101
|
Grupstra CGB, Howe-Kerr LI, Veglia AJ, Bryant RL, Coy SR, Blackwelder PL, Correa AMS. Thermal stress triggers productive viral infection of a key coral reef symbiont. THE ISME JOURNAL 2022; 16:1430-1441. [PMID: 35046559 PMCID: PMC9038915 DOI: 10.1038/s41396-022-01194-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 04/27/2023]
Abstract
Climate change-driven ocean warming is increasing the frequency and severity of bleaching events, in which corals appear whitened after losing their dinoflagellate endosymbionts (family Symbiodiniaceae). Viral infections of Symbiodiniaceae may contribute to some bleaching signs, but little empirical evidence exists to support this hypothesis. We present the first temporal analysis of a lineage of Symbiodiniaceae-infecting positive-sense single-stranded RNA viruses ("dinoRNAVs") in coral colonies, which were exposed to a 5-day heat treatment (+2.1 °C). A total of 124 dinoRNAV major capsid protein gene "aminotypes" (unique amino acid sequences) were detected from five colonies of two closely related Pocillopora-Cladocopium (coral-symbiont) combinations in the experiment; most dinoRNAV aminotypes were shared between the two coral-symbiont combinations (64%) and among multiple colonies (82%). Throughout the experiment, seventeen dinoRNAV aminotypes were found only in heat-treated fragments, and 22 aminotypes were detected at higher relative abundances in heat-treated fragments. DinoRNAVs in fragments of some colonies exhibited higher alpha diversity and dispersion under heat stress. Together, these findings provide the first empirical evidence that exposure to high temperatures triggers some dinoRNAVs to switch from a persistent to a productive infection mode within heat-stressed corals. Over extended time frames, we hypothesize that cumulative dinoRNAV production in the Pocillopora-Cladocopium system could affect colony symbiotic status, for example, by decreasing Symbiodiniaceae densities within corals. This study sets the stage for reef-scale investigations of dinoRNAV dynamics during bleaching events.
Collapse
Affiliation(s)
| | | | - Alex J Veglia
- BioSciences at Rice, Rice University, Houston, TX, USA
| | - Reb L Bryant
- BioSciences at Rice, Rice University, Houston, TX, USA
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | | | - Patricia L Blackwelder
- Department of Chemistry, University of Miami Center for Advanced Microscopy (UMCAM), 1301 Memorial Dr, Coral Gables, FL, 33146-0630, USA
| | | |
Collapse
|
102
|
Ramazzotti D, Maspero D, Angaroni F, Spinelli S, Antoniotti M, Piazza R, Graudenzi A. Early detection and improved genomic surveillance of SARS-CoV-2 variants from deep sequencing data. iScience 2022; 25:104487. [PMID: 35677393 PMCID: PMC9162787 DOI: 10.1016/j.isci.2022.104487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Corresponding author
| | - Davide Maspero
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Fabrizio Angaroni
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
| | - Silvia Spinelli
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
- Corresponding author
| |
Collapse
|
103
|
Borrego B, Moreno S, López-Valiñas Á, de la Losa N, Weber F, Núñez JI, Brun A. Identification of Single Amino Acid Changes in the Rift Valley Fever Virus Polymerase Core Domain Contributing to Virus Attenuation In Vivo. Front Cell Infect Microbiol 2022; 12:875539. [PMID: 35573791 PMCID: PMC9096444 DOI: 10.3389/fcimb.2022.875539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral zoonotic disease affecting many African countries with the potential to spread to other geographical areas. RVF affects sheep, goats, cattle and camels, causing a high rate of abortions and death of newborn lambs. Also, humans can be infected, developing a usually self-limiting disease that can turn into a more severe illness in a low percentage of cases. Although different veterinary vaccines are available in endemic areas in Africa, to date no human vaccine has been licensed. In previous works, we described the selection and characterization of a favipiravir-mutagenized RVFV variant, termed 40Fp8, with potential as a RVF vaccine candidate due to the strong attenuation shown in immunocompromised animal models. Compared to the parental South African 56/74 viral strain, 40Fp8 displayed 7 amino acid substitutions in the L-protein, three of them located in the central region corresponding to the catalytic core of the RNA-dependent RNA polymerase (RdRp). In this work, by means of a reverse genetics system, we have analyzed the effect on virulence of these amino acid changes, alone or combined, both in vitro and in vivo. We found that the simultaneous introduction of two changes (G924S and A1303T) in the heterologous ZH548-RVFV Egyptian strain conferred attenuated phenotypes to the rescued viruses as shown in infected mice without affecting virus immunogenicity. Our results suggest that both changes induce resistance to favipiravir likely associated to some fitness cost that could be the basis for the observed attenuation in vivo. Conversely, the third change, I1050V, appears to be a compensatory mutation increasing viral fitness. Altogether, these results provide relevant information for the safety improvement of novel live attenuated RVFV vaccines.
Collapse
Affiliation(s)
- Belén Borrego
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
- *Correspondence: Belén Borrego, ; Alejandro Brun,
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Álvaro López-Valiñas
- Centre de Recerca en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca en Tecnologies Agroalimentàries (IRTA), Barcelona, Spain
| | - Nuria de la Losa
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Friedemann Weber
- Institut für Virologie, FB10-Veterinary Medicine, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - José Ignacio Núñez
- Centre de Recerca en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca en Tecnologies Agroalimentàries (IRTA), Barcelona, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
- *Correspondence: Belén Borrego, ; Alejandro Brun,
| |
Collapse
|
104
|
Martínez-González B, Soria ME, Vázquez-Sirvent L, Ferrer-Orta C, Lobo-Vega R, Mínguez P, de la Fuente L, Llorens C, Soriano B, Ramos R, Cortón M, López-Rodríguez R, García-Crespo C, Gallego I, de Ávila AI, Gómez J, Enjuanes L, Salar-Vidal L, Esteban J, Fernandez-Roblas R, Gadea I, Ayuso C, Ruíz-Hornillos J, Verdaguer N, Domingo E, Perales C. SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiol Spectr 2022; 10:e0022122. [PMID: 35348367 PMCID: PMC9045161 DOI: 10.1128/spectrum.00221-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Mutant spectra of RNA viruses are important to understand viral pathogenesis and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultradeep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of 30 nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low-frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype, and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three-dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19. IMPORTANCE The study shows that mutant spectra of SARS-CoV-2 from diagnostic samples differ in point mutation abundance and complexity and that significantly larger values were observed in virus from patients who developed mild COVID-19 symptoms. Mutant spectrum complexity is not a uniform trait among isolates. The nature and location of low-frequency amino acid substitutions present in mutant spectra anticipate great potential for phenotypic diversification of SARS-CoV-2.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, Universidad de Valencia, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, “Scientific Park”, Universidad de Valencia, Valencia, Spain
| | - Ricardo Ramos
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, Madrid, Spain
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ricardo Fernandez-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
105
|
Atindaana E, Kissi-Twum A, Emery S, Burnett C, Pitcher J, Visser M, Kidd JM, Telesnitsky A. Bimodal Expression Patterns, and Not Viral Burst Sizes, Predict the Effects of Vpr on HIV-1 Proviral Populations in Jurkat Cells. mBio 2022; 13:e0374821. [PMID: 35384697 PMCID: PMC9040753 DOI: 10.1128/mbio.03748-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.
Collapse
Affiliation(s)
- Edmond Atindaana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abena Kissi-Twum
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Greater Accra Region, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Greater Accra Region, Ghana
| | - Sarah Emery
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jake Pitcher
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Myra Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey M. Kidd
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
106
|
Delmotte J, Pelletier C, Morga B, Galinier R, Petton B, Lamy JB, Kaltz O, Avarre JC, Jacquot M, Montagnani C, Escoubas JM. Genetic diversity and connectivity of the Ostreid herpesvirus 1 populations in France: A first attempt to phylogeographic inference for a marine mollusc disease. Virus Evol 2022; 8:veac039. [PMID: 35600094 PMCID: PMC9119428 DOI: 10.1093/ve/veac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity of viral populations is a key driver of the spatial and temporal diffusion of viruses; yet, studying the diversity of whole genomes from natural populations still remains a challenge. Phylodynamic approaches are commonly used for RNA viruses harboring small genomes but have only rarely been applied to DNA viruses with larger genomes. Here, we used the Pacific oyster mortality syndrome (a disease that affects oyster farms around the world) as a model to study the genetic diversity of its causative agent, the Ostreid herpesvirus 1 (OsHV-1) in the three main French oyster-farming areas. Using ultra-deep sequencing on individual moribund oysters and an innovative combination of bioinformatics tools, we de novo assembled twenty-one OsHV-1 new genomes. Combining quantification of major and minor genetic variations, phylogenetic analysis, and ancestral state reconstruction of discrete traits approaches, we assessed the connectivity of OsHV-1 viral populations between the three oyster-farming areas. Our results suggest that the Marennes-Oléron Bay represents the main source of OsHV-1 diversity, from where the virus has dispersed to other farming areas, a scenario consistent with current practices of oyster transfers in France. We demonstrate that phylodynamic approaches can be applied to aquatic DNA viruses to determine how epidemiological, immunological, and evolutionary processes act and potentially interact to shape their diversity patterns.
Collapse
Affiliation(s)
| | - Camille Pelletier
- Ifremer, RBE-ASIM, Station La Tremblade, La Tremblade F-17390, France
| | - Benjamin Morga
- Ifremer, RBE-ASIM, Station La Tremblade, La Tremblade F-17390, France
| | - Richard Galinier
- IHPE, CNRS, Ifremer, UPVD, University of Montpellier, Perpignan F-66000, France
| | - Bruno Petton
- Ifremer, CNRS, IRD, Ifremer, LEMAR UMR 6539 Université de Bretagne Occidentale, Argenton-en-Landunvez F-29840, France
| | | | - Oliver Kaltz
- ISEM, IRD, CNRS, University of Montpellier, Montpellier F-34095, France
| | | | - Maude Jacquot
- Ifremer, RBE-ASIM, Station La Tremblade, La Tremblade F-17390, France
- IHPE, CNRS, Ifremer, UPVD, University of Montpellier, Montpellier F-34095, France
| | - Caroline Montagnani
- IHPE, CNRS, Ifremer, UPVD, University of Montpellier, Montpellier F-34095, France
| | - Jean-Michel Escoubas
- IHPE, CNRS, Ifremer, UPVD, University of Montpellier, Montpellier F-34095, France
| |
Collapse
|
107
|
Wang S, Sotcheff SL, Gallardo CM, Jaworski E, Torbett B, Routh A. Covariation of viral recombination with single nucleotide variants during virus evolution revealed by CoVaMa. Nucleic Acids Res 2022; 50:e41. [PMID: 35018461 PMCID: PMC9023271 DOI: 10.1093/nar/gkab1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christian M Gallardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
108
|
Oishi W, Sato M, Kubota K, Ishiyama R, Takai-Todaka R, Haga K, Katayama K, Sano D. Experimental Adaptation of Murine Norovirus to Calcium Hydroxide. Front Microbiol 2022; 13:848439. [PMID: 35432235 PMCID: PMC9009222 DOI: 10.3389/fmicb.2022.848439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Slaked lime (calcium hydroxide) is a commonly used disinfectant for fecal sludge. Although viruses are inactivated by lime treatment, whether RNA viruses adapt to lime treatment has not yet been determined. Here, we show that murine norovirus developed higher tolerance during serial passages with lime treatment. We compared synonymous and non-synonymous nucleotide diversities of the three open reading frames of viral genome and revealed that virus populations were subjected to enhanced purifying selection over the course of serial passages with lime treatment. Virus adaptation to lime treatment was coincident with amino acid substitution of lysine to arginine at position 345 (K345R) on the major capsid protein VP1, which accounted for more than 90% of the population. The infectious clones with the K345R produced using a plasmid-based reverse genetics system exhibited greater tolerance in a lime solution, which indicated that the specific amino acid substitution was solely involved in the viral tolerance in lime treatment.
Collapse
Affiliation(s)
- Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Mikiko Sato
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
- Research Institute for Humanity and Nature, Kyoto, Japan
- *Correspondence: Daisuke Sano,
| |
Collapse
|
109
|
Evolutionary dynamics, evolutionary forces, and robustness: A nonequilibrium statistical mechanics perspective. Proc Natl Acad Sci U S A 2022; 119:e2112083119. [PMID: 35312370 PMCID: PMC9060472 DOI: 10.1073/pnas.2112083119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Evolution through natural selection is an overwhelmingly complex process, and it is not surprising that theoretical approaches are strongly simplifying it. For instance, population genetics considers mainly dynamics of gene allele frequencies. Here, we develop a complementary approach to evolutionary dynamics based on three elements—organism reproduction, variations, and selection—that are essential for any evolutionary theory. By considering such general dynamics as a stochastic thermodynamic process, we clarify the nature and action of the evolutionary forces. We show that some of the forces cannot be described solely in terms of fitness landscapes. We also find that one force contribution can make organism reproduction insensitive (robust) to variations. Any realistic evolutionary theory has to consider 1) the dynamics of organisms that reproduce and possess heritable traits, 2) the appearance of stochastic variations in these traits, and 3) the selection of those organisms that better survive and reproduce. These elements shape the “evolutionary forces” that characterize the evolutionary dynamics. Here, we introduce a general model of reproduction–variation–selection dynamics. By treating these dynamics as a nonequilibrium thermodynamic process, we make precise the notion of the forces that characterize evolution. One of these forces, in particular, can be associated with the robustness of reproduction to variations. Some of the detailed predictions of our model can be tested by quantitative laboratory experiments, similar to those performed in the past on evolving populations of proteins or viruses.
Collapse
|
110
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
111
|
Dupré J, Leonelli S. Process epistemology in the COVID-19 era: rethinking the research process to avoid dangerous forms of reification. EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE 2022; 12:20. [PMID: 35284029 PMCID: PMC8900089 DOI: 10.1007/s13194-022-00450-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/30/2022] [Indexed: 06/06/2023]
Abstract
Whether we live in a world of autonomous things, or a world of interconnected processes in constant flux, is an ancient philosophical debate. Modern biology provides decisive reasons for embracing the latter view. How does one understand the practices and outputs of science in such a dynamic, ever-changing world - and particularly in an emergency situation such as the COVID-19 pandemic, where scientific knowledge has been regarded as bedrock for decisive social interventions? We argue that key to answering this question is to consider the role of the activity of reification within the research process. Reification consists in the identification of more or less stable features of the flux, and treating these as constituting stable things. As we illustrate with reference to biological and biomedical research on COVID-19, reification is a necessary component of any process of inquiry and comes in at least two forms: (1) means reification (phenomena-to-object), when researchers create objects meant to capture features of the world, or phenomena, in order to be able to study them; and (2) target reification (object-to-phenomena), when researchers infer an understanding of phenomena from an investigation of the epistemic objects created to study them. We note that both objects and phenomena are dynamic processes and argue that have no reason to assume that changes in objects and phenomena track one another. We conclude that failure to acknowledge these forms of reification and their epistemic role in scientific inquiry can have dire consequences for how the resulting knowledge is interpreted and used.
Collapse
Affiliation(s)
- John Dupré
- Exeter Centre for the Study of the Life Sciences (Egenis), University of Exeter, Exeter, UK
| | - Sabina Leonelli
- Exeter Centre for the Study of the Life Sciences (Egenis), University of Exeter, Exeter, UK
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
112
|
Marchant WG, Gautam S, Dutta B, Srinivasan R. Whitefly-Mediated Transmission and Subsequent Acquisition of Highly Similar and Naturally Occurring Tomato Yellow Leaf Curl Virus Variants. PHYTOPATHOLOGY 2022; 112:720-728. [PMID: 34370554 DOI: 10.1094/phyto-06-21-0248-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids, resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants (variant #2 and variant #4) that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants' concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than that of variant #2 in tomato plants. Despite differences in variants' accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.
Collapse
Affiliation(s)
- Wendy G Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
113
|
Jia L, Liang B, Wu K, Wang R, Liu H, Di Liu, Chen Q. Circulation, genomic characteristics, and evolutionary dynamics of class I Newcastle disease virus in China. Virulence 2022; 13:414-427. [PMID: 35188866 PMCID: PMC8865265 DOI: 10.1080/21505594.2022.2037342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lijia Jia
- Cas Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega- Chinese Academy of Sciences, Wuhan, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bilin Liang
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ke Wu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Runkun Wang
- Cas Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega- Chinese Academy of Sciences, Wuhan, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Quanjiao Chen
- Cas Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega- Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
114
|
Gussler JW, Campo DS, Dimitrova Z, Skums P, Khudyakov Y. Primary case inference in viral outbreaks through analysis of intra-host variant population. BMC Bioinformatics 2022; 23:62. [PMID: 35135469 PMCID: PMC8822801 DOI: 10.1186/s12859-022-04585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Investigation of outbreaks to identify the primary case is crucial for the interruption and prevention of transmission of infectious diseases. These individuals may have a higher risk of participating in near future transmission events when compared to the other patients in the outbreak, so directing more transmission prevention resources towards these individuals is a priority. Although the genetic characterization of intra-host viral populations can aid the identification of transmission clusters, it is not trivial to determine the directionality of transmissions during outbreaks, owing to complexity of viral evolution. Here, we present a new computational framework, PYCIVO: primary case inference in viral outbreaks. This framework expands upon our earlier work in development of QUENTIN, which builds a probabilistic disease transmission tree based on simulation of evolution of intra-host hepatitis C virus (HCV) variants between cases involved in direct transmission during an outbreak. PYCIVO improves upon QUENTIN by also adding a custom heterogeneity index and identifying the scenario when the primary case may have not been sampled. Results These approaches were validated using a set of 105 sequence samples from 11 distinct HCV transmission clusters identified during outbreak investigations, in which the primary case was epidemiologically verified. Both models can detect the correct primary case in 9 out of 11 transmission clusters (81.8%). However, while QUENTIN issues erroneous predictions on the remaining 2 transmission clusters, PYCIVO issues a null output for these clusters, giving it an effective prediction accuracy of 100%. To further evaluate accuracy of the inference, we created 10 modified transmission clusters in which the primary case had been removed. In this scenario, PYCIVO was able to correctly identify that there was no primary case in 8/10 (80%) of these modified clusters. This model was validated with HCV; however, this approach may be applicable to other microbial pathogens. Conclusions PYCIVO improves upon QUENTIN by also implementing a custom heterogeneity index which empowers PYCIVO to make the important ‘No primary case’ prediction. One or more samples, possibly including the primary case, may have not been sampled, and this designation is meant to account for these scenarios.
Collapse
Affiliation(s)
- J Walker Gussler
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA.,Department of Computer Science, Georgia State University, 1 Park Place NE, Atlanta, GA, 30303, USA
| | - David S Campo
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA.
| | - Zoya Dimitrova
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, 1 Park Place NE, Atlanta, GA, 30303, USA
| | - Yury Khudyakov
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| |
Collapse
|
115
|
Fedeles BI, Li D, Singh V. Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs. Front Mol Biosci 2022; 8:823253. [PMID: 35145998 PMCID: PMC8822119 DOI: 10.3389/fmolb.2021.823253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
DNA (2'-deoxyribonucleic acid) and RNA (ribonucleic acid) play diverse functional roles in biology and disease. Despite being comprised primarily of only four cognate nucleobases, nucleic acids can adopt complex three-dimensional structures, and RNA in particular, can catalyze biochemical reactions to regulate a wide variety of biological processes. Such chemical versatility is due in part to the phenomenon of nucleobase tautomerism, whereby the bases can adopt multiple, yet distinct isomeric forms, known as tautomers. For nucleobases, tautomers refer to structural isomers that differ from one another by the position of protons. By altering the position of protons on nucleobases, many of which play critical roles for hydrogen bonding and base pairing interactions, tautomerism has profound effects on the biochemical processes involving nucleic acids. For example, the transient formation of minor tautomers during replication could generate spontaneous mutations. These mutations could arise from the stabilization of mismatches, in the active site of polymerases, in conformations involving minor tautomers that are indistinguishable from canonical base pairs. In this review, we discuss the evidence for tautomerism in DNA, and its consequences to the fidelity of DNA replication. Also reviewed are RNA systems, such as the riboswitches and self-cleaving ribozymes, in which tautomerism plays a functional role in ligand recognition and catalysis, respectively. We also discuss tautomeric nucleoside analogs that are efficacious as antiviral drug candidates such as molnupiravir for coronaviruses and KP1212 for HIV. The antiviral efficacy of these analogs is due, in part, to their ability to exist in multiple tautomeric forms and induce mutations in the replicating viral genomes. From a technical standpoint, minor tautomers of nucleobases are challenging to identify directly because they are rare and interconvert on a fast, millisecond to nanosecond, time scale. Nevertheless, many approaches including biochemical, structural, computational and spectroscopic methods have been developed to study tautomeric dynamics in RNA and DNA systems, and in antiviral nucleoside analogs. An overview of these methods and their applications is included here.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Chemistry and Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Deyu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Vipender Singh
- Department of Biochemistry and Biophysics, Novartis Institute of Biomedical Research, Cambridge, MA, United States
| |
Collapse
|
116
|
Luo X, Kang X, Schönhuth A. Strainline: full-length de novo viral haplotype reconstruction from noisy long reads. Genome Biol 2022; 23:29. [PMID: 35057847 PMCID: PMC8771625 DOI: 10.1186/s13059-021-02587-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Haplotype-resolved de novo assembly of highly diverse virus genomes is critical in prevention, control and treatment of viral diseases. Current methods either can handle only relatively accurate short read data, or collapse haplotype-specific variations into consensus sequence. Here, we present Strainline, a novel approach to assemble viral haplotypes from noisy long reads without a reference genome. Strainline is the first approach to provide strain-resolved, full-length de novo assemblies of viral quasispecies from noisy third-generation sequencing data. Benchmarking on simulated and real datasets of varying complexity and diversity confirm this novelty and demonstrate the superiority of Strainline.
Collapse
|
117
|
Diaz Arenas C, Ardaševa A, Miller J, Mikheyev AS, Yokobayashi Y. Ribozyme Mutagenic Evolution: Mechanisms of Survival. ORIGINS LIFE EVOL B 2022; 51:321-339. [PMID: 34994918 DOI: 10.1007/s11084-021-09617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
Primeval populations replicating at high error rates required a mechanism to overcome the accumulation of mutations and information deterioration. Known strategies to overcome mutation pressures include RNA processivity, epistasis, selection, and quasispecies. We investigated the mechanism by which small molecular ribozyme populations can survive under high error rates by propagating several lineages under different mutagen concentrations. We found that every population that evolved without mutagen went extinct, while those subjected to mutagenic evolution survived. To understand how they survived, we characterized the evolved genotypic diversity, the formation of genotype-genotype interaction networks, the fitness of the most common mutants for each enzymatic step, and changes in population size along the course of evolution. We found that the elevated mutation rate was necessary for the populations to survive in the novel environment, in which all the steps of the metabolism worked to promote the survival of even less catalytically efficient ligases. Besides, an increase in population size and the mutational coupling of genotypes in close-knit networks, which helped maintain or recover lost genotypes making their disappearance transient, prevented Muller's ratchet and extinction.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan. .,Yale University, New Haven, CT, USA.
| | - Aleksandra Ardaševa
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Jonathan Miller
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan.,Evolutionary Genomics Lab, Research School of Biology, Australian National University, Canberra, Australia
| | - Yohei Yokobayashi
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan
| |
Collapse
|
118
|
Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022; 23:21-39. [PMID: 34824452 PMCID: PMC8613731 DOI: 10.1038/s41580-021-00432-z] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to cause massive global upheaval. Coronaviruses are positive-strand RNA viruses with an unusually large genome of ~30 kb. They express an RNA-dependent RNA polymerase and a cohort of other replication enzymes and supporting factors to transcribe and replicate their genomes. The proteins performing these essential processes are prime antiviral drug targets, but drug discovery is hindered by our incomplete understanding of coronavirus RNA synthesis and processing. In infected cells, the RNA-dependent RNA polymerase must coordinate with other viral and host factors to produce both viral mRNAs and new genomes. Recent research aiming to decipher and contextualize the structures, functions and interplay of the subunits of the SARS-CoV-2 replication and transcription complex proteins has burgeoned. In this Review, we discuss recent advancements in our understanding of the molecular basis and complexity of the coronavirus RNA-synthesizing machinery. Specifically, we outline the mechanisms and regulation of RNA translation, replication and transcription. We also discuss the composition of the replication and transcription complexes and their suitability as targets for antiviral therapy.
Collapse
Affiliation(s)
- Brandon Malone
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| | - Nadya Urakova
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric J. Snijder
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elizabeth A. Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| |
Collapse
|
119
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
120
|
Gömer A, Brown RJP, Pfaender S, Deterding K, Reuter G, Orton R, Seitz S, Bock CT, Cavalleri JMV, Pietschmann T, Wedemeyer H, Steinmann E, Todt D. OUP accepted manuscript. Virus Evol 2022; 8:veac007. [PMID: 35242360 PMCID: PMC8887644 DOI: 10.1093/ve/veac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Even 30 years after the discovery of the hepatitis C virus (HCV) in humans there is still no vaccine available. Reasons for this include the high mutation rate of HCV, which allows the virus to escape immune recognition and the absence of an immunocompetent animal model for vaccine development. Phylogenetically distinct hepaciviruses (genus Hepacivirus, family Flaviviridae) have been isolated from diverse species, each with a narrow host range: the equine hepacivirus (EqHV) is the closest known relative of HCV. In this study, we used amplicon-based deep-sequencing to investigate the viral intra-host population composition of the genomic regions encoding the surface glycoproteins E1 and E2. Patterns of E1E2 substitutional evolution were compared in longitudinally sampled EqHV-positive sera of naturally and experimentally infected horses and HCV-positive patients. Intra-host virus diversity was higher in chronically than in acutely infected horses, a pattern which was similar in the HCV-infected patients. However, overall glycoprotein variability was higher in HCV compared to EqHV. Additionally, selection pressure in HCV populations was higher, especially within the N-terminal region of E2, corresponding to the hypervariable region 1 (HVR1) in HCV. An alignment of glycoprotein sequences from diverse hepaciviruses identified the HVR1 as a unique characteristic of HCV: hepaciviruses from non-human species lack this region. Together, these data indicate that EqHV infection of horses could represent a powerful surrogate animal model to gain insights into hepaciviral evolution and HCVs HVR1-mediated immune evasion strategy.
Collapse
Affiliation(s)
| | | | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Universitätsstr. 150, Bochum 44801, Germany
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House, Hannover 30625, Germany
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs 7624, Hungary
| | | | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany
| | - C- Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Jessika M V Cavalleri
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Thomas Pietschmann
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig Site, Hannover 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House, Hannover 30625, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Universitätsstr. 150, Bochum 44801, Germany
| | | |
Collapse
|
121
|
Berger M. Expansion of error thresholds for the Moran model. Theor Popul Biol 2021; 143:92-104. [PMID: 34973288 DOI: 10.1016/j.tpb.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
We study a finite population of individuals evolving through mutation and selection. We generalize the Eigen quasispecies model to a finite population with the Moran model. This model also presents an asymptotic phase transition, and a proper definition of the critical parameter is discussed. We retrieve the same expression for the error threshold appearing in the Eigen model along with a correction term due to the finiteness of the population. To achieve this, we estimate the average lifetime of master sequences and find it grows like an exponential in the size of the population. Our technique consists in bounding from above and below the number of master sequences in the Moran model by two simpler birth and death chains. The expectation of this lifetime is then computed with the help of explicit formulas which are in turn expanded with Laplace method.
Collapse
Affiliation(s)
- Maxime Berger
- Département de Mathématiques et Applications, École Normale Supérieure, CNRS, PSL University, 75005 Paris, France.
| |
Collapse
|
122
|
Delgado S, Perales C, García-Crespo C, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Vázquez-Sirvent L, López-Galíndez C, Morán F, Domingo E. A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps. Microbiol Spectr 2021; 9:e0145921. [PMID: 34756074 PMCID: PMC8579923 DOI: 10.1128/spectrum.01459-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
RNA viruses replicate as complex mutant spectra termed viral quasispecies. The frequency of each individual genome in a mutant spectrum depends on its rate of generation and its relative fitness in the replicating population ensemble. The advent of deep sequencing methodologies allows for the first-time quantification of haplotype abundances within mutant spectra. There is no information on the haplotype profile of the resident genomes and how the landscape evolves when a virus replicates in a controlled cell culture environment. Here, we report the construction of intramutant spectrum haplotype landscapes of three amplicons of the NS5A-NS5B coding region of hepatitis C virus (HCV). Two-dimensional (2D) neural networks were constructed for 44 related HCV populations derived from a common clonal ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells in the absence of external selective pressures. The haplotype profiles consisted of an extended dense basal platform, from which a lower number of protruding higher peaks emerged. As HCV increased its adaptation to the cells, the number of haplotype peaks within each mutant spectrum expanded, and their distribution shifted in the 2D network. The results show that extensive HCV replication in a monotonous cell culture environment does not limit HCV exploration of sequence space through haplotype peak movements. The landscapes reflect dynamic variation in the intramutant spectrum haplotype profile and may serve as a reference to interpret the modifications produced by external selective pressures or to compare with the landscapes of mutant spectra in complex in vivo environments. IMPORTANCE The study provides for the first time the haplotype profile and its variation in the course of virus adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks. The results suggest an inferred intramutant spectrum fitness landscape structure that offers potential benefits for virus resilience to mutational inputs.
Collapse
Affiliation(s)
- Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Federico Morán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
123
|
Wang Y, Xiao X, Chen S, Huang C, Zhou J, Dai E, Li Y, Liu L, Huang X, Gao Z, Wu C, Fang M, Gao C. The Impact of HBV Quasispecies Features on Immune Status in HBsAg+/HBsAb+ Patients With HBV Genotype C Using Next-Generation Sequencing. Front Immunol 2021; 12:775461. [PMID: 34899733 PMCID: PMC8656693 DOI: 10.3389/fimmu.2021.775461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the molecular mechanism of the coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (HBsAb) serological pattern via intensive characterization of HBV s gene in both chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC) patients. Method A total of 73 HBsAg+/HBsAb+ patients (CHB = 36, HCC = 37) and 96 HBsAg+/HBsAb− patients (CHB = 47, HCC = 49) were enrolled from 13 medical centers in China. The sequence features were elaborated based on the combination of next-generation sequencing (NGS) and multidimensional bioinformatics analysis. Results The 16 high-frequency missense mutations, changes of stop codon mutation, clustering, and random forest models based on quasispecies features demonstrated the significant discrepancy power between HBsAg+/HBsAb+ and HBsAg+/HBsAb− in CHB and HCC, respectively. The immunogenicity for cytotoxic T lymphocyte (CTL) epitope Se and antigenicity for the major hydrophilic region (MHR) were both reduced in HBsAg+/HBsAb+ patients (CTL Se: p < 0.0001; MHR: p = 0.0216). Different mutation patterns were observed between HBsAg+/HBsAb+ patients with CHB and with HCC. Especially, mutations in antigenic epitopes, such as I126S in CHB and I126T in HCC, could impact the conformational structure and alter the antigenicity/immunogenicity of HBsAg. Conclusion Based on NGS and bioinformatics analysis, this study indicates for the first time that point mutations and quasispecies diversities of HBV s gene could alter the MHR antigenicity and CTL Se immunogenicity and could contribute to the concurrent HBsAg+/HBsAb+ with different features in HCC and CHB. Our findings might renew the understanding of this special serological profile and benefit the clinical management in HBV-related diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shipeng Chen
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyuan Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanyong Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
124
|
Quasispecies Composition of Small Ruminant Lentiviruses Found in Blood Leukocytes and Milk Epithelial Cells. Viruses 2021; 13:v13122497. [PMID: 34960767 PMCID: PMC8707049 DOI: 10.3390/v13122497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) exist as populations of closely related genetic variants, known as quasispecies, within an individual host. The privileged way of SRLVs transmission in goats is through the ingestion of colostrum and milk of infected does. Thus, characterization of SRLV variants transmitted through the milk, including milk epithelial cells (MEC), may provide useful information about the transmission and evolution of SRLVs. Therefore, the aim of this study was to detect SRLVs in peripheral blood leukocytes (PBLs) and milk epithelial cells of goats naturally infected with SRLVs and perform single nucleotide variations analysis to characterize the extent of genetic heterogeneity of detected SRLVs through comparison of their gag gene sequences. Blood and milk samples from 24 seropositive goats were tested in this study. The double immunolabeling against p28 and cytokeratin demonstrated that milk epithelial cells originated from naturally infected goats were infected by SRLVs. Moreover, PCR confirmed the presence of the integrated SRLVs proviral genome indicating that MECs may have a role as a reservoir of SRLVs and can transmit the virus through milk. The blood and MEC derived sequences from 7 goats were successfully sequenced using NGS and revealed that these sequences were genetically similar. The MEC and blood-derived sequences contained from 3 to 30 (mean, 10.8) and from 1 to 10 (mean, 5.4) unique SNVs, respectively. In five out of seven goats, SNVs occurred more frequent in MEC derived sequences. Non-synonymous SNVs were found in both, PBLs and MEC-derived sequences of analyzed goats and their total number differed between animals. The results of this study add to our understanding of SRLVs genomic variability. Our data provides evidence for the existence of SRLVs quasispecies and to our knowledge, this is the first study that showed quasispecies composition and minority variants of SRLVs present milk epithelial cells.
Collapse
|
125
|
Caridi F, Cañas-Arranz R, Vázquez-Calvo Á, de León P, Calderón KI, Domingo E, Sobrino F, Martín-Acebes MA. Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Sci Rep 2021; 11:23494. [PMID: 34873184 PMCID: PMC8648728 DOI: 10.1038/s41598-021-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus that exhibits an extremely acid sensitive capsid. This acid lability is directly related to its mechanism of uncoating triggered by acidification inside cellular endosomes. Using a collection of FMDV mutants we have systematically analyzed the relationship between acid stability and the requirement for acidic endosomes using ammonium chloride (NH4Cl), an inhibitor of endosome acidification. A FMDV mutant carrying two substitutions with opposite effects on acid-stability (VP3 A116V that reduces acid stability, and VP1 N17D that increases acid stability) displayed a rapid shift towards acid lability that resulted in increased resistance to NH4Cl as well as to concanamicyn A, a different lysosomotropic agent. This resistance could be explained by a higher ability of the mutant populations to produce NH4Cl-resistant variants, as supported by their tendency to accumulate mutations related to NH4Cl-resistance that was higher than that of the WT populations. Competition experiments also indicated that the combination of both amino acid substitutions promoted an increase of viral fitness that likely contributed to NH4Cl resistance. This study provides novel evidences supporting that the combination of mutations in a viral capsid can result in compensatory effects that lead to fitness gain, and facilitate space to an inhibitor of acid-dependent uncoating. Thus, although drug-resistant variants usually exhibit a reduction in viral fitness, our results indicate that compensatory mutations that restore this reduction in fitness can promote emergence of resistance mutants.
Collapse
Affiliation(s)
- Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040, Madrid, Spain
| |
Collapse
|
126
|
Gao R, Zu W, Liu Y, Li J, Li Z, Wen Y, Wang H, Yuan J, Cheng L, Zhang S, Zhang Y, Zhang S, Liu W, Lan X, Liu L, Li F, Zhang Z. Quasispecies of SARS-CoV-2 revealed by single nucleotide polymorphisms (SNPs) analysis. Virulence 2021; 12:1209-1226. [PMID: 34030593 PMCID: PMC8158041 DOI: 10.1080/21505594.2021.1911477] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
New SARS-CoV-2 mutants have been continuously indentified with enhanced transmission ever since its outbreak in early 2020. As an RNA virus, SARS-CoV-2 has a high mutation rate due to the low fidelity of RNA polymerase. To study the single nucleotide polymorphisms (SNPs) dynamics of SARS-CoV-2, 158 SNPs with high confidence were identified by deep meta-transcriptomic sequencing, and the most common SNP type was C > T. Analyses of intra-host population diversity revealed that intra-host quasispecies' composition varies with time during the early onset of symptoms, which implicates viral evolution during infection. Network analysis of co-occurring SNPs revealed the most abundant non-synonymous SNP 22,638 in the S glycoprotein RBD region and 28,144 in the ORF8 region. Furthermore, SARS-CoV-2 variations differ in an individual's respiratory tissue (nose, throat, BALF, or sputum), suggesting independent compartmentalization of SARS-CoV-2 populations in patients. The positive selection analysis of the SARS-CoV-2 genome uncovered the positive selected amino acid G251V on ORF3a. Alternative allele frequency spectrum (AAFS) of all variants revealed that ORF8 could bear alternate alleles with high frequency. Overall, the results show the quasispecies' profile of SARS-CoV-2 in the respiratory tract in the first two months after the outbreak.
Collapse
Affiliation(s)
- Rongsui Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wenhong Zu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Zeyao Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanling Wen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jing Yuan
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Disease, Shenzhen, Guangdong Province, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengyuan Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yu Zhang
- National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), Shenzhen, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weilong Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xun Lan
- Department of Basic Medical Sciences at School of Medicine, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Lei Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Feng Li
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China
| |
Collapse
|
127
|
Genetic variability of the HPV16 early genes and LCR. Present and future perspectives. Expert Rev Mol Med 2021; 23:e19. [PMID: 34847982 DOI: 10.1017/erm.2021.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human papillomavirus 16 (HPV16) infection is the aetiologic factor for the development of cervical dysplasia and is regarded as highly carcinogen, because it is implicated in more than 50% of cervical cancer cases, worldwide. The tumourigenic potential of HPV16 has triggered the extensive sequence analysis of viral genome in order to identify nucleotide variations and amino acid substitutions that influence viral oncogenicity and subsequently the initiation and progression of cervical cancer. Nowadays, specific mutations of HPV16 DNA have been associated with an increased risk of high-grade squamous intraepithelial lesions and invasive cervical cancer (ICC) development, including E6: Q14H, H78Y, L83V, Ε7: N29S, S63F, E2: H35Q, P219S, T310K, E5: I65V, whereas highly conserved regions of viral DNA have been extensively characterised. In addition, numerous novel HPV16 mutations are observed among the studied populations from various geographic regions, hence advocating that different HPV16 strains seem to emerge with different tumourigenic capacities. The present review focuses on the variability of the early genes and the long control region, emphasising on the association of specific mutations with the development of severe dysplasia. Finally, it evaluates whether specific regions of HPV16 DNA are able to serve as valuable biomarkers for cervical cancer risk.
Collapse
|
128
|
Lagström S, Løvestad AH, Umu SU, Ambur OH, Nygård M, Rounge TB, Christiansen IK. HPV16 and HPV18 type-specific APOBEC3 and integration profiles in different diagnostic categories of cervical samples. Tumour Virus Res 2021; 12:200221. [PMID: 34175494 PMCID: PMC8287217 DOI: 10.1016/j.tvr.2021.200221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Human papillomavirus (HPV) 16 and 18 are the most predominant types in cervical cancer. Only a small fraction of HPV infections progress to cancer, indicating that additional factors and genomic events contribute to the carcinogenesis, such as minor nucleotide variation caused by APOBEC3 and chromosomal integration. We analysed intra-host minor nucleotide variants (MNVs) and integration in HPV16 and HPV18 positive cervical samples with different morphology. Samples were sequenced using an HPV whole genome sequencing protocol TaME-seq. A total of 80 HPV16 and 51 HPV18 positive samples passed the sequencing depth criteria of 300× reads, showing the following distribution: non-progressive disease (HPV16 n = 21, HPV18 n = 12); cervical intraepithelial neoplasia (CIN) grade 2 (HPV16 n = 27, HPV18 n = 9); CIN3/adenocarcinoma in situ (AIS) (HPV16 n = 27, HPV18 n = 30); cervical cancer (HPV16 n = 5). Similar numbers of MNVs in HPV16 and HPV18 samples were observed for most viral genes, with the exception of HPV18 E4 with higher numbers across clinical categories. APOBEC3 signatures were observed in HPV16 lesions, while similar mutation patterns were not detected for HPV18. The proportion of samples with integration was 13% for HPV16 and 59% for HPV18 positive samples, with a noticeable portion located within or close to cancer-related genes.
Collapse
Affiliation(s)
- Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Sinan Uğur Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Ole Herman Ambur
- Faculty of Health Sciences, OsloMet, Oslo Metropolitan University, Oslo, Norway
| | - Mari Nygård
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Informatics, University of Oslo, Oslo, Norway.
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway.
| |
Collapse
|
129
|
Solé R, Sardanyés J, Elena SF. Phase transitions in virology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:115901. [PMID: 34584031 DOI: 10.1088/1361-6633/ac2ab0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Viruses have established relationships with almost every other living organism on Earth and at all levels of biological organization: from other viruses up to entire ecosystems. In most cases, they peacefully coexist with their hosts, but in most relevant cases, they parasitize them and induce diseases and pandemics, such as the AIDS and the most recent avian influenza and COVID-19 pandemic events, causing a huge impact on health, society, and economy. Viruses play an essential role in shaping the eco-evolutionary dynamics of their hosts, and have been also involved in some of the major evolutionary innovations either by working as vectors of genetic information or by being themselves coopted by the host into their genomes. Viruses can be studied at different levels of biological organization, from the molecular mechanisms of genome replication, gene expression and encapsidation, to global pandemics. All these levels are different and yet connected through the presence of threshold conditions allowing for the formation of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as occurs with temperature separating phases in a liquid, define sharp qualitative types of behaviour. Thesephase transitionsare very well known in physics. They have been studied by means of simple, but powerful models able to capture their essential properties, allowing us to better understand them. Can the physics of phase transitions be an inspiration for our understanding of viral dynamics at different scales? Here we review well-known mathematical models of transition phenomena in virology. We suggest that the advantages of abstract, simplified pictures used in physics are also the key to properly understanding the origins and evolution of complexity in viruses. By means of several examples, we explore this multilevel landscape and how minimal models provide deep insights into a diverse array of problems. The relevance of these transitions in connecting dynamical patterns across scales and their evolutionary and clinical implications are outlined.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra-PRBB, Dr Aiguader 80, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit, Institute for Integrative Systems Biology (I2SysBio)-CRM, Spain
| | - Santiago F Elena
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
- Evolutionary Systems Virology Lab (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, 46980 València, Spain
| |
Collapse
|
130
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
131
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
132
|
Lin P, Jin T, Yu X, Liang L, Liu G, Jovic D, Sun Z, Yu Z, Pan J, Fan G. Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Front Genet 2021; 12:754445. [PMID: 34804122 PMCID: PMC8595946 DOI: 10.3389/fgene.2021.754445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | | | - Guang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Yu
- BGI-Shenzhen, Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
133
|
Pattnaik B, Suresh KP, Sridevi R, Yadav MP, Shivamallu C, Kollur SP, Dharmashekar C, Patil SS. QUASISPECIES FEATURE IN SARS-CoV-2. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2021; 9:591-597. [DOI: 10.18006/2021.9(5).591.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Since the identification of the SARS-CoV-2, genus Beta- Coronavirus, in January 2020, the virus quickly spread in less than 3 months to all continents with a susceptible human population of about a 7.9billion, and still in active circulation. In the process, it has accumulated mutations leading to genetic diversity. Regular emergence of variants of concern/significance in different ecology shows genetic heterogeneity in the base population of SARS-CoV-2 that is continuously expanding with the passage of the virus in the vast susceptible human population. Natural selection of mutant occurs frequently in a positive sense (+) single-stranded (ss) RNA virus upon replication in the host. The Pressure of sub-optimal levels of virus-neutralizing antibodies and also innate immunity influence the process of genetic/ antigenic selection. The fittest of the mutants, that could be more than one, propagate and emerge as variants. The existence of different lineages, clades, and strains, as well as genetic heterogeneity of plaque purified virus population, justifies SARS-CoV-2 as ‘Quasispecies’ that refers to swarms of mutant sequences generated during replication of the viral genome, and all mutant sequences may not lead to virion. Viruses having a quasispecies nature may end up with progressive antigenic changes leading to antigenic plurality that is driven by ecology, and this phenomenon challenges vaccination-based control programs.
Collapse
|
134
|
Soria ME, Cortón M, Martínez-González B, Lobo-Vega R, Vázquez-Sirvent L, López-Rodríguez R, Almoguera B, Mahillo I, Mínguez P, Herrero A, Taracido JC, Macías-Valcayo A, Esteban J, Fernandez-Roblas R, Gadea I, Ruíz-Hornillos J, Ayuso C, Perales C. High SARS-CoV-2 viral load is associated with a worse clinical outcome of COVID-19 disease. Access Microbiol 2021; 3:000259. [PMID: 34712904 PMCID: PMC8549390 DOI: 10.1099/acmi.0.000259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
COVID-19 severity and progression are determined by several host and virological factors that may influence the final outcome of SARS-CoV-2-infected patients. The objective of this work was to determine a possible association between viral load, obtained from nasopharyngeal swabs, and the severity of the infection in a cohort of 448 SARS-CoV-2-infected patients from a hospital in Madrid during the first outbreak of the pandemic in Spain. To perform this, we clinically classified patients as mild, moderate and severe COVID-19 according to a number of clinical parameters such as hospitalization requirement, need of oxygen therapy, admission to intensive care units and/or death. Also, Ct values were determined using SARS-CoV-2-specific oligonucleotides directed to ORF1ab. Here we report a statistically significant association between viral load and disease severity, a high viral load being associated with worse clinical prognosis, independently of several previously identified risk factors such as age, sex, hypertension, cardiovascular disease, diabetes, obesity and lung disease (asthma and chronic obstructive pulmonary disease). The data presented here reinforce viral load as a potential biomarker for predicting disease severity in SARS-CoV-2-infected patients. It is also an important parameter in viral evolution since it relates to the numbers and types of variant genomes present in a viral population, a potential determinant of disease progression.
Collapse
Affiliation(s)
- María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Berta Almoguera
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Antonio Herrero
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan Carlos Taracido
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Alicia Macías-Valcayo
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Ricardo Fernandez-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
135
|
Age-Specific Etiology of Severe Acute Respiratory Infections and Influenza Vaccine Effectivity in Prevention of Hospitalization in Russia, 2018-2019 Season. J Epidemiol Glob Health 2021; 11:413-425. [PMID: 34734387 PMCID: PMC8552611 DOI: 10.1007/s44197-021-00009-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/15/2021] [Indexed: 10/26/2022] Open
Abstract
The expansion and standardization of clinical trials, as well as the use of sensitive and specific molecular diagnostics methods, provide new information on the age-specific roles of influenza and other respiratory viruses in development of severe acute respiratory infections (SARI). Here, we present the results of the multicenter hospital-based study aimed to detect age-specific impact of influenza and other respiratory viruses (ORV). The 2018-2019 influenza season in Russia was characterized by co-circulation of influenza A(H1N1)pdm09 and A(H3N2) virus subtypes which were detected among hospitalized patients with SARI in 19.3% and 16.4%, respectively. RSV dominated among ORV (15.1% of total cases and 26.8% in infants aged ≤ 2 years). The most significant SARI agents in intensive care units were RSV and influenza A(H1N1)pdm09 virus, (37.3% and 25.4%, respectively, of PCR-positive cases). Hyperthermia was the most frequently registered symptom for influenza cases. In contrast, hypoxia, decreased blood O2 concentration, and dyspnea were registered more often in RSV, rhinovirus, and metapneumovirus infection in young children. Influenza vaccine effectiveness (IVE) against hospitalization of patients with PCR-confirmed influenza was evaluated using test-negative case-control design. IVE for children and adults was estimated to be 57.0% and 62.0%, respectively. Subtype specific IVE was higher against influenza A(H1N1)pdm09, compared to influenza A(H3N2) (60.3% and 45.8%, respectively). This correlates with delayed antigenic drift of the influenza A(H1N1)pdm09 virus and genetic heterogeneity of the influenza A(H3N2) population. These studies demonstrate the need to improve seasonal influenza prevention and control in all countries as states by the WHO Global Influenza Strategy for 2019-2030 initiative.
Collapse
|
136
|
Llorens-Revull M, Gregori J, Dopazo C, Rodriguez-Frías F, Garcia-Cehic D, Soria ME, Chen Q, Rando A, Perales C, Esteban JI, Quer J, Bilbao I. Study of Quasispecies Complexity and Liver Damage Progression after Liver Transplantation in Hepatitis C Virus Infected Patients. Genes (Basel) 2021; 12:genes12111731. [PMID: 34828337 PMCID: PMC8625210 DOI: 10.3390/genes12111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cirrhosis derived from chronic hepatitis C virus (HCV) infection is still a common indication for liver transplantation (LT). Reinfection of the engrafted liver is universal in patients with detectable viral RNA at the time of transplant and causes fast progression of cirrhosis (within 5 years) in around one-third of these patients. To prevent damage to the liver graft, effective direct-acting antiviral (DAA) therapy is required as soon as possible. However, because of post-LT clinical instability, it is difficult to determine the optimal time to start DAAs with a low risk of complications. Evaluate changes in quasispecies complexity following LT and seek a predictive index of fast liver damage progression to determine the timing of DAA initiation. HCV genomes isolated from pre-LT and 15-day post-LT serum samples of ten patients, who underwent orthotopic LT, were quantified and sequenced using a next-generation sequencing platform. Sequence alignments, phylogenetic trees, quasispecies complexity measures, biostatistics analyses, adjusted R2 values, and analysis of variance (ANOVA) were carried out. Three different patterns of reinfection were observed (viral bottlenecking, conserved pre-LT population, and mixed populations), suggesting that bottlenecking or homogenization of the viral population is not a generalized effect after liver graft reinfection. None of the quasispecies complexity measures predicted the future degree of liver damage. Higher and more uniform viral load (VL) values were observed in all pre-LT samples, but values were more dispersed in post-LT samples. However, VL increased significantly from the pre-LT to 15-day post-LT samples in patients with advanced fibrosis at 1-year post-LT, suggesting that a VL increase on day 15 may be a predictor of fast liver fibrosis progression. HCV kinetics after LT differ between patients and are not fibrosis-dependent. Higher VL at day 15 post-LT versus pre-LT samples may predict fast liver fibrosis progression.
Collapse
Affiliation(s)
- Meritxell Llorens-Revull
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Biochemistry, Molecular Biology, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Roche Diagnostics SL, Avinguda de la Generalitat, 171-173, 08174 Sant Cugat del Vallès, Spain
| | - Cristina Dopazo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Hepatobiliopancreatic Surgery and Transplant Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Francisco Rodriguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Biochemistry, Molecular Biology, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
- Biochemistry and Microbiology Departments, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
| | - Maria Eugenia Soria
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
| | - Qian Chen
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
| | - Ariadna Rando
- Biochemistry and Microbiology Departments, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Celia Perales
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Medicine, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.L.-R.); (J.G.); (D.G.-C.); (M.E.S.); (Q.C.); (C.P.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Biochemistry, Molecular Biology, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
- Correspondence: or
| | - Itxarone Bilbao
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.D.); (F.R.-F.); (I.B.)
- Hepatobiliopancreatic Surgery and Transplant Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Surgery, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| |
Collapse
|
137
|
Hepatitis E Virus Quasispecies in Cerebrospinal Fluid with Neurological Manifestations. Vaccines (Basel) 2021; 9:vaccines9101205. [PMID: 34696313 PMCID: PMC8537826 DOI: 10.3390/vaccines9101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) infection can lead to a variety of neurological disorders. While HEV RNA is known to be present in the central nervous system, HEV quasispecies in serum and cerebrospinal fluid (CSF) have rarely been explored. We studied the virus’ quasispecies in the blood and the CSF of five patients at the onset of their neurological symptoms. The samples of three patients suffering from meningitis, neuralgic amyotrophy and acute inflammatory polyradiculoneuropathy were taken at the acute phase of the HEV infection. The samples from the other two patients were taken during the chronic phase (5 years after HEV diagnosis) when they presented with clinical signs of encephalitis. We sequenced at least 20 randomly polyproline regions of the selected virus clones. Phylogenetic analysis of the virus variants in the blood and the CSF revealed no virus compartmentalization for the three acute-phase patients but there was clear evidence of HEV quasispecies compartmentalization in the CSF of the two patients during chronic infection. In conclusion, prolonged infection in the immunocompromised condition can lead to independent virus replication in the liver and the tissues, producing viruses in CSF.
Collapse
|
138
|
Ortega-Del Campo S, Grigoras I, Timchenko T, Gronenborn B, Grande-Pérez A. Twenty years of evolution and diversification of digitaria streak virus in Digitaria setigera. Virus Evol 2021; 7:veab083. [PMID: 34659796 PMCID: PMC8516820 DOI: 10.1093/ve/veab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Within the family Geminiviridae, the emergence of new species results from their high mutation and recombination rates. In this study, we report the variability and evolution of digitaria streak virus (DSV), a mastrevirus isolated in 1986 from the grass Digitaria setigera in an island of the Vanuatu archipelago. Viral DNA of DSV samples was amplified from D. setigera specimens, derived from the naturally infected original plant, which were propagated in different laboratories in France and Italy for more than 20 years. From the consensus sequences, the nucleotide substitution rate was estimated for the period between a sample and the original sequence published in 1987, as well as for the period between samples. In addition, the intra-host genetic complexity and diversity of 8 DSV populations with a total of 165 sequenced haplotypes was characterized. The evolutionary rate of DSV was estimated to be between 1.13 × 10−4 and 9.87 × 10−4 substitutions/site/year, within the ranges observed in other single-stranded DNA viruses and RNA viruses. Bioinformatic analyses revealed high variability and heterogeneity in DSV populations, which confirmed that mutant spectra are continuously generated and are organized as quasispecies. The analysis of polymorphisms revealed nucleotide substitution biases in viral genomes towards deamination and oxidation of single-stranded DNA. The differences in variability in each of the genomic regions reflected a dynamic and modular evolution in the mutant spectra that was not reflected in the consensus sequences. Strikingly, the most variable region of the DSV genome, encoding the movement protein, showed rapid fixation of the mutations in the consensus sequence and a concomitant dN/dS ratio of 6.130, which suggests strong positive selection in this region. Phylogenetic analyses revealed a possible divergence in three genetic lineages from the original Vanuatu DSV isolate.
Collapse
Affiliation(s)
| | - Ioana Grigoras
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Bruno Gronenborn
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga 29071, Spain
| |
Collapse
|
139
|
Malandris K, Kalopitas G, Theocharidou E, Germanidis G. The Role of RASs /RVs in the Current Management of HCV. Viruses 2021; 13:2096. [PMID: 34696525 PMCID: PMC8539246 DOI: 10.3390/v13102096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The approval of combination therapies with direct-acting antiviral (DAA) regimens has led to significant progress in the field of hepatitis C virus (HCV) treatment. Although most patients treated with these agents achieve a virological cure, resistance to DAAs is a major issue. The rapid emergence of resistance-associated substitutions (RASs), in particular in the context of incomplete drug pressure, has an impact on sustained virological response (SVR) rates. Several RASs in NS3, NS5A and NS5B have been linked with reduced susceptibility to DAAs. RAS vary based on HCV characteristics and the different drug classes. DAA-resistant HCV variant haplotypes (RVs) are dominant in cases of virological failure. Viruses with resistance to NS3-4A protease inhibitors are only detected in the peripheral blood in a time frame ranging from weeks to months following completion of treatment, whereas NS5A inhibitor-resistant viruses may persist for years. Novel agents have been developed that demonstrate promising results in DAA-experienced patients. The recent approval of broad-spectrum drug combinations with a high genetic barrier to resistance and antiviral potency may overcome the problem of resistance.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Theocharidou
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
140
|
Identification and Characterization of Swine Influenza Virus H1N1 Variants Generated in Vaccinated and Nonvaccinated, Challenged Pigs. Viruses 2021; 13:v13102087. [PMID: 34696517 PMCID: PMC8539973 DOI: 10.3390/v13102087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Influenza viruses represent a continuous threat to both animal and human health. The 2009 H1N1 A influenza pandemic highlighted the importance of a swine host in the adaptation of influenza viruses to humans. Nowadays, one of the most extended strategies used to control swine influenza viruses (SIVs) is the trivalent vaccine application, whose formulation contains the most frequently circulating SIV subtypes H1N1, H1N2, and H3N2. These vaccines do not provide full protection against the virus, allowing its replication, evolution, and adaptation. To better understand the main mechanisms that shape viral evolution, here, the SIV intra-host diversity was analyzed in samples collected from both vaccinated and nonvaccinated animals challenged with the H1N1 influenza A virus. Twenty-eight whole SIV genomes were obtained by next-generation sequencing, and differences in nucleotide variants between groups were established. Substitutions were allocated along all influenza genetic segments, while the most relevant nonsynonymous substitutions were allocated in the NS1 protein on samples collected from vaccinated animals, suggesting that SIV is continuously evolving despite vaccine application. Moreover, new viral variants were found in both vaccinated and nonvaccinated pigs, showing relevant substitutions in the HA, NA, and NP proteins, which may increase viral fitness under field conditions.
Collapse
|
141
|
Liu F, Wang N, Lin J, Wang Q, Huang Y, Zhang Y, Shan H. Rescuing eGFP-Tagged Canine Distemper Virus for 40 Serial Passages Separately in Ribavirin- and Non-Treated Cells: Comparative Analysis of Viral Mutation Profiles. Front Cell Infect Microbiol 2021; 11:746926. [PMID: 34604118 PMCID: PMC8481889 DOI: 10.3389/fcimb.2021.746926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
Due to lacking a proofreading mechanism in their RNA-dependent RNA polymerases (RdRp), RNA viruses generally possess high mutation frequencies, making them evolve rapidly to form viral quasispecies during serial passages in cells, especially treated with mutagens, like ribavirin. Canine distemper virus (CDV) belongs to the genus Morbillivirus. Its L protein functions as an RdRp during viral replication. In this study, a recombinant enhanced green fluorescence protein-tagged CDV (rCDV-eGFP) was rescued from its cDNA clone, followed by viral identification and characterization at passage-7 (P7). This recombinant was independently subjected to extra 40 serial passages (P8 to 47) in ribavirin- and non-treated cells. Two viral progenies, undergoing passages in ribavirin- and non-treated VDS cells, were named rCDV-eGFP-R and -N, respectively. Both progenies were simultaneously subjected to next-generation sequencing (NGS) at P47 for comparing their quasispecies diversities with each other. The rCDV-eGFP-R and -N showed 62 and 23 single-nucleotide mutations (SNMs) in individual antigenomes, respectively, suggesting that the ribavirin conferred a mutagenic effect on the rCDV-eGFP-R. The spectrum of 62 SNMs contained 26 missense and 36 silent mutations, and that of 23 SNMs was composed of 17 missense and 6 silent mutations. Neither the rCDV-eGFP-R nor -N exhibited nonsense mutation in individual antigenomes. We speculate that the rCDV-eGFP-R may contain at least one P47 sub-progeny characterized by high-fidelity replication in cells. If such a sub-progeny can be purified from the mutant swarm, its L protein would elucidate a molecular mechanism of CDV high-fidelity replication.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
142
|
N-terminal domain mutations of the spike protein are structurally implicated in epitope recognition in emerging SARS-CoV-2 strains. Comput Struct Biotechnol J 2021; 19:5556-5567. [PMID: 34630935 PMCID: PMC8489513 DOI: 10.1016/j.csbj.2021.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
During the past two years, the world has been ravaged by a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acquired mutations in the SARS-CoV-2 genome affecting virus infectivity and/or immunogenicity have led to a number of novel strains with higher transmissibility compared to the original Wuhan strain. Mutations in the receptor binding domain (RBD) of the SARS-CoV-2 spike protein have been extensively studied in this context. However, mutations and deletions within the N-terminal domain (NTD) located adjacent to the RBD are less studied. Many of these are found within certain β sheet-linking loops, which are surprisingly long in SARS-CoV-2 in comparison to SARS-CoV and other related β coronaviruses. Here, we perform a structural and epidemiological study of novel strains carrying mutations and deletions within these loops. We identify short and long-distance interactions that stabilize the NTD loops and form a critical epitope that is essential for the recognition by a wide variety of neutralizing antibodies from convalescent plasma. Among the different mutations/deletions found in these loops, Ala 67 and Asp 80 mutations as well as His 69/Val 70 and Tyr 144 deletions have been identified in different fast-spreading strains. Similarly, deletions in amino acids 241-243 and 246-252 have been found to affect the network of NTD loops in strains with high transmissibility. Our structural findings provide insight regarding the role of these mutations/deletions in altering the epitope structure and thus affecting the immunoreactivity of the NTD region of spike protein.
Collapse
|
143
|
Ridruejo E, Pereson MJ, Flichman DM, Di Lello FA. Hepatitis C virus treatment failure: Clinical utility for testing resistance-associated substitutions. World J Hepatol 2021; 13:1069-1078. [PMID: 34630875 PMCID: PMC8473504 DOI: 10.4254/wjh.v13.i9.1069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/12/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus has a high mutation capacity that leads to the emergence of resistance-associated substitutions (RAS). However, the consequence of resistance selection during new direct-acting antiviral drug (DAA) treatment is not necessarily the therapeutic failure. In fact, DAA treatment has shown a high rate (> 95%) of sustained virological response even when high baseline RAS prevalence has been reported. In the context of RAS emergence and high rates of sustained viral response, the clinical relevance of variants harboring RAS is still controversial. Therefore, in order to summarize the data available in international guidelines, we have reviewed the clinical utility of testing RAS in the era of new pangenotypic DAA drugs.
Collapse
Affiliation(s)
- Ezequiel Ridruejo
- Hepatology Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno “CEMIC”, Ciudad Autónoma de Buenos Aires C1425AS, Unspecified, Argentina
| | - Matías Javier Pereson
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Diego M Flichman
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Federico Alejandro Di Lello
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
144
|
Wong CH, Ngan CY, Goldfeder RL, Idol J, Kuhlberg C, Maurya R, Kelly K, Omerza G, Renzette N, De Abreu F, Li L, Browne FA, Liu ET, Wei CL. Reduced subgenomic RNA expression is a molecular indicator of asymptomatic SARS-CoV-2 infection. COMMUNICATIONS MEDICINE 2021; 1:33. [PMID: 35602196 PMCID: PMC9053197 DOI: 10.1038/s43856-021-00034-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023] Open
Abstract
Background It is estimated that up to 80% of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are asymptomatic and asymptomatic patients can still effectively transmit the virus and cause disease. While much of the effort has been placed on decoding single nucleotide variation in SARS-CoV-2 genomes, considerably less is known about their transcript variation and any correlation with clinical severity in human hosts, as defined here by the presence or absence of symptoms. Methods To assess viral genomic signatures of disease severity, we conducted a systematic characterization of SARS-CoV-2 transcripts and genetic variants in 81 clinical specimens collected from symptomatic and asymptomatic individuals using multi-scale transcriptomic analyses including amplicon-seq, short-read metatranscriptome and long-read Iso-seq. Results Here we show a highly coordinated and consistent pattern of sgRNA expression from individuals with robust SARS-CoV-2 symptomatic infection and their expression is significantly repressed in the asymptomatic infections. We also observe widespread inter- and intra-patient variants in viral RNAs, known as quasispecies frequently found in many RNA viruses. We identify unique sets of deletions preferentially found primarily in symptomatic individuals, with many likely to confer changes in SARS-CoV-2 virulence and host responses. Moreover, these frequently occurring structural variants in SARS-CoV-2 genomes serve as a mechanism to further induce SARS-CoV-2 proteome complexity. Conclusions Our results indicate that differential sgRNA expression and structural mutational burden are highly correlated with the clinical severity of SARS-CoV-2 infection. Longitudinally monitoring sgRNA expression and structural diversity could further guide treatment responses, testing strategies, and vaccine development.
Collapse
Affiliation(s)
- Chee Hong Wong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | | | - Jennifer Idol
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Chris Kuhlberg
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Rahul Maurya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin Kelly
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Gregory Omerza
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Nicholas Renzette
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Francine De Abreu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Lei Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | | | - Edison T. Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| |
Collapse
|
145
|
Kenubih A. Foot and Mouth Disease Vaccine Development and Challenges in Inducing Long-Lasting Immunity: Trends and Current Perspectives. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:205-215. [PMID: 34513635 PMCID: PMC8420785 DOI: 10.2147/vmrr.s319761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Foot and mouth disease (FMD) is an extremely contagious viral disease of livestock caused by foot and mouse disease virus genus: Aphthovirus, which causes a serious economic impact on both individual farmers and the national economy. Many attempts to advance a vaccine for FMD have failed to induce sterile immunity. The classical methods of vaccine production were due to selective accumulation of mutations around antigenic and binding sites. Reversion of the agent by positive selection and quasi-species swarm, use of this method is inapplicable for use in non-endemic areas. Chemical attenuation using binary ethyleneimine (BEI) protected the capsid integrity and produced a pronounced immunity against the challenge strain. Viral antigens which have been chemically synthesized or expressed in viruses, plasmid, or plants were tried in the vaccination of animals. DNA vaccines expressing either structural or nonstructural protein antigens have been tried to immunize animals. Using interleukins as a genetic adjuvant for DNA vaccines have a promising effect. While the challenges of inducing sterile immunity lies on non-structural (NS) proteins of FMDV which are responsible for apoptosis of dendritic cells and have negative effects on lympho-proliferative responses which lead to transient immunosuppression. Furthermore, destruction of host protein trafficking by nonstructural proteins suppressed CD8+ T-cell proliferation. In this review, it tried to address multiple approaches for vaccine development trials and bottle necks of producing sterile immunity.
Collapse
Affiliation(s)
- Ambaye Kenubih
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Para-Clinical Studies, Gondar, Ethiopia
| |
Collapse
|
146
|
Dultz G, Srikakulam SK, Konetschnik M, Shimakami T, Doncheva NT, Dietz J, Sarrazin C, Biondi RM, Zeuzem S, Tampé R, Kalinina OV, Welsch C. Epistatic interactions promote persistence of NS3-Q80K in HCV infection by compensating for protein folding instability. J Biol Chem 2021; 297:101031. [PMID: 34339738 PMCID: PMC8405986 DOI: 10.1016/j.jbc.2021.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022] Open
Abstract
The Q80K polymorphism in the NS3-4A protease of the hepatitis C virus is associated with treatment failure of direct-acting antiviral agents. This polymorphism is highly prevalent in genotype 1a infections and stably transmitted between hosts. Here, we investigated the underlying molecular mechanisms of evolutionarily conserved coevolving amino acids in NS3-Q80K and revealed potential implications of epistatic interactions in immune escape and variants persistence. Using purified protein, we characterized the impact of epistatic amino acid substitutions on the physicochemical properties and peptide cleavage kinetics of the NS3-Q80K protease. We found that Q80K destabilized the protease protein fold (p < 0.0001). Although NS3-Q80K showed reduced peptide substrate turnover (p < 0.0002), replicative fitness in an H77S.3 cell culture model of infection was not significantly inferior to the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K stabilized the protein fold (p < 0.0001) and leveraged the WT protease stability. However, changes in protease stability inversely correlated with enzymatic activity. In infectious cell culture, these secondary substitutions were not associated with a gain of replicative fitness in NS3-Q80K variants. Using molecular dynamics, we observed that the total number of residue contacts in NS3-Q80K mutants correlated with protein folding stability. Changes in the number of contacts reflected the compensatory effect on protein folding instability by epistatic substitutions. In summary, epistatic substitutions in NS3-Q80K contribute to viral fitness by mechanisms not directly related to RNA replication. By compensating for protein-folding instability, epistatic interactions likely protect NS3-Q80K variants from immune cell recognition.
Collapse
Affiliation(s)
- Georg Dultz
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sanjay K Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany; Graduate School of Computer Science, Saarland University, Saarbrücken, Germany; Interdisciplinary Graduate School of Natural Product Research, Saarland University, Saarbrücken, Germany
| | - Michael Konetschnik
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Nadezhda T Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julia Dietz
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ricardo M Biondi
- Molecular Targeting, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany; Medical Faculty, Saarland University, Homburg, Germany; Center for Bioinformatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
147
|
Pintó RM, Bosch A. The Codon Usage Code for Cotranslational Folding of Viral Capsids. Genome Biol Evol 2021; 13:evab089. [PMID: 33914886 PMCID: PMC8410136 DOI: 10.1093/gbe/evab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Codon bias is common to all organisms and is the result of mutation, drift, and selection. Selection for the efficiency and accuracy of translation is well recognized as a factor shaping the codon usage. In contrast, fewer studies report the control of the rate of translation as an additional selective pressure influencing the codon usage of an organism. Experimental molecular evolution using RNA virus populations is a powerful tool for the identification of mechanisms underlying the codon bias. Indeed, the role of deoptimized codons on the cotranslational folding has been proven in the capsids of two fecal-orally transmitted picornaviruses, poliovirus, and the hepatitis A virus, emphasizing the role of the frequency of codons in determining the phenotype. However, most studies on virus codon usage rely only on computational analyses, and experimental studies should be encouraged to clearly define the role of selection on codon evolution.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
148
|
Next-generation sequencing studies on the E1-HVR1 region of hepatitis C virus (HCV) from non-high-risk HCV patients living in Punjab and Khyber Pakhtunkhwa, Pakistan. Arch Virol 2021; 166:3049-3059. [PMID: 34448937 DOI: 10.1007/s00705-021-05203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
The incidence rate of hepatitis C virus (HCV) infection in Pakistan is very high. In this study, we evaluated the genetic heterogeneity of HCV hypervariable region 1 (HVR1) from the HCV-infected Pakistani population and compare the isolated genotypes with representative sequences from internationally diverse geographic regions. We also investigated potential transmission events in non-high-risk HCV patients. Next-generation sequencing (NGS) data from the E1-HVR1 region from 30 HCV patients were used for phylogenetic analysis. Reference sequences were retrieved from the Los Alamos HCV and GenBank databases. NGS data were analyzed to examine HCV HVR1 sequence diversity and identify transmission links among HCV-infected individuals using Global Hepatitis Outbreak and Surveillance Technology (GHOST). Phylogenetic analysis showed the predominance of HCV genotype 3a (86.6%), followed by 1a (6.6%), 1b (3.3%), and 3b (3.3%). NGS of HVR1 displayed significant genetic heterogeneity of HCV populations within each patient. The average nucleotide sequence diversity for HVR1 was 0.055. JR781281 was found to be the most diverse (0.14) of the specimens. Phylogenetic analysis demonstrated that all HCV specimens sequenced in this study were more similar to each other and showed variations from the representative sequences. The GHOST results suggested genetic relatedness between two (6.6%) HCV cases, possibly defining an incipient outbreak in a non-high-risk population. We urge rigorous countrywide investigation of outbreaks to identify transmission clusters and their sources to incorporate preventive measures for disease control.
Collapse
|
149
|
Middlebrook EA, Stark DL, Cornwall DH, Kubinak JL, Potts WK. Deep Sequencing of MHC-Adapted Viral Lines Reveals Complex Recombinational Exchanges With Endogenous Retroviruses Leading to High-Frequency Variants. Front Genet 2021; 12:716623. [PMID: 34512727 PMCID: PMC8430262 DOI: 10.3389/fgene.2021.716623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?
Collapse
Affiliation(s)
- Earl A. Middlebrook
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Derek L. Stark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Douglas H. Cornwall
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jason L. Kubinak
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
150
|
Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, Yang HT, Xue V, Knyazev S, Singer BD, Balliu B, Koslicki D, Skums P, Zelikovsky A, Alkan C, Mutlu O, Mangul S. Technology dictates algorithms: recent developments in read alignment. Genome Biol 2021; 22:249. [PMID: 34446078 PMCID: PMC8390189 DOI: 10.1186/s13059-021-02443-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today's diverse array of alignment methods. We provide a systematic survey of algorithmic foundations and methodologies across 107 alignment methods, for both short and long reads. We provide a rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read alignment. We discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology.
Collapse
Affiliation(s)
- Mohammed Alser
- Computer Science Department, ETH Zürich, 8092, Zürich, Switzerland
- Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Information Technology and Electrical Engineering Department, ETH Zürich, Zürich, 8092, Switzerland
| | - Jeremy Rotman
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dhrithi Deshpande
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kodi Taraszka
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Pelin Icer Baykal
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
| | - Harry Taegyun Yang
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Ph.D. Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Victor Xue
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sergey Knyazev
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Brunilda Balliu
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David Koslicki
- Computer Science and Engineering, Pennsylvania State University, University Park, PA, 16801, USA
- Biology Department, Pennsylvania State University, University Park, PA, 16801, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16801, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
- The Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Can Alkan
- Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Bilkent-Hacettepe Health Sciences and Technologies Program, Ankara, Turkey
| | - Onur Mutlu
- Computer Science Department, ETH Zürich, 8092, Zürich, Switzerland
- Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Information Technology and Electrical Engineering Department, ETH Zürich, Zürich, 8092, Switzerland
| | - Serghei Mangul
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|