101
|
Garside VC, Chang AC, Karsan A, Hoodless PA. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell Mol Life Sci 2013; 70:2899-917. [PMID: 23161060 PMCID: PMC4996658 DOI: 10.1007/s00018-012-1197-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022]
Abstract
Congenital heart defects affect approximately 1-5 % of human newborns each year, and of these cardiac defects 20-30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.
Collapse
Affiliation(s)
- Victoria C. Garside
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Alex C. Chang
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
102
|
Xie WB, Li Z, Shi N, Guo X, Tang J, Ju W, Han J, Liu T, Bottinger EP, Chai Y, Jose PA, Chen SY. Smad2 and myocardin-related transcription factor B cooperatively regulate vascular smooth muscle differentiation from neural crest cells. Circ Res 2013; 113:e76-86. [PMID: 23817199 DOI: 10.1161/circresaha.113.301921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular smooth muscle cell (VSMC) differentiation from neural crest cells (NCCs) is critical for cardiovascular development, but the mechanisms remain largely unknown. OBJECTIVE Transforming growth factor-β (TGF-β) function in VSMC differentiation from NCCs is controversial. Therefore, we determined the role and mechanism of a TGF-β downstream signaling intermediate Smad2 in NCC differentiation to VSMCs. METHODS AND RESULTS By using Cre/loxP system, we generated a NCC tissue-specific Smad2 knockout mouse model and found that Smad2 deletion resulted in defective NCC differentiation to VSMCs in aortic arch arteries during embryonic development and caused vessel wall abnormality in adult carotid arteries where the VSMCs are derived from NCCs. The abnormalities included 1 layer of VSMCs missing in the media of the arteries with distorted and thinner elastic lamina, leading to a thinner vessel wall compared with wild-type vessel. Mechanistically, Smad2 interacted with myocardin-related transcription factor B (MRTFB) to regulate VSMC marker gene expression. Smad2 was required for TGF-β-induced MRTFB nuclear translocation, whereas MRTFB enhanced Smad2 binding to VSMC marker promoter. Furthermore, we found that Smad2, but not Smad3, was a progenitor-specific transcription factor mediating TGF-β-induced VSMC differentiation from NCCs. Smad2 also seemed to be involved in determining the physiological differences between NCC-derived and mesoderm-derived VSMCs. CONCLUSIONS Smad2 is an important factor in regulating progenitor-specific VSMC development and physiological differences between NCC-derived and mesoderm-derived VSMCs.
Collapse
Affiliation(s)
- Wei-Bing Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zuguo Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ning Shi
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Xia Guo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Junming Tang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jun Han
- Center for Craniofacial Molecular Biology, University of Southern California Ostrow School of Dentistry
| | - Tengfei Liu
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erwin P Bottinger
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California Ostrow School of Dentistry
| | - Pedro A Jose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
103
|
Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology 2013; 139:1-10. [PMID: 23347175 DOI: 10.1111/imm.12076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/17/2022] Open
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
104
|
Finnson KW, Arany PR, Philip A. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies. Adv Wound Care (New Rochelle) 2013; 2:225-237. [PMID: 24761336 DOI: 10.1089/wound.2012.0419] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
SIGNIFICANCE Wound healing is a complex physiological process involving a multitude of growth factors, among which transforming growth factor beta (TGF-β) has the broadest spectrum of effects. Animal studies have provided key information on the mechanisms of TGF-β action in wound healing and have guided the development of therapeutic strategies targeting the TGF-β pathway to improve wound healing and scarring outcome. RECENT ADVANCES Development of tissue-specific expression systems for overexpression or knockout of TGF-β signaling pathway components has led to novel insight into the role of TGF-β signaling in wound healing. This work has also identified molecules that might serve as molecular targets for the treatment of pathological skin conditions such as chronic wounds and excessive scarring (fibrosis). CRITICAL ISSUES Many of the mouse models with genetic alterations in the TGF-β signaling pathway develop an underlying skin abnormality, which may pose some limitations on the interpretation of wound-healing results obtained in these animals. Also, TGF-β's pleiotropic effects on many cell types throughout all phases of wound healing present a challenge in designing specific strategies for targeting the TGF-β signaling pathway to promote wound healing or reduce scarring. FUTURE DIRECTIONS Further characterization of TGF-β signaling pathway components using inducible tissue-specific overexpression or knockout technology will be needed to corroborate results obtained in mouse models that display a skin phenotype, and to better understand the role of TGF-β signaling during distinct phases of the wound-healing process. Such studies will also provide a better understanding of how TGF-β mediates its autocrine, paracrine, and double paracrine effects on cellular responses in vivo during wound healing.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| | - Praveen R. Arany
- Cell Regulation and Control Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| |
Collapse
|
105
|
Yamada Y, Mashima H, Sakai T, Matsuhashi T, Jin M, Ohnishi H. Functional roles of TGF-β1 in intestinal epithelial cells through Smad-dependent and non-Smad pathways. Dig Dis Sci 2013; 58:1207-17. [PMID: 23306843 DOI: 10.1007/s10620-012-2515-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/03/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Transforming growth factor-β1 (TGF-β1) is one of the growth factors expressed in the gut, and has been shown to play an important role in intestinal mucosal healing. We investigated the effects of TGF-β1 on the cellular functions of intestinal epithelial cells, and also evaluated its signaling pathways in these cells. METHODS We used the rat IEC-6 intestinal epithelial cell line for these studies. The expression of TGF-β1/Smad signaling molecules was examined. We evaluated the effect of TGF-β1 on the proliferation and differentiation by the BrdU incorporation assay and real-time PCR. We manipulated the expression levels of Smad2 and Smad3 using an adenovirus system and small interfering RNA to examine the signaling pathways. The expression of Smad2 and Smad3 along the crypt-villus axis was also examined in the murine intestine. RESULTS IEC-6 cells produced TGF-β1 and expressed functional TGF-β/Smad signaling molecules. The addition of TGF-β1 in the culture medium suppressed the proliferation and increased the expression of a differentiation marker of enterocytes, in a dose-dependent manner. The adenovirus-mediated and small interfering RNA-mediated studies clearly showed that the growth inhibitory effect and the promotion of differentiation were exerted through a Smad3-dependent and a Smad2-dependent pathway, respectively. IEC-6 cells exhibited upregulated expression of an inhibitory Smad (Smad7) as a form of negative feedback via a non-Smad pathway. Smad2 was predominantly expressed in villi, and Smad3 in crypts. CONCLUSIONS TGF-β1 regulates the cellular functions of intestinal epithelial cells through both Smad-dependent and non-Smad pathways.
Collapse
Affiliation(s)
- Yumi Yamada
- Department of Gastroenterology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | | | | | | | | | | |
Collapse
|
106
|
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
107
|
El-Gohary Y, Tulachan S, Guo P, Welsh C, Wiersch J, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, Diaz M, Gittes G. Smad signaling pathways regulate pancreatic endocrine development. Dev Biol 2013; 378:83-93. [PMID: 23603491 DOI: 10.1016/j.ydbio.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/04/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Expansion of the pancreatic endocrine cell population occurs during both embryonic development and during post-natal pancreatic growth and regeneration. Mechanisms of the expansion of endocrine cells during embryonic development are not completely understood, and no clear mechanistic link has been established between growth of the embryonic endocrine pancreas and the islet cell replication that occurs in an adult animal. We found that transforming growth factor-beta (TGF-β) superfamily signaling, which has been implicated in many developmental processes, plays a key role in regulating pancreatic endocrine maturation and development. Specifically, the intracellular mediators of TGF-β signaling, smad2 and smad3, along with their inhibitor smad7, appear to mediate this process. Smad2, smad3 and smad7 were all broadly expressed throughout the early embryonic pancreatic epithelium. However, during later stages of development, smad2 and smad3 became strongly localized to the nuclei of the endocrine positive cells, whereas the inhibitory smad7 became absent in the endocrine component. Genetic inactivation of smad2 and smad3 led to a significant expansion of the embryonic endocrine compartment, whereas genetic inactivation of smad7 led to a significant decrease in the endocrine compartment. In vitro antisense studies further corroborated these results and supported the possibility that interplay between the inhibitory smad7 and the intracellular mediators smad2/3 is a control point for pancreatic endocrine development. These results should provide a better understanding of the key control mechanisms for β-cell development.
Collapse
Affiliation(s)
- Yousef El-Gohary
- Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 4401 Penn Ave., Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Layliev J, Wilson S, Warren SM, Saadeh PB. Improving Wound Healing with Topical Gene Therapy. Adv Wound Care (New Rochelle) 2012; 1:218-223. [PMID: 24527309 DOI: 10.1089/wound.2011.0322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Impaired wound healing remains a major clinical problem with many etiologies. Altering gene expression to enhance healing is an innovative therapeutic approach. In recent years, we have developed a means to topically silence genes at the post-transcriptional level to locally alter wounds and improve the healing process. THE PROBLEM Many types of chronic wounds have been associated with alterations in the expression of genes that mediate healing. Targeting the expression of these genes in a way that can improve healing while limiting systemic side effects has been very challenging. BASIC/CLINICAL SCIENCE ADVANCES Our laboratory's recent work has focused on the use of topically applied small interfering ribonucleic acid (siRNA) to inhibit messenger RNA expression of certain mediators involved in healing in two different types of cutaneous injury-radiation-induced cutaneous injury and the diabetic excisional wound. By successfully inhibiting specific gene mediators with topical siRNA, we reversed downstream signaling pathways, which led to expedited wound healing in diabetic wounds and restoration to a more normal phenotype in radiation-induced skin injuries. CLINICAL CARE RELEVANCE The signaling pathways and gene mediators that we targeted and inhibited in murine models are present in humans. Applying parallel treatment strategies in humans may provide novel means of treating these burdensome and costly conditions. CONCLUSION Our novel method for local gene silencing is effective in treating various types of cutaneous murine wounds. Topical gene silencing with siRNA obviates the side effects of systemic medication and has the potential to be effective in healing or preventing a wide array of cutaneous human conditions.
Collapse
Affiliation(s)
- John Layliev
- Institute of Reconstructive Plastic Surgery, New York University Langone Medical Center, New York, New York
| | - Stelios Wilson
- Institute of Reconstructive Plastic Surgery, New York University Langone Medical Center, New York, New York
| | - Stephen M. Warren
- Institute of Reconstructive Plastic Surgery, New York University Langone Medical Center, New York, New York
| | - Pierre B. Saadeh
- Institute of Reconstructive Plastic Surgery, New York University Langone Medical Center, New York, New York
| |
Collapse
|
109
|
Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells. Biochem Biophys Res Commun 2012; 427:593-9. [PMID: 23022526 DOI: 10.1016/j.bbrc.2012.09.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-β1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-β1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-β1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-β1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-β1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis.
Collapse
|
110
|
Carli C, Giroux M, Delisle JS. Roles of Transforming Growth Factor-β in Graft-versus-Host and Graft-versus-Tumor Effects. Biol Blood Marrow Transplant 2012; 18:1329-40. [DOI: 10.1016/j.bbmt.2012.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/27/2012] [Indexed: 01/07/2023]
|
111
|
Wiater E, Vale W. Roles of activin family in pancreatic development and homeostasis. Mol Cell Endocrinol 2012; 359:23-9. [PMID: 22406274 DOI: 10.1016/j.mce.2012.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/15/2023]
Abstract
The transforming growth factor-beta (TGF-β) superfamily of ligands have been recognized as important signals in vertebrate embryonic development from the blastula stage to adulthood. In addition to roles in early development, TGF-β superfamily ligands, and particularly activin family ligands, are involved in specification, differentiation, and proliferation of multiple organ systems, including the pancreas. More recently, research has suggested that activin family ligands, binding proteins, receptors, and Smad signal transducers and modulators are involved in regulating adult pancreatic function and maintaining pancreatic islet homeostasis in the adult. This article will focus on outlining common themes in activin family regulation of embryonic pancreatic development and adult pancreatic homeostasis, particularly in activin family involvement in setting and maintaining populations of islet cells such as β-cells.
Collapse
Affiliation(s)
- Ezra Wiater
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute of Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
112
|
Ge X, Vajjala A, McFarlane C, Wahli W, Sharma M, Kambadur R. Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. Am J Physiol Endocrinol Metab 2012; 303:E90-102. [PMID: 22535746 DOI: 10.1152/ajpendo.00113.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fibrosis
- Gene Expression Regulation
- Macrophages/immunology
- Male
- Mice
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/immunology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Myoblasts, Skeletal/enzymology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Myostatin/genetics
- Myostatin/metabolism
- Necrosis
- Neutrophil Infiltration
- RNA, Messenger/metabolism
- Satellite Cells, Skeletal Muscle/enzymology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Signal Transduction
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Xiaojia Ge
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
113
|
Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. J Transl Med 2012; 92:883-95. [PMID: 22411066 PMCID: PMC3584162 DOI: 10.1038/labinvest.2012.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SMAD proteins are downstream effectors of the TGF-β signaling pathway. Smad3-null mice develop colorectal cancer by 6 months of age. In this study, we have examined whether the loss of Smad3 promotes gastric neoplasia in mice. The stomachs of Smad3⁻/⁻ mice were compared with age-matched Smad3 heterozygous and wild-type mice. E-cadherin, Ki-67, phosphoSTAT3, and TFF2/SP expression was analyzed by immunohistochemisty. The short hairpin RNA (ShRNA)-mediated knockdown of Smad3 in AGS and MKN28 cells was also performed. In addition, we examined alterations in DCLK1-expressing cells. Smad3⁻/⁻ mouse stomachs at 6 months of age revealed the presence of exophytic growths along the lesser curvature in the proximal fundus. Six-month-old Smad3⁻/⁻ mouse stomachs showed metaplastic columnar glands initiating from the transition zone junction between the forestomach and the glandular epithelium along the lesser curvature. Ten-month-old Smad3⁻/⁻ mice all exhibited invasive gastric neoplastic changes with increased Ki-67, phosphoSTAT3 expression, and aberrant cytosolic E-cadherin staining in papillary glands within the invading submucosal gland. The shRNA-mediated knockdown of Smad3 in AGS and MKN28 cells promoted the expression of phosphoSTAT3. DCLK1-expressing cells, which also stained for the tuft cell marker acetylated-α-tubulin, were observed in 10-month-old Smad3⁻/⁻ mice within tumors and in fundic invasive lesions. In conclusion, Smad3-null mice develop gastric tumors in the fundus, which arise from the junction between the forestomach and the glandular epithelium and progress to prominent invasive tumors over time. Smad3-null mice represent a novel model of fundic gastric tumor initiated from forestomach/glandular transition zone along the lesser curvature.
Collapse
|
114
|
Xu B, Chen H, Xu W, Zhang W, Buckley S, Zheng SG, Warburton D, Kolb M, Gauldie J, Shi W. Molecular mechanisms of MMP9 overexpression and its role in emphysema pathogenesis of Smad3-deficient mice. Am J Physiol Lung Cell Mol Physiol 2012; 303:L89-96. [PMID: 22610349 DOI: 10.1152/ajplung.00060.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have found that inappropriate elevation of matrix metalloproteinase-9 (MMP9) expression and activity is coincident with early onset of emphysema in Smad3-null mice. Herein, we further investigated the role of increased MMP9 in emphysema pathogenesis and the related molecular regulatory mechanisms of elevated MMP9 in Smad3-null lung. Genetic blockade of MMP9 in Smad3-null mice significantly attenuated emphysema pathology but not hypoalveolarization during early postnatal lung development. Furthermore, Smad3 was found to be a transcription factor to positively regulate a protein deacetylase sirtuin 1 (SIRT1) by binding to an AP-1 site of SIRT1 promoter. A synergistic regulatory effect on SIRT1 expression was also detected between Smad3 and c-Jun. Consistently, Smad3 knockout lung at P28 had reduced SIRT1 expression, which in turn resulted in increased acetylation of histone H3 at the transcription factor activator protein 1 (AP-1), NF-κB, and Pea3 binding sites of MMP9 promoter and increased acetylation of NF-κB. In addition, increased Pea3 expression and nuclear accumulation was also detected in Smad3-null lungs at P28. Consistently, bindings of acetylated NF-κB and Pea3 to the MMP9 promoter were elevated in Smad3-null lung. We thus propose that deficiency of Smad3 causes downregulation of SIRT1 and increased Pea3 expression/nuclear accumulation, respectively. Decreased SIRT1 activity resulted in increased acetylation of histone H3 and NF-κB. Subsequently, increased bindings of transcription factors including NF-κB and Pea3 to MMP9 promoter significantly upregulate MMP9 transcription, contributing to emphysema pathogenesis.
Collapse
Affiliation(s)
- Bing Xu
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Wu Y, Li Q, Zhou X, Yu J, Mu Y, Munker S, Xu C, Shen Z, Müllenbach R, Liu Y, Li L, Gretz N, Zieker D, Li J, Matsuzaki K, Li Y, Dooley S, Weng H. Decreased levels of active SMAD2 correlate with poor prognosis in gastric cancer. PLoS One 2012; 7:e35684. [PMID: 22539990 PMCID: PMC3334357 DOI: 10.1371/journal.pone.0035684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/20/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND TGF-β plays a dual role in the progression of human cancer. During the early stages of carcinogenesis, TGF-β functions as a tumor suppressor. During the late stages of tumor development, however, TGF-β can promote tumor growth and metastasis. A shift in Smad2/3 phosphorylation from the carboxy terminus to linker sites is a key event determining biological function of TGF-β in colorectal and hepatocellular carcinoma. In the present study, we investigated the potential role of differential Smad2/3 phosphorylation in gastric adenocarcinoma. METHODOLOGY Immunohistochemical staining with anti-P-Smad2/3C and P-Smad2/3L antibodies was performed on 130 paraffin-embedded gastric adenocarcinoma specimens. The relationship between P-Smad2/3C and P-Smad2/3L immunohistochemical score and clinicopathologic characteristics of patients was analyzed. Real time PCR was used to measure mRNA expression of Smad2 and Smad3 in cancer and surrounding non-tumor tissue. PRINCIPAL FINDINGS No significant P-Smad2L and/or P-Smad3L positive staining was detected in the majority of specimens (positive staining in 18/130 samples). Positive P-Smad2/3L staining was not associated with a decrease in carboxyterminal phosphorylation staining. Loss of P-Smad2C remarkably correlated with depth of tumor infiltration and poor differentiation of cancer cells in patients with gastric cancer. No correlation was detectable between P-Smad3C and clinicopathologic characteristics of gastric adenocarcinoma. However, co-staining analysis revealed that P-Smad3C co-localised with α-SMA and collagen I in gastric cancer cells, indicating a potential link between P-Smad3C and epithelial-to-mesenchymal transition of cancer. Real time PCR demonstrated reduced mRNA expression of Smad2 in gastric cancer when compared with surrounding non-tumor tissue in 15/16 patients. CONCLUSIONS Loss of P-Smad2C tightly correlated with cancer invasion and poor differentiation in gastric cancer. Contrary to colorectal and hepatocellular carcinoma, canonical carboxy-terminal phosphorylation, but not linker phosphorylation, of Smad2 is critical for gastric cancer.
Collapse
Affiliation(s)
- Yijun Wu
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (YW); (HW)
| | - Qi Li
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xinhui Zhou
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiren Yu
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunchuan Mu
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stefan Munker
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Roman Müllenbach
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Yan Liu
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Li Li
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Derek Zieker
- General, Visceral Surgery and Transplantation, University Hospital Tübingen, Tübingen, Germany
| | - Jun Li
- General, Visceral Surgery and Transplantation, University Hospital Tübingen, Tübingen, Germany
| | - Kouichi Matsuzaki
- Departments of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Steven Dooley
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Honglei Weng
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail: (YW); (HW)
| |
Collapse
|
116
|
Xu YP, Shi Y, Cui ZZ, Jiang HH, Li L, Wang XF, Zhou L, Mi QS. TGFβ/Smad3 signal pathway is not required for epidermal Langerhans cell development. J Invest Dermatol 2012; 132:2106-9. [PMID: 22437318 PMCID: PMC3398167 DOI: 10.1038/jid.2012.71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
117
|
Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett 2012; 586:1984-92. [PMID: 22321641 DOI: 10.1016/j.febslet.2012.01.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
TGFβ signaling Smads (Smad2, 3, and 4) were suspected tumor suppressors soon after their discovery. Nearly two decades of research confirmed this role and revealed other divergent and cancer-specific functions including paradoxical tumor promotion effects. Although Smad4 is the most potent tumor suppressor, its functions are highly context-specific as exemplified by pancreatic cancer and head-and-neck cancer: in pancreatic cancer, Smad4 loss cannot initiate tumor formation but promotes metastases while in head-and-neck cancer Smad4 loss promotes cancer progression but also initiates tumor formation, likely through effects on genomic instability. The differing consequences of impaired Smad signaling in human cancers and the molecular mechanisms that underpin these differences will have important implications for the design and application of novel targeted therapies.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
118
|
Pardali E, Ten Dijke P. TGFβ signaling and cardiovascular diseases. Int J Biol Sci 2012; 8:195-213. [PMID: 22253564 PMCID: PMC3258560 DOI: 10.7150/ijbs.3805] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/01/2011] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor β (TGFβ) family members are involved in a wide range of diverse functions and play key roles in embryogenesis, development and tissue homeostasis. Perturbation of TGFβ signaling may lead to vascular and other diseases. In vitro studies have provided evidence that TGFβ family members have a wide range of diverse effects on vascular cells, which are highly dependent on cellular context. Consistent with these observations genetic studies in mice and humans showed that TGFβ family members have ambiguous effects on the function of the cardiovascular system. In this review we discuss the recent advances on TGFβ signaling in (cardio)vascular diseases, and describe the value of TGFβ signaling as both a disease marker and therapeutic target for (cardio)vascular diseases.
Collapse
Affiliation(s)
- Evangelia Pardali
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
| | | |
Collapse
|
119
|
Abstract
Members of the TGF-beta superfamily exhibit various biological activities, and perturbations of their signaling are linked to certain clinical disorders including cancer. The role of TGF-beta signaling as a tumor suppressor pathway is best illustrated by the presence of inactivating mutations in genes encoding TGF-beta receptors and Smads in human carcinomas. This perspective is further supported by studies of tumor development in mouse models after modulation of receptors and Smads. TGF-beta also controls processes such as cell invasion, immune regulation, and microenvironment alterations that cancer cells may exploit to their advantage for their progression. Consequently, the output of a TGF-beta response is highly situation dependent, across different tissues, and also in cancer in general. Understanding the mechanisms of TGF-beta superfamily signaling is thus important for the development of new ways to treat various types of cancer. This review focuses on recent advances in understanding the Smad dependent TGF-beta pathway as it relates to human carcinogenesis.
Collapse
Affiliation(s)
- Debangshu Samanta
- Departments of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pran K. Datta
- Nashville Department of Veterans Affairs Medical Center, Nashville, TN
- Departments of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
120
|
Han G, Wang XJ. Roles of TGFβ signaling Smads in squamous cell carcinoma. Cell Biosci 2011; 1:41. [PMID: 22204491 PMCID: PMC3285038 DOI: 10.1186/2045-3701-1-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
Smad proteins are classified in different groups based on their functions in mediating transforming growth factor β (TGFβ) superfamily components. Smad1/5/8 mainly mediate bone morphogenetic proteins (BMP) pathway and Smad2/3 mainly mediate TGFβ pathway. Smad4 functions as common Smad to mediate both pathways. Previous studies showed many members of TGFβ superfamily play a role in carcinogenesis. The current review focuses on the role of TGFβ signaling Smads in squamous cell carcinomas (SCCs). TGFβ signaling inhibits early tumor development, but promotes tumor progression in the late stage. Although Smad2, Smad3 and Smad4 are all TGFβ signaling Smads, they play different roles in SCCs. Genetically, Smad2 and Smad4 are frequently mutated or deleted in certain human cancers whereas Smad3 mutation or deletion is infrequent. Genetically engineered mouse models with these individual Smad deletions have provided important tools to identify their diversified roles in cancer. Using these models, we have shown that Smad4 functions as a potent tumor suppressor and its loss causes spontaneous SCCs development; Smad2 functions as a tumor suppressor and its loss promotes SCC formation initiated by other genetic insults but is insufficient to initiate tumor formation. In contrast, Smad3 primarily mediates TGFβ-induced inflammation. The functions of each Smad also depends on the presence/absence of its Smad partner, thus need to be interpreted in a context-specific manner.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
121
|
|
122
|
Wakabayashi Y, Tamiya T, Takada I, Fukaya T, Sugiyama Y, Inoue N, Kimura A, Morita R, Kashiwagi I, Takimoto T, Nomura M, Yoshimura A. Histone 3 lysine 9 (H3K9) methyltransferase recruitment to the interleukin-2 (IL-2) promoter is a mechanism of suppression of IL-2 transcription by the transforming growth factor-β-Smad pathway. J Biol Chem 2011; 286:35456-35465. [PMID: 21862595 PMCID: PMC3195630 DOI: 10.1074/jbc.m111.236794] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/26/2011] [Indexed: 11/06/2022] Open
Abstract
Suppression of IL-2 βproduction from T cells is an important process for the immune regulation by TGF-β. However, the mechanism by which this suppression occurs remains to be established. Here, we demonstrate that Smad2 and Smad3, two major TGF-β-downstream transcription factors, are redundantly essential for TGF-β-mediated suppression of IL-2 production in CD4(+) T cells using Smad2- and Smad3-deficient T cells. Both Smad2 and Smad3 were recruited into the proximal region of the IL-2 promoter in response to TGF-β. We then investigated the histone methylation status of the IL-2 promoter. Although both histone H3 lysine 9 (H3K9) and H3K27 trimethylation have been implicated in gene silencing, only H3K9 trimethylation was increased in the proximal region of the IL-2 promoter in a Smad2/3-dependent manner, whereas H3K27 trimethylation was not. The H3K9 methyltransferases Setdb1 and Suv39h1 bound to Smad3 and suppressed IL-2 promoter activity in collaboration with Smad3. Overexpression of Suv39h1 in 68-41 T cells strongly inhibited IL-2 production in response to T cell receptor stimulation irrespective of the presence or absence of TGF-β, whereas Setdb1 overexpression only slightly suppressed IL-2 production. Silencing of Suv39h1 by shRNA reverted the suppressive effect of TGF-β on IL-2 production. Furthermore, TGF-β induced Suv39h1 recruitment to the proximal region of the IL-2 promoter in wild type primary T cells; however, this was not observed in Smad2(-/-)Smad3(+/-) T cells. Thus, we propose that Smads recruit H3K9 methyltransferases Suv39h1 to the IL-2 promoter, thereby inducing suppressive histone methylation and inhibiting T cell receptor-mediated IL-2 transcription.
Collapse
Affiliation(s)
- Yu Wakabayashi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Taiga Tamiya
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Ichiro Takada
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomohiro Fukaya
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuki Sugiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Naoko Inoue
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Akihiro Kimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Ikko Kashiwagi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomohito Takimoto
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masatoshi Nomura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
123
|
Tao Y, Hu L, Li S, Liu Q, Wu X, Li D, Fu P, Wei D, Luo Z. Tranilast prevents the progression of chronic cyclosporine nephrotoxicity through regulation of transforming growth factor β/Smad pathways. Transplant Proc 2011; 43:1985-8. [PMID: 21693312 DOI: 10.1016/j.transproceed.2011.01.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 12/06/2010] [Accepted: 01/07/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE Our aim was to investigate the role of tranilast in transforming growth factor (TGF) β/Smad pathways using a rat model of chronic cyclosporine (CsA) nephrotoxicity. METHODS Thirty Sprague-Dawley (SD) rats were equally randomized in to 5 groups for gavage treatments daily for 4 weeks: normal control (N), olive oil; CsA (25 mg/kg), (M) CsA plus low-dose tranilast group (T1; CsA 25 mg/kg and tranilast 100 mg/kg); CsA plus medium-dose tranilast group (T2; CsA 25 mg/kg and tranilast 200 mg/kg); and CsA plus high-dose tranilast group (T4; CsA 25 mg/kg and tranilast 400 mg/kg). Kidneys were harvested at the end of the fourth week. TGF-β1 as well as Smad3 and Smad7 were detected by reverse-transcription polymerase chain reaction and immunohistochemistry. RESULTS The administration of tranilast decreased the expression of TGF-β1 and Smad3 by CsA-treated rats, whereas it increased both mRNA and protein levels of Smad7. Semiquantitative analysis of mRNA production revealed these treatments to markedly reduce the amount of TGF-β1: T1: 0.8452 ± 0.0825 vs 0.8529 ± 0.0606 (P < .05); T2: 0.8414 ± 0.0696 vs 0.8529 ± 0.0606 (P < .05); T4: 0.8336 ± 0.0592 vs 0.8529 ± 0.0606 (P < .05). For Smad3: T1: 0.8581 ± 0.0328 vs 0.8613 ± 0.0542 (P < .05); T2: 0.8528 ± 0.0599 vs 0.8613 ± 0.0542 (P < .05); T4: 0.8436 ± 0.0185 vs 0.8613 ± 0.0542 (P < .05). The significantly elevated dose-dependent amounts of Smad7 were: T1: 0.9026 ± 0.0522 vs 0.8678 ± 0.0246, (P < .05); T2: 0.9087 ± 0.0506 vs 0.8678 ± 0.0246 (P < .05); T4: 0.9151 ± 0.0793 vs 0.8678 ± 0.0246 (P < .05). CONCLUSION Regulation of TGF-β/Smad pathways is one of the mechanisims by which tranilast mitigates the progression of chronic CsA nephrotoxicity in rats.
Collapse
Affiliation(s)
- Y Tao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Tapia-González S, Giráldez-Pérez RM, Cuartero MI, Casarejos MJ, Mena MÁ, Wang XF, Sánchez-Capelo A. Dopamine and α-synuclein dysfunction in Smad3 null mice. Mol Neurodegener 2011; 6:72. [PMID: 21995845 PMCID: PMC3219599 DOI: 10.1186/1750-1326-6-72] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-β1 (TGF-β1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade. Results Striatal monoamine oxidase (MAO)-mediated dopamine (DA) catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC) is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM) and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus) or neurites (motor and cingulate cortices, striatum and spinal cord). Interestingly, these α-synuclein deposits are detected with ubiquitin and PS129-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB). Conclusions Smad3 deficiency promotes strong catabolism of DA in the striatum (ST), decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents.
Collapse
Affiliation(s)
- Silvia Tapia-González
- Departamento de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
125
|
Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HAM, Gosens R. β-Catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L956-65. [PMID: 21908588 DOI: 10.1152/ajplung.00123.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway remodeling with altered extracellular matrix (ECM) deposition. Transforming growth factor-β(1) (TGF-β(1)) is upregulated in asthma and COPD and contributes to tissue remodeling in the airways by driving ECM production by structural cells, including airway smooth muscle. In this study, we investigated the activation of β-catenin signaling and its contribution to ECM production by airway smooth muscle cells in response to TGF-β(1). Stimulation of airway smooth muscle cells with TGF-β(1) resulted in a time-dependent increase of total and nonphosphorylated β-catenin protein expression via induction of β-catenin mRNA and inhibition of GSK-3. In addition, the TGF-β(1)-induced β-catenin activated TCF/LEF-dependent gene transcription, as determined by the β-catenin sensitive TOP-flash luciferase reporter assay. Furthermore, TGF-β(1) stimulation increased mRNA expression of collagen Iα1, fibronectin, versican, and PAI-1. Pharmacological inhibition of β-catenin by PKF115-584 or downregulation of β-catenin expression by specific small interfering RNA (siRNA) substantially inhibited TGF-β(1)-induced expression of the ECM genes. Fibronectin protein deposition by airway smooth muscle cells in response to TGF-β(1) was also inhibited by PKF115-584 and β-catenin siRNA. Moreover, transfection of airway smooth muscle cells with a nondegradable β-catenin mutant (S33Y β-catenin) was sufficient for inducing fibronectin protein expression. Collectively, these findings indicate that β-catenin signaling is activated in response to TGF-β(1) in airway smooth muscle cells, which is required and sufficient for the regulation of ECM protein production. Targeting β-catenin-dependent gene transcription may therefore hold promise as a therapeutic intervention in airway remodeling in both asthma and COPD.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
126
|
Tram E, Ibrahim-zada I, Briollais L, Knight JA, Andrulis IL, Ozcelik H. Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR). Breast Cancer Res 2011; 13:R77. [PMID: 21835029 PMCID: PMC3236341 DOI: 10.1186/bcr2926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/09/2011] [Accepted: 08/11/2011] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION A common feature of neoplastic cells is that mutations in SMADs can contribute to the loss of sensitivity to the anti-tumor effects of transforming growth factor-β (TGF-β). However, germline mutation analysis of SMAD3 and SMAD4, the principle substrates of the TGF-β signaling pathway, has not yet been conducted in breast cancer. Thus, it is currently unknown whether germline SMAD3 and SMAD4 mutations are involved in breast cancer predisposition. METHODS We performed mutation analysis of the highly conserved mad-homology 2 (MH2) domains for both genes in genomic DNA from 408 non-BRCA1/BRCA2 breast cancer cases and 710 population controls recruited by the Ontario site of the breast cancer family registry (CFR) using denaturing high-performance liquid chromatography (DHPLC) and direct DNA sequencing. The results were interpreted in several ways. First, we adapted nucleotide diversity analysis to quantitatively assess whether the frequency of alterations differ between the two genes. Next, in silico tools were used to predict variants' effect on domain function and mRNA splicing. Finally, 37 cases or controls harboring alterations were tested for aberrant splicing using reverse-transcription polymerase chain reaction (PCR) and real-time PCR statistical comparison of germline expressions by non-parametric Mann-Whitney test of independent samples. RESULTS We identified 27 variants including 2 novel SMAD4 coding variants c.1350G > A (p.Gln450Gln), and c.1701A > G (p.Ile525Val). There were no inactivating mutations even though c.1350G > A was predicted to affect exonic splicing enhancers. However, several additional findings were of note: 1) nucleotide diversity estimate for SMAD3 but not SMAD4 indicated that coding variants of the MH2 domain were more infrequent than expected; 2) in breast cancer cases SMAD3 was significantly over-expressed relative to controls (P < 0.05) while the case harboring SMAD4 c.1350G > A was associated with elevated germline expression (> 5-fold); 3) separate analysis using tissue expression data showed statistically significant over-expression of SMAD3 and SMAD4 in breast carcinomas. CONCLUSIONS This study shows that inactivating germline alterations in SMAD3 and SMAD4 are rare, suggesting a limited role in driving tumorigenesis. Nevertheless, aberrant germline expressions of SMAD3 and SMAD4 may be more common in breast cancer than previously suspected and offer novel insight into their roles in predisposition and/or progression of breast cancer.
Collapse
Affiliation(s)
- Eric Tram
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Murray St., Toronto, ON M5T 3L9, Canada
| | - Irada Ibrahim-zada
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Murray St., Toronto, ON M5T 3L9, Canada
| | - Laurent Briollais
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Dalla Lana School of Public Health, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Dalla Lana School of Public Health, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Irene L Andrulis
- Cancer Care Ontario, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, 60 Murray Street, Toronto, ON M5T 3L9, Canada
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Murray St., Toronto, ON M5T 3L9, Canada
| |
Collapse
|
127
|
Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D, McGillivray B, Clarke L, Bernier F, Santos-Cortez RL, Leal SM, Bertoli-Avella AM, Shendure J, Rieder MJ, Nickerson DA, Milewicz DM. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res 2011; 109:680-6. [PMID: 21778426 DOI: 10.1161/circresaha.111.248161] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Thoracic aortic aneurysms leading to acute aortic dissections (TAAD) can be inherited in families in an autosomal dominant manner. As part of the spectrum of clinical heterogeneity of familial TAAD, we recently described families with multiple members that had TAAD and intracranial aneurysms or TAAD and intracranial and abdominal aortic aneurysms inherited in an autosomal dominant manner. OBJECTIVE To identify the causative mutation in a large family with autosomal dominant inheritance of TAAD with intracranial and abdominal aortic aneurysms by performing exome sequencing of 2 distantly related individuals with TAAD and identifying shared rare variants. METHODS AND RESULTS A novel frame shift mutation, p. N218fs (c.652delA), was identified in the SMAD3 gene and segregated with the vascular diseases in this family with a logarithm of odds score of 2.52. Sequencing of 181 probands with familial TAAD identified 3 additional SMAD3 mutations in 4 families, p.R279K (c.836G>A), p.E239K (c.715G>A), and p.A112V (c.235C>T), resulting in a combined logarithm of odds score of 5.21. These 4 mutations were notably absent in 2300 control exomes. SMAD3 mutations were recently described in patients with aneurysms osteoarthritis syndrome and some of the features of this syndrome were identified in individuals in our cohort, but these features were notably absent in many SMAD3 mutation carriers. CONCLUSIONS SMAD3 mutations are responsible for 2% of familial TAAD. Mutations are found in families with TAAD alone, along with families with TAAD, intracranial aneurysms, abdominal aortic and bilateral iliac aneurysms segregating in an autosomal dominant manner.
Collapse
Affiliation(s)
- Ellen S Regalado
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, Zerfas P, Zhigang D, Wright EC, Stuelten C, Sun P, Lonning S, Skarulis M, Sumner AE, Finkel T, Rane SG. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab 2011; 14:67-79. [PMID: 21723505 PMCID: PMC3169298 DOI: 10.1016/j.cmet.2011.04.013] [Citation(s) in RCA: 531] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/16/2011] [Accepted: 04/20/2011] [Indexed: 12/17/2022]
Abstract
Imbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-β/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3-deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3(-)(/-) white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3(-/-) adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-1α expression. We observe significant correlation between TGF-β1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-β signaling protects mice from obesity, diabetes, and hepatic steatosis. Together, these results demonstrate that TGF-β signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-β activity might be an effective treatment strategy for obesity and diabetes.
Collapse
Affiliation(s)
- Hariom Yadav
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Clinical Research Center, South Drive and Old Georgetown Road, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Wang Y, Dai Y, Li X, Chen CY, Li W, Yu Z. Inhibition of Smad signaling is implicated in cleft palate induced by all-trans retinoic acid. ACTA BIOLOGICA HUNGARICA 2011; 62:142-50. [PMID: 21555266 DOI: 10.1556/abiol.62.2011.2.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of all-trans retinoic acid (atRA) on palatal fusion and the underlying mechanisms were investigated using organ culture. Compared with control group, the atRA-treated group (1 μM and 5 μM) had more medial edge epithelium (ME) remaining within the midline epithelial seam (MES). At 10 μM atRA, the opposing shelves were not in contact at the culture end (72 h). Cell death detection by TUNEL and laminin immunohistochemistry demonstrated that atRA (5 μM) induced apoptosis in mesenchyme and inhibited degradation of basal lamina within MES. Notably, migration and apoptosis of ME cells and degradation of basal lamina within MES markedly represented vehicle control palatal shelves in culture. Additionally, apoptosis was not detected in mesenchyme of control palatal shelves. Immunoblotting analysis revealed that Smad2 and Smad3 were endogenously activated and expression of Smad7 was inhibited during the fusion process. In contrast, atRA treatment abrogated phosphorylation of Smad2 and Smad3 and inducible expression of Smad7 in ME. From these data, it is assumed that inhibition of Smad pathway by atRA in ME may play a critical role in abrogation of the ME cell apoptosis and degradation of the basal laminin, which might contribute to failure of palatal fusion.
Collapse
Affiliation(s)
- Yuming Wang
- Henan Academy of Medical Sciences, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
130
|
Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16:127-46. [PMID: 21448580 PMCID: PMC3723114 DOI: 10.1007/s10911-011-9207-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease comprised of at least five major tumor subtypes that coalesce as the second leading cause of cancer death in women in the United States. Although metastasis clearly represents the most lethal characteristic of breast cancer, our understanding of the molecular mechanisms that govern this event remains inadequate. Clinically, ~30% of breast cancer patients diagnosed with early-stage disease undergo metastatic progression, an event that (a) severely limits treatment options, (b) typically results in chemoresistance and low response rates, and (c) greatly contributes to aggressive relapses and dismal survival rates. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates all phases of postnatal mammary gland development, including branching morphogenesis, lactation, and involution. TGF-β also plays a prominent role in suppressing mammary tumorigenesis by preventing mammary epithelial cell (MEC) proliferation, or by inducing MEC apoptosis. Genetic and epigenetic events that transpire during mammary tumorigenesis conspire to circumvent the tumor suppressing activities of TGF-β, thereby permitting late-stage breast cancer cells to acquire invasive and metastatic phenotypes in response to TGF-β. Metastatic progression stimulated by TGF-β also relies on its ability to induce epithelial-mesenchymal transition (EMT) and the expansion of chemoresistant breast cancer stem cells. Precisely how this metamorphosis in TGF-β function comes about remains incompletely understood; however, recent findings indicate that the initiation of oncogenic TGF-β activity is contingent upon imbalances between its canonical and noncanonical signaling systems. Here we review the molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jenny G Parvani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
131
|
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. J Surg Res 2011; 167:287-97. [PMID: 21324395 PMCID: PMC3077463 DOI: 10.1016/j.jss.2010.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/17/2023]
Abstract
Despite novel surgical therapies for the treatment of atherosclerosis, restenosis continues to be a significant impediment to the long-term success of vascular interventions. Transforming growth factor-beta (TGF-β), a family of cytokines found to be up-regulated at sites of arterial injury, has long been implicated in restenosis; a role that has largely been attributed to TGF-β-mediated vascular fibrosis. However, emerging data indicate that the role of TGF-β in intimal thickening and arterial remodeling, the critical components of restenosis, is complex and multidirectional. Recent advancements have clarified the basic signaling pathway of TGF-β, making evident the need to redefine the precise role of this family of cytokines and its primary signaling pathway, Smad, in restenosis. Unraveling TGF-β signaling in intimal thickening and arterial remodeling will pave the way for a clearer understanding of restenosis and the development of innovative pharmacological therapies.
Collapse
Affiliation(s)
- Pasithorn A. Suwanabol
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
132
|
Noninvasive detection of inflammation-associated colon cancer in a mouse model. Neoplasia 2011; 12:1054-65. [PMID: 21170269 DOI: 10.1593/neo.10940] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 11/18/2022] Open
Abstract
Helicobacter bilis-infected Smad3(-/-) mice represent an attractive model of inflammation-associated colon cancer. Most infected mice develop mucinous adenocarcinoma (MUC) by 6 weeks post inoculation (PI); however, approximately one third do not progress to MUC. The ability to predict the development of MUC in mice used in therapeutic studies would confer a considerable saving of time and money. In addition, the inadvertent use of mice without MUC may confound therapeutic studies by making treatments seem falsely efficacious. We assessed both magnetic resonance imaging (MRI) and fecal biomarkers in Helicobacter- and sham-inoculated mice as methods of noninvasively detecting MUC before the predicted onset of disease. Non-contrast-enhanced MRI was able to detect lesions in 58% of mice with histologically confirmed MUC; however, serial imaging sessions produced inconsistent results. MRI was also a labor- and time-intensive technique requiring anesthesia. Alternatively, inflammatory biomarkers isolated from feces at early time points were correlated to later histologic lesions. Fecal expression of interleukin 1β, macrophage inflammatory protein 1α, and regulated on activation, normal T-cell expressed, and secreted at 3 weeks PI correlated significantly with lesion severity at 9 weeks PI. For each biomarker, receiver-operator characteristic curves were also generated, and all three biomarkers performed well at 1 to 3 weeks PI, indicating that the development of MUC can be predicted based on the early expression of certain inflammatory mediators in feces.
Collapse
|
133
|
Affiliation(s)
- THOMAS DOETSCHMAN
- BIO5 Institute and Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona
| |
Collapse
|
134
|
van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collée M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IME, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EHG, Oostra BA, Wessels MW, Bertoli-Avella AM. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 2011; 43:121-6. [PMID: 21217753 DOI: 10.1038/ng.744] [Citation(s) in RCA: 478] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/24/2010] [Indexed: 11/09/2022]
Abstract
Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2-24.2 and show that the disease is caused by mutations in SMAD3. This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission. SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.
Collapse
|
135
|
Expression of Transforming Growth Factor-β-Responsive Smads in Cranial Suture Development and Closure. J Craniofac Surg 2011; 22:324-8. [DOI: 10.1097/scs.0b013e3181f7dfa0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
136
|
Lee JW, Zoumalan RA, Valenzuela CD, Nguyen PD, Tutela JP, Roman BR, Warren SM, Saadeh PB. Regulators and mediators of radiation-induced fibrosis: Gene expression profiles and a rationale for Smad3 inhibition. Otolaryngol Head Neck Surg 2010; 143:525-30. [DOI: 10.1016/j.otohns.2010.06.912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 05/16/2010] [Accepted: 06/16/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE: Radiotherapy, an essential modality in cancer treatment, frequently induces fibrotic processes in the skin, including accumulation of extracellular matrix. Transforming growth factor-β is essential in regulating extracellular matrix gene expression and is dependent on Smad3, an intracellular mediator/transcription factor. Our study characterized the genetic expression involved in extracellular matrix accumulation during radiationinduced fibrosis. We performed Smad3 gene silencing in an attempt to abrogate the effects of radiation. STUDY DESIGN: Laboratory research. SETTING: University laboratory. SUBJECTS AND METHODS: C57 murine dermal fibroblasts were irradiated with 20 Gy RNA isolated (0, 6, 12, 24, 48, 72 hours postirradiation) and mRNA analyzed (reverse transcriptase polymerase chain reaction) for known regulators (Smad3, interleu-kin-13 [IL-13]), tumor necrosis factor-α [TNF-α]) and mediators of fibrosis (collagen 1A1 [Col1A1]), TGF-β, matrix metalloprotease-1 and −2 (MMP-1, MMP-2), and tissue inhibitor of metallo-protease-1 (TIMP-1). Smad3 gene expression was silenced using siRNA in an effort to restore an unirradiated gene profile. RESULTS: Following irradiation, there was a steady increase in mRNA expression of Smad3, IL-13, TGF-β, Col1A1, MMP-2, TIMP-1, with peak at 12 to 24 hours and subsequent decline by 72 hours. TNF-α expression remained elevated throughout. MMP-1 showed minimal expression initially, which decreased to negligible by 72 hours. Inhibition of Smad3 significantly decreased expression of Col1A1, TGF-β, MMP-2, and TIMP-1. IL-13 and TNF-α expression was not affected by Smad3 silencing. CONCLUSION: We have characterized the early-phase mRNA expression profiles of the major mediators of radiation-induced fibrosis. Smad3 siRNA effectively abrogated the elevation of Col1A1, TGF-β, TIMP-1, and MMP-2. IL-13 and TNF-α were unaffected by Smad3 silencing and appear to be minor regulators in fibrosis. These findings suggest a therapeutic rationale for Smad3 silencing in vivo.
Collapse
Affiliation(s)
- Judy W. Lee
- Department of Otolaryngology–Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Richard A. Zoumalan
- Department of Otolaryngology–Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Cristian D. Valenzuela
- Department of Surgery, Plastic Institute of Reconstructive Plastic Surgery, New York University School of Medicine, New York, NY
| | - Phuong D. Nguyen
- Department of Surgery, Plastic Institute of Reconstructive Plastic Surgery, New York University School of Medicine, New York, NY
| | - John P. Tutela
- Department of Surgery, Plastic Institute of Reconstructive Plastic Surgery, New York University School of Medicine, New York, NY
| | - Benjamin R. Roman
- Department of Otolaryngology–Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Stephen M. Warren
- Department of Surgery, Plastic Institute of Reconstructive Plastic Surgery, New York University School of Medicine, New York, NY
| | - Pierre B. Saadeh
- Department of Surgery, Plastic Institute of Reconstructive Plastic Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
137
|
Abstract
Colorectal cancer is the second most common cause of cancer-related death in the United States. Twin studies suggest that 35% of all colorectal cancer cases are inherited. High-penetrance tumor susceptibility genes account for at most 3-6% of all colorectal cancer cases and the remainder of the unexplained risk is likely due to a combination of low to moderate penetrance genes. Recent genome-wide association studies have identified several SNPs near genes belonging to the transforming growth factor beta (TGF-beta) superfamily such as GREM1 and SMAD7. Together with the recent discovery that constitutively decreased TGFBR1 expression is a potent modifier of colorectal cancer risk, these findings strongly suggest that germline variants of the TGF-beta superfamily may account for a sizeable proportion of colorectal cancer cases. The TGF-beta superfamily signaling pathways mediate many different biological processes during embryonic development, and in adult organisms they play a role in tissue homeostasis. TGF-beta has a central role in inhibiting cell proliferation and also modulates processes such as cell invasion, immune regulation, and microenvironment modification. Mutations in the TGF-beta type II receptor (TGFBR2) are estimated to occur in approximately 30% of colorectal carcinomas. Mutations in SMAD4 and BMPR1A are found in patients with familial juvenile polyposis, an autosomal dominant condition associated with an increased risk of colorectal cancer. This chapter provides an overview of the genetic basis of colorectal cancer and discusses recent discoveries related to alterations in the TGF-beta pathways and their role in the development of colorectal cancer.
Collapse
Affiliation(s)
- Naresh Bellam
- Division of Hematology/Oncology, Department of Medicine, UAB Comprehensive Cancer Center, The University of Alabama, Birmingham, AL 35294-3300, USA
| | | |
Collapse
|
138
|
Dobaczewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF, Frangogiannis NG. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 2010; 107:418-28. [PMID: 20522804 DOI: 10.1161/circresaha.109.216101] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RATIONALE Cardiac fibroblasts are key effector cells in the pathogenesis of cardiac fibrosis. Transforming growth factor (TGF)-beta/Smad3 signaling is activated in the border zone of healing infarcts and induces fibrotic remodeling of the infarcted ventricle contributing to the development of diastolic dysfunction. OBJECTIVE The present study explores the mechanisms responsible for the fibrogenic effects of Smad3 by dissecting its role in modulating cardiac fibroblast phenotype and function. METHODS AND RESULTS Smad3 null mice and corresponding wild-type controls underwent reperfused myocardial infarction protocols. Surprisingly, reduced collagen deposition in Smad3-/- infarcts was associated with increased infiltration with myofibroblasts. In vitro studies demonstrated that TGF-beta1 inhibited murine cardiac fibroblast proliferation; these antiproliferative effects were mediated via Smad3. Smad3-/- fibroblasts were functionally defective, exhibiting impaired collagen lattice contraction when compared with wild-type cells. Decreased contractile function was associated with attenuated TGF-beta-induced expression of alpha-smooth muscle actin. In addition, Smad3-/- fibroblasts had decreased migratory activity on stimulation with serum, and exhibited attenuated TGF-beta1-induced upregulation of extracellular matrix protein synthesis. Upregulation of connective tissue growth factor, an essential downstream mediator in TGF-beta-induced fibrosis, was in part dependent on Smad3. Connective tissue growth factor stimulation enhanced extracellular matrix protein expression by cardiac fibroblasts in a Smad3-independent manner. CONCLUSIONS Disruption of Smad3 results in infiltration of the infarct with abundant hypofunctional fibroblasts that exhibit impaired myofibroblast transdifferentiation, reduced migratory potential, and suppressed expression of fibrosis-associated genes.
Collapse
Affiliation(s)
- Marcin Dobaczewski
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Yang YP, Anderson RM, Klingensmith J. BMP antagonism protects Nodal signaling in the gastrula to promote the tissue interactions underlying mammalian forebrain and craniofacial patterning. Hum Mol Genet 2010; 19:3030-42. [PMID: 20508035 DOI: 10.1093/hmg/ddq208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Holoprosencephaly (HPE) is the most common forebrain and craniofacial malformation syndrome in humans. The genetics of HPE suggest that it often stems from a synergistic interaction of mutations in independent loci. In mice, several combinations of mutations in Nodal signaling pathway components can give rise to HPE, but it is not clear whether modest deficits of Nodal signaling along with lesions in other pathways might also cause such defects. We find that HPE results from simultaneous reduction of Nodal signaling and an organizer BMP (bone morphogenetic protein) antagonist, either Chordin or Noggin. These defects result from reduced production of tissues that promote forebrain and craniofacial development. Nodal promotes the expression of genes in the anterior primitive streak that are important for the development of these tissues, whereas BMP inhibits their expression. Pharmacological and transgenic manipulation of these signaling pathways suggests that BMP and Nodal antagonize each other prior to intracellular signal transduction. Biochemical experiments in vitro indicate that secreted Bmp2 and Nodal can form extracellular complexes, potentially interfering with receptor activation. Our results reveal that the patterning of forebrain and medial craniofacial elements requires a fine balance between BMP and Nodal signaling during primitive streak development, and provide a potential mechanistic basis for a new multigenic model of HPE.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710-3709, USA
| | | | | |
Collapse
|
140
|
Lu L, Wang J, Zhang F, Chai Y, Brand D, Wang X, Horwitz DA, Shi W, Zheng SG. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:4295-306. [PMID: 20304828 DOI: 10.4049/jimmunol.0903418] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whereas TGF-beta is essential for the development of peripherally induced Foxp3(+) regulatory T cells (iTreg cells) and Th17 cells, the intracellular signaling mechanism by which TGF-beta regulates development of both cell subsets is less understood. In this study, we report that neither Smad2 nor Smad3 gene deficiency abrogates TGF-beta-dependent iTreg induction by a deacetylase inhibitor trichostatin A in vivo, although the loss of the Smad2 or Smad3 gene partially reduces iTreg induction in vitro. Similarly, SMAD2 and SMAD3 have a redundant role in development of Th17 in vitro and in experimental autoimmune encephalomyelitis. In addition, ERK and/or JNK pathways were shown to be involved in regulating iTreg cells, whereas the p38 pathway predominately modulated Th17 and experimental autoimmune encephalomyelitis induction. Therefore, selective targeting of these intracellular TGF-beta signaling pathways during iTreg and Th17 cell development might lead to the development of therapies in treating autoimmune and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ling Lu
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Smad proteins are intracellular molecules that mediate the canonical signaling cascade of TGFbeta superfamily growth factors. The TGFbeta superfamily comprises two groups of growth factors, BMPs and TGFbetas. Both groups can be further divided into several sub-groups based on sequence homologies and functional similarities. Ligands of the TGFbeta superfamily bind to cell surface receptors to activate Smad proteins in the cytoplasm; then the activated Smad proteins translocate into the nucleus to activate or repress specific target gene transcription. Both groups of growth factors play important roles in skeletal development and regeneration. However, whether these effects reflect signaling through canonical Smad pathways, or other non-canonical signaling pathways in vivo remains a mystery. Moreover, the mechanisms utilized by Smad proteins to initiate nuclear events and their interactions with cytoplasmic proteins are still under intensive investigation. This review will discuss the most recent progress understanding Smad signaling in the context of skeletal development and regeneration.
Collapse
Affiliation(s)
- Buer Song
- Orthopedic Hospital Research Center, Department of Orthopedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
142
|
Hong HY, Jeon WK, Bae EJ, Kim ST, Lee HJ, Kim SJ, Kim BC. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1. Mol Cells 2010; 29:305-9. [PMID: 20082218 DOI: 10.1007/s10059-010-0037-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 01/08/2023] Open
Abstract
The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.
Collapse
Affiliation(s)
- Hye-Young Hong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
143
|
Smad3 deficiency reduces neurogenesis in adult mice. J Mol Neurosci 2010; 41:383-96. [PMID: 20155334 DOI: 10.1007/s12031-010-9329-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/06/2010] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-beta signaling through Smad3 inhibits cell proliferation in many cell types. As cell proliferation in the brain is an integral part of neurogenesis, we sought to determine the role of Smad3 in adult neurogenesis through examining processes and structures important to neurogenesis in adult Smad3 null mice. We find that there are fewer proliferating cells in neurogenic regions of adult Smad3 null mouse brains and reduced migration of neuronal precursor cells from the subventricular zone to the olfactory bulb. Alterations in astrocyte number and distribution within the rostral migratory stream of Smad3 null mice give rise to a smaller and more disorganized structure that may impact on neuronal precursor cell migration. However, the proportion of proliferating cells that become neurons is similar in wild type and Smad3 null mice. Our results suggest that signaling through Smad3 is needed to maintain the rate of cell division of neuronal precursors in the adult brain and hence the amount of neurogenesis, without altering neuronal cell fate.
Collapse
|
144
|
Martinez GJ, Zhang Z, Chung Y, Reynolds JM, Lin X, Jetten AM, Feng XH, Dong C. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J Biol Chem 2010; 284:35283-6. [PMID: 19887374 DOI: 10.1074/jbc.c109.078238] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) is a crucial cytokine with pleiotropic functions on immune cells. In CD4(+) T cells, TGF-beta is required for induction of both regulatory T and Th17 cells. However, the molecular mechanism underlying this differential T cell fate decision remains unclear. In this study, we have evaluated the role of Smad3 in the development of Th17 and regulatory T cells. Smad3 was found to be dispensable for natural regulatory T cell function. However, induction of Foxp3 expression by TGF-beta in naive T cells was significantly reduced in the absence of this molecule. On the contrary, Smad3 deficiency led to enhanced Th17 differentiation in vitro and in vivo. Moreover, Smad3 was found to interact with retinoid acid receptor-related orphan receptor gammat (RORgammat) and decrease its transcriptional activity. These results demonstrate that Smad3 is differentially involved in the reciprocal regulatory and inflammatory T cell generation.
Collapse
Affiliation(s)
- Gustavo J Martinez
- Department of Immunology, M. D. Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
146
|
Daly AC, Vizán P, Hill CS. Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-beta responses. J Biol Chem 2009; 285:6489-97. [PMID: 20037158 DOI: 10.1074/jbc.m109.043877] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) regulates many biological processes, and aberrant TGF-beta signaling is implicated in tumor development. Smad3 is a central component of the TGF-beta signaling pathway, and once activated, Smad3 forms complexes with Smad4 or other receptor-regulated Smads, which accumulate in the nucleus to transcriptionally regulate TGF-beta target genes. Because Smad3 plays a significant role in mediating the activities of TGF-beta, we examined its regulation during tumor development using a well characterized tumor model. We demonstrate that Smad3 levels are dramatically reduced in the tumorigenic cell line transformed with activated H-Ras compared with the normal parental epithelial cells. Interestingly, we also observe a cell cycle-dependent regulation of Smad3 in both cell types, with high Smad3 levels in quiescent cells and a significant drop in Smad3 protein levels in proliferating cells. Smad3 is regulated at the mRNA level and at the level of protein stability. In addition, functional analysis indicates that down-regulation of Smad3 levels is required for the tumor cells to proliferate in the presence of TGF-beta, because ectopic expression of Smad3 in the tumorigenic cell line restores the growth inhibitory response to TGF-beta. In contrast, expression of high levels of Smad3 did not interfere with the ability of these cells to undergo epithelial to mesenchymal transition upon TGF-beta stimulation. Altogether, our results suggest that the level of Smad3 protein is an important determinant of the progression of tumorigenesis. High levels of Smad3 are required for the tumor suppressor activities of TGF-beta, whereas lower levels are sufficient for the tumor promoting functions.
Collapse
Affiliation(s)
- Amanda C Daly
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
147
|
Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schaffer DV, Conboy IM. Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 2009; 8:676-89. [PMID: 19732043 PMCID: PMC2783265 DOI: 10.1111/j.1474-9726.2009.00517.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Muscle stem (satellite) cells are relatively resistant to cell-autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P-Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor-beta (TGF-β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age-dependent myogenic activity of sera TGF-β1, and its potential cross-talk with systemic Wnt. We found that sera TGF-β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF-β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF-β1 were inhibitory and young sera suppressed myogenesis if TGF-β1 was activated. Our data suggest that platelet-derived sera TGF-β1 levels, or endocrine TGF-β1 levels, do not explain the age-dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF-β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF-β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF-β receptor kinase inhibitor, which attenuated TGF-β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF-β1-dependent block on muscle regeneration, identify physiological modalities of age-imposed changes in TGF-β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.
Collapse
Affiliation(s)
- Morgan E Carlson
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
4E-BP1 is a target of Smad4 essential for TGFbeta-mediated inhibition of cell proliferation. EMBO J 2009; 28:3514-22. [PMID: 19834456 DOI: 10.1038/emboj.2009.291] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/07/2009] [Indexed: 01/25/2023] Open
Abstract
Assembly of the multi-subunit eukaryotic translation initiation factor-4F (eIF4F) is critical for protein synthesis and cell growth and proliferation. eIF4F formation is regulated by the translation-inhibitory protein 4E-BP1. While proliferation factors and intracellular pathways that impinge upon 4E-BP1 phosphorylation have been extensively studied, how they control 4E-BP1 expression remains unknown. Here, we show that Smad4, a transcription factor normally required for TGFbeta-mediated inhibition of normal cell proliferation, enhances 4E-BP1 gene-promoter activity through binding to a conserved element. 4E-BP1 expression is specifically modulated by treatment with TGFbeta and by manipulations of the natural Smad4 regulators (co-Smads) in cells isolated from Smad4(+/+) human tumours, whereas no response is observed in cells isolated from Smad4(-/-) human tumours or in cells where Smad4 has been knocked down by specific siRNAs. In addition, cells where 4E-BP1 has been knocked down (inducible shRNAs in human pancreatic cancer cells or siRNAs in non-malignant human keratinocytes) or has been knocked out (mouse embryonic fibroblasts isolated from 4E-BP1(-/-) mice) proliferate faster and are resistant to the antiproliferative effect of TGFbeta. Thus, 4E-BP1 gene appears critical for TGFbeta/Smad4-mediated inhibition of cell proliferation.
Collapse
|
149
|
Nishimura SL. Integrin-mediated transforming growth factor-beta activation, a potential therapeutic target in fibrogenic disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1362-70. [PMID: 19729474 DOI: 10.2353/ajpath.2009.090393] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A subset of integrins function as cell surface receptors for the profibrotic cytokine transforming growth factor-beta (TGF-beta). TGF-beta is expressed in an inactive or latent form, and activation of TGF-beta is a major mechanism that regulates TGF-beta function. Indeed, important TGF-beta activation mechanisms involve several of the TGF-beta binding integrins. Knockout mice suggest essential roles for integrin-mediated TGF-beta activation in vessel and craniofacial morphogenesis during development and in immune homeostasis and the fibrotic wound healing response in the adult. Amplification of integrin-mediated TGF-beta activation in fibrotic disorders and data from preclinical models suggest that integrins may therefore represent novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Stephen L Nishimura
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
150
|
Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev Cell 2009; 17:35-48. [PMID: 19619490 DOI: 10.1016/j.devcel.2009.05.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/27/2009] [Accepted: 05/08/2009] [Indexed: 12/30/2022]
Abstract
In multicellular organisms, cell size is tightly controlled by nutrients and growth factors. Increasing ambient glucose induces enhanced protein synthesis and cell size. Continued exposure of cells to high glucose in vivo, as apparent under pathological conditions, results in cell hypertrophy and tissue damage. We demonstrate that activation of TGF-beta signaling has a central role in glucose-induced cell hypertrophy in fibroblasts and epithelial cells. Blocking the kinase activity of the TbetaRI receptor or loss of its expression prevented the effects of high glucose on protein synthesis and cell size. Exposure of cells to high glucose induced a rapid increase in cell surface levels of the TbetaRI and TbetaRII receptors and a rapid activation of TGF-beta ligand by matrix metalloproteinases, including MMP-2 and MMP-9. The consequent autocrine TGF-beta signaling in response to glucose led to Akt-TOR pathway activation. Accordingly, preventing MMP-2/MMP-9 or TGF-beta-induced TOR activation inhibited high glucose-induced cell hypertrophy.
Collapse
|