101
|
Nakanishi T, Fukui H, Wang X, Nishiumi S, Yokota H, Makizaki Y, Tanaka Y, Ohno H, Tomita T, Oshima T, Miwa H. Effect of a High-Fat Diet on the Small-Intestinal Environment and Mucosal Integrity in the Gut-Liver Axis. Cells 2021; 10:3168. [PMID: 34831391 PMCID: PMC8622719 DOI: 10.3390/cells10113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Although high-fat diet (HFD)-related dysbiosis is involved in the development of steatohepatitis, its pathophysiology especially in the small intestine remains unclear. We comprehensively investigated not only the liver pathology but also the microbiome profile, mucosal integrity and luminal environment in the small intestine of mice with HFD-induced obesity. C57BL/6J mice were fed either a normal diet or an HFD, and their small-intestinal contents were subjected to microbial 16S rDNA analysis. Intestinal mucosal permeability was evaluated by FITC-dextran assay. The levels of bile acids in the small-intestinal contents were measured by liquid chromatography/mass spectrometry. The expression of tight junction molecules, antimicrobial peptides, lipopolysaccharide and macrophage marker F4/80 in the small intestine and/or liver was examined by real-time RT-PCR and immunohistochemistry. The abundance of Lactobacillus was markedly increased and that of Clostridium was drastically decreased in the small intestine of mice fed the HFD. The level of conjugated taurocholic acid was significantly increased and those of deconjugated cholic acid/secondary bile acids were conversely decreased in the small-intestinal contents. The expression of occludin, antimicrobial Reg IIIβ/γ and IL-22 was significantly decreased in the small intestine of HFD-fed mice, and the intestinal permeability was significantly accelerated. Infiltration of lipopolysaccharide was significantly increased in not only the small-intestinal mucosa but also the liver of HFD-fed mice, and fat drops were apparently accumulated in the liver. Pathophysiological alteration of the luminal environment in the small intestine resulting from a HFD is closely associated with minimal inflammation involving the gut-liver axis through disturbance of small-intestinal mucosal integrity.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Xuan Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Shin Nishiumi
- Department of Omics Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Haruka Yokota
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Yutaka Makizaki
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| |
Collapse
|
102
|
Liu P, Yang S, Yang S. KTU: K‐mer Taxonomic Units improve the biological relevance of amplicon sequence variant microbiota data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Po‐Yu Liu
- Department of Internal Medicine National Taiwan University College of Medicine Taipei Taiwan
- Department of Pathobiology and Population Sciences Royal Veterinary CollegeUniversity of London Hatfield UK
| | - Shan‐Hua Yang
- Institute of Fisheries Science National Taiwan University Taipei Taiwan
| | - Sung‐Yin Yang
- Shimoda Marine Research Center University of Tsukuba Shimoda Japan
- National Museum of Marine Biology and Aquarium Pingtung Taiwan
| |
Collapse
|
103
|
Lauriero G, Abbad L, Vacca M, Celano G, Chemouny JM, Calasso M, Berthelot L, Gesualdo L, De Angelis M, Monteiro RC. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front Immunol 2021; 12:694787. [PMID: 34712223 PMCID: PMC8546224 DOI: 10.3389/fimmu.2021.694787] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis. Several observations suggest that gut microbiota could be implicated in IgAN pathophysiology. Aiming at exploring whether microbiota modulation is able to influence disease outcome, we performed fecal microbiota transplantation (FMT) from healthy controls (HC-sbjs), non-progressor (NP-pts) and progressor (P-pts) IgAN patients to antibiotic-treated humanized IgAN mice (α1KI-CD89Tg), by oral gavage. FMT was able to modulate renal phenotype and inflammation. On one hand, the microbiota from P-pts was able to induce an increase of serum BAFF and galactose deficient-IgA1 levels and a decrease of CD89 cell surface expression on blood CD11b+ cells which was associated with soluble CD89 and IgA1 mesangial deposits. On the other hand, the microbiota from HC-sbjs was able to induce a reduction of albuminuria immediately after gavage, an increased cell surface expression of CD89 on blood CD11b+ cells and a decreased expression of KC chemokine in kidney. Higher serum BAFF levels were found in mice subjected to FMT from IgAN patients. The main bacterial phyla composition and volatile organic compounds profile significantly differed in mouse gut microbiota. Microbiota modulation by FMT influences IgAN phenotype opening new avenues for therapeutic approaches in IgAN.
Collapse
Affiliation(s)
- Gabriella Lauriero
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France.,Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Lilia Abbad
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jonathan M Chemouny
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Laureline Berthelot
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Renato C Monteiro
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| |
Collapse
|
104
|
Kim SE, Park JW, Kim HS, Jang MK, Suk KT, Kim DJ. The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. Int J Mol Sci 2021; 22:ijms222111680. [PMID: 34769109 PMCID: PMC8584227 DOI: 10.3390/ijms222111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a high risk of short-term mortality in patients with chronic liver disease. The development of ACLF is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged in human health and disease. Additionally, the gut microbiome might have a major role in the development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ji Won Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Hyung Su Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82–33–240–5646
| |
Collapse
|
105
|
Xi Y, Xu PF. Diabetes and gut microbiota. World J Diabetes 2021; 12:1693-1703. [PMID: 34754371 PMCID: PMC8554376 DOI: 10.4239/wjd.v12.i10.1693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of diabetes has increased rapidly throughout the world in recent years. Currently, approximately 463 million people are living with diabetes, and the number has tripled over the last two decades. Here, we describe the global epidemiology of diabetes in 2019 and forecast the trends to 2030 and 2045 in China, India, USA, and the globally. The gut microbiota plays a major role in metabolic diseases, especially diabetes. In this review, we describe the interaction between diabetes and gut microbiota in three aspects: probiotics, antidiabetic medication, and diet. Recent findings indicate that probiotics, antidiabetic medications, or dietary interventions treat diabetes by shifting the gut microbiome, particularly by raising beneficial bacteria and reducing harmful bacteria. We conclude that targeting the gut microbiota is becoming a novel therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng-Fei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
106
|
Zhao W, Hong H, Yin J, Wu B, Zhao F, Zhang XX. Recovery of gut microbiota in mice exposed to tetracycline hydrochloride and their correlation with host metabolism. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1620-1631. [PMID: 33280056 DOI: 10.1007/s10646-020-02319-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics can disturb the gut microbial community and host metabolism. However, their recovery after antibiotics exposure needs to be characterized, and the correlation between gut microbiota and host metabolism remains unclear. In this study, mice were exposed to 0.5, 1.5 and 10 g/L tetracycline hydrochloride (TET) for 2 weeks, then recovered without TET for another 2 weeks. The results showed that 2-week TET exposure changed microbial community and functions in the mouse gut, and increased abundance of antibiotic resistance genes (ARGs), especially in the 10 g/L TET group. After a 2-week recovery, these changes could only be recovered to the control level in the 0.5 g/L TET exposure group, except for ARGs. Besides gut microbiota, TET exposure also changed metabolic profiles in mouse urine. The 2-week recovery significantly reduced changes in metabolic profiles. Some altered metabolites were found to have a very high correlation with gut microbial community and functions, indicating that TET exposure might induce certain changes in urinary metabolic profiles by altering the gut microbiota. The results from this study suggest that the influences of low-level TET exposure are reversible, except for ARGs, which should be paid more attention. During the application of TET, their dosage should be effectively considered and controlled.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hanlu Hong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
107
|
Taverniti V, Cesari V, Gargari G, Rossi U, Biddau C, Lecchi C, Fiore W, Arioli S, Toschi I, Guglielmetti S. Probiotics Modulate Mouse Gut Microbiota and Influence Intestinal Immune and Serotonergic Gene Expression in a Site-Specific Fashion. Front Microbiol 2021; 12:706135. [PMID: 34539604 PMCID: PMC8441017 DOI: 10.3389/fmicb.2021.706135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotic microorganisms may benefit the host by influencing diverse physiological processes, whose nature and underlying mechanisms are still largely unexplored. Animal models are a unique tool to understand the complexity of the interactions between probiotic microorganisms, the intestinal microbiota, and the host. In this regard, in this pilot study, we compared the effects of 5-day administration of three different probiotic bacterial strains (Bifidobacterium bifidum MIMBb23sg, Lactobacillus helveticus MIMLh5, and Lacticaseibacillus paracasei DG) on three distinct murine intestinal sites (ileum, cecum, and colon). All probiotics preferentially colonized the cecum and colon. In addition, probiotics reduced in the ileum and increased in the cecum and colon the relative abundance of numerous bacterial taxonomic units. MIMBb23sg and DG increased the inducible nitric oxide synthase (iNOS) in the ileum, which is involved in epithelial homeostasis. In addition, MIMBb23sg upregulated cytokine IL-10 in the ileum and downregulated the cyclooxygenase COX-2 in the colon, suggesting an anti-inflammatory/regulatory activity. MIMBb23sg significantly affected the expression of the main gene involved in serotonin synthesis (TPH1) and the gene coding for the serotonin reuptake protein (SERT) in the ileum and colon, suggesting a potential propulsive effect toward the distal part of the gut, whereas the impact of MIMLh5 and DG on serotonergic genes suggested an effect toward motility control. The three probiotics decreased the expression of the permeability marker zonulin in gut distal sites. This preliminary in vivo study demonstrated the safety of the tested probiotic strains and their common ability to modulate the intestinal microbiota. The probiotics affected host gene expression in a strain-specific manner. Notably, the observed effects in the gut were site dependent. This study provides a rationale for investigating the effects of probiotics on the serotonergic system, which is a topic still widely unexplored.
Collapse
Affiliation(s)
- Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Umberto Rossi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Biddau
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
108
|
Liu X, Pan X, Liu H, Ma X. Gut Microbial Diversity in Female Patients With Invasive Mole and Choriocarcinoma and Its Differences Versus Healthy Controls. Front Cell Infect Microbiol 2021; 11:704100. [PMID: 34513727 PMCID: PMC8428518 DOI: 10.3389/fcimb.2021.704100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate variation in gut microbiome in female patients with invasive mole (IM) and choriocarcinoma (CC) and compare it with healthy controls. Methods Fecal microbiome of 12 female patients with IM, 9 female patients with CC, and 24 healthy females were analyzed based on 16s rDNA sequencing. Alpha (α) diversity was evaluated using Shannon diversity index and Pielou evenness index, while beta (β) diversity was assessed using principle coordinate analysis (PCoA) of unweighted Unifrac distances. The potential functional changes of microbiomes were predicted using Tax4Fun. The relative abundance of microbial taxa was compared using Welch’s t test. The role of varied gut microbiota was analyzed via receiver operating characteristic (ROC) curve. Results The α diversity and β diversity were significantly different between IM patients and controls, but not between CC patients and controls. In addition, the abundance of cancer-related genes was significantly increased in IM and CC patients. Notably, a total of 19 families and 39 genera were found to have significant differences in bacterial abundance. ROC analysis indicated that Prevotella_7 may be a potential biomarker among IM, CC, and controls. Conclusion Our study demonstrated that the diversity and composition of gut microbiota among IM patients, CC patients, and healthy females were significantly different, which provides rationale for using gut microbiota as diagnostic markers and treatment targets, as well as for further study of gut microbiota in gestational trophoblastic neoplasia (GTN).
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
109
|
Effect of Advanced Glycation End-Products and Excessive Calorie Intake on Diet-Induced Chronic Low-Grade Inflammation Biomarkers in Murine Models. Nutrients 2021; 13:nu13093091. [PMID: 34578967 PMCID: PMC8468789 DOI: 10.3390/nu13093091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic Low-Grade Inflammation (CLGI) is a non-overt inflammatory state characterized by a continuous activation of inflammation mediators associated with metabolic diseases. It has been linked to the overconsumption of Advanced Glycation End-Products (AGEs), and/or macronutrients which lead to an increase in local and systemic pro-inflammatory biomarkers in humans and animal models. This review provides a summary of research into biomarkers of diet-induced CLGI in murine models, with a focus on AGEs and obesogenic diets, and presents the physiological effects described in the literature. Diet-induced CLGI is associated with metabolic endotoxemia, and/or gut microbiota remodeling in rodents. The mechanisms identified so far are centered on pro-inflammatory axes such as the interaction between AGEs and their main receptor AGEs (RAGE) or increased levels of lipopolysaccharide. The use of murine models has helped to elucidate the local and systemic expression of CLGI mediators. These models have enabled significant advances in identification of diet-induced CLGI biomarkers and resultant physiological effects. Some limitations on the translational (murine → humans) use of biomarkers may arise, but murine models have greatly facilitated the testing of specific dietary components. However, there remains a lack of information at the whole-organism level of organization, as well as a lack of consensus on the best biomarker for use in CLGI studies and recommendations as to future research conclude this review.
Collapse
|
110
|
Abstract
As liver is one of the primary organs involved in glucose homeostasis, it is not surprising that patients with liver dysfunction in chronic liver disease usually develop impaired glucose tolerance and subsequently overt diabetes later in their natural course. Diabetes that develops after the onset of cirrhosis of liver is usually referred to as hepatogenous diabetes (HD). It is an underrecognized and a hallmark endocrinological event in chronic liver disease. HD is associated with a higher risk of developing hepatic decompensations, such as ascites, variceal bleeding, hepatic encephalopathy, renal dysfunction, refractory ascites, and hepatocellular carcinoma along with reduced survival rates than normoglycemic patients with cirrhosis of liver. It is quite different from type 2 diabetes mellitus with the absence of classical risk factors, dissimilar laboratory profiles, and decreased incidence of microvascular complications. Furthermore, the management of patients with HD is challenging because of altered pharmacokinetics of most antidiabetic drugs and increased risk of hypoglycemia and other adverse effects. Hence, a clear understanding of the epidemiology, pathophysiology, clinical implications, laboratory diagnosis, and management of HD is essential for both hepatologists as well as endocrinologists, which is narrated briefly in this review.
Collapse
Affiliation(s)
- Preetam Nath
- Department of Gastroenterology & Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha 751024, India
| | - Anil C. Anand
- Department of Gastroenterology & Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
111
|
Giraud J, Saleh M. Host-Microbiota Interactions in Liver Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13174342. [PMID: 34503151 PMCID: PMC8430654 DOI: 10.3390/cancers13174342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a difficult to treat liver cancer that generally arises in individuals suffering from alcoholic or non-alcoholic fatty liver diseases. Inflammation, tissue injury and fibrosis are important precursors of HCC. In this review, we explore the links between the microbiota, inflammation and carcinogenesis in the context of HCC. We discuss how the gut and liver communicate and how microbial molecules, including structural components and metabolites, elicit inflammation and tumorigenesis in the liver. A better understanding of microbiota-dependent mechanisms of liver cancer development might lead to novel microbial-based therapeutic approaches. Abstract Hepatocellular carcinoma (HCC) is a classical inflammation-promoted cancer that occurs in a setting of liver diseases, including nonalcoholic fatty liver disease (NAFLD) or alcoholic liver disease (ALD). These pathologies share key characteristics, notably intestinal dysbiosis, increased intestinal permeability and an imbalance in bile acids, choline, fatty acids and ethanol metabolites. Translocation of microbial- and danger-associated molecular patterns (MAMPs and DAMPs) from the gut to the liver elicits profound chronic inflammation, leading to severe hepatic injury and eventually HCC progression. In this review, we first describe how the gut and the liver communicate and discuss mechanisms by which the intestinal microbiota elicit hepatic inflammation and HCC. We focus on the role of microbial products, e.g., MAMPs, host inflammatory effectors and host–microbiome-derived metabolites in tumor-promoting mechanisms, including cell death and senescence. Last, we explore the potential of harnessing the microbiota to treat liver diseases and HCC.
Collapse
Affiliation(s)
- Julie Giraud
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, F-33000 Bordeaux, France;
| | - Maya Saleh
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, F-33000 Bordeaux, France;
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
- Correspondence:
| |
Collapse
|
112
|
Mohamed RA, Abdallah DM, El-brairy AI, Ahmed KA, El-Abhar HS. Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation. Molecules 2021; 26:5068. [PMID: 34443654 PMCID: PMC8401912 DOI: 10.3390/molecules26165068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Since westernized diet-induced insulin resistance is a risk factor in Alzheimer's disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory (Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal performance during novel object recognition tests. In the hippocampus, all regimens reduced the expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial function in a HFFD/LPS novel model for sporadic AD.
Collapse
Affiliation(s)
- Reem A. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road Intersection with Wahat Road, 6th of October City, Giza 12451, Egypt; (R.A.M.); (A.I.E.-b.)
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., Cairo 11562, Egypt;
| | - Amany I. El-brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road Intersection with Wahat Road, 6th of October City, Giza 12451, Egypt; (R.A.M.); (A.I.E.-b.)
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan S. El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., Cairo 11562, Egypt;
| |
Collapse
|
113
|
Pomié C, Servant F, Garidou L, Azalbert V, Waget A, Klopp P, Garret C, Charpentier J, Briand F, Sulpice T, Lelouvier B, Douin-Echinard V, Burcelin R. CX3CR1 regulates gut microbiota and metabolism. A risk factor of type 2 diabetes. Acta Diabetol 2021; 58:1035-1049. [PMID: 33754166 DOI: 10.1007/s00592-021-01682-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The intestinal microbiota to immune system crosstalk is a major regulator of metabolism and hence metabolic diseases. An impairment of the chemokine receptor CX3CR1, as a key regulator shaping intestinal microbiota under normal chow feeding, could be one of the early events of dysglycemia. METHODS We studied the gut microbiota ecology by sequencing the gut and tissue microbiota. We studied its role in energy metabolism in CX3CR1-deficent and control mice using various bioassays notably the glycemic regulation during fasting and the respiratory quotient as two highly sensitive physiological features. We used antibiotics and prebiotics treatments, and germ free mouse colonization. RESULTS We identify that CX3CR1 disruption impairs gut microbiota ecology and identified a specific signature associated to the genotype. The glycemic control during fasting and the respiratory quotient throughout the day are deeply impaired. A selected four-week prebiotic treatment modifies the dysbiotic microbiota and improves the fasting state glycemic control of the CX3CR1-deficent mice and following a glucose tolerance test. A 4 week antibiotic treatment also improves the glycemic control as well. Eventually, germ free mice colonized with the microbiota from CX3CR1-deficent mice developed glucose intolerance. CONCLUSIONS CX3CR1 is a molecular mechanism in the control of the gut microbiota ecology ensuring the maintenance of a steady glycemia and energy metabolism. Its impairment could be an early mechanism leading to gut microbiota dysbiosis and the onset of metabolic disease.
Collapse
Affiliation(s)
- Celine Pomié
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
- Evotec, Toulouse, France
| | - Florence Servant
- VAIOMER, Prologue Biotech, Rue Pierre et Marie Curie, Labège Innopole, France
| | - Lucile Garidou
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
| | - Vincent Azalbert
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
| | - Aurélie Waget
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
| | - Pascale Klopp
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
| | - Céline Garret
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
| | - Julie Charpentier
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France
| | - Francois Briand
- PHYSIOGENEX, Prologue Biotech, Rue Pierre et Marie Curie, Labège Innopole, France
| | - Thierry Sulpice
- PHYSIOGENEX, Prologue Biotech, Rue Pierre et Marie Curie, Labège Innopole, France
| | - Benjamin Lelouvier
- VAIOMER, Prologue Biotech, Rue Pierre et Marie Curie, Labège Innopole, France
| | - Victorine Douin-Echinard
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France.
| | - Rémy Burcelin
- Institut National de La Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Unité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia', Université Paul Sabatier (UPS), 31432, Toulouse Cedex 4, France.
| |
Collapse
|
114
|
Wan J, Wu Y, Pham Q, Li RW, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8017-8027. [PMID: 34236836 DOI: 10.1021/acs.jafc.0c07887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate the effects of resistant starch (RS) and fat levels on the gut microbiome in C57BL/6 mice. Three levels of RS from three varieties of rice were the major source of carbohydrates and fat levels were low (10%) and high (39%). We confirmed that RS decreased the Firmicutes to Bacteroidetes ratio, increased SCFA production by higher Bacteroidaceae and S24-7 abundance, and enriched predicted gene families of glycosidases and functional pathways associated with carbohydrate and glycan metabolism. We also found correlations between microbial taxa and tissue gene expression related to carbohydrate and lipid metabolism. Moreover, increasing RS levels resulted in a molecular ecological network with enhanced modularity and interspecific synergy, which is less sensitive to high fat intervention. Overall, RS as low as 0.44% from cooked rice can modulate gut microbiome in mice, which correlated to a protective effect against deleterious effects of an obesogenic diet.
Collapse
Affiliation(s)
- Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanbei Wu
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology &Business University, Beijing 100084, PR China
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, ARS, USDA, Beltsville, Maryland 20705, United States
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, ARS, USDA, Stuttgart, Arkansas 72160, United States
| | - Stephen M Boue
- Southern Regional Research Center, ARS, USDA, New Orleans, Louisiana 70124, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, WRRC, ARS, USDA, Albany, California 94710, United States
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
| |
Collapse
|
115
|
Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
116
|
Charpentier J, Briand F, Lelouvier B, Servant F, Azalbert V, Puel A, Christensen JE, Waget A, Branchereau M, Garret C, Lluch J, Heymes C, Brousseau E, Burcelin R, Guzylack L, Sulpice T, Grasset E. Liraglutide targets the gut microbiota and the intestinal immune system to regulate insulin secretion. Acta Diabetol 2021; 58:881-897. [PMID: 33723651 DOI: 10.1007/s00592-020-01657-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023]
Abstract
AIMS Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Julie Charpentier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Francois Briand
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Benjamin Lelouvier
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Florence Servant
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Vincent Azalbert
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Anthony Puel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Jeffrey E Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Aurélie Waget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Maxime Branchereau
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Céline Garret
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Jérome Lluch
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Christophe Heymes
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Emmanuel Brousseau
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France.
| | - Laurence Guzylack
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Thierry Sulpice
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Estelle Grasset
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| |
Collapse
|
117
|
Shih MK, Tain YL, Chen YW, Hsu WH, Yeh YT, Chang SKC, Liao JX, Hou CY. Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats. Molecules 2021; 26:molecules26134010. [PMID: 34209270 PMCID: PMC8271435 DOI: 10.3390/molecules26134010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Resveratrol butyrate esters (RBE) are derivatives of resveratrol (RSV) and butyric acid and exhibit biological activity similar to that of RSV but with higher bioavailability. The aim of this study was designed as an animal experiment to explore the effects of RBE on the serum biochemistry, and fat deposits in the offspring rats exposed to bisphenol A (BPA), along with the growth and decline of gut microbiota. We constructed an animal model of perinatal Bisphenol A (BPA) exposure to observe the effects of RBE supplementation on obesity, blood lipids, and intestinal microbiota in female offspring rats. Perinatal exposure to BPA led to weight gain, lipid accumulation, high levels of blood lipids, and deterioration of intestinal microbiota in female offspring rats. RBE supplementation reduced the weight gain and lipid accumulation caused by BPA, optimised the levels of blood lipids, significantly reduced the Firmicutes/Bacteroidetes (F/B) ratio, and increased and decreased the abundance of S24-7 and Lactobacillus, respectively. The analysis of faecal short-chain fatty acid (SCFA) levels revealed that BPA exposure increased the faecal concentration of acetate, which could be reduced via RBE supplementation. However, the faecal concentrations of propionate and butyrate were not only significantly lower than that of acetate, but also did not significantly change in response to BPA exposure or RBE supplementation. Hence, RBE can suppress BPA-induced obesity in female offspring rats, and it demonstrates excellent modulatory activity on intestinal microbiota, with potential applications in perinatological research.
Collapse
Affiliation(s)
- Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, No.1, Songhe Rd., Xiaogang Dist., Kaohsiung City 812, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 831, Taiwan;
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 928, Taiwan
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Starkville, MS 39567, USA;
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Jin-Xian Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan;
- Correspondence: ; Tel.: +886-985300345; Fax: +886-7-3640364
| |
Collapse
|
118
|
Selmin OI, Papoutsis AJ, Hazan S, Smith C, Greenfield N, Donovan MG, Wren SN, Doetschman TC, Snider JM, Snider AJ, Chow SHH, Romagnolo DF. n-6 High Fat Diet Induces Gut Microbiome Dysbiosis and Colonic Inflammation. Int J Mol Sci 2021; 22:ijms22136919. [PMID: 34203196 PMCID: PMC8269411 DOI: 10.3390/ijms22136919] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10-16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.
Collapse
Affiliation(s)
- Ornella I. Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | | | - Sabine Hazan
- ProgenomaBiome, Ventura, CA 93003, USA; (A.J.P.); (S.H.)
| | | | | | - Micah G. Donovan
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA;
| | - Spencer N. Wren
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Thomas C. Doetschman
- Department of Molecular and Cellular Medicine, The University of Arizona, Tucson, AZ 85724, USA;
| | - Justin M. Snider
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Ashley J. Snider
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Sherry H.-H. Chow
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Donato F. Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA;
- Correspondence:
| |
Collapse
|
119
|
Moreira Júnior RE, de Carvalho LM, Dos Reis DC, Cassali GD, Faria AMC, Maioli TU, Brunialti-Godard AL. Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice. J Nutr Biochem 2021; 92:108622. [PMID: 33705942 DOI: 10.1016/j.jnutbio.2021.108622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/30/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
The high prevalence of obesity and associated metabolic disorders are one of the major public health problems worldwide. Among the main causal factors of obesity, excessive consumption of food rich in sugar and fat stands out due to its high energy density. The regulation of food intake relies on hypothalamic control by the action of several neuropeptides. Excessive consumption of hypercaloric diets has impact in the behavior and in the gut microbiota. In the present study, we used a high-sugar and fat (HSB) diet for 12 weeks to induce obesity in C57BL/6 mice and to investigate its effects on the gut microbiota, hypothalamic peptides, and behavior. We hypothesize that chronic consumption of HSB diet can change the behavior. Additionally, we also hypothesize that changes in gut microbiota can be associated with changes in the transcriptional regulation of hypothalamic peptides and behavior. To evaluate the gut microbiota, we performed the sequencing of 16S rRNA gene, which demonstrate that HSB diet modulates the gut microbiota with an increase in the Firmicutes and Actinobacteria phylum and a decrease of Bacteroidetes phylum. The real time qPCR revealed that HSB-fed mice presented changes in the transcriptional regulation of hypothalamic neuropeptides genes such as Npy, Gal and Galr1. The Marble-burying and Light/dark box tests also showed an alteration in anxiety and impulsive behaviors for the HSB-fed mice. Our data provides evidence that obesity induced by HSB diet consumption is associated with alterations in gut microbiota and behavior, highlighting the multifactorial characteristics of this disease.
Collapse
Affiliation(s)
- Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luana Martins de Carvalho
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Diego Carlos Dos Reis
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
120
|
Daniel N, Rossi Perazza L, Varin TV, Trottier J, Marcotte B, St-Pierre P, Barbier O, Chassaing B, Marette A. Dietary fat and low fiber in purified diets differently impact the gut-liver axis to promote obesity-linked metabolic impairments. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1014-G1033. [PMID: 33881354 DOI: 10.1152/ajpgi.00028.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.
Collapse
Affiliation(s)
- Noëmie Daniel
- Faculty of Food Science, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Laίs Rossi Perazza
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Bruno Marcotte
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Philippe St-Pierre
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases," CNRS UMR 8104, Université de Paris, Paris, France
| | - André Marette
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| |
Collapse
|
121
|
Levine M, Lohinai ZM. Resolving the Contradictory Functions of Lysine Decarboxylase and Butyrate in Periodontal and Intestinal Diseases. J Clin Med 2021; 10:jcm10112360. [PMID: 34072136 PMCID: PMC8198195 DOI: 10.3390/jcm10112360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a common, bacterially mediated health problem worldwide. Mastication (chewing) repeatedly traumatizes the gingiva and periodontium, causing traces of inflammatory exudate, gingival crevicular fluid (GCF), to appear in crevices between the teeth and gingiva. Inadequate tooth cleaning causes a dentally adherent microbial biofilm composed of commensal salivary bacteria to appear around these crevices where many bacteria grow better on GCF than in saliva. We reported that lysine decarboxylase (Ldc) from Eikenella corrodens depletes the GCF of lysine by converting it to cadaverine and carbon dioxide. Lysine is an amino acid essential for the integrity and continuous renewal of dentally attached epithelium acting as a barrier to microbial products. Unless removed regularly by oral hygiene, bacterial products invade the lysine-deprived dental attachment where they stimulate inflammation that enhances GCF exudation. Cadaverine increases and supports the development of a butyrate-producing microbiome that utilizes the increased GCF substrates to slowly destroy the periodontium (dysbiosis). A long-standing paradox is that acid-induced Ldc and butyrate production support a commensal (probiotic) microbiome in the intestine. Here, we describe how the different physiologies of the respective tissues explain how the different Ldc and butyrate functions impact the progression and control of these two chronic diseases.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| | - Zsolt M. Lohinai
- Department of Conservative Dentistry, Semmelweis University, H-1088 Budapest, Hungary;
| |
Collapse
|
122
|
Biswas L, Ibrahim KS, Li X, Zhou X, Zeng Z, Craft J, Shu X. Effect of a TSPO ligand on retinal pigment epithelial cholesterol homeostasis in high-fat fed mice, implication for age-related macular degeneration. Exp Eye Res 2021; 208:108625. [PMID: 34022174 DOI: 10.1016/j.exer.2021.108625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Age-related Macular Degeneration (AMD) is a major cause of sight impairment in the elderly with complex aetiology involving genetics and environment and with limited therapeutic options which have limited efficacy. We have previously shown in a mouse-model of the condition, induced by feeding a high fat diet, that adverse effects of the diet can be reversed by co-administration of the TSPO activator, etifoxine. We extend those observations showing improvements in retinal pigment epithelial (RPE) cells with decreased lipids and enhanced expression of cholesterol metabolism and transport enzymes. Further, etifoxine decreased levels of reactive oxygen species (ROS) in RPE and inflammatory cytokines in RPE and serum. With respect to gut microbiome, we found that organisms abundant in the high fat condition (e.g. in the genus Anaerotruncus and Oscillospira) and implicated in AMD, were much less abundant after etifoxine treatment. The changes in gut flora were associated with the predicted production of metabolites of benefit to the retina including tryptophan and other amino acids and taurine, an essential component of the retina necessary to counteract ROS. These novel observations strengthen earlier conclusions that the mechanisms behind improvements in etifoxine-induced retinal physiology involve an interaction between effects on the host and the gut microbiome.
Collapse
Affiliation(s)
- Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, UK
| | - Khalid Subhi Ibrahim
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, UK; Department of Biology, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, UK
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, PR China
| | - John Craft
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, UK
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, UK; Department of Vision Science, Glasgow Caledonian University, UK; School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, China.
| |
Collapse
|
123
|
Gut microbiota of frugo-folivorous sifakas across environments. Anim Microbiome 2021; 3:39. [PMID: 34006323 PMCID: PMC8132362 DOI: 10.1186/s42523-021-00093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. This imbalance is particularly striking for folivores that fundamentally rely on gut microbiota for digestion, yet rarely receive sufficient dietary fiber in captivity. We examine the critically endangered Coquerel’s sifaka (Propithecus coquereli), an anatomically specialized, rather than facultative, folivore that consumes a seasonal frugo-folivorous diet in the wild, but is provisioned predominantly with seasonal foliage and orchard vegetables in captivity. Using amplicon and metagenomic sequencing applied to fecal samples collected from two wild and one captive population (each comprising multiple groups), we clarify how dietary variation underlies the perturbational effect of captivity on the structure and function of this species’ gut microbiota. Results The gut microbiota of wild sifakas varied by study population, most notably in community evenness and in the abundance of diet-associated microbes from Prevotellaeceae and Lachnospiraceae. Nevertheless, the differences among wild subjects were minor compared to those evident between wild and captive sifakas: Unusually, the consortia of captive sifakas were the most diverse, but lacked representation of endemic Bacteroidetes and metagenomic capacity for essential amino-acid biosynthesis. Instead, they were enriched for complex fiber metabolizers from the Firmicutes phylum, for archaeal methanogens, and for several metabolic pathways putatively linked to plant fiber and secondary compound metabolism. Conclusions The relatively minor differences in gut microbial structure and function between wild sifaka populations likely reflect regional and/or temporal environmental variability, whereas the major differences observed in captive conspecifics, including the loss of endemic microbes, but gain in low-abundance taxa, likely reflect imbalanced or unstable consortia. Indeed, community perturbation may not necessarily entail decreased community diversity. Moreover, signatures of greater fiber degradation indicate that captive sifakas consume a more fibrous diet compared to their wild counterparts. These results do not mirror those typically reported for folivores and herbivores, suggesting that the direction and strength of captivity-induced ‘dysbiosis’ may not be universal across species with similar feeding strategies. We propose that tailored, species-specific dietary interventions in captivity, aimed at better approximating naturally foraged diets, could functionally ‘rewild’ gut microbiota and facilitate successful management of diverse species. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00093-5.
Collapse
|
124
|
Gulnaz A, Nadeem J, Han JH, Lew LC, Son JD, Park YH, Rather IA, Hor YY. Lactobacillus Sps in Reducing the Risk of Diabetes in High-Fat Diet-Induced Diabetic Mice by Modulating the Gut Microbiome and Inhibiting Key Digestive Enzymes Associated with Diabetes. BIOLOGY 2021; 10:biology10040348. [PMID: 33924088 PMCID: PMC8074288 DOI: 10.3390/biology10040348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Type 2 diabetes (T2D) is increasingly spreading across the globe. The disease is linked to a disruption of gut microbiome. Probiotics are essential gut microbiota modulators proven to restore microbiota changes, thereby conferring health to its host. This study aimed to use probiotics (lactobacilli) and their metabolites as natural anti-diabetic therapy through the modulation of gut microbiota and inhibit diabetes-causing enzymes. Lactobacillus-treated high-fat diet mice showed lower blood glucose levels and body weight. Interestingly, our study also proved that the lactobacilli altered gut microbiota composition by suppressing opportunistic bacteria that are highly associated with metabolic diseases. Our findings substantiate the use of probiotics as natural anti-diabetic therapeutics. Abstract Obesity caused by a high-fat diet (HFD) affects gut microbiota linked to the risk of type-2 diabetes (T2D). This study evaluates live cells and ethanolic extract (SEL) of Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 as natural anti-diabetic compounds. In-vitro anti-diabetic effects were determined based on the inhibition of α-glucosidase and α-amylase enzymes. The SEL of Probio65 and Probio-093 significantly retarded α-glucosidase and α-amylase enzymes (p < 0.05). Live Probio65 and Probio-093 inhibited α-glucosidase and α-amylase, respectively (p < 0.05). In mice fed with a 45% kcal high-fat diet (HFD), the SEL and live cells of both strains reduced body weight significantly compared to HFD control (p < 0.05). Probio-093 also improved blood glucose level compared to control (p < 0.05). The gut microbiota modulatory effects of lactobacilli on HFD-induced diabetic mice were analyzed with qPCR method. The SEL and live cells of both strains reduced phyla Deferribacteres compared to HFD control (p < 0.05). The SEL and live cells of Probio-093 promoted more Actinobacteria (phyla), Bifidobacterium, and Prevotella (genus) compared to control (p < 0.05). Both strains exerted metabolic-modulatory effects, with strain Probio-093 showing more prominent alteration in gut microbiota, substantiating the role of probiotics in gut microbiome modulations and anti-diabetic effect. Both lactobacilli are potential candidates to lessen obesity-linked T2D.
Collapse
Affiliation(s)
- Aneela Gulnaz
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
| | - Jawad Nadeem
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
| | - Jong-Hun Han
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
| | - Lee-Ching Lew
- Probionic Corp. Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do 38541, Korea;
| | - Jae-Dong Son
- Department of Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, Korea;
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
- Probionic Corp. Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or (I.A.R.); (Y.-Y.H.)
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
- Correspondence: or (I.A.R.); (Y.-Y.H.)
| |
Collapse
|
125
|
Wang G, Yang X, Wang J, Zhong D, Zhang R, Zhang Y, Feng L, Zhang Y. Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet fed rats. Int J Biol Macromol 2021; 182:879-898. [PMID: 33857511 DOI: 10.1016/j.ijbiomac.2021.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
High-fat (HF) diets cause obesity, gut microbial dysbiosis and associated disorders and inflammatory bowel disease (IBD) due to increased intestinal permeability, which is an important reason for chronic inflammation and oxidative stress. This study was to investigate the effects and mechanism by which walnut green husk polysaccharides (WGHP) prevents obesity, oxidative stress, inflammation, liver and colon damage in HF diet induced rats. We found that WGHP alleviated HF-induced abnormal weight gain, disordered lipid metabolism, inflammation, oxidative stress, colonic tissue injury and up-regulate the expression level of colonic tight junction protein in the rats. Besides, the administration of WGHP promoted browning of iWAT and thermogenesis in BAT of HF-fed rats, and improved gut microbiota dysbiosis by increasing the bacterial diversity and reducing the relative abundance of potential pathogenic bacteria in the colon of the rats. Furthermore, WGHP consumption not only increased the SCFAs content but also improved the relative abundance of Prevotellaceae and Allobaculum in the gut of rats. Our results suggest that the protective effect of WGHP on metabolic inflammation caused by HF may be due to the regulation of gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyue Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Diying Zhong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Runguang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yani Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Luoluo Feng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
126
|
Vidal-Martinez G, Chin B, Camarillo C, Herrera GV, Yang B, Sarosiek I, Perez RG. A Pilot Microbiota Study in Parkinson's Disease Patients versus Control Subjects, and Effects of FTY720 and FTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models. JOURNAL OF PARKINSONS DISEASE 2021; 10:185-192. [PMID: 31561385 PMCID: PMC7029363 DOI: 10.3233/jpd-191693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Parkinson's disease (PD) and multiple system atrophy (MSA) patients often suffer from gastrointestinal (GI) dysfunction and GI dysbiosis (microbial imbalance). GI dysfunction also occurs in mouse models of PD and MSA. OBJECTIVES To assess gut dysfunction and dysbiosis in PD subjects as compared to controls, identify potential shared microbial taxa in humans and mouse models of PD and MSA, and to assess the effects of potential therapies on mouse GI microbiota. METHODS In this human pilot study, GI function was assessed by fecal consistency/frequency measured using the Bristol Stool Form Scale and GI transit time assessed using Sitzmarks pills and abdominal radiology. Human and mouse microbiota were analyzed by extracting fecal genomic DNA followed by 16S rRNA sequencing. RESULTS In our PD patients genera Akkermansia significantly increased while a trend toward increased Bifidobacterium and decreased Prevotella was observed. Families Bacteroidaceae and Lachnospiraceae and genera Prevotella and Bacteroides were detected in both humans and PD mice, suggesting potential shared biomarkers. In mice treated with the approved multiple sclerosis drug, FTY720, or with our FTY720-Mitoxy-derivative, we saw that FTY720 had little effect while FTY720-Mitoxy increased beneficial Ruminococcus and decreased Rickenellaceae family. CONCLUSION Akkermansia and Prevotellaceae data reported by others were replicated in our human pilot study suggesting the use of those taxa as potential biomarkers for PD diagnosis. The effect of FTY720-Mitoxy on taxa Rikenellaceae and Ruminococcus and the relevance of S24-7 await further evaluation. It also remains to be determined if mouse microbiota have predictive power for human subjects.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Brandon Chin
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Cynthia Camarillo
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Gloria V Herrera
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Irene Sarosiek
- Department of Internal Medicine, Division of Gastroenterology, Paul L Foster School of Medicine, El Paso, TX, USA
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| |
Collapse
|
127
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
128
|
Watanabe J, Hashimoto N, Yin T, Sandagdorj B, Arakawa C, Inoue T, Suzuki S. Heat-killed Lactobacillus brevis KB290 attenuates visceral fat accumulation induced by high-fat diet in mice. J Appl Microbiol 2021; 131:1998-2009. [PMID: 33742756 PMCID: PMC8518035 DOI: 10.1111/jam.15079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
AIMS This study aimed to evaluate the anti-adiposity effect of heat-killed Lactobacillus brevis KB290 originating from traditional Japanese fermented pickles in mice fed a high-fat diet (HFD). METHODS AND RESULTS C57BL/6J mice were fed a normal-fat diet, HFD or HFD supplemented with heat-killed KB290 for 8 weeks. Epididymal and renal adipose tissue weights, as well as areas of epididymal adipocytes, were significantly lower in the mice fed a HFD supplemented with KB290 than in those fed an unsupplemented HFD. Mice whose diets were supplemented with KB290 had elevated adiponectin and β3-adrenergic receptor expression in epididymal adipose tissue and an accompanying higher serum free fatty acid level. Furthermore, the HFD-induced elevations in serum glucose, insulin and HOMA-IR were significantly suppressed by dietary supplementation with KB290. Amplicon sequencing of 16S rRNA genes revealed that KB290 ingestion altered the composition of the intestinal microbiota. CONCLUSIONS Heat-killed L. brevis KB290 suppressed diet-induced visceral fat accumulation and ameliorated diet-induced metabolic symptoms and intestinal gut microbiota modifications, suggesting possibility of novel paraprobiotic. SIGNIFICANCE AND IMPACT OF THE STUDY Heat-killed L. brevis KB290 is useable as a material to develop functional foods that attenuate visceral fat accumulation.
Collapse
Affiliation(s)
- J Watanabe
- Food Research Institute, National Agriculture and Food Research Institute, Tsukuba, Japan.,Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - N Hashimoto
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - T Yin
- Food Research Institute, National Agriculture and Food Research Institute, Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - B Sandagdorj
- Food Research Institute, National Agriculture and Food Research Institute, Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - C Arakawa
- Nature and Wellness Research Department, Innovation Division, Kagome Co., Ltd., Nasu-Shiobara, Japan
| | - T Inoue
- Nature and Wellness Research Department, Innovation Division, Kagome Co., Ltd., Nasu-Shiobara, Japan
| | - S Suzuki
- Nature and Wellness Research Department, Innovation Division, Kagome Co., Ltd., Nasu-Shiobara, Japan
| |
Collapse
|
129
|
Xiang H, Gan J, Zeng D, Li J, Yu H, Zhao H, Yang Y, Tan S, Li G, Luo C, Xie Z, Zhao G, Li H. Specific Microbial Taxa and Functional Capacity Contribute to Chicken Abdominal Fat Deposition. Front Microbiol 2021; 12:643025. [PMID: 33815329 PMCID: PMC8010200 DOI: 10.3389/fmicb.2021.643025] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically selected chickens with better growth and early maturation show an incidental increase in abdominal fat deposition (AFD). Accumulating evidence reveals a strong association between gut microbiota and adiposity. However, studies focusing on the role of gut microbiota in chicken obesity in conventional breeds are limited. Therefore, 400 random broilers with different levels of AFD were used to investigate the gut microbial taxa related to AFD by 16S rRNA gene sequencing of 76 representative samples, and to identify the specific microbial taxa contributing to fat-related metabolism using shotgun metagenomic analyses of eight high and low AFD chickens. The results demonstrated that the richness and diversity of the gut microbiota decrease as the accumulation of chicken abdominal fat increases. The decrease of Bacteroidetes and the increase of Firmicutes were correlated with the accumulation of chicken AFD. The Bacteroidetes phylum, including the genera Bacteroides, Parabacteroides, and the species, B. salanitronis, B. fragilis, and P. distasonis, were correlated to alleviate obesity by producing secondary metabolites. Several genera of Firmicutes phylum with circulating lipoprotein lipase activity were linked to the accumulation of chicken body fat. Moreover, the genera, Olsenella and Slackia, might positively contribute to fat and energy metabolism, whereas the genus, Methanobrevibacter, was possible to enhance energy capture, and associated to accumulate chicken AFD. These findings provide insights into the roles of the gut microbiota in complex traits and contribute to the development of effective therapies for the reduction of chicken fat accumulation.
Collapse
Affiliation(s)
- Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Jiankang Gan
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China
| | - Daoshu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| | - Gen Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Chaowei Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Zhuojun Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| |
Collapse
|
130
|
Yuan X, Chen R, McCormick KL, Zhang Y, Lin X, Yang X. The role of the gut microbiota on the metabolic status of obese children. Microb Cell Fact 2021; 20:53. [PMID: 33639944 PMCID: PMC7916301 DOI: 10.1186/s12934-021-01548-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background The term “metabolically healthy obese (MHO)” denotes a hale and salutary status, yet this connotation has not been validated in children, and may, in fact, be a misnomer. As pertains to obesity, the gut microbiota has garnered attention as conceivably a nosogenic or, on the other hand, protective participator. Objective This study explored the characteristics of the fecal microbiota of obese Chinese children and adolescents of disparate metabolic statuses, and the associations between their gut microbiota and circulating proinflammatory factors, such as IL-6, TNF-α, lipopolysaccharide-binding protein (LBP), and a cytokine up-regulator and mediator, leptin. Results Based on weight and metabolic status, the 86 Chinese children (ages 5–15 years) were divided into three groups: metabolically healthy obese (MHO, n = 42), metabolic unhealthy obese (MUO, n = 23), and healthy normal weight controls (Con, n = 21). In the MUO subjects, the phylum Tenericutes, as well as the alpha and beta diversity, were significantly reduced compared with the controls. Furthermore, Phylum Synergistetes and genus Bacteroides were more prevalent in the MHO population compared with controls. For the MHO group, Spearman’s correlation analysis revealed that serum IL-6 positively correlated with genus Paraprevotella, LBP was positively correlated with genus Roseburia and Faecalibacterium, and negatively correlated with genus Lactobacillus, and leptin correlated positively with genus Phascolarctobacterium and negatively with genus Dialister (all p < 0.05). Conclusion Although there are distinct differences in the characteristic gut microbiota of the MUO population versus MHO, dysbiosis of gut microsystem is already extant in the MHO cohort. The abundance of some metabolism-related bacteria associates with the degree of circulating inflammatory compounds, suggesting that dysbiosis of gut microbiota, present in the MHO children, conceivably serves as a compensatory or remedial response to a surfeit of nutrients. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01548-9.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China.
| | - Kenneth L McCormick
- Division of Pediatric Endocrinology and Diabetes, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ying Zhang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiangquan Lin
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiaohong Yang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
131
|
Rocchetti MT, Di Iorio BR, Vacca M, Cosola C, Marzocco S, di Bari I, Calabrese FM, Ciarcia R, De Angelis M, Gesualdo L. Ketoanalogs' Effects on Intestinal Microbiota Modulation and Uremic Toxins Serum Levels in Chronic Kidney Disease (Medika2 Study). J Clin Med 2021; 10:jcm10040840. [PMID: 33670711 PMCID: PMC7922022 DOI: 10.3390/jcm10040840] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Nutritional therapy (NT) is a therapeutic option in the conservative treatment of chronic kidney disease (CKD) patients to delay the start of dialysis. The aim of this study was to evaluate the specific effect of ketoanalogs (KA)-supplemented diets for gut microbiota modulation. In a previous study we observed that the Mediterranean diet (MD) and a KA-supplemented very-low-protein diet (VLPD) modulated beneficially gut microbiota, reducing indoxyl- and p-cresyl-sulfate (IS, PCS) serum levels, and ameliorating the intestinal permeability in CKD patients. In the current study, we added a third diet regimen consisting of KA-supplemented MD. Forty-three patients with CKD grades 3B–4 continuing the crossover clinical trial were assigned to six months of KA-supplemented MD (MD + KA). Compared to MD, KA-supplementation in MD + KA determined (i) a decrease of Clostridiaceae, Methanobacteriaceae, Prevotellaceae, and Lactobacillaceae while Bacteroidaceae and Lachnospiraceae increased; (ii) a reduction of total and free IS and PCS compared to a free diet (FD)—more than the MD, but not as effectively as the VLPD. These results further clarify the driving role of urea levels in regulating gut integrity status and demonstrating that the reduction of azotemia produced by KA-supplemented VLPD was more effective than KA-supplemented MD in gut microbiota modulation mainly due to the effect of the drastic reduction of protein intake rather than the effect of KA.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, “AldoMoro” University, 70124 Bari, Italy; (C.C.); (I.d.B.); (L.G.)
- Correspondence:
| | | | - Mirco Vacca
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Via G. Amendola 165/a, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Carmela Cosola
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, “AldoMoro” University, 70124 Bari, Italy; (C.C.); (I.d.B.); (L.G.)
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, “AldoMoro” University, 70124 Bari, Italy; (C.C.); (I.d.B.); (L.G.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Via G. Amendola 165/a, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, Faculty of Veterinary, University of Naples, 80138 Naples, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Via G. Amendola 165/a, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, “AldoMoro” University, 70124 Bari, Italy; (C.C.); (I.d.B.); (L.G.)
| |
Collapse
|
132
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
133
|
Role of pectin in the current trends towards low-glycaemic food consumption. Food Res Int 2021; 140:109851. [DOI: 10.1016/j.foodres.2020.109851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
|
134
|
Spatz M, Ciocan D, Merlen G, Rainteau D, Humbert L, Gomes-Rochette N, Hugot C, Trainel N, Mercier-Nomé F, Domenichini S, Puchois V, Wrzosek L, Ferrere G, Tordjmann T, Perlemuter G, Cassard AM. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis. JHEP Rep 2021; 3:100230. [PMID: 33665587 PMCID: PMC7903352 DOI: 10.1016/j.jhepr.2021.100230] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice. Methods We used TGR5-deficient (TGR5-KO) and wild-type (WT) female mice, fed alcohol or not, to study the involvement of liver macrophages, the intestinal microbiota (16S sequencing), and bile-acid profiles (high-performance liquid chromatography coupled to tandem mass spectrometry). Hepatic triglyceride accumulation and inflammatory processes were assessed in parallel. Results TGR5 deficiency worsened liver injury, as shown by greater steatosis and inflammation than in WT mice. Isolation of liver macrophages from WT and TGR5-KO alcohol-fed mice showed that TGR5 deficiency did not increase the pro-inflammatory phenotype of liver macrophages but increased their recruitment to the liver. TGR5 deficiency induced dysbiosis, independently of alcohol intake, and transplantation of the TGR5-KO intestinal microbiota to WT mice was sufficient to worsen alcohol-induced liver inflammation. Secondary bile-acid levels were markedly lower in alcohol-fed TGR5-KO than normally fed WT and TGR5-KO mice. Consistent with these results, predictive analysis showed the abundance of bacterial genes involved in bile-acid transformation to be lower in alcohol-fed TGR5-KO than WT mice. This altered bile-acid profile may explain, in particular, why bile-acid synthesis was not repressed and inflammatory processes were exacerbated. Conclusions A lack of TGR5 was associated with worsening of alcohol-induced liver injury, a phenotype mainly related to intestinal microbiota dysbiosis and an altered bile-acid profile, following the consumption of alcohol. Lay summary Excessive chronic alcohol intake can induce liver disease. Bile acids are molecules produced by the liver and can modulate disease severity. We addressed the specific role of TGR5, a bile-acid receptor. We found that TGR5 deficiency worsened alcohol-induced liver injury and induced both intestinal microbiota dysbiosis and bile-acid pool remodelling. Our data suggest that both the intestinal microbiota and TGR5 may be targeted in the context of human alcohol-induced liver injury.
Collapse
Key Words
- ALD, alcohol-related liver diseases
- ALT, alanine aminotransferase
- Alc, alcohol
- Alcoholic liver disease
- BA, bile acids
- BHI, brain heart infusion
- Bile acid
- C57, conventional mice
- C57C57, conventional mice transplanted with their own IM
- CA, cholic acid
- CCL, CC motif chemokine ligands
- CDCA, chenodeoxycholic acid
- Col1a1, collagen type-I alpha-1 chain
- DCA, deoxycholic acid
- Dysbiosis
- FDR, false-discovery rate
- FXR, farnesoid X receptor
- Gut-liver axis
- IM, intestinal microbiota
- Inflammation
- KC, Kupffer cells
- KO, knockout
- Kupffer cells
- LCA, lithocholic acid
- LDA, linear discriminative analysis
- LEfsE, LDA effect size
- MCA, muricholic acid
- MO, monocytes/macrophages
- Microbiome
- NFkB, nuclear factor-kappa B
- OTU, operational taxonomic unit
- PCA, principal component analysis
- PCoA, principal coordinate analysis
- PICRUSt, phylogenetic investigation of communities by reconstruction of unobserved states
- RIN, RNA integrity number
- TBA, total bile acids
- TG, triglycerides
- TGF, transforming growth factor
- TIMP1, tissue inhibitor of metalloproteinase 1
- TNF, tumour necrosis factor
- UDCA, ursodeoxycholic acid
- WT, wild-type
- WTKO, WT mice transplanted with the IM of TGR5-KO mice
- alpha-SMA, alpha-smooth muscle actin
- mMMP9, matrix metallopeptidase 9
Collapse
Affiliation(s)
- Madeleine Spatz
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Dragos Ciocan
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | | | - Dominique Rainteau
- UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France.,Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France.,Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Neuza Gomes-Rochette
- UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France.,Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Cindy Hugot
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Nicolas Trainel
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, INSERM, CNRS, Institut Paris Saclay d'Innovation Thérapeutique, Châtenay-Malabry, France
| | - Séverine Domenichini
- Université Paris-Saclay, INSERM, CNRS, Institut Paris Saclay d'Innovation Thérapeutique, Châtenay-Malabry, France
| | - Virginie Puchois
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Laura Wrzosek
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Gladys Ferrere
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | | | - Gabriel Perlemuter
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Anne-Marie Cassard
- Université Paris-Saclay, INSERM U996, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| |
Collapse
|
135
|
De Santis S, Liso M, Vacca M, Verna G, Cavalcanti E, Coletta S, Calabrese FM, Eri R, Lippolis A, Armentano R, Mastronardi M, De Angelis M, Chieppa M. Dysbiosis Triggers ACF Development in Genetically Predisposed Subjects. Cancers (Basel) 2021; 13:cancers13020283. [PMID: 33466665 PMCID: PMC7828790 DOI: 10.3390/cancers13020283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide, characterized by a multifactorial etiology including genetics, lifestyle, and environmental factors including microbiota composition. To address the role of microbial modulation in CRC, we used our recently established mouse model (the Winnie-APCMin/+) combining inflammation and genetics. METHODS Gut microbiota profiling was performed on 8-week-old Winnie-APCMin/+ mice and their littermates by 16S rDNA gene amplicon sequencing. Moreover, to study the impact of dysbiosis induced by the mother's genetics in ACF development, the large intestines of APCMin/+ mice born from wild type mice were investigated by histological analysis at 8 weeks. RESULTS ACF development in 8-week-old Winnie-APCMin/+ mice was triggered by dysbiosis. Specifically, the onset of ACF in genetically predisposed mice may result from dysbiotic signatures in the gastrointestinal tract of the breeders. Additionally, fecal transplant from Winnie donors to APCMin/+ hosts leads to an increased rate of ACF development. CONCLUSIONS The characterization of microbiota profiling supporting CRC development in genetically predisposed mice could help to design therapeutic strategies to prevent dysbiosis. The application of these strategies in mothers during pregnancy and lactation could also reduce the CRC risk in the offspring.
Collapse
Affiliation(s)
- Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Marina Liso
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Elisabetta Cavalcanti
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Sergio Coletta
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Antonio Lippolis
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Raffaele Armentano
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Mauro Mastronardi
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
- Correspondence: (M.D.A.); (M.C.); Tel.: +39-080-544-2949 (M.D.A.); +39-080-499-4628 (M.C.)
| | - Marcello Chieppa
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
- Correspondence: (M.D.A.); (M.C.); Tel.: +39-080-544-2949 (M.D.A.); +39-080-499-4628 (M.C.)
| |
Collapse
|
136
|
Vahidi MF, Gharechahi J, Behmanesh M, Ding XZ, Han JL, Hosseini Salekdeh G. Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen. PeerJ 2021; 9:e10463. [PMID: 33510967 PMCID: PMC7808268 DOI: 10.7717/peerj.10463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/10/2020] [Indexed: 01/13/2023] Open
Abstract
Background The rumen microbiota contributes strongly to the degradation of ingested plant materials. There is limited knowledge about the diversity of taxa involved in the breakdown of lignocellulosic biomasses with varying chemical compositions in the rumen. Method We aimed to assess how and to what extent the physicochemical properties of forages influence the colonization and digestion by rumen microbiota. This was achieved by placing nylon bags filled with candidate materials in the rumen of fistulated sheep for a period of up to 96 h, followed by measuring forage's chemical characteristics and community structure of biofilm-embedded microbiota. Results Rumen degradation for all forages appeared to have occurred mainly during the first 24 h of their incubation, which significantly slowed down after 48 h of rumen incubation, depending on their chemical properties. Random Forest analysis predicted the predominant role of Treponema and Butyrivibrio in shaping microbial diversity attached to the forages during the course of rumen incubation. Exploring community structure and composition of fiber-attached microbiota revealed significant differential colonization rates of forages depending on their contents for NDF and cellulose. The correlation analysis highlighted the significant contribution of Lachnospiraceae and Veillonellaceae to fiber degradation in the sheep rumen. Conclusion Our findings suggested that forage cellulose components are critical in shaping the pattern of microbial colonization and thus their final digestibility in the rumen.
Collapse
Affiliation(s)
- Mohammad Farhad Vahidi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China, Institute of Animal Science, Beijing, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| |
Collapse
|
137
|
Novel Organic Mineral Complex Prevents High-Fat Diet-Induced Changes in the Gut and Liver of Male Sprague-Dawley Rats. J Nutr Metab 2021; 2020:8846401. [PMID: 33414960 PMCID: PMC7768589 DOI: 10.1155/2020/8846401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Diet-induced obesity and metabolic syndrome are associated with the onset of gastrointestinal diseases, such as hepatic steatosis and gut inflammation. Prior research shows that a proprietary soil-derived organic mineral complex (OMC) prevents hyperglycemia, endotoxemia, and liver injury in rats fed a high-fat diet (HFD) for 10 weeks. The aim of this study was to further examine the effects of OMC on the liver and gastrointestinal health of these rats. Six-week-old male Sprague-Dawley rats (n = 36) were divided into two dietary groups: Chow or HFD fed for 10 weeks. Animals were further divided (n = 6/group) and administered 0, 0.6, or 3.0 mg/mL OMC in their drinking water. The 10-week HFD resulted in significant liver fat accumulation. Both OMC doses prevented hepatic increases in the glycation end product Nε-(carboxymethyl)lysine (CML) induced by HFD (p < 0.05). Low-dose OMC was associated with higher expression of occludin in the small intestine of rats fed either diet (two-way ANOVA, p < 0.042). Linear discriminant analysis (LDA) effect size (LEfSe) indicated significant differences in fecal microbial composition of untreated HFD-fed rats in comparison to untreated Chow rats at 10 weeks (LDA score > 2.0 : 18). After 10 weeks, untreated HFD-fed rats were also more abundant in bacteria associated with obesity and metabolic disease in comparison to corresponding week 0 samples (LDA score > 2.0 : 31), 10-week untreated Chow (LDA > 2.0 : 18), or 10-week OMC-treated HFD-fed rats (0.6 mg/mL; LDA > 2.0 : 80, 3.0 mg/mL; LDA > 2.0 : 8). Low-dose OMC prevented the HFD-induced increase in the Firmicutes-to-Bacteroidetes (F/B) ratio (p < 0.0416). Study animals treated with OMC exhibited no significant changes in the gut microbiota at week 10, although gut inflammatory biomarkers were not significantly altered by diet or OMC treatment. These results indicate that OMC supplementation ameliorates glycosylation reactions and modifies HFD-induced alterations in the intestinal microbiota.
Collapse
|
138
|
Shi Z, Fang ZY, Gao XX, Yu H, Zhu YW, Ouyang HL, Song YX, Du XL, Wang Z, Li XW, Liu GW. Nuciferine improves high-fat diet-induced obesity via reducing intestinal permeability by increasing autophagy and remodeling the gut microbiota. Food Funct 2021; 12:5850-5861. [PMID: 34018523 DOI: 10.1039/d1fo00367d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nuciferine (NF) has received extensive attention due to its medicinal value in the treatment of metabolic diseases, such as obesity; however, to date, the effects of NF on obesity-related intestinal permeability, autophagy and the gut microbiota have not been investigated. Herein, C57BL/6J mice were fed either a chow or a high-fat diet (HFD) with or without NF for 8 weeks. The results showed that NF supplement reduced weight gain, fat accumulation and intestinal permeability in the HFD mice accompanied by improved autophagy. Subsequently, an in vitro experiment was performed using Caco-2 and HT-29 cells, which showed that NF supplement not only promoted the formation of autophagosomes and autophagolysosomes, but also alleviated LPS-increased intestinal permeability. Importantly, NF supplement protected from LPS-induced paracellular permeability impairment after the administration of autophagy-related gene (Atg) 5 small-interfering RNA (siRNA). These results demonstrate that NF exerts beneficial effects on the intestinal permeability by improving autophagy. Furthermore, we also found that NF supplement lowered the abundance of Butyricimonas and increased the abundance of Akkermansia, an anti-obesity bacterium. Thus, overall, we demonstrated that NF supplement confers reduced intestinal permeability by improving autophagy and alters the composition of the gut microbiota in HFD-fed mice, thereby producing an anti-obesity effect.
Collapse
Affiliation(s)
- Zhen Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Zhi-Yuan Fang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Xin-Xing Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Hao Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Yi-Wei Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Hui-Lin Ouyang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Yu-Xiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Xi-Liang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Xin-Wei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| | - Guo-Wen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China.
| |
Collapse
|
139
|
Toubal A, Lehuen A. Role of MAIT cells in metabolic diseases. Mol Immunol 2020; 130:142-147. [PMID: 33358570 DOI: 10.1016/j.molimm.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
MAIT cells are innate-like T cells that are enriched in mucosal sites and tissues including adipose tissue and liver. They play an important role in immunity against microbial pathogens. Recently, it has been reported that MAIT cells could also be important in metabolic diseases and can be involved in setting up and maintaining chronic inflammation. In this review, we give an overview of recent advances in understanding MAIT cells role in the ethology of this diseases.
Collapse
Affiliation(s)
- Amine Toubal
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.
| |
Collapse
|
140
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
141
|
|
142
|
Yang Z, Zhang C, Wang J, Celi P, Ding X, Bai S, Zeng Q, Mao X, Zhuo Y, Xu S, Yan H, Zhang K, Shan Z. Characterization of the Intestinal Microbiota of Broiler Breeders With Different Egg Laying Rate. Front Vet Sci 2020; 7:599337. [PMID: 33330722 PMCID: PMC7732610 DOI: 10.3389/fvets.2020.599337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 11/24/2022] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in maintaining animal health, immunity and reproductive performances. However, literature about the relationship between microbiota and reproductive performance is limited. The aim of the present study was to determine differences in the intestinal microbiota of broiler breeders with different egg laying rate. A total of 200 AA+ parent broiler breeders (41-week-old) were separated into two groups according to their different egg laying rate [average egg laying rate group (AR: 78.57 ± 0.20%) and high egg laying rate group (HR: 90.79 ± 0.43%). Feed conversion ratio (FCR), ovary cell apoptosis rate (ApoCR) and relative abdominal fat weight were lower (p = 0.01), while the hatchability rate of qualified egg was higher (p = 0.04) in HR group than that in AR group. Phascolarctobacterium abundance were lower (p = 0.012) in ileum of HR birds. Romboutsia (genus) in ileum was negatively related to the feed efficiency (r = -0.58, p < 0.05), Firmicutes (phylum) and Lactobacillus (genus) abundances in cecum were positively related to the egg laying rate (ELR) (r = 0.35 and 0.48, p < 0.05), feed efficiency (r = 0.42 and 0.43, p < 0.05), while Spirochaetes (phylum) and Sphaerochaeta (genus) abundances in cecum were negatively related to the ELR (r = -0.43 and -0.70, p < 0.05), feed efficiency (r = 0.54 and 0.48, p < 0.05), and positively related to ApoCR (r = 0.46 and 0.47, p < 0.05). Our results suggested that microbiota, such as Firmicutes (phylum) and Lactobacillus (genus) have positive relationship, while Spirochaetes (phylum) and Romboutsia (genus) abundances exert negative relationship with broiler breeders' reproductive performances.
Collapse
Affiliation(s)
- Zengqiao Yang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er City, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er City, China
| |
Collapse
|
143
|
Effects of Acupuncture Treatment in Reducing Sleep Disorder and Gut Microbiota Alterations in PCPA-Induced Insomnia Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3626120. [PMID: 33178314 PMCID: PMC7647758 DOI: 10.1155/2020/3626120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/07/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Chronic insomnia without intervention will do harm to people's physical and psychological health as well as the quality of life. While ensuring efficacy, traditional Chinese medicine therapy, such as acupuncture, overcomes the side effects of drugs. However, the molecular mechanism of traditional medicine is unclear and it encounters many obstacles in repetitiveness and popularization. On the other side, the placebo effects also need to be eliminated during the intervention. In this study, a number of indicators such as duration of sleep latency, serum markers, pineal gland immunohistochemistry, and gut microbes were detected in the PCPA-induced insomnia mice to compare the effects between acupuncture and hypnotic drug treatments. Although the food intake and weight were not changed, the results show that serum maker and gut microbiota alterations were mediated by concurrent changes in sleep disorder induced by PCPA in mice. Compared with the PCPA-induced insomnia group, dopamine, 5-hydroxytryptamine, and norepinephrine were reduced in serum, and the melatonin was increased in the pineal gland of the acupuncture group as well as zopiclone drug group. Moreover, the analysis results from 16S tag sequencing of the gut microbiome bacterial rRNA hypervariable region show the same improvement effects between the two medical intervention groups. A co-occurrence network analysis showed that blank and acupuncture networks exhibited higher similarity than sham and zopiclone networks and the sham network possessed the highest complexity of microbial communities. Taken together, the gut microbiome will likely be a new target for improving sleep disorders, and taking into account the side effects of hypnotic drugs, nonpharmacological interventions such as acupuncture may be an effective means and have greater clinical benefits.
Collapse
|
144
|
Jena PK, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y, Maezawa I, Jin LW, Wan YJY. Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res 2020; 8:59. [PMID: 33292701 PMCID: PMC7648397 DOI: 10.1186/s40364-020-00239-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic consumption of high sugar and high fat diet associated with liver inflammation and cognitive decline. This paper tests a hypothesis that the development and resolution of diet-induced nonalcoholic fatty liver disease (NAFLD) has an impact on neuroplasticity and cognition. METHODS C57BL/6 wild-type mice were fed with either a healthy control diet (CD) or a fructose, palmitate, and cholesterol (FPC)-enriched diet since weaning. When mice were 3-months old, FPC diet-fed mice were randomly assigned to receive either FPC-enriched diet with or without 6% inulin supplementation. At 8 months of age, all three groups of mice were euthanized followed by analysis of inflammatory signaling in the liver and brain, gut microbiota, and cecal metabolites. RESULTS Our data showed that FPC diet intake induced hepatic steatosis and inflammation in the liver and brain along with elevated RORγ and IL-17A signaling. Accompanied by microglia activation and reduced hippocampal long-term potentiation, FPC diet intake also reduced postsynaptic density-95 and brain derived neurotrophic factor, whereas inulin supplementation prevented diet-reduced neuroplasticity and the development of NAFLD. In the gut, FPC diet increased Coriobacteriaceae and Erysipelotrichaceae, which are implicated in cholesterol metabolism, and the genus Allobaculum, and inulin supplementation reduced them. Furthermore, FPC diet reduced FXR and TGR5 signaling, and inulin supplementation reversed these changes. Untargeted cecal metabolomics profiling uncovered 273 metabolites, and 104 had significant changes due to FPC diet intake or inulin supplementation. Among the top 10 most affected metabolites, FPC-fed mice had marked increase of zymosterol, a cholesterol biosynthesis metabolite, and reduced 2,8-dihydroxyquinoline, which has known benefits in reducing glucose intolerance; these changes were reversible by inulin supplementation. Additionally, the abundance of Barnesiella, Coprobacter, Clostridium XIVa, and Butyrivibrio were negatively correlated with FPC diet intake and the concentration of cecal zymosterol but positively associated with inulin supplementation, suggesting their benefits. CONCLUSION Taken together, the presented data suggest that diet alters the gut microbiota and their metabolites, including bile acids. This will subsequently affect IL-17A signaling, resulting in systemic impacts on both hepatic metabolism and cognitive function.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Michelle Nguyen
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yongchun Li
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Infectious Diseases, Nanhai Hospital, Southern Medical University, Foshan, 528200, China
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
145
|
Song J, Zhang J, Su Y, Zhang X, Li J, Tu L, Yu J, Zheng Y, Wang M. Monascus vinegar-mediated alternation of gut microbiota and its correlation with lipid metabolism and inflammation in hyperlipidemic rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
146
|
Ahmad MI, Ijaz MU, Hussain M, Haq IU, Zhao D, Li C. High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11710-11725. [PMID: 33034193 DOI: 10.1021/acs.jafc.0c02570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The responses of gut microbiota to dietary proteins have been studied previously. However, the effects of dietary proteins supplemented with a high-fat diet (HFD) on the metabolite biomarkers associated with non-alcoholic fatty liver disease (NAFLD) are not well understood. To understand the underlying mechanisms, C57BL/6J mice were fed with either a low-fat diet with casein (LFC) or an HFD with casein (HFC), fish (HFF), or mutton proteins (HFM), and their cecal microbiota and liver metabolites were analyzed. At the phylum level, the HFD group had a relatively higher abundance of Firmicutes compared to the LFC-diet group. At the genus level, the HFF-diet group had the highest abundance of Lactobacillus and Akkermansia compared to the HFC- and HFM-diet groups. Furthermore, mice fed with the HFF diet had significantly reduced levels of hepatic metabolites involved in oxidative stress and bile acid metabolism. Thus, meat proteins in HFD interact in the host to create distinct responses in the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ijaz Ul Haq
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
147
|
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol 2020; 11:571731. [PMID: 33178196 PMCID: PMC7596417 DOI: 10.3389/fimmu.2020.571731] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been linked to the development of obesity and type 2 diabetes (T2D). The underlying mechanisms as to how intestinal microbiota may contribute to T2D are only partly understood. It becomes progressively clear that T2D is characterized by a chronic state of low-grade inflammation, which has been linked to the development of insulin resistance. Here, we review the current evidence that intestinal microbiota, and the metabolites they produce, could drive the development of insulin resistance in obesity and T2D, possibly by initiating an inflammatory response. First, we will summarize major findings about immunological and gut microbial changes in these metabolic diseases. Next, we will give a detailed view on how gut microbial changes have been implicated in low-grade inflammation. Lastly, we will critically discuss clinical studies that focus on the interaction between gut microbiota and the immune system in metabolic disease. Overall, there is strong evidence that the tripartite interaction between gut microbiota, host immune system and metabolism is a critical partaker in the pathophysiology of obesity and T2D.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, BC, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
148
|
Yin T, Bayanjargal S, Fang B, Inaba C, Mutoh M, Kawahara T, Tanaka S, Watanabe J. Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. attenuates visceral fat accumulation induced by high-fat diet in mice. Benef Microbes 2020; 11:655-667. [PMID: 33045842 DOI: 10.3920/bm2020.0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lactobacillus plantarum Shinshu N-07 (N07) and Lactobacillus curvatus #4G2 (#4G2) were isolated from fermented Brassica rapa L. and selected as promising probiotics with anti-adiposity activities based on in vitro assays. The anti-adiposity effects of these two strains were investigated using a diet-induced obesity animal model. Epididymal adipose tissue weight and adipocyte area were significantly lower and serum triglycerides and glucose tended to be lower in mice fed the high-fat diet supplemented with N07 compared with those fed the unsupplemented high-fat diet. Strain N07 suppressed hepatic steatosis, with accompanying downregulation of lipogenic genes in the liver. Expression of inflammatory cytokines and macrophage infiltration markers tended to be suppressed by N07 supplementation. Upregulation of uncoupling protein-1 in epididymal adipose tissue by N07 suggested that the transformation of white adipose tissue to brown might have been induced. Intestinal microbiota analysis revealed that a decrease in abundance of family S24-7 (phylum Bacteroidetes) following ingestion of the high-fat diet was partly recovered by supplementation with N07. Changes in those parameters were not observed in mice fed the high-fat diet supplemented with strain #4G2, suggesting strain specificities. Thus, N07 is a potential probiotic strain that could be used to develop functional foods that attenuate visceral fat accumulation after an appropriate human intervention trial.
Collapse
Affiliation(s)
- T Yin
- Food Research Institute, National Agriculture and Food Research Organization, 305-8642 Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - S Bayanjargal
- Food Research Institute, National Agriculture and Food Research Organization, 305-8642 Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - B Fang
- Food Research Institute, National Agriculture and Food Research Organization, 305-8642 Tsukuba, Japan
| | - C Inaba
- Academic Assembly (Institute of Agriculture), Shinshu University, 399-4598 Minamiminowa, Japan
| | - M Mutoh
- Epidemiology and Prevention Division, National Cancer Center, 104-0045 Tokyo, Japan
| | - T Kawahara
- Academic Assembly (Institute of Agriculture), Shinshu University, 399-4598 Minamiminowa, Japan
| | - S Tanaka
- Academic Assembly (Institute of Agriculture), Shinshu University, 399-4598 Minamiminowa, Japan
| | - J Watanabe
- Food Research Institute, National Agriculture and Food Research Organization, 305-8642 Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, 305-8577 Tsukuba, Japan.,Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, 080-8555 Obihiro, Japan
| |
Collapse
|
149
|
Hases L, Archer A, Indukuri R, Birgersson M, Savva C, Korach-André M, Williams C. High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner. Sci Rep 2020; 10:16160. [PMID: 32999402 PMCID: PMC7527340 DOI: 10.1038/s41598-020-73166-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong association between obesity and colorectal cancer (CRC), especially in men, whereas estrogen protects against both the metabolic syndrome and CRC. Colon is the first organ to respond to high-fat diet (HFD), and estrogen receptor beta (ERβ) can attenuate CRC development. How estrogen impacts the colon under HFD and related sex differences has, however, not been investigated. To dissect this, mice were fed control diet or HFD for 13 weeks and administered receptor-selective estrogenic ligands for the last three weeks. We recorded impact on metabolism, colon crypt proliferation, macrophage infiltration, and the colon transcriptome. We found clear sex differences in the colon transcriptome and in the impact by HFD and estrogens, including on clock genes. ERα-selective activation reduced body weight and generated systemic effects, whereas ERβ-selective activation had local effects in the colon, attenuating HFD-induced macrophage infiltration and epithelial cell proliferation. We here demonstrate how HFD and estrogens modulate the colon microenvironment in a sex- and ER-specific manner.
Collapse
Affiliation(s)
- L Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - A Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - R Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - M Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - C Savva
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Korach-André
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden. .,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
150
|
Seradj AR, Balcells J, Sarri L, Fraile LJ, de la Fuente Oliver G. The Impact of Producing Type and Dietary Crude Protein on Animal Performances and Microbiota Together with Greenhouse Gases Emissions in Growing Pigs. Animals (Basel) 2020; 10:ani10101742. [PMID: 32992920 PMCID: PMC7601936 DOI: 10.3390/ani10101742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary To study the effect of dietary crude protein (CP) restriction in two different pig producing types and the role of gut microbiota, 32 pure castrated male Duroc and 32 entire male hybrid (F2) piglets were raised in a three-phase feeding regime with a restriction in CP content of the diets. The average body weight of hybrid animals were higher compared to Duroc pigs. No changes were found in average daily feed intake (ADFI) of hybrid animals in comparison to Duroc pigs. Hybrid animals apparently digested more CP than Duroc and Duroc pigs emitted more CH4 and ammonia with respect to the hybrids. Dietary protein restriction did not alter emissions of contaminant gases nor microbial community structure in terms of diversity, although some genera were affected by the dietary challenge. Abstract In order to reduce dietary nitrogen and achieve an efficient protein deposition as well as decrease N wastage, we challenged the nutrient utilization efficiency of two different producing types in front of a dietary crude protein (CP) restriction and studied the role of the microbiota in such an adaptation process. Therefore, 32 pure castrated male Duroc (DU) and 32 entire male hybrid (F2) piglets were raised in a three-phase feeding regime. At each phase, two iso caloric diets differing in CP content, also known as normal protein (NP) and low protein (LP), were fed to the animals. LP diets had a fixed restriction (2%) in CP content in regards to NP ones throughout the phases of the experiment. At the end of third phase, fecal samples were collected for microbiota analysis purposes and greenhouse gases emissions, together with ammonia, were tested. No changes were found in average daily feed intake (ADFI) of animals of two producing types (Duroc vs. F2) or those consumed different experimental diets (NP vs. LP) throughout the course of study. However, at the end of each experimental phase the average body weight (BW) of hybrid animals were higher compared to Duroc pigs, whereas a reverse trend was observed for average daily gain (ADG), where Duroc pigs showed greater values with respect to hybrid ones. Despite, greater CH4 and ammonia emissions in Duroc pigs with respect to F2, no significant differences were found in contaminant gases emissions between diets. Moreover, LP diets did not alter the microbial community structure, in terms of diversity, although some genera were affected by the dietary challenge. Results suggest that the impact of reducing 2% of CP content was limited for reduction in contaminant gases emissions and highlight the hypothesis that moderate change in the dietary protein levels can be overcome by long-term adaptation of the gut microbiota. Overall, the influence of the producing type on performance and digestive microbiota composition was more pronounced than the dietary effect. However, both producing types responded differently to CP restriction. The use of fecal microbiota as biomarker for predicting feed efficiency has a great potential that should be completed with robust predictive models to achieve consistent and valid results.
Collapse
|