SM, Takaki T, Han B, Santamaria P, Serreze DV, DiLorenzo TP. Individual nonobese diabetic mice exhibit unique patterns of CD8+ T cell reactivity to three islet antigens, including the newly identified widely expressed dystrophia myotonica kinase. THE JOURNAL OF IMMUNOLOGY 2005; 173:6727-34. [PMID: 15557165 DOI: 10.4049/jimmunol.173.11.6727] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spontaneous autoimmune diabetes development in NOD mice requires both CD8(+) and CD4(+) T cells. Three pathogenic CD8(+) T cell populations (represented by the G9C8, 8.3, and AI4 clones) have been described. Although the Ags for G9C8 and 8.3 are known to be insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein, respectively, only mimotope peptides had previously been identified for AI4. In this study, we used peptide/MHC tetramers to detect and quantify these three pathogenic populations among beta cell-reactive T cells cultured from islets of individual NOD mice. Even within age-matched groups, each individual mouse exhibited a unique distribution of beta cell-reactive CD8(+) T cells, both in terms of the number of tetramer-staining populations and the relative proportion of each population in the islet infiltrate. Thus, the inflammatory process in each individual follows its own distinctive course. Screening of a combinatorial peptide library in positional scanning format led to the identification of a peptide derived from dystrophia myotonica kinase (DMK) that is recognized by AI4-like T cells. Importantly, the antigenic peptide is naturally processed and presented by DMK-transfected cells. DMK is a widely expressed protein that is nonetheless the target of a beta cell-specific autoimmune response.
Collapse
Affiliation(s)
- Scott M Lieberman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
128
|
Yin L, Bennani-Baiti N, Powell CT. Phorbol ester-induced apoptosis of C4-2 cells requires both a unique and a redundant protein kinase C signaling pathway. J Biol Chem 2004; 280:5533-41. [PMID: 15611126 DOI: 10.1074/jbc.m405266200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) potently induces apoptosis of LNCaP human prostate cancer cells. Here, we show that C4-2 cells, androgen-hypersensitive derivatives of LNCaP cells, also are sensitive to PMA-induced apoptosis. Previous reports have implicated activation of protein kinase C (PKC) isozymes alpha and delta in PMA-induced LNCaP apoptosis using overexpression, pharmacological inhibitors, and dominant-negative constructs, but have left unresolved if other isozymes are involved, if there are separate requirements for individual PKC isozymes, or if there is redundancy. We have resolved these questions in C4-2 cells using stable expression of short hairpin RNAs to knock down expression of specific PKC isozymes individually and in pairs. Partial knockdown of PKCdelta inhibited PMA-induced C4-2 cell death almost completely, whereas near-complete knockdown of PKCalpha had no effect. Knockdown of PKCepsilon alone had no effect, but simultaneous knockdown of both PKCalpha and PKCepsilon in C4-2 cells that continued to express normal levels of PKCdelta inhibited PMA-induced apoptosis. Thus, our data indicate that there is an absolute requirement for PKCdelta in PMA-induced C4-2 apoptosis but that the functions of PKCalpha and PKCepsilon in apoptosis induction are redundant, such that either one (but not both) is required. Investigation of PMA-induced events required for LNCaP and C4-2 apoptosis revealed that p38 activation is dependent on PKCdelta, whereas induction of retinoblastoma protein hypophosphorylation requires both PKC signaling pathways and is downstream of p38 activation in the PKCdelta pathway.
Collapse
Affiliation(s)
- Lihong Yin
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195-0002, USA
| | | | | |
Collapse
|
129
|
Kaliman P, Catalucci D, Lam JT, Kondo R, Gutiérrez JCP, Reddy S, Palacín M, Zorzano A, Chien KR, Ruiz-Lozano P. Myotonic dystrophy protein kinase phosphorylates phospholamban and regulates calcium uptake in cardiomyocyte sarcoplasmic reticulum. J Biol Chem 2004; 280:8016-21. [PMID: 15598648 DOI: 10.1074/jbc.m412845200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Cardiovascular disease is one of the most prevalent causes of death in DM patients. Electrophysiological studies in cardiac muscles from DM patients and from DMPK(-/-) mice suggested that DMPK is critical to the modulation of cardiac contractility and to the maintenance of proper cardiac conduction activity. However, there are no data regarding the molecular signaling pathways involved in DM heart failure. Here we show that DMPK expression in cardiac myocytes is highly enriched in the sarcoplasmic reticulum (SR) where it colocalizes with the ryanodine receptor and phospholamban (PLN), a muscle-specific SR Ca(2+)-ATPase (SERCA2a) inhibitor. Coimmunoprecipitation studies showed that DMPK and PLN can physically associate. Furthermore, purified wild-type DMPK, but not a kinase-deficient mutant (K110A DMPK), phosphorylates PLN in vitro. Subsequent studies using the DMPK(-/-) mice demonstrated that PLN is hypo-phosphorylated in SR vesicles from DMPK(-/-) mice compared with wild-type mice both in vitro and in vivo. Finally, we show that Ca(2+) uptake in SR is impaired in ventricular homogenates from DMPK(-/-) mice. Together, our data suggest the existence of a novel regulatory DMPK pathway for cardiac contractility and provide a molecular mechanism for DM heart pathology.
Collapse
Affiliation(s)
- Perla Kaliman
- Institute of Molecular Medicine, University of California, San Diego, California 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Naim V, Imarisio S, Di Cunto F, Gatti M, Bonaccorsi S. Drosophila citron kinase is required for the final steps of cytokinesis. Mol Biol Cell 2004; 15:5053-63. [PMID: 15371536 PMCID: PMC524772 DOI: 10.1091/mbc.e04-06-0536] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanisms underlying completion of cytokinesis are still poorly understood. Here, we show that the Drosophila orthologue of mammalian Citron kinases is essential for the final events of the cytokinetic process. Flies bearing mutations in the Drosophila citron kinase (dck) gene were defective in both neuroblast and spermatocyte cytokinesis. In both cell types, early cytokinetic events such as central spindle assembly and contractile ring formation were completely normal. Moreover, cytokinetic rings constricted normally, leading to complete furrow ingression. However late telophases of both cell types displayed persistent midbodies associated with disorganized F actin and anillin structures. Similar defects were observed in dck RNA interference (RNAi) telophases, which, in addition to abnormal F actin and anillin rings, also displayed aberrant membrane protrusions at the cleavage site. Together, these results indicate that mutations in the dck gene result in morphologically abnormal intercellular bridges and in delayed resolution of these structures, suggesting that the wild-type function of dck is required for abscission at the end of cytokinesis. The phenotype of Dck-depleted cells is different from those observed in most Drosophila cytokinesis mutants but extraordinarily similar to that caused by anillin RNAi, suggesting that Dck and anillin are in the same pathway for completion of cytokinesis.
Collapse
Affiliation(s)
- Valeria Naim
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale Delle Ricerche, Dipartimento di Genetica e Biologia Molecolare, Universitá La Sapienza, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
131
|
Ng Y, Tan I, Lim L, Leung T. Expression of the human myotonic dystrophy kinase-related Cdc42-binding kinase gamma is regulated by promoter DNA methylation and Sp1 binding. J Biol Chem 2004; 279:34156-64. [PMID: 15194684 DOI: 10.1074/jbc.m405252200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotonic dystrophy kinase-related Cdc42 binding kinases (MRCKs) are family members most related to the myotonic dystrophy kinase (DMPK), RhoA-binding kinase (ROK), and citron kinase. Two highly conserved members, MRCKalpha and -beta, have been previously identified and characterized. We now describe a novel isoform, MRCKgamma, which is functionally and structurally related to members of this kinase family. We show these kinases to have marked similarities in their genomic organization, substrate phosphorylation, and catalytic autoinhibition. Unlike MRCKalpha and -beta, which are expressed ubiquitously, MRCKgamma mRNA was only expressed in heart and skeletal muscle. In cultured cells, MRCKgamma showed differential expression with high levels of expression only in certain cell lines. DNA analysis showed that lack of expression is correlated with promoter DNA methylation. We have mapped the methylation sites in the MRCKgamma promoter. Significantly, agents that suppressed DNA methylation caused increases in the expression of the kinase in low-expressing cells, further supporting the notion that promoter DNA methylation plays an important role in the expression of MRCKgamma. Analysis of the MRCKgamma promoter has also revealed two proximal Sp1 sites that are essential for transcriptional activity. We conclude that both promoter DNA methylation and Sp1 binding are important regulators for MRCKgamma expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Blotting, Northern
- COS Cells
- Cell Line
- Cell Line, Tumor
- Cytoplasm/metabolism
- DNA/metabolism
- DNA Methylation
- Decitabine
- GTP Phosphohydrolases/metabolism
- Genes, Reporter
- Genetic Variation
- Genetic Vectors
- Glutathione Transferase/metabolism
- HeLa Cells
- Humans
- Hydroxamic Acids/pharmacology
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Myotonin-Protein Kinase
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sp1 Transcription Factor/chemistry
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
- Transfection
- cdc42 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Yvonne Ng
- GSK-IMCB Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | |
Collapse
|
132
|
Heckman CA, Urban JM, Cayer M, Li Y, Boudreau N, Barnes J, Plummer HK, Hall C, Kozma R, Lim L. Novel p21-activated kinase-dependent protrusions characteristically formed at the edge of transformed cells. Exp Cell Res 2004; 295:432-47. [PMID: 15093742 DOI: 10.1016/j.yexcr.2003.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 12/10/2003] [Indexed: 11/20/2022]
Abstract
During long-term culture, certain lines become neoplastic while accumulating changes in cell shape. Early and late cell populations have characteristic shape phenotypes that have been quantified by computerized assay. Phenotypes are determined from variables describing three-dimensional aspects of the subcellular distribution of mass. The features of cells can be recognized by use of latent factors, which are theoretical variables based on the covariance of the primary variables. Factor #7 represented a cell edge feature different from filopodia. We studied the morphological characteristics and morphogenesis of the feature. Brief exposure of cells from rat tracheal epithelium to phorbol 12-myristate 13-acetate (PMA) enhanced #7 values. The time to reach maximal #7 values was prolonged if PMA was administered with calcium ionophore or lysophosphatidic acid (LPA). Factor #7 was elevated during periods of ruffling suppression and stress fiber reorganization. Cells showing high #7 values were examined by scanning electron microscopy (SEM) and found to exhibit strap-shaped and cupola-shaped projections. Because RhoA regulates stress fiber formation, we sought to perturb #7 features by introducing dominant-acting negative and positive constructs of RhoA, RhoA-N19, and RhoA-V14. Neither affected #7 values. Although overexpression of the kinase inhibitory domain of p21-activated kinase 1 (PAK) had no effect on #7 values, they were affected by overexpression of a domain binding PAK-interacting guanine nucleotide exchange factor (PIX). Because a PAK-PIX complex is implicated in the remodeling of focal complexes (FCs) and recycling of PAK to the cytoplasm, the results implicate a component of FCs in the formation of #7 features. The data suggested that feature formation is driven by activated Cdc42-binding kinase (ACK) and Rac. Moreover, they suggested that the #7 protrusions are neurite-like structures and that their development involves FC regulation.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences and Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Gu Y, Lin Q, Childress C, Yang W. Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase. J Biol Chem 2004; 279:30507-13. [PMID: 15123659 DOI: 10.1074/jbc.m313518200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family small G-protein Cdc42 has been implicated in a diversity of biological functions. Multiple downstream effectors have been identified. How Cdc42 discriminates the interaction with its multiple downstream effectors is not known. Activated Cdc42-associated tyrosine kinase (ACK) is a very specific effector of Cdc42. To delineate the Cdc42 signaling pathway mediated by ACK, we set about to identify the specific ACK-binding region in Cdc42. We utilized TC10, another member of the Rho family of G-proteins that is 66.7% identical to Cdc42, to construct TC10/Cdc42 chimeras for screening the specific ACK-binding region in Cdc42. A region between switch I and switch II has been identified as the specific ACK-binding (AB) region. The replacement of the AB region with the corresponding region in TC10 resulted in the complete loss of ACK-binding ability but did not affect the binding to WASP, suggesting that the AB region confers the binding specificity to ACK. On the other hand, replacement of the corresponding region of TC10 with the AB region enabled TC10 to acquire ACK-binding ability. Eight residues are different between the AB region and the corresponding region of TC10. The mutational analysis indicated that all eight residues contribute to the binding to ACK2. The assays for the Cdc42-mediated activation of ACK2 indicated that the AB region is essential for Cdc42 to activate ACK2 in cells. Thus, our studies have defined a specific ACK-binding region in Cdc42 and have provided a molecular basis for generating ACK binding-defective mutants of Cdc42 to delineate ACK-mediated signaling pathway.
Collapse
Affiliation(s)
- Yan Gu
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | |
Collapse
|
134
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
135
|
Hilpelä P, Vartiainen MK, Lappalainen P. Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 2004; 282:117-63. [PMID: 14594216 DOI: 10.1007/978-3-642-18805-3_5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton is fundamental for various motile and morphogenetic processes in cells. The structure and dynamics of the actin cytoskeleton are regulated by a wide array of actin-binding proteins, whose activities are controlled by various signal transduction pathways. Recent studies have shown that certain membrane phospholipids, especially PI(4,5)P2 and PI(3,4,5)P3, regulate actin filament assembly in cells and in cell extracts. PI(4,5)P2 appears to be a general regulator of actin polymerization at the plasma membrane or at membrane microdomains, whereas PI(3,4,5)P3 promotes the assembly of specialized actin filament structures in response to some growth factors. Biochemical studies have demonstrated that the activities of many proteins promoting actin assembly are upregulated by PI(4,5)P2, whereas proteins that inhibit actin assembly or promote filament disassembly are down-regulated by PI(4,5)P2. PI(3,4,5)P3 promotes its effects on the actin cytoskeleton mainly through activation of the Rho family of small GTPases. In addition to their effects on actin dynamics, both PI(4,5)P2 and PI(3,4,5)P3 promote the formation of specific actin filament structures through activation/inactivation of actin filament cross-linking proteins and proteins that mediate cytoskeleton-plasma membrane interactions.
Collapse
Affiliation(s)
- P Hilpelä
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
136
|
Essler M, Linder S, Schell B, Hüfner K, Wiedemann A, Randhahn K, Staddon JM, Aepfelbacher M. Cytotoxic necrotizing factor 1 of Escherichia coli stimulates Rho/Rho-kinase-dependent myosin light-chain phosphorylation without inactivating myosin light-chain phosphatase in endothelial cells. Infect Immun 2003; 71:5188-93. [PMID: 12933863 PMCID: PMC187342 DOI: 10.1128/iai.71.9.5188-5193.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 05/13/2003] [Accepted: 05/28/2003] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor 1 (CNF-1) is an exotoxin of Escherichia coli that constitutively activates the GTPases Rho, Rac, and CDC42. Stimulation of Rho was shown to enhance myosin light-chain (MLC) phosphorylation via Rho kinase-mediated inhibition of MLC phosphatase in endothelial cells. Here we report that 3 h after CNF stimulation of endothelial cells, RhoA was activated and MLC phosphorylation was increased in a Rho/Rho-kinase-dependent manner, but no decrease in MLC phosphatase activity could be detected. Despite continuous RhoA activation, MLC phosphatase activity was doubled after 24 h of CNF stimulation, and this coincided with decreased MLC phosphorylation and cell spreading. Rac was also activated at 3 to 24 h but did not contribute to MLC phosphorylation, and its amount gradually decreased in the CNF-stimulated cells. CDC42Hs was not activated above control values by CNF. These results suggest that CNF can induce specific decoupling (Rho kinase from MLC phosphatase) and deactivation events in Rho GTPase signaling, potentially reflecting cellular protection mechanisms against permanently active Rho GTPases.
Collapse
Affiliation(s)
- Markus Essler
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, LMU München, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Wansink DG, van Herpen REMA, Coerwinkel-Driessen MM, Groenen PJTA, Hemmings BA, Wieringa B. Alternative splicing controls myotonic dystrophy protein kinase structure, enzymatic activity, and subcellular localization. Mol Cell Biol 2003; 23:5489-501. [PMID: 12897125 PMCID: PMC166319 DOI: 10.1128/mcb.23.16.5489-5501.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcripts of the myotonic dystrophy protein kinase (DMPK) gene, a member of the Rho kinase family, are subject to cell-type specific alternative splicing. An imbalance in the splice isoform profile of DMPK may play a role in the pathogenesis of DM1, a severe multisystemic disorder. Here, we report how structural subdomains determine biochemical properties and subcellular distribution of DMPK isoforms. A newly developed kinase assay revealed that DMPK is a Lys/Arg-directed kinase. Individual DMPK isoforms displayed comparable transphosphorylation activity and sequence preference for peptide substrates. However, DMPK autophosphorylation and phosphorylation of MYPT1 (as putative in vivo target of DMPK), were dependent on presence of an alternatively spliced VSGGG motif and the nature of the C terminus. In-gel effects of the VSGGG motif on the migration behavior of full-length kinase provide evidence for a model in which this motif mediates 3-D-conformational changes in DMPK isoforms. Finally, different C termini endow DMPK with the ability to bind to either endoplasmic reticulum or mitochondria or to adopt a cytosolic location. Our results suggest that DMPK isoforms have cell-type and location dependent substrate specificities with a role in organellar and cytoarchitectural dynamics.
Collapse
Affiliation(s)
- Derick G Wansink
- Department of Cell Biology, Nijmegen Center for Molecular Life Sciences, University Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
138
|
Zhang R, Epstein HF. Homodimerization through coiled-coil regions enhances activity of the myotonic dystrophy protein kinase. FEBS Lett 2003; 546:281-7. [PMID: 12832055 DOI: 10.1016/s0014-5793(03)00601-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myotonic dystrophy protein kinase (DMPK) is the protein product of the human DM-1 locus on chromosome 19q13.1 and has been implicated in the cardiac and behavioral dysfunctions of the disorder. DMPK contains four distinct regions: a leucine-rich repeat (L), a serine-threonine protein kinase catalytic domain (PK), an alpha-helical coiled-coil region (H), and a putative transmembrane-spanning tail (T). Multiple protein kinases that participate in cytoskeletal and cell cycle functions share homology with DMPK in the PK and H regions. Here we show that the LPKH and PKH subfragments of DMPK formed dimers of 140000 molecular weight, whereas the LPK subfragment remained a monomer of 62000 apparent molecular weight. The H domain thus appeared to be required for dimerization of DMPK subfragments. Caspase 1 cleaved LPKH between the PK and H regions. After cleavage, LPKH dimers became LPK-like monomers, consistent with the H domain mediating dimerization. The V(max) and k(cat)/K(m) of LPKH with a synthetic peptide kinase substrate were over 10-fold greater than either LPK or caspase-cleaved LPKH. The K(m) of dimeric LPKH was over three-fold greater than those of the monomeric proteins. Dimerization appeared to significantly affect the catalytic efficiency and substrate binding of DMPK. These interactions are likely to be functionally significant in other members of the myotonic dystrophy family of protein kinases with extensive coiled-coil domains.
Collapse
Affiliation(s)
- Rongxin Zhang
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
139
|
Abstract
ROCKs, or Rho kinases, are serine/threonine kinases that are involved in many aspects of cell motility, from smooth-muscle contraction to cell migration and neurite outgrowth. Recent experiments have defined new functions of ROCKs in cells, including centrosome positioning and cell-size regulation, which might contribute to various physiological and pathological states.
Collapse
Affiliation(s)
- Kirsi Riento
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS, UK.
| | | |
Collapse
|
140
|
Masuda-Robens JM, Kutney SN, Qi H, Chou MM. The TRE17 oncogene encodes a component of a novel effector pathway for Rho GTPases Cdc42 and Rac1 and stimulates actin remodeling. Mol Cell Biol 2003; 23:2151-61. [PMID: 12612085 PMCID: PMC149457 DOI: 10.1128/mcb.23.6.2151-2161.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family GTPases Cdc42 and Rac1 play fundamental roles in transformation and actin remodeling. Here, we demonstrate that the TRE17 oncogene encodes a component of a novel effector pathway for these GTPases. TRE17 coprecipitated specifically with the active forms of Cdc42 and Rac1 in vivo. Furthermore, the subcellular localization of TRE17 was dramatically regulated by these GTPases and mitogens. Under serum-starved conditions, TRE17 localized predominantly to filamentous structures within the cell. Epidermal growth factor (EGF) induced relocalization of TRE17 to the plasma membrane in a Cdc42-/Rac1-dependent manner. Coexpression of activated alleles of Cdc42 or Rac1 also caused complete redistribution of TRE17 to the plasma membrane, where it partially colocalized with the GTPases in filopodia and ruffles, respectively. Membrane recruitment of TRE17 by EGF or the GTPases was dependent on actin polymerization. Finally, we found that a C-terminal truncation mutant of TRE17 induced the accumulation of cortical actin, mimicking the effects of activated Cdc42. Together, these results identify TRE17 as part of a novel effector complex for Cdc42 and Rac1, potentially contributing to their effects on actin remodeling. The present study provides insights into the regulation and cellular function of this previously uncharacterized oncogene.
Collapse
Affiliation(s)
- Jeffrey M Masuda-Robens
- Department of Pharmacology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
141
|
Tan I, Cheong A, Lim L, Leung T. Genomic organization of human myotonic dystrophy kinase-related Cdc42-binding kinase alpha reveals multiple alternative splicing and functional diversity. Gene 2003; 304:107-15. [PMID: 12568720 DOI: 10.1016/s0378-1119(02)01185-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha) is a Cdc42/Rac interactive binding-containing serine/threonine kinase with multiple functional domains. Its roles in the regulation of peripheral actin reorganization in HeLa cells and NGF-induced neurite outgrowth in PC12 cells have been documented. Here we report the characterization of the genomic structure and alternative splicing of the human counterpart. Human MRCKalpha gene is located on chromosome 1q42.1, spanning a genomic region of 250-300 kb and is composed of 41 exons. Four exons in the internal variable region and six in the 3' end were found to undergo extensive alternative splicing, giving rise to 96 possible transcripts of different combinations. The region of the internal splice site that defines a variable region in between two functional domains of opposite regulatory effects on MRCKalpha catalytic activity, and the 3' end splice site that generates variants with differential GTPase binding activity suggest a role for these alternative splicing events in MRCKalpha regulation.
Collapse
Affiliation(s)
- Ivan Tan
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
142
|
Cai D, Felekkis KN, Near RI, O'Neill GM, van Seventer JM, Golemis EA, Lerner A. The GDP exchange factor AND-34 is expressed in B cells, associates with HEF1, and activates Cdc42. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:969-78. [PMID: 12517963 DOI: 10.4049/jimmunol.170.2.969] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AND-34, a novel GDP exchange factor, is expressed constitutively at significant levels in murine splenic B cells, but not in murine splenic T cells or thymocytes. In B cell lines, anti-IgM treatment up-regulates AND-34 transcript levels. B cell AND-34 associates with both the docking molecules p130Cas and HEF1. AND-34 binds by its GDP exchange factor domain to the C terminus of HEF1, a region of HEF1 previously implicated in apoptotic, adhesion, and cell cycle-regulated signaling. Overexpression of AND-34 in murine B cell lines activates the Rho family GTPase Cdc42, but not Rac, Rho, RalA, or Rap1. Consistent with this, a subpopulation of AND-34 overexpressing B cells have long filamentous actin-containing cellular extensions. AND-34 overexpression augments both autophosphorylation and kinase activity of the Cdc42/Rac-responsive serine/threonine kinase PAK1. As previously reported for lymphoid cells transfected with constitutively active Cdc42, AND-34 overexpression inhibits SDF-1alpha-induced B cell polarization. These studies suggest that p130Cas and HEF1-associated AND-34 may regulate B cell adhesion and motility through a Cdc42-mediated signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/enzymology
- B-Lymphocytes/metabolism
- Cell Line
- Cell Polarity/immunology
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/physiology
- Crk-Associated Substrate Protein
- Cross-Linking Reagents/metabolism
- Guanine Nucleotide Exchange Factors/biosynthesis
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Guanine Nucleotide Exchange Factors/physiology
- Humans
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Mice
- Mice, Inbred BALB C
- Peptide Fragments/metabolism
- Phosphoproteins/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary/genetics
- Proteins/genetics
- Proteins/metabolism
- Proteins/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Retinoblastoma-Like Protein p130
- Transcription, Genetic/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- cdc42 GTP-Binding Protein/metabolism
- p21-Activated Kinases
Collapse
Affiliation(s)
- Dongpo Cai
- Section of Hematology and Oncology and Department of Medicine, Boston Medical Center, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Cunto FD, Imarisio S, Camera P, Boitani C, Altruda F, Silengo L. Essential role of citron kinase in cytokinesis of spermatogenic precursors. J Cell Sci 2002; 115:4819-26. [PMID: 12432070 DOI: 10.1242/jcs.00163] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During spermatogenesis, the first morphological indication of spermatogonia differentiation is incomplete cytokinesis, followed by the assembly of stable intercellular cytoplasmic communications. This distinctive feature of differentiating male germ cells has been highly conserved during evolution, suggesting that regulation of the cytokinesis endgame is a crucial aspect of spermatogenesis. However, the molecular mechanisms underlying testis-specific regulation of cytokinesis are still largely unknown. Citron kinase is a myotonin-related protein acting downstream of the GTPase Rho in cytokinesis control. We previously reported that Citron kinase knockout mice are affected by a complex neurological syndrome caused by cytokinesis block and apoptosis of specific neuronal precursors. In this report we show that, in addition, these mice display a dramatic testicular impairment, with embryonic and postnatal loss of undifferentiated germ cells and complete absence of mature spermatocytes. By contrast, the ovaries of mutant females appear essentially normal. Developmental analysis revealed that the cellular depletion observed in mutant testes is caused by increased apoptosis of undifferentiated and differentiating precursors. The same cells display a severe cytokinesis defect, resulting in the production of multinucleated cells and apoptosis. Our data indicate that Citron kinase is specifically required for cytokinesis of the male germ line.
Collapse
Affiliation(s)
- Ferdinando Di Cunto
- Department of Genetics, Biology and Biochemistry, Via Santena 5 bis, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
144
|
Chan W, Kozma R, Yasui Y, Inagaki M, Leung T, Manser E, Lim L. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur J Cell Biol 2002; 81:692-701. [PMID: 12553669 DOI: 10.1078/0171-9335-00281] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rho family GTPases play a major role in actin cytoskeleton reorganization. Recent studies have shown that the activation of Rho family GTPases also induces collapse of the vimentin intermediate filament (IF) network in fibroblasts. Here, we report that Cdc42V12 induces the reorganization of vimentin IFs in Hela cells, and such reorganization is independent of actin and microtubule status. We analyzed the involvement of three serine/threonine kinase effectors, MRCK, PAK and p70 S6K in the Cdc42-induced vimentin reorganization. Surprisingly, the ROK-related MRCK is not involved in this IF reorganization. We detected phosphorylation of vimentin Ser72, a site phosphorylated by PAK, after Cdc42 activation. PAK inhibition partially blocked Cdc42-induced vimentin IF collapse suggesting the involvement of other effectors. We report that p70 S6 kinase (S6K)1 participates in this IF rearrangement since the inhibitor rapamycin or a dominant inhibitory S6K could reduce the Cdc42V12 or bradykinin-induced vimentin collapse. Further, inhibition of PAK and S6K in combination very effectively prevents Cdc42-induced vimentin IF collapse. Conversely, only in combination active PAK and S6K could induce a vimentin IF rearrangement that mimics the Cdc42 effect. Thus, Cdc42-induced vimentin reorganization involves PAK and, in a novel cytoskeletal role, p70 S6K.
Collapse
Affiliation(s)
- Wing Chan
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.
Collapse
Affiliation(s)
- Margareta Nikolic
- Molecular and Developmental Neurobiology MRC Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| |
Collapse
|
146
|
Chen XQ, Tan I, Ng CH, Hall C, Lim L, Leung T. Characterization of RhoA-binding kinase ROKalpha implication of the pleckstrin homology domain in ROKalpha function using region-specific antibodies. J Biol Chem 2002; 277:12680-8. [PMID: 11815607 DOI: 10.1074/jbc.m109839200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho-binding kinase alpha (ROKalpha) is a serine/threonine kinase with multiple functional domains involved in actomyosin assembly. It has previously been documented that the C terminus part of ROKalpha interacts with the N-terminal kinase domain and thereby regulates its catalytic activity. Here we used antibodies against different domains of ROKalpha and were able to reveal some structural aspects that are essential for the specific functions of ROKalpha. Antibodies against the kinase domain revealed that this part of the protein is highly complex and inaccessible. Further experiments confirmed that this domain could undergo inter- and intramolecular interactions in a complex manner, which regulates the kinase catalytic activity. Other antibodies that raised against the coiled-coil domain, Rho binding domain, and the pleckstrin homology (PH) domain were all effective in recognizing the native proteins in an immunoprecipitation assay. Only the anti-Rho binding domain antibodies could activate the kinase independent of RhoA. The PH antibodies had no apparent effects on the catalytic activity but were effective in blocking actomyosin assembly and cell contractility. Likewise, mutations of the PH domains can abrogate its dominant negative effects on actin morphology. The subsequent disruption of endogenous ROK localization to the actomyosin network by overexpressing the PH domain is supportive of a role of the PH domain of ROK in targeting the kinase to these structures.
Collapse
Affiliation(s)
- Xiang-qun Chen
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Singapore
| | | | | | | | | | | |
Collapse
|
147
|
Dong JM, Leung T, Manser E, Lim L. Cdc42 antagonizes inductive action of cAMP on cell shape, via effects of the myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) on myosin light chain phosphorylation. Eur J Cell Biol 2002; 81:231-42. [PMID: 12018391 DOI: 10.1078/0171-9335-00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rho GTPases play pivotal roles in regulating cell morphology. We previously showed that RhoA acts via ROKalpha to counteract the effects of the classical second messenger cyclic AMP on cell shape changes. Here we show that active Cdc42V12 also competes against the cAMP-induced stellate morphology in SH-EP cells. This Cdc42 effect is not mediated by the RhoA/ ROK pathway but rather the related MRCKalpha, a myotonic dystrophy kinase-related Cdc42-binding kinase. Co-expression of a dominant inhibitory MRCKalpha mutant with Cdc42V12 blocks the ability of the GTPase to counteract cAMP, suggesting that MRCK acts downstream of Cdc42 in this process. Cdc42V12 enhances the phosphorylation of myosin light chain (MLC) at the cell periphery and sustains focal adhesion complexes, while MLC kinase inhibitors destroy focal adhesion complexes and impair the Cdc42V12 protective effect. The data suggest that the maintenance of focal adhesion complexes via the regulation of myosin II activity underlies the ability of Cdc42 to protect against the effect of elevated cAMP.
Collapse
Affiliation(s)
- Jing-Ming Dong
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore.
| | | | | | | |
Collapse
|
148
|
Müller JM, Metzger E, Greschik H, Bosserhoff AK, Mercep L, Buettner R, Schüle R. The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. EMBO J 2002; 21:736-48. [PMID: 11847121 PMCID: PMC125855 DOI: 10.1093/emboj/21.4.736] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GTPases of the Rho family are transducers of extracellular signals and control cellular processes such as organization of the actin cytoskeleton, motility, adhesion and gene regulation. The Rho signalling pathway is activated, for example, by bioactive sphingolipids such as sphingosine-1-phosphate (SPP) or by overexpression of Rho family members in tumorigenesis and metastases. Here, we show that stimulation of the Rho signalling pathway induces translocation of the transcriptional LIM-only coactivator FHL2 to the nucleus and subsequent activation of FHL2- and androgen receptor-dependent genes. Interestingly, prostate tumours overexpress Rho GTPases and display altered cellular localization of FHL2 concomitant with tumour dedifferentiation. SPP-induced FHL2 activation is mediated by Rho GTPases, but not by the GTPases Cdc42, Rac1 or Ras, and depends on Rho-kinase. In addition, Rho signalling influences other transcriptional coactivators, thus pointing to a general regulatory role for Rho GTPases in cofactor function. In summary, our data propose a yet undescribed signalling pathway in which the coactivator FHL2 acts as a novel molecular transmitter of the Rho signalling pathway, thereby integrating extracellular cues into altered gene expression.
Collapse
Affiliation(s)
| | | | - Holger Greschik
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg,
Institut für Pathologie, Klinikum der RWTH Aachen, Pauwelstrasse 30, D-52074 Aachen and Institut für Pathologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany Present address: IGBMC, 1 rue Laurent Fries, BP 163, F-67404 Illkirch Cedex, France Corresponding author e-mail:
| | - Anja-Katrin Bosserhoff
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg,
Institut für Pathologie, Klinikum der RWTH Aachen, Pauwelstrasse 30, D-52074 Aachen and Institut für Pathologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany Present address: IGBMC, 1 rue Laurent Fries, BP 163, F-67404 Illkirch Cedex, France Corresponding author e-mail:
| | | | - Reinhard Buettner
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg,
Institut für Pathologie, Klinikum der RWTH Aachen, Pauwelstrasse 30, D-52074 Aachen and Institut für Pathologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany Present address: IGBMC, 1 rue Laurent Fries, BP 163, F-67404 Illkirch Cedex, France Corresponding author e-mail:
| | - Roland Schüle
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg,
Institut für Pathologie, Klinikum der RWTH Aachen, Pauwelstrasse 30, D-52074 Aachen and Institut für Pathologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany Present address: IGBMC, 1 rue Laurent Fries, BP 163, F-67404 Illkirch Cedex, France Corresponding author e-mail:
| |
Collapse
|
149
|
Witherden AS, Hafezparast M, Nicholson SJ, Ahmad-Annuar A, Bermingham N, Arac D, Rankin J, Iravani M, Ball S, Peters J, Martin JE, Huntley D, Hummerich H, Sergot M, Fisher EMC. An integrated genetic, radiation hybrid, physical and transcription map of a region of distal mouse chromosome 12, including an imprinted locus and the 'Legs at odd angles' (Loa) mutation. Gene 2002; 283:71-82. [PMID: 11867214 DOI: 10.1016/s0378-1119(01)00853-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of loci with interesting patterns of regulation such as imprinted expression, and critical functions such as involvement in tumour necrosis factor pathways, map to a distal portion of mouse chromosome 12. This region also contains disease related loci including the 'Legs at odd angles' mutation (Loa) that we are pursuing in a positional cloning project. To further define the region and prepare for comparative sequencing projects, we have produced genetic, radiation hybrid, physical and transcript maps of the region, with probes providing anchors between the maps. We show a summary of 95 markers and 91 genomic clones that has enabled us to identify 18 transcripts including new genes and candidates for Loa which will help in future studies of gene context and regulation.
Collapse
Affiliation(s)
- Abi S Witherden
- Department of Neurogenetics, Imperial College, W2 1PG, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Krupa A, Srinivasan N. The repertoire of protein kinases encoded in the draft version of the human genome: atypical variations and uncommon domain combinations. Genome Biol 2002; 3:RESEARCH0066. [PMID: 12537555 PMCID: PMC151168 DOI: 10.1186/gb-2002-3-12-research0066] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Revised: 09/25/2002] [Accepted: 10/11/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. RESULT Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. CONCLUSIONS Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.
Collapse
Affiliation(s)
- A Krupa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - N Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|