101
|
Busch F, Haumont C, Penrith ML, Laddomada A, Dietze K, Globig A, Guberti V, Zani L, Depner K. Evidence-Based African Swine Fever Policies: Do We Address Virus and Host Adequately? Front Vet Sci 2021; 8:637487. [PMID: 33842576 PMCID: PMC8024515 DOI: 10.3389/fvets.2021.637487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
African swine fever (ASF) is one of the most threatening diseases for the pig farming sector worldwide. Prevention, control and eradication remain a challenge, especially in the absence of an effective vaccine or cure and despite the relatively low contagiousness of this pathogen in contrast to Classical Swine Fever or Foot and Mouth disease, for example. Usually lethal in pigs and wild boar, this viral transboundary animal disease has the potential to significantly disrupt global trade and threaten food security. This paper outlines the importance of a disease-specific legal framework, based on the latest scientific evidence in order to improve ASF control. It compares the legal basis for ASF control in a number of pig-producing regions globally, considering diverse production systems, taking into account current scientific evidence in relation to ASF spread and control. We argue that blanket policies that do not take into account disease-relevant characteristics of a biological agent, nor the specifics under which the host species are kept, can hamper disease control efforts and may prove disproportionate.
Collapse
Affiliation(s)
- Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Céline Haumont
- National College of Veterinary Medicine, Food Science and Engineering, Oniris, Nantes, France
| | - Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | | | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Vittorio Guberti
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Epidemiology and Ecology Unit, Ozzano Emilia, Italy
| | - Laura Zani
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Klaus Depner
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institute, Greifswald, Germany
| |
Collapse
|
102
|
Mauroy A, Depoorter P, Saegerman C, Cay B, De Regge N, Filippitzi ME, Fischer C, Laitat M, Maes D, Morelle K, Nauwynck H, Simons X, van den Berg T, Van Huffel X, Thiry E, Dewulf J. Semi-quantitative risk assessment by expert elicitation of potential introduction routes of African swine fever from wild reservoir to domestic pig industry and subsequent spread during the Belgian outbreak (2018-2019). Transbound Emerg Dis 2021; 68:2761-2773. [PMID: 33713549 DOI: 10.1111/tbed.14067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022]
Abstract
Since the introduction in Georgia in 2007 of an African swine fever (ASF) genotype 2 virus strain, the virus has rapidly spread to both Western European and Asian countries. It now constitutes a major threat for the global swine industry. The ongoing European transmission cycle has been related to the 'wild boar habitat' with closed transmission events between wild boar populations and incidental spillovers to commercial and non-commercial (backyard) pig holdings. During the epidemic in Belgium, only wild boar were infected and although the introduction route has not yet been elucidated, the 'human factor' is highly suspected. While ASF was successfully contained in a small region in the Southern part of Belgium without affecting domestic pigs, the risk of spillover at the wild/domestic interface remains poorly assessed. In this study, we used a semi-quantitative method, involving national and international experts, to assess the risk associated with different transmission routes for ASF introduction from wild boar to domestic pig holdings and subsequent dissemination between holdings in the Belgian epidemiological context. Qualitative responses obtained by our questionnaire were numerically transformed and statistically processed to provide a semi-quantitative assessment of the occurrence of the hazard and a ranking of all transmission routes. 'Farmer', 'bedding material', 'veterinarian' and 'professionals from the pig sector' were considered as the most important transmission routes for ASF introduction from the wild reservoir to pig holdings. 'Animal movements', 'farmer', 'veterinarian', 'iatrogenic', 'animal transport truck' and 'animal care equipment' were considered as the most important transmission routes posing a risk of ASF spread between pig holdings. Combined with specific biosecurity checks in the holdings, this assessment helps in prioritizing risk mitigation measures against ASF introduction and further spread in the domestic pig industry, particularly while the ASF situation in Western Europe is worsening.
Collapse
Affiliation(s)
- Axel Mauroy
- Staff Direction for Risk Assessment, Directorate General Control Policy, Federal Agency for the Safety of the Food Chain, Bruxelles, Belgium
| | - Pieter Depoorter
- Staff Direction for Risk Assessment, Directorate General Control Policy, Federal Agency for the Safety of the Food Chain, Bruxelles, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal Health (FARAH) Centre, University of Liège, Liège, Belgium
| | - Brigitte Cay
- Service of Enzootic, Vector-Borne and Bee Diseases, Scientific Direction Infectious Diseases in Animals, Sciensano, Brussels, Belgium
| | - Nick De Regge
- Service of Enzootic, Vector-Borne and Bee Diseases, Scientific Direction Infectious Diseases in Animals, Sciensano, Brussels, Belgium
| | - Maria-Eleni Filippitzi
- Veterinary Epidemiology Unit, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Claude Fischer
- Dept. Nature Management, University of Applied Sciences of Western Switzerland, Geneva, Switzerland
| | - Martine Laitat
- Faculty of Veterinary Medicine, Swine Clinic, Clinical Department of Production Animals, University of Liège, Liège, Belgium
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Kevin Morelle
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Prague, Czech Republic.,Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Xavier Simons
- Veterinary Epidemiology Unit, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Xavier Van Huffel
- Staff Direction for Risk Assessment, Directorate General Control Policy, Federal Agency for the Safety of the Food Chain, Bruxelles, Belgium
| | - Etienne Thiry
- Faculty of Veterinary Medicine, Veterinary Virology, FARAH Centre, University of Liège, Liège, Belgium
| | - Jeroen Dewulf
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| |
Collapse
|
103
|
Niederwerder MC. Risk and Mitigation of African Swine Fever Virus in Feed. Animals (Basel) 2021; 11:ani11030792. [PMID: 33803495 PMCID: PMC7998236 DOI: 10.3390/ani11030792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary African swine fever is the most significant disease threat to swine globally, and recent introductions into previously negative countries has heightened the risk for disease spread. Without an effective vaccine or treatment, the primary objective of negative countries is to prevent African swine fever virus infection in pigs. Significant quantities of feed ingredients used for swine diets are traded worldwide and may be imported from countries with African swine fever. If feed ingredients are contaminated with the virus, they can serve as potential routes for the introduction and transmission of African swine fever virus. This review provides information on the risk of African swine fever virus in feed and the mitigation strategies that may help protect the global swine population from introduction and spread through feed. Abstract Since the 2013 introduction of porcine epidemic diarrhea virus into the United States (U.S.), feed and feed ingredients have been recognized as potential routes for the introduction and transmission of foreign animal diseases of swine. Feed ingredients for swine diets are commodities traded worldwide, and the U.S. imports thousands of metric tons of feed ingredients each year from countries with circulating foreign animal diseases. African swine fever (ASF) is the most significant foreign animal disease threat to U.S. swine production, and the recent introduction of ASF into historically negative countries has heightened the risk for further spread. Laboratory investigations have characterized the stability of the ASF virus (ASFV) in feed ingredients subjected to transoceanic shipment conditions, ASFV transmissibility through the natural consumption of plant-based feed, and the mitigation potential of certain feed additives to inactivate ASFV in feed. This review describes the current knowledge of feed as a risk for swine viruses and the opportunities for mitigating the risk to protect U.S. pork production and the global swine population from ASF and other foreign animal diseases.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| |
Collapse
|
104
|
Lee HS, Thakur KK, Pham-Thanh L, Dao TD, Bui AN, Bui VN, Quang HN. A stochastic network-based model to simulate farm-level transmission of African swine fever virus in Vietnam. PLoS One 2021; 16:e0247770. [PMID: 33657173 PMCID: PMC7928462 DOI: 10.1371/journal.pone.0247770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/12/2021] [Indexed: 11/18/2022] Open
Abstract
African swine fever virus is highly contagious, and mortality rates reach up to 100% depending on the host, virus dose, and the transmission routes. The main objective of this study was to develop a network-based simulation model for the farm-level transmission of ASF virus to evaluate the impact of changes in farm connectivity on ASF spread in Vietnam. A hypothetical population of 1,000 pig farms was created and used for the network-based simulation, where each farm represented a node, and the connection between farms represented an edge. The three scenarios modelled in this way (baseline, low, and high) evaluated the impact of connectivity on disease transmission. The median number of infected farms was higher as the connectivity increased (low: 659, baseline: 968 and high: 993). In addition, we evaluated the impact of the culling strategy on the number of infected farms. A total of four scenarios were simulated depending on the timing of culling after a farm was infected. We found that the timing of culling at 16, 12, 8, and 6 weeks had resulted in a reduction of the number of median infected farms by 81.92%, 91.63%, 100%, and 100%, respectively. Finally, our evaluation of the implication of stability of ties between farms indicated that if the farms were to have the same trading partners for at least six months could significantly reduce the median number of infected farms to two (95th percentile: 413) than in the basic model. Our study showed that pig movements among farms had a significant influence on the transmission dynamics of ASF virus. In addition, we found that the either timing of culling, reduction in the number of trading partners each farm had, or decreased mean contact rate during the outbreaks were essential to prevent or stop further outbreaks.
Collapse
Affiliation(s)
- Hu Suk Lee
- International Livestock Research Institute (ILRI), Hanoi, Vietnam
- * E-mail:
| | - Krishna K. Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Long Pham-Thanh
- Epidemiology Division, Department of Animal Health, Hanoi, Vietnam
| | - Tung Duy Dao
- National Institute of Veterinary Research, Hanoi, Vietnam
| | - Anh Ngoc Bui
- National Institute of Veterinary Research, Hanoi, Vietnam
| | | | | |
Collapse
|
105
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Abrahantes JC, Dhollander S, Ivanciu C, Papanikolaou A, Van der Stede Y, Blome S, Guberti V, Loi F, More S, Olsevskis E, Thulke HH, Viltrop A. ASF Exit Strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J 2021; 19:e06419. [PMID: 33717352 PMCID: PMC7926520 DOI: 10.2903/j.efsa.2021.6419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.
Collapse
|
106
|
Schettino DN, Abdrakhmanov SK, Beisembayev KK, Korennoy FI, Sultanov AA, Mukhanbetkaliyev YY, Kadyrov AS, Perez AM. Risk for African Swine Fever Introduction Into Kazakhstan. Front Vet Sci 2021; 8:605910. [PMID: 33644144 PMCID: PMC7904699 DOI: 10.3389/fvets.2021.605910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
African swine fever (ASF) is a disease of swine that is endemic to some African countries and that has rapidly spread since 2007 through many regions of Asia and Europe, becoming endemic in some areas of those continents. Since there is neither vaccine nor treatment for ASF, prevention is an important action to avoid the economic losses that this disease can impose on a country. Although the Republic of Kazakhstan has remained free from the disease, some of its neighbors have become ASF-infected, raising concerns about the potential introduction of the disease into the country. Here, we have identified clusters of districts in Kazakhstan at highest risk for ASF introduction. Questionnaires were administered, and districts were visited to collect and document, for the first time, at the district level, the distribution of swine operations and population in Kazakhstan. A snowball sampling approach was used to identify ASF experts worldwide, and a conjoint analysis model was used to elicit their opinion in relation to the extent at which relevant epidemiological factors influence the risk for ASF introduction into disease-free regions. The resulting model was validated using data from the Russian Federation and Mongolia. Finally, the validated model was used to rank and categorize Kazakhstani districts in terms of the risk for serving as the point of entry for ASF into the country, and clusters of districts at highest risk of introduction were identified using the normal model of the spatial scan statistic. Results here will help to allocate resources for surveillance and prevention activities aimed at early detecting a hypothetical ASF introduction into Kazakhstan, ultimately helping to protect the sanitary status of the country.
Collapse
Affiliation(s)
- Daniella N Schettino
- Department of Veterinary Population Medicine, Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | | | | | - Fedor I Korennoy
- FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), Vladimir, Russia
| | | | | | | | - Andres M Perez
- Department of Veterinary Population Medicine, Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
107
|
Brookes VJ, Barrett TE, Ward MP, Roby JA, Hernandez-Jover M, Cross EM, Donnelly CM, Barnes TS, Wilson CS, Khalfan S. A scoping review of African swine fever virus spread between domestic and free-living pigs. Transbound Emerg Dis 2021; 68:2643-2656. [PMID: 33455062 DOI: 10.1111/tbed.13993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Since 2007, African swine fever virus (ASFV) has spread to countries in Europe, Asia and Oceania and has caused devastating impacts on pigs and the pork industry. Transmission can be direct or indirect, and epidemiologic scenarios have been described in which spread occurs between free-living and domestic pigs. The purpose of this scoping review was to identify primary research in which authors made statements to support ASFV transmission between free-living and domestic pigs and assess the circumstances in which transmission events occurred. A search was conducted in five bibliographic databases and the grey literature. Two reviewers (from a team of ten) independently screened each record and charted data (demographics of the pig populations, their husbandry [domestic pigs] and habitat [free-living pigs], the spatial and temporal distribution of ASF, the occurrence or burden of ASF in the populations, and whether ticks were present in the geographic range of the pig populations). Data synthesis included statistics and a narrative summary. From 1,349 records screened, data were charted from 46 individual studies published from 1985 to 2020. Outbreak investigations revealed that whilst poor biosecurity of domestic pig operations was often reported, direct contact resulting in transmission between free-living and domestic pigs was rarely reported. Studies in which quantitative associations were made generally found that spread within populations was more important than spread between populations, although this was not always the case, particularly when domestic pigs were free-ranging. We conclude that there is limited evidence that transmission of ASFV between free-living and domestic pigs is an important feature of ASF epidemiology, especially in the current ASF epidemic in Europe and the Russian Federation. If ASFV elimination cannot be achieved in free-living pigs, compartmentalization of domestic pig populations from free-living populations via biosecurity strategies could be used to support trade of domestic pigs.
Collapse
Affiliation(s)
- Victoria J Brookes
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Tamille E Barrett
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Justin A Roby
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia.,School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Marta Hernandez-Jover
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Emily M Cross
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Camilla M Donnelly
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Tamsin S Barnes
- The University of Queensland, School of Veterinary Science, Gatton, Qld, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Gatton, Qld, Australia
| | - Cara S Wilson
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Shahid Khalfan
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| |
Collapse
|
108
|
Penrith ML, Bastos A, Chenais E. With or without a Vaccine-A Review of Complementary and Alternative Approaches to Managing African Swine Fever in Resource-Constrained Smallholder Settings. Vaccines (Basel) 2021; 9:vaccines9020116. [PMID: 33540948 PMCID: PMC7913123 DOI: 10.3390/vaccines9020116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
The spectacular recent spread of African swine fever (ASF) in Eastern Europe and Asia has been strongly associated, as it is in the endemic areas in Africa, with free-ranging pig populations and low-biosecurity backyard pig farming. Managing the disease in wild boar populations and in circumstances where the disease in domestic pigs is largely driven by poverty is particularly challenging and may remain so even in the presence of effective vaccines. The only option currently available to prevent ASF is strict biosecurity. Among small-scale pig farmers biosecurity measures are often considered unaffordable or impossible to implement. However, as outbreaks of ASF are also unaffordable, the adoption of basic biosecurity measures is imperative to achieve control and prevent losses. Biosecurity measures can be adapted to fit smallholder contexts, culture and costs. A longer-term approach that could prove valuable particularly for free-ranging pig populations would be exploitation of innate resistance to the virus, which is fully effective in wild African suids and has been observed in some domestic pig populations in areas of prolonged endemicity. We explore available options for preventing ASF in terms of feasibility, practicality and affordability among domestic pig populations that are at greatest risk of exposure to ASF.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
- Correspondence: ; Tel.: +27-12-342-1514
| | - Armanda Bastos
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute, S-751 89 Uppsala, Sweden;
| |
Collapse
|
109
|
Spatiotemporal clustering and Random Forest models to identify risk factors of African swine fever outbreak in Romania in 2018-2019. Sci Rep 2021; 11:2098. [PMID: 33483559 PMCID: PMC7822963 DOI: 10.1038/s41598-021-81329-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
African swine fever (ASF) has affected Romania since July 2017, with considerable economic and social consequences, despite the implementation of control measures mainly based on stamping out of infected pig populations. On the basis of the 2973 cumulative recorded cases up to September 2019 among wild boars and domestic pigs, analysis of the epidemiological characteristics could help to identify the factors favoring the persistence and spread of ASF. A statistical framework, based on a random forest methodology, was therefore developed to assess the spatiotemporal features of the epidemics and their relationships with environmental, human, and agricultural factors. The landscape of Romania was associated with the infection dynamics, particularly concerning forested and wetland areas. Waterways were also identified as a pivotal factor, raising questions about possible waterborne transmission since these waterways are often used as a water supply for backyard holdings. However, human activity was clearly identified as the main risk factor for the spread of ASF. Although the situation in Romania cannot be directly transposed to intensive pig farming countries, the findings of this study highlight the need for strict biosecurity measures on farms, and during transportation, to avoid ASF transmission at large geographic and temporal scales.
Collapse
|
110
|
Pepin KM, Golnar A, Podgórski T. Social structure defines spatial transmission of African swine fever in wild boar. J R Soc Interface 2021; 18:20200761. [PMID: 33468025 DOI: 10.1098/rsif.2020.0761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spatial spread of infectious disease is determined by spatial and social processes such as animal space use and family group structure. Yet, the impacts of social processes on spatial spread remain poorly understood and estimates of spatial transmission kernels (STKs) often exclude social structure. Understanding the impacts of social structure on STKs is important for obtaining robust inferences for policy decisions and optimizing response plans. We fit spatially explicit transmission models with different assumptions about contact structure to African swine fever virus surveillance data from eastern Poland from 2014 to 2015 and evaluated how social structure affected inference of STKs and spatial spread. The model with social structure provided better inference of spatial spread, predicted that approximately 80% of transmission events occurred within family groups, and that transmission was weakly female-biased (other models predicted weakly male-biased transmission). In all models, most transmission events were within 1.5 km, with some rare events at longer distances. Effective reproductive numbers were between 1.1 and 2.5 (maximum values between 4 and 8). Social structure can modify spatial transmission dynamics. Accounting for this additional contact heterogeneity in spatial transmission models could provide more robust inferences of STKs for policy decisions, identify best control targets and improve transparency in model uncertainty.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO 80526, USA
| | - Andrew Golnar
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO 80526, USA
| | - Tomasz Podgórski
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230 Białowieża, Poland.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha 6, Czech Republic
| |
Collapse
|
111
|
Alarcón LV, Allepuz A, Mateu E. Biosecurity in pig farms: a review. Porcine Health Manag 2021; 7:5. [PMID: 33397483 PMCID: PMC7780598 DOI: 10.1186/s40813-020-00181-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
The perception of the importance of animal health and its relationship with biosecurity has increased in recent years with the emergence and re-emergence of several diseases difficult to control. This is particularly evident in the case of pig farming as shown by the recent episodes of African swine fever or porcine epidemic diarrhoea. Moreover, a better biosecurity may help to improve productivity and may contribute to reducing the use of antibiotics. Biosecurity can be defined as the application of measures aimed to reduce the probability of the introduction (external biosecurity) and further spread of pathogens within the farm (internal biosecurity). Thus, the key idea is to avoid transmission, either between farms or within the farm. This implies knowledge of the epidemiology of the diseases to be avoided that is not always available, but since ways of transmission of pathogens are limited to a few, it is possible to implement effective actions even with some gaps in our knowledge on a given disease. For the effective design of a biosecurity program, veterinarians must know how diseases are transmitted, the risks and their importance, which mitigation measures are thought to be more effective and how to evaluate the biosecurity and its improvements. This review provides a source of information on external and internal biosecurity measures that reduce risks in swine production and the relationship between these measures and the epidemiology of the main diseases, as well as a description of some systems available for risk analysis and the assessment of biosecurity. Also, it reviews the factors affecting the successful application of a biosecurity plan in a pig farm.
Collapse
Affiliation(s)
- Laura Valeria Alarcón
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina.
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CreSA-IRTA-UAB), campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CreSA-IRTA-UAB), campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
112
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, De Clercq K, Klement E, Stegeman JA, Gubbins S, Antoniou S, Broglia A, Van der Stede Y, Zancanaro G, Aznar I. Scientific Opinion on the assessment of the control measures of the category A diseases of Animal Health Law: African Swine Fever. EFSA J 2021; 19:e06402. [PMID: 33552298 PMCID: PMC7848183 DOI: 10.2903/j.efsa.2021.6402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for African Swine Fever (ASF). In this opinion, EFSA and the AHAW Panel of experts reviewed the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for ASF are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, several sampling procedures as described in the diagnostic manual for ASF were considered ineffective and a suggestion to exclude, or to substitute with more effective procedures was made. The monitoring period was assessed as non-effective for several scenarios and a longer monitoring period was suggested to ensure detection of potentially infected herds. It was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment, and therefore is considered effective. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to ASF.
Collapse
|
113
|
Computational Analysis of African Swine Fever Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble. Pathogens 2020; 9:pathogens9121078. [PMID: 33371523 PMCID: PMC7767518 DOI: 10.3390/pathogens9121078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus is the etiological agent of African swine fever, a transmissible severe hemorrhagic disease that affects pigs, causing massive economic losses. There is neither a treatment nor a vaccine available, and the only method to control its spread is by extensive culling of pigs. So far, classical vaccine development approaches have not yielded sufficiently good results in terms of concomitant safety and efficacy. Nowadays, thanks to advances in genomic and proteomic techniques, a reverse vaccinology strategy can be explored to design alternative vaccine formulations. In this study, ASFV protein sequences were analyzed using an in-house pipeline based on publicly available immunoinformatic tools to identify epitopes of interest for a prospective vaccine ensemble. These included experimentally validated sequences from the Immune Epitope Database, as well as de novo predicted sequences. Experimentally validated and predicted epitopes were prioritized following a series of criteria that included evolutionary conservation, presence in the virulent and currently circulating variant Georgia 2007/1, and lack of identity to either the pig proteome or putative proteins from pig gut microbiota. Following this strategy, 29 B-cell, 14 CD4+ T-cell and 6 CD8+ T-cell epitopes were selected, which represent a starting point to investigating the protective capacity of ASFV epitope-based vaccines.
Collapse
|
114
|
Analysis of Risk Factors for African Swine Fever in Lombardy to Identify Pig Holdings and Areas Most at Risk of Introduction in Order to Plan Preventive Measures. Pathogens 2020; 9:pathogens9121077. [PMID: 33371505 PMCID: PMC7767520 DOI: 10.3390/pathogens9121077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
In 2019, the area of the European Union (EU) affected by African swine fever (ASF) expanded progressively in a southwestern direction from Baltic and eastern countries. The disease can severely affect and disrupt regional and international trade of pigs and pork products with serious socioeconomic damages to the pig industry. Lombardy is one of the most important European pig producers and the introduction of ASF into the pig population could adversely affect the entire sector. A study was carried out to identify the farms and territories in the region most at risk of ASF introduction to plan preventive measures. The pig holdings were identified through a descriptive analysis of pig movements and Social Network Analysis (SNA), while, for the identification of the most exposed municipalities, an assessment of risk factors was carried out using the ranking of summed scores attributed to the Z-score. From the analysis, it was found that 109 municipalities and 297 pig holdings of the region were potentially more at risk, and these holdings were selected for target surveillance. This information was provided to veterinary authority to target surveillance in pig farms, in order to early detect a possible incursion of ASF and prevent its spread.
Collapse
|
115
|
Mee PT, Wong S, O’Riley KJ, da Conceição F, Bendita da Costa Jong J, Phillips DE, Rodoni BC, Rawlin GT, Lynch SE. Field Verification of an African Swine Fever Virus Loop-Mediated Isothermal Amplification (LAMP) Assay During an Outbreak in Timor-Leste. Viruses 2020; 12:v12121444. [PMID: 33334037 PMCID: PMC7765541 DOI: 10.3390/v12121444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Recent outbreaks of African swine fever virus (ASFV) have seen the movement of this virus into multiple new regions with devastating impact. Many of these outbreaks are occurring in remote, or resource-limited areas, that do not have access to molecular laboratories. Loop-mediated isothermal amplification (LAMP) is a rapid point of care test that can overcome a range of inhibitors. We outline further development of a real-time ASFV LAMP, including field verification during an outbreak in Timor-Leste. To increase field applicability, the extraction step was removed and an internal amplification control (IAC) was implemented. Assay performance was assessed in six different sample matrices and verified for a range of clinical samples. A LAMP detection limit of 400 copies/rxn was determined based on synthetic positive control spikes. A colourmetric LAMP assay was also assessed on serum samples. Comparison of the LAMP assay to a quantitative polymerase chain reaction (qPCR) was performed on clinical ASFV samples, using both serum and oral/rectal swabs, with a substantial level of agreement observed. The further verification of the ASFV LAMP assay, removal of extraction step, implementation of an IAC and the assessment of a range of sample matrix, further support the use of this assay for rapid in-field detection of ASFV.
Collapse
Affiliation(s)
- Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (S.W.); (K.J.O.); (B.C.R.); (G.T.R.); (S.E.L.)
- Correspondence: ; Tel.: +61-390-327-143
| | - Shani Wong
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (S.W.); (K.J.O.); (B.C.R.); (G.T.R.); (S.E.L.)
| | - Kim J. O’Riley
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (S.W.); (K.J.O.); (B.C.R.); (G.T.R.); (S.E.L.)
| | - Felisiano da Conceição
- Ministry of Agriculture and Fisheries, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili 0332, Timor-Leste; (F.d.C.); (J.B.d.C.J.)
| | - Joanita Bendita da Costa Jong
- Ministry of Agriculture and Fisheries, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili 0332, Timor-Leste; (F.d.C.); (J.B.d.C.J.)
| | - Dianne E. Phillips
- Agriculture Victoria, Biosecurity and Agriculture Services, Bairnsdale, VIC 3857, Australia;
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (S.W.); (K.J.O.); (B.C.R.); (G.T.R.); (S.E.L.)
| | - Grant T. Rawlin
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (S.W.); (K.J.O.); (B.C.R.); (G.T.R.); (S.E.L.)
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (S.W.); (K.J.O.); (B.C.R.); (G.T.R.); (S.E.L.)
| |
Collapse
|
116
|
Brown VR, Miller RS, McKee SC, Ernst KH, Didero NM, Maison RM, Grady MJ, Shwiff SA. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: A review of the literature. Transbound Emerg Dis 2020; 68:1910-1965. [PMID: 33176063 DOI: 10.1111/tbed.13919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022]
Abstract
African swine fever (ASF), classical swine fever (CSF) and foot-and-mouth disease (FMD) are considered to be three of the most detrimental animal diseases and are currently foreign to the U.S. Emerging and re-emerging pathogens can have tremendous impacts in terms of livestock morbidity and mortality events, production losses, forced trade restrictions, and costs associated with treatment and control. The United States is the world's top producer of beef for domestic and export use and the world's third-largest producer and consumer of pork and pork products; it has also recently been either the world's largest or second largest exporter of pork and pork products. Understanding the routes of introduction into the United States and the potential economic impact of each pathogen are crucial to (a) allocate resources to prevent routes of introduction that are believed to be more probable, (b) evaluate cost and efficacy of control methods and (c) ensure that protections are enacted to minimize impact to the most vulnerable industries. With two scoping literature reviews, pulled from global data, this study assesses the risk posed by each disease in the event of a viral introduction into the United States and illustrates what is known about the economic costs and losses associated with an outbreak.
Collapse
Affiliation(s)
- Vienna R Brown
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Sophie C McKee
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Karina H Ernst
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Nicole M Didero
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Rachel M Maison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Meredith J Grady
- Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
| | - Stephanie A Shwiff
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| |
Collapse
|
117
|
Abstract
African swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high-pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom;
| | - Karl Stahl
- Department of Disease Control and Epidemiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
| | - Ferran Jori
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, 34398 Montpellier, Cedex 5, France; ,
| | - Laurence Vial
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, 34398 Montpellier, Cedex 5, France; ,
| | - Dirk U Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, PR China;
| |
Collapse
|
118
|
Testing Different Deterrents as Candidates for Short-Term Reduction in Wild Boar Contacts-A Pilot Study. Animals (Basel) 2020; 10:ani10112156. [PMID: 33228134 PMCID: PMC7699385 DOI: 10.3390/ani10112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary African swine fever is an important pig disease currently present in the wild boar population, in particular in parts of Europe, with occasional introductions into domestic pig farms. Lately, the first cases were detected in wild boar in Eastern Germany. The presence of the disease dramatically affects the chances of a country to participate in international trade with pigs and products thereof. Limiting disease spread with the goal of eventual eradication is therefore of paramount importance. Carcasses of wild boar that succumbed to African swine fever represent an important source of infection and support the perpetuation of the infection cycle. Hence, timely removal of carcasses from the environment in infected areas is an important disease control measure but is sometimes difficult due to logistic limitations—e.g., in forests or thickets. Deterring wild boar from carcasses may therefore constitute an interim solution. We aimed at identifying suitable deterrence strategies and found that certain chemical and physical deterrents seem to deter wild boar, to some extent, are easy to apply and may thus contribute to disease control. In depth investigation of the deterrence effect of the promising deterrent candidates identified in this pilot study should be considered. Abstract African swine fever (ASF) is a viral infection of pigs and represents a major threat to animal health and trade. Due to the high tenacity of the causative virus in carcasses of wild boar, contacts of wild boar with infectious carcasses are regarded an important driver of the so-called habitat cycle. The latter is believed to play a major role in maintaining the present ASF situation in wild boar in Europe. Therefore, search campaigns and timely removal and disposal of carcasses are considered important disease control approaches. If timely disposal is not feasible due to logistic reasons, deterrence of wild boar may be a provisionary option. The performance of seven deterrents (physical and chemical) was tested in a forest near Greifswald, Germany. Carcasses as entities of attraction for wild boar were substituted by luring sites. It could be demonstrated in this pilot study that certain physical (LED blinkers, aluminum strips) and chemical (HAGOPUR Wildschwein-Stopp™, Hukinol™) deterrents are capable of reducing the odds of wild boar contacts to one third, but in depth testing of the aforementioned promising deterrent candidates is recommended. A choice of those deterrents identified as suitable, reasonable, and easy to apply should be carried out, when carcass search campaigns are launched in the case of an outbreak of ASF in wild boar.
Collapse
|
119
|
Yamada M, Masujin K, Kameyama KI, Yamazoe R, Kubo T, Iwata K, Tamura A, Hibi H, Shiratori T, Koizumi S, Ohashi K, Ikezawa M, Kokuho T, Yamakawa M. Experimental infection of pigs with different doses of the African swine fever virus Armenia 07 strain by intramuscular injection and direct contact. J Vet Med Sci 2020; 82:1835-1845. [PMID: 33162428 PMCID: PMC7804033 DOI: 10.1292/jvms.20-0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We experimentally infected pigs with the African swine fever virus (ASFV) Armenia 07 strain (genotype II) to analyze the effect of different dose injections on
clinical manifestations, virus-shedding patterns, histopathology, and transmission dynamics by direct contact. Each three pigs and four pigs were injected
intramuscularly with 0.1 fifty percent hemadsorbing doses (HAD50)/ml, 101 HAD50/ml and 106 HAD50/ml of
ASFV Armenia 07 strain, respectively. Each two of three pigs injected with 0.1 HAD50/ml and 101 HAD50/ml died by 10 days post
inoculation. All pigs had a gross lesion of splenomegaly. Perigastric and renal lymph nodes were enlarged and resembled blood clots in nine of ten pigs. It was
revealed that 0.1 HAD50/ml of this ASFV was sufficient to infect healthy pigs by intramuscular injection and caused sub-acute lethal disease. For the
transmission study, two 8-week-old pigs were injected intramuscularly with 103 HAD50/ml of the same virus. Each of the experimentally
inoculated pigs was co-housed with two 8-week-old naive pigs. All contact pigs exhibited clinical manifestations at 6 or 7 days after the experimentally
inoculated pigs developed pyrexia. These findings suggest that this strain may spread slowly within a herd. Histologically, lymph nodes resembled blood clots
were formed by severe blood absorption and followed hemorrhage result of disruption of the lymphoid sinus filling with absorbed red blood cells. The severity of
the gross and histological lesions depended on duration after infection, regardless of the difference of injection doses in this study.
Collapse
Affiliation(s)
- Manabu Yamada
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan.,Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kentaro Masujin
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Ken-Ichiro Kameyama
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Reiko Yamazoe
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Takashi Kubo
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Kei Iwata
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Aiko Tamura
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Hiroyuki Hibi
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Takayoshi Shiratori
- Yamagata Prefectural Chuo Livestock Hygiene Service Center, Yamagata, Yamagata 990-2171, Japan
| | - Shunjiro Koizumi
- Saitama Prefectural Chuo Livestock Hygiene Service Center, Saitama, Saitama 331-0821, Japan
| | - Kousuke Ohashi
- Osaka Livestock Hygiene Service Center, Izumisano, Osaka 598-0048, Japan
| | - Mitsutaka Ikezawa
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Makoto Yamakawa
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| |
Collapse
|
120
|
One year of African swine fever outbreak in China. Acta Trop 2020; 211:105602. [PMID: 32598922 DOI: 10.1016/j.actatropica.2020.105602] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
African swine fever (ASF) is a major threat to domestic pigs and wild boars. Since 2018, ASF outbreaks have been ongoing in China. As of August 3, 2019, a total of 151 ASF clusters of outbreaks reported in China have caused severe economic losses for the industry, the pig farmers and pork producers, due to the lack of an efficacious vaccine. The present study aims to analyze the epidemiologic characteristics of ASF outbreak that occurred in several regions across China during the period August 2018- August 2019. Particular focus was on the epidemic distribution, main transmission routes, incidence/fatality, impact on pig production capacity, and the main preventive measures adopted to mitigate the risk of ASF spread in pig farming systems by Chinese government. Results show that anthropogenic factors, spatial distribution, efficient measures taken by China,and good response timely in implementation of preventive measures are important on the transmission of ASF and these suggest that effective ASF risk management in China will require a comprehensive and integrated approach linking science and implemented by all relevant stakeholders. This provides an empirical basis to optimize current interventions as well as develop new tools and strategies to reduce the risk transmission of African swine fever virus (ASFV) to domestic pigs and wild boars.
Collapse
|
121
|
Fischer M, Hühr J, Blome S, Conraths FJ, Probst C. Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV "Estonia 2014" Isolate. Viruses 2020; 12:E1118. [PMID: 33019736 PMCID: PMC7600355 DOI: 10.3390/v12101118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
Europe is currently experiencing a long-lasting African swine fever (ASF) epidemic, both in domestic pigs and wild boar. There is great concern that carcasses of infected wild boar may act as long-term virus reservoirs in the environment. We evaluated the tenacity of ASF virus (ASFV) in tissues and body fluids from experimentally infected domestic pigs and wild boar, which were stored on different matrices and at different temperatures. Samples were analysed at regular intervals for viral genome and infectious virus. ASFV was most stable in spleen or muscles stored at -20 °C and in blood stored at 4 °C. In bones stored at -20 °C, infectious virus was detected for up to three months, and at 4 °C for up to one month, while at room temperature (RT), no infectious virus could be recovered after one week. Skin stored at -20 °C, 4 °C and RT remained infectious for up to three, six and three months, respectively. In urine and faeces, no infectious virus was recovered after one week, irrespective of the matrix. In conclusion, tissues and organs from decomposing carcasses that persist in the environment for a long time can be a source of infection for several months, especially at low temperatures.
Collapse
Affiliation(s)
- Melina Fischer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.H.); (S.B.); (F.J.C.); (C.P.)
| | | | | | | | | |
Collapse
|
122
|
Zhdanov VP, Jackman JA. Analysis of the initiation of viral infection under flow conditions with applications to transmission in feed. Biosystems 2020; 196:104184. [PMID: 32531420 PMCID: PMC7282798 DOI: 10.1016/j.biosystems.2020.104184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
While kinetic models are widely used to describe viral infection at various levels, most of them are focused on temporal aspects and understanding of corresponding spatio-temporal aspects remains limited. In this work, our attention is focused on the initial stage of infection of immobile cells by virus particles ("virions") under flow conditions with diffusion. A practical example of this scenario occurs when humans or animals consume food from virion-containing sources. Mathematically, such situations can be described by using a model constructed in analogy with those employed in chemical engineering for analysis of the function of a plug-flow reactor with dispersion. As in the temporal case, the corresponding spatio-temporal model predicts either the transition to a steady state or exponential growth of the populations of virions and infected cells. The spatial distributions of these species are similar in both of these regimes. In particular, the maximums of the populations are shifted to the upper boundary of the infected region. The results illustrating these conclusions were obtained analytically and by employing numerical calculations without and with the dependence of the kinetic parameters on the coordinate. The model proposed has also been used in order to illustrate the effect of antiviral feed additives on feedborne infection towards curbing disease transmission.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
123
|
Wang T, Sun Y, Huang S, Qiu HJ. Multifaceted Immune Responses to African Swine Fever Virus: Implications for Vaccine Development. Vet Microbiol 2020; 249:108832. [PMID: 32932135 DOI: 10.1016/j.vetmic.2020.108832] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
African swine fever (ASF) is a highly contagious, often fatal viral disease caused by African swine fever virus (ASFV), leading to high fever, severe hemorrhages with high lethality in domestic pigs and wild boar. In 2007, ASF was reintroduced into Europe. Since then, ASF has spread to many European and Asian countries and now becomes a major concern to the swine industry worldwide. There have been various vaccine attempts, but no commercial ASF vaccines are available so far. A key hurdle in developing a safe and efficacious ASF vaccine is the limited understanding of innate and adaptive immune responses elicited by ASFV infection. Though several promising vaccine candidates have been described, more key scientific challenges remain unsolved. Here, we provide an overview of the current knowledge in innate and adaptive immune responses elicited by ASFV infection and different kinds of vaccine candidates. Additionally, the applications and prospects of vaccine candidates are discussed. Finally, we highlight the implications of these mechanisms for rational design of ASF vaccines.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shujian Huang
- School of Life Engineering, Foshan University, Foshan 528231, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; School of Life Engineering, Foshan University, Foshan 528231, China.
| |
Collapse
|
124
|
Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, Etore F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Saegerman C, Vial L, Bouhsira E. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: Insights from a mechanistic model. Transbound Emerg Dis 2020; 68:1541-1549. [PMID: 32910533 DOI: 10.1111/tbed.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.
Collapse
Affiliation(s)
- Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, France
| | - Mathieu Andraud
- Unité d'Epidémiologie et de Bien-être Animal, Laboratoire de Ploufragan/Plouzané/Niort, Anses, France
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Brussels, Belgium
| | - Marc Desquesnes
- InterTryp, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etore
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Ferran Jori
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | | | | | - Elsa Quillery
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Emilie Bouhsira
- UMR ENVT-INRAE InTheRes, National Veterinary School of Toulouse, Toulouse, France
| |
Collapse
|
125
|
Makita K, Steenbergen E, Haruta L, Hossain S, Nakahara Y, Tamura Y, Watanabe T, Kadowaki H, Asakura S. Quantitative Understanding of the Decision-Making Process for Farm Biosecurity Among Japanese Livestock Farmers Using the KAP-Capacity Framework. Front Vet Sci 2020; 7:614. [PMID: 33062651 PMCID: PMC7517466 DOI: 10.3389/fvets.2020.00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
In a globalized world, the frequency of transboundary livestock infectious diseases is increasing, and strengthening of farm biosecurity is vital to stabilize food production. The aim of this study was to understand the decision-making process for farm biosecurity among Japanese livestock farmers. Postal surveys using structured questionnaires were conducted on beef, dairy, pig, and layer farms in Hokkaido and Saitama Prefectures, which represent the principal production area and peri-urban Tokyo, respectively, as well as randomly selected broiler farms across Japan. The question items included the attributes of farms and owners, disease experiences, related associations and sources of hygiene information, attitude toward hygiene management, and compliance with the Standards of Rearing Hygiene Management (SRHM). The compliance rates were compared between livestock sectors. Univariable analyses were conducted using combined data from both prefectures, with the compliance rate as the outcome variable and the questionnaire items as explanatory variables, in generalized linear models. Exploratory factor analyses were conducted using the variables with p < 0.2 in the univariable analyses. The factors identified were classified into knowledge, attitude, capacity, practice, and structural equation modeling (SEM) was performed. The questionnaires were completed and returned by 97 and 66 beef cattle, 86 and 136 dairy, 67 and 45 pig, 20 and 39 layer farmers in Hokkaido and Saitama Prefectures, respectively, and 95 broiler farms. The compliance rate was significantly higher among broiler farms (88.9%) compared with the other sectors, followed by pig (77.1%), layer (67.2%), dairy (63.8%), and beef (59.1%) farms in Hokkaido Prefecture, and layer (64.9%), pig (60.0%), dairy (58.5%), and beef (57.6%) farms in Saitama Prefecture. Based on SEM, the decision-making process from greater knowledge to higher attitude, and from higher attitude to greater compliance with the SRHM were significant (p < 0.01) in all sectors. Higher capacity was significantly associated with higher knowledge in dairy, pig,break and layer farms (p < 0.01), and with higher compliance in beef, pig, and layer farms (p < 0.05). These results suggest that the provision of targeted hygiene knowledge to livestock farmers and the support to smallholder farms would improve biosecurity through elevated attitudes and self-efficacy.
Collapse
Affiliation(s)
- Kohei Makita
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Elly Steenbergen
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.,Quantitative Veterinary Epidemiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Lisa Haruta
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Saddam Hossain
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.,Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Yuki Nakahara
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuto Tamura
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takuto Watanabe
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hazumu Kadowaki
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Shingo Asakura
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
126
|
Bisimwa PN, Ongus JR, Tiambo CK, Machuka EM, Bisimwa EB, Steinaa L, Pelle R. First detection of African swine fever (ASF) virus genotype X and serogroup 7 in symptomatic pigs in the Democratic Republic of Congo. Virol J 2020; 17:135. [PMID: 32883295 PMCID: PMC7468181 DOI: 10.1186/s12985-020-01398-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND African swine fever (ASF) is a highly contagious and severe hemorrhagic viral disease of domestic pigs. The analysis of variable regions of African swine fever virus (ASFV) genome led to more genotypic and serotypic information about circulating strains. The present study aimed at investigating the genetic diversity of ASFV strains in symptomatic pigs in South Kivu province of the Democratic Republic of Congo (DRC). MATERIALS AND METHODS Blood samples collected from 391 ASF symptomatic domestic pigs in 6 of 8 districts in South Kivu were screened for the presence of ASFV, using a VP73 gene-specific polymerase chain reaction (PCR) with the universal primer set PPA1-PPA2. To genotype the strains, we sequenced and compared the nucleotide sequences of PPA-positive samples at three loci: the C-terminus of B646L gene encoding the p72 protein, the E183L gene encoding the p54 protein, and the central hypervariable region (CVR) of the B602L gene encoding the J9L protein. In addition, to serotype and discriminate between closely related strains, the EP402L (CD2v) gene and the intergenic region between the I73R and I329L genes were analyzed. RESULTS ASFV was confirmed in 26 of 391 pigs tested. However, only 19 and 15 PPA-positive samples, respectively, were successfully sequenced and phylogenetically analyzed for p72 (B646L) and p54 (E183L). All the ASFV studied were of genotype X. The CVR tetrameric repeat clustered the ASFV strains in two subgroups: the Uvira subgroup (10 TRS repeats, AAAABNAABA) and another subgroup from all other strains (8 TRS repeats, AABNAABA). The phylogenetic analysis of the EP402L gene clustered all the strains into CD2v serogroup 7. Analyzing the intergenic region between I73R and I329L genes revealed that the strains were identical but contained a deletion of a 33-nucleotide internal repeat sequence compared to ASFV strain Kenya 1950. CONCLUSION ASFV genotype X and serogroup 7 was identified in the ASF disease outbreaks in South Kivu province of DRC in 2018-2019. This represents the first report of ASFV genotype X in DRC. CVR tetrameric repeat sequences clustered the ASFV strains studied in two subgroups. Our finding emphasizes the need for improved coordination of the control of ASF.
Collapse
Affiliation(s)
- Patrick N. Bisimwa
- Department of Molecular Biology and Biotechnology, Pan African University, Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Animal Science and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Juliette R. Ongus
- Department of Molecular Biology and Biotechnology, Pan African University, Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Christian K. Tiambo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute, Nairobi, Kenya
| | - Eunice M. Machuka
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Espoir B. Bisimwa
- Department of Animal Science and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Lucilla Steinaa
- International Livestock Research Institute, Animal and Human Health, Nairobi, Kenya
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
| |
Collapse
|
127
|
Saegerman C, Bonnet S, Bouhsira E, De Regge N, Fite J, Etoré F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Vergne T, Vial L. An expert opinion assessment of blood-feeding arthropods based on their capacity to transmit African swine fever virus in Metropolitan France. Transbound Emerg Dis 2020; 68:1190-1204. [PMID: 32750188 DOI: 10.1111/tbed.13769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
To deal with the limited literature data on the vectorial capacity of blood-feeding arthropods (BFAs) and their role in the transmission of African swine fever virus (ASFV) in Metropolitan France, a dedicated working group of the French Agency for Food, Environmental and Occupational Health & Safety performed an expert knowledge elicitation. In total, 15 different BFAs were selected as potential vectors by the ad hoc working group involved. Ten criteria were considered to define the vectorial capacity: vectorial competence, current abundance, expected temporal abundance, spatial distribution, longevity, biting rate, active dispersal capacity, trophic preferences for Suidae, probability of contact with domestic pigs and probability of contact with wild boar. Fourteen experts participated to the elicitation. For each BFA, experts proposed a score (between 0 and 3) for each of the above criteria with an index of uncertainty (between 1 and 4). Overall, all experts gave a weight for all criteria (by distributing 100 marbles). A global weighted sum of score per BFA was calculated permitting to rank the different BFAs in decreasing order. Finally, a regression tree analysis was used to group those BFAs with comparable likelihood to play a role in ASF transmission. Out of the ten considered criteria, the experts indicated vectorial competence, abundance and biting rate as the most important criteria. In the context of Metropolitan France, the stable fly (Stomoxys calcitrans) was ranked as the most probable BFA to be a vector of ASFV, followed by lice (Haematopinus suis), mosquitoes (Aedes, Culex and Anopheles), Culicoides and Tabanidea. Since scientific knowledge on their vectorial competence for ASF is scarce and associated uncertainty on expert elicitation moderate to high, more studies are however requested to investigate the potential vector role of these BFAs could have in ASFV spread, starting with Stomoxys calcitrans.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Emilie Bouhsira
- UMR ENVT-INRA IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Bruxelles, Belgium
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etoré
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Ferran Jori
- UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| | - Laetitia Lempereur
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Marie-Frédérique Le Potier
- Unité de Virologie Immunologie Porcines, Laboratoire de Ploufragan/Plouzané/Niort, Anses, Ploufragan, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Timothée Vergne
- UMR ENVT-INRA IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Laurence Vial
- UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| |
Collapse
|
128
|
Rodríguez-Bertos A, Cadenas-Fernández E, Rebollada-Merino A, Porras-González N, Mayoral-Alegre FJ, Barreno L, Kosowska A, Tomé-Sánchez I, Barasona JA, Sánchez-Vizcaíno JM. Clinical Course and Gross Pathological Findings in Wild Boar Infected with a Highly Virulent Strain of African Swine Fever Virus Genotype II. Pathogens 2020; 9:pathogens9090688. [PMID: 32842614 PMCID: PMC7559345 DOI: 10.3390/pathogens9090688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
African swine fever (ASF) is a notifiable disease that in recent years has spread remarkably in Europe and Asia. Eurasian wild boar (Sus scrofa) plays a key role in the maintenance and spread of the pathogen. Here we examined gross pathology of infection in wild boar with a highly virulent, hemadsorbing genotype II ASF virus (ASFV) strain. To this end, six wild boars were intramuscularly inoculated with the 10 HAD50 Arm07 ASFV strain, and 11 wild boars were allowed to come into direct contact with the inoculated animals. No animals survived the infection. Clinical course, gross pathological findings and viral genome quantification by PCR in tissues did not differ between intramuscularly inoculated or contact-infected animals. Postmortem analysis showed enlargement of liver and spleen; serosanguinous effusion in body cavities; and multiple hemorrhages in lungs, endocardium, brain, kidneys, urinary bladder, pancreas, and alimentary system. These results provide detailed insights into the gross pathology of wild boar infected with a highly virulent genotype II ASFV strain. From a didactic point of view, this detailed clinical course and macroscopic description may be essential for early postmortem detection of outbreaks in wild boar in the field and contribute to disease surveillance and prevention efforts.
Collapse
Affiliation(s)
- Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Néstor Porras-González
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Lucía Barreno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irene Tomé-Sánchez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A Barasona
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
129
|
Flannery J, Moore R, Marsella L, Harris K, Ashby M, Rajko-Nenow P, Roberts H, Gubbins S, Batten C. Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products. Foods 2020; 9:E1148. [PMID: 32825271 PMCID: PMC7554881 DOI: 10.3390/foods9091148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is a highly lethal disease of pigs caused by the ASF virus (ASFV), which presents a serious threat to global food security. The movement of contaminated pork products has previously been postulated as contributing to the introduction of ASF into new areas. To evaluate the performance of ASFV detection systems in multi-component pork products, we spiked sausage meat with four different ASFV-containing materials (ASFV cell culture, pork loin, meat juice and bone marrow). DNA was extracted using two manual systems (MagMAX CORE, Qiagen) and one automated (MagMAX CORE) one, and three qPCR assays (VetMAX, King, UPL) were used. The performance of the DNA extraction systems was as follows; automated MagMAX > manual MagMAX > manual Qiagen. The commercial VetMAX qPCR assay yielded significantly lower CT values (p < 0.001), showing greater sensitivity than the World Organization for Animal Health (OIE)-prescribed assays (King, UPL). Detection probability was the highest for matrices contaminated with bone marrow compared with pork loin or meat juice. An estimated minimum sample size of one 1-g sample is sufficient to detect ASFV in a homogenous pork product if bone marrow from infected pigs comprises 1 part in 10,000. We demonstrated that existing ASFV detection systems are appropriate for use in a food-testing capacity, which can provide an additional control measure for ASF.
Collapse
Affiliation(s)
- John Flannery
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Rebecca Moore
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Laura Marsella
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Katie Harris
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Martin Ashby
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Paulina Rajko-Nenow
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Helen Roberts
- Defra, Nobel House, 17 Smith Square, London SW1P 3JR, UK;
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (R.M.); (L.M.); (K.H.); (M.A.); (P.R.-N.); (S.G.); (C.B.)
| |
Collapse
|
130
|
Faverjon C, Meyer A, Howden K, Long K, Peters L, Cameron A. Risk-based early detection system of African Swine Fever using mortality thresholds. Transbound Emerg Dis 2020; 68:1151-1161. [PMID: 32748561 DOI: 10.1111/tbed.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022]
Abstract
African swine fever (ASF) is an infectious disease of swine causing major losses in the swine industry worldwide. Early detection of ASF is challenging because of the wide range of non-specific clinical signs produced and its relatively low contagiousness. Monitoring pig mortality is a promising approach for early detection of ASF, but such approach has been associated with delay in disease detection in large pig farms. The purpose of this study was to compare the effectiveness and suitability of early detection strategies for ASF in large commercial pig farms using mortality monitoring at the pen, room or barn level. The within-barn spread of the disease was modelled including the non-homogeneous probabilities of transmission within pens, between pens and between rooms. The performances of early detection surveillance based on mortality thresholds established for different epidemiological units were compared in terms of sensitivity, time to detection and number of false alarms per year. A barn with a capacity of 3,200 pigs divided into 8 rooms with 10 pens each containing 40 pigs per pen was used as an example. Our results show that using room- or pen-based mortality thresholds provided a time to detection of 8 days post-disease introduction. Similar detection performances could be achieved with barn-level mortality threshold but at the cost of an increased number of pigs to be tested each year. The different scenarios tested also show that barn characteristics such as baseline mortality rate and pen size had a limited impact on the pen-level mortality thresholds required for disease early detection. These results offer strong support for using mortality data for early detection of ASF not only in small pig herds but also in large commercial barns. Furthermore, the mortality thresholds defined in this study might be relevant to a wide range of pig production sites.
Collapse
Affiliation(s)
| | | | - Krista Howden
- One Health Scientific Solutions, Sherwood Park, Canada
| | | | | | | |
Collapse
|
131
|
Shi R, Li Y, Wang C. Stability analysis and optimal control of a fractional-order model for African swine fever. Virus Res 2020; 288:198111. [PMID: 32791169 DOI: 10.1016/j.virusres.2020.198111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
In this paper, a basic fractional-order model is proposed to describe the transmission of African swine fever. Two cases are considered: constant control and optimal control. In the former case, the existence and uniqueness of positive solution is proved firstly; then the basic reproduction number and the sufficient conditions for the stability of two equilibriums are obtained by using the next generation matrix method and Lyapunov LaSalle's invariance principle. In the latter case, optimal control is considered. By using the Hamiltonian function and Pontryagin's maximum principle, the optimal control formula is obtained. In addition, some examples and numerical simulations (based on Adama-Bashforth-Moulton predictor-corrector method) are performed to verify the theoretical results. At last, we present some brief discussion and conclusion.
Collapse
Affiliation(s)
- Ruiqing Shi
- School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.
| | - Yang Li
- School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.
| | - Cuihong Wang
- School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
132
|
Lamberga K, Oļševskis E, Seržants M, Bērziņš A, Viltrop A, Depner K. African Swine Fever in Two Large Commercial Pig Farms in LATVIA-Estimation of the High Risk Period and Virus Spread within the Farm. Vet Sci 2020; 7:vetsci7030105. [PMID: 32784575 PMCID: PMC7559702 DOI: 10.3390/vetsci7030105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) was first detected in Latvia in wild boar at the Eastern border in June 2014. Since then ASF has continued to spread in wild boar populations covering almost whole territory of the country. Sporadic outbreaks occurred at the same time in domestic pig holdings located in wild boar infected areas. Here we present the results of the epidemiological investigation in two large commercial farms. Several parameters were analyzed to determine the high risk period (HRP) and to investigate the ASF virus spread within the farm. Clinical data, mortality rates and laboratory results proved to be good indicators for estimating the HRP. The measures for early disease detection, particularly the enhanced passive surveillance that is targeting dead and sick pigs, were analyzed and discussed. Enhanced passive surveillance proved to be a key element to detect ASF at an early stage. The study also showed that ASF virus might spread slowly within a large farm depending mainly on direct contacts between pigs and the level of internal biosecurity. Findings suggest improvements in outbreak prevention, control measures and may contribute to a better understanding of ASF spreading patterns within large pig herds. Culling of all pigs in large commercial farms could be reconsidered under certain conditions.
Collapse
Affiliation(s)
- Kristīne Lamberga
- Veterinary Surveillance Department, Food and Veterinary Service, Peldu iela 30, LV-1050 Riga, Latvia; (E.O.); (M.S.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Liela iela 2, LV-3001 Jelgava, Latvia;
- Correspondence:
| | - Edvīns Oļševskis
- Veterinary Surveillance Department, Food and Veterinary Service, Peldu iela 30, LV-1050 Riga, Latvia; (E.O.); (M.S.)
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Street 3, LV-1076 Riga, Latvia
| | - Mārtiņš Seržants
- Veterinary Surveillance Department, Food and Veterinary Service, Peldu iela 30, LV-1050 Riga, Latvia; (E.O.); (M.S.)
| | - Aivars Bērziņš
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Liela iela 2, LV-3001 Jelgava, Latvia;
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Street 3, LV-1076 Riga, Latvia
| | - Arvo Viltrop
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr.R.Kreutzwaldi 1, 51006 Tartu, Estonia;
| | - Klaus Depner
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| |
Collapse
|
133
|
Acharya KP, Wilson RT. Pig production is at risk from African Swine Fever (ASF) in Nepal. Transbound Emerg Dis 2020; 67:2269-2270. [PMID: 32643829 DOI: 10.1111/tbed.13720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022]
|
134
|
Blázquez E, Pujols J, Segalés J, Rodríguez F, Crenshaw J, Rodríguez C, Ródenas J, Polo J. Commercial feed containing porcine plasma spiked with African swine fever virus is not infective in pigs when administered for 14 consecutive days. PLoS One 2020; 15:e0235895. [PMID: 32697784 PMCID: PMC7375527 DOI: 10.1371/journal.pone.0235895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to determine if commercially collected liquid porcine plasma contaminated with African swine fever virus (ASFV) and fed for 14 consecutive days would infect pigs. Commercially collected liquid porcine plasma was mixed with the serum from an ASFV experimentally infected pig. To simulate the potential of pigs slaughtered being ASFV viremic but asymptomatic and passing antemortem inspection, the ratio of liquid plasma from healthy animals to serum from an ASFV infected pig used in this study represented 0.4% or 2.0% of the pigs slaughtered being viremic (Studies 1 or 2, respectively). The contaminated liquid plasma was mixed on commercial feed and pigs were fed for 14 consecutive days providing to each pig 104.3 or 105.0 TCID50 ASFV daily (Studies 1 or 2, respectively). Pigs were observed for an additional 5 or 9 days (Studies 1 or 2, respectively). In both experiments, the pigs did not become infected with ASFV during the 14d feeding period or during the subsequent observation period. In these experiments, unprocessed liquid plasma contaminated with ASFV mixed on commercial feed and fed for 14 consecutive days did not infect pigs. From our results we can conclude that the infectious dose of ASFV on feed is much higher than that previously reported, at least with ASFV-spiked raw plasma.
Collapse
Affiliation(s)
- Elena Blázquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Barcelona, Spain
- APC EUROPE S.L.U., Granollers, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- * E-mail:
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | | | | | | | - Javier Polo
- APC EUROPE S.L.U., Granollers, Barcelona, Spain
- APC LLC, Ankeny, Iowa, United States of America
| |
Collapse
|
135
|
De Lorenzi G, Borella L, Alborali GL, Prodanov-Radulović J, Štukelj M, Bellini S. African swine fever: A review of cleaning and disinfection procedures in commercial pig holdings. Res Vet Sci 2020; 132:262-267. [PMID: 32693250 DOI: 10.1016/j.rvsc.2020.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
African swine fever (ASF) is one of the most important diseases in pigs. Since there are no effective vaccines against the virus, farm biosecurity and good farming practices are the only effective tools to prevent the spread of the ASF virus (ASFV) in pig holdings. Hence, an important component of farm biosecurity is the Cleaning and Disinfection (C&D) procedure. Precise indications regarding the ideal disinfectant against ASFV are lacking, but every country has approved and/or authorized a list of biocides effective against ASFV. Lipidic solvents, which destroy the envelope of the virus and commercial disinfectants based on iodine and phenolic compounds are effective in inactivating the ASFV. This review describes the C&D protocol to apply in pig holdings with particular reference to ASFV.
Collapse
Affiliation(s)
- G De Lorenzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - L Borella
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - G L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - J Prodanov-Radulović
- Scientific Veterinary Institute Novi Sad, Rumenacki put 20, 21000 Novi Sad, Serbia.
| | - M Štukelj
- University of Ljubljana, Veterinary Faculty, Gerbiceva ulica 60, 1000 Ljubljana, Slovenia.
| | - S Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| |
Collapse
|
136
|
Danzetta ML, Marenzoni ML, Iannetti S, Tizzani P, Calistri P, Feliziani F. African Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. Front Vet Sci 2020; 7:296. [PMID: 32582778 PMCID: PMC7296109 DOI: 10.3389/fvets.2020.00296] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
Prevention, early detection, prompt reaction, and communication play a crucial role in African swine fever (ASF) control. Appropriate surveillance capable of early detection of the disease in both domestic and wild animals, and the implementation of consolidated contingency plans, are currently considered the best means of controlling this disease. The purpose of this study was to understand the lessons to be learned through the global disease eradication history. To establish which strategies were successful for prevention, control, and eradication of ASF, and which errors should not be repeated, we conducted a systematic review. A query was defined to search for surveillance and control strategies applied by countries worldwide for ASF eradication in the past. Inclusion and exclusion criteria were defined. Decisions on study eligibility and data extraction were performed by two independent reviewers and the differences were resolved by consensus or by a third reviewer. From 1,980 papers, 23 were selected and included in the qualitative analysis. Reports from Belgium, Brazil, Cuba, the Dominican Republic and Haiti, France, mainland Italy, Malta, Portugal, and Spain were included. Despite the economic resources allocated and the efforts made, eradication was possible in only eight countries, between the 50s and 90s in the twentieth century, in different epidemiological and cultural contexts, in some instances within <1 year, and in others in about 40 years. Classical surveillance strategies, such as active and passive surveillance, both at farm and slaughterhouse levels, targeted surveillance, together with conventional biosafety and sanitary measures, led to eradication even in countries in which the tick's epidemiological role was demonstrated. Historical surveillance data analysis indicated that eradication was possible even when technological tools either were not available or were used less than they are currently. This emphasizes that data on surveillance and on animal population are crucial for planning effective surveillance, and targeting proper control and intervention strategies. This paper demonstrates that some strategies applied in the past were effective; these could be implemented and improved to confront the current epidemiological wave. This offers encouragement for the efforts made particularly in Europe during the recent epidemics.
Collapse
Affiliation(s)
- Maria Luisa Danzetta
- National Reference Centre for Veterinary Epidemiology and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, G. Caporale, Teramo, Italy
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Simona Iannetti
- National Reference Centre for Veterinary Epidemiology and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, G. Caporale, Teramo, Italy
| | - Paolo Tizzani
- World Animal Health Information and Analysis Department (WAHIAD), World Organisation for Animal Health, OIE, Paris, France
| | - Paolo Calistri
- National Reference Centre for Veterinary Epidemiology and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, G. Caporale, Teramo, Italy
| | - Francesco Feliziani
- National Reference Laboratory for Swine Fevers, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| |
Collapse
|
137
|
Fischer M, Mohnke M, Probst C, Pikalo J, Conraths FJ, Beer M, Blome S. Stability of African swine fever virus on heat-treated field crops. Transbound Emerg Dis 2020; 67:2318-2323. [PMID: 32460443 DOI: 10.1111/tbed.13650] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022]
Abstract
African swine fever (ASF) is an infectious disease of pigs and represents a massive threat to animal health and the pig industry worldwide. The ASF virus (ASFV) is efficiently transmitted via blood and meat from infected animals and can be highly stable in the environment. There is therefore great concern about the potential role of contaminated raw materials used for feed or bedding in the spread of ASFV. Especially crops and derived products originating from areas with ASF in wild boar and thus with high environmental ASFV contamination may be a risk for virus introduction into domestic pig herds. However, little is known about the stability of ASFV on contaminated crops and possible inactivation methods. In this study, we tested the effect of drying and heat treatment on the inactivation of ASFV on six different types of field crops, namely wheat, barley, rye, triticale, corn, and peas, contaminated with infectious blood. Samples were analysed for the presence of viral DNA and infectious virus after 2 hr drying at room temperature or after drying and 1 hr exposure to moderate heat at a specific temperature between 40°C and 75°C. ASFV genome was detected in all samples by real-time polymerase chain reaction (PCR), including samples that had been dried for 2 hr and incubated for 1 hr at 75°C. On the other hand, no infectious virus could be detected after 2 hr drying using virus isolation in porcine macrophages in combination with the detection of ASFV by the haemadsorption test (HAT). We therefore conclude that the risk of ASFV transmission via contaminated crops is most likely low, if they are incubated for at least 2 hr minimum at room temperature. Nonetheless, to minimize the risk of transmission as much as possible crops from ASF-affected zones should not be used for pig feed.
Collapse
Affiliation(s)
| | | | | | - Jutta Pikalo
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
138
|
Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA. African Swine Fever Virus: An Emerging DNA Arbovirus. Front Vet Sci 2020; 7:215. [PMID: 32478103 PMCID: PMC7237725 DOI: 10.3389/fvets.2020.00215] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is the sole member of the family Asfarviridae, and the only known DNA arbovirus. Since its identification in Kenya in 1921, ASFV has remained endemic in Africa, maintained in a sylvatic cycle between Ornithodoros soft ticks and warthogs (Phacochoerus africanus) which do not develop clinical disease with ASFV infection. However, ASFV causes a devastating and economically significant disease of domestic (Sus scrofa domesticus) and feral (Sus scrofa ferus) swine. There is no ASFV vaccine available, and current control measures consist of strict animal quarantine and culling procedures. The virus is highly stable and easily spreads by infected swine, contaminated pork products and fomites, or via transmission by the Ornithodoros vector. Competent Ornithodoros argasid soft tick vectors are known to exist not only in Africa, but also in parts of Europe and the Americas. Once ASFV is established in the argasid soft tick vector, eradication can be difficult due to the long lifespan of Ornithodoros ticks and their proclivity to inhabit the burrows of warthogs or pens and shelters of domestic pigs. Establishment of endemic ASFV infections in wild boar populations further complicates the control of ASF. Between the late 1950s and early 1980s, ASFV emerged in Europe, Russia and South America, but was mostly eradicated by the mid-1990s. In 2007, a highly virulent genotype II ASFV strain emerged in the Caucasus region and subsequently spread into the Russian Federation and Europe, where it has continued to circulate and spread. Most recently, ASFV emerged in China and has now spread to several neighboring countries in Southeast Asia. The high morbidity and mortality associated with ASFV, the lack of an efficacious vaccine, and the complex makeup of the ASFV virion and genome as well as its lifecycle, make this pathogen a serious threat to the global swine industry and national economies. Topics covered by this review include factors important for ASFV infection, replication, maintenance, and transmission, with attention to the role of the argasid tick vector and the sylvatic transmission cycle, current and future control strategies for ASF, and knowledge gaps regarding the virus itself, its vector and host species.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - William C. Wilson
- Arthropod Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
139
|
Sang H, Miller G, Lokhandwala S, Sangewar N, Waghela SD, Bishop RP, Mwangi W. Progress Toward Development of Effective and Safe African Swine Fever Virus Vaccines. Front Vet Sci 2020; 7:84. [PMID: 32154279 PMCID: PMC7047163 DOI: 10.3389/fvets.2020.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever is a major concern due to its negative impact on pork production in affected regions. Due to lack of treatment and a safe vaccine, it has been extremely difficult to control this devastating disease. The mechanisms of virus entry, replication within the host cells, immune evasion mechanisms, correlates of protection, and antigens that are effective at inducing host immune response, are now gradually being identified. This information is required for rational design of novel disease control strategies. Pigs which recover from infection with less virulent ASFV isolates can be protected from challenge with related virulent isolates. This strongly indicates that an effective vaccine against ASFV could be developed. Nonetheless, it is clear that effective immunity depends on both antibody and cellular immune responses. This review paper summarizes the key studies that have evaluated three major approaches for development of African Swine Fever virus vaccines. Recent immunization strategies have involved development and in vivo evaluation of live attenuated virus, and recombinant protein- and DNA-based and virus-vectored subunit vaccine candidates. The limitations of challenge models for evaluating ASFV vaccine candidates are also discussed.
Collapse
Affiliation(s)
- Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Gabrielle Miller
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
140
|
de Vos CJ, Taylor RA, Simons RRL, Roberts H, Hultén C, de Koeijer AA, Lyytikäinen T, Napp S, Boklund A, Petie R, Sörén K, Swanenburg M, Comin A, Seppä-Lassila L, Cabral M, Snary EL. Cross-Validation of Generic Risk Assessment Tools for Animal Disease Incursion Based on a Case Study for African Swine Fever. Front Vet Sci 2020; 7:56. [PMID: 32133376 PMCID: PMC7039936 DOI: 10.3389/fvets.2020.00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Helen Roberts
- Department for Environment, Food & Rural Affairs (Defra), London, United Kingdom
| | | | - Aline A. de Koeijer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | | | - Sebastian Napp
- Centre de Recerca en Sanitat Animal (CReSA IRTA-UAB), Bellaterra, Spain
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, Frederiksberg, Denmark
| | - Ronald Petie
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Kaisa Sörén
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Manon Swanenburg
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Arianna Comin
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Maria Cabral
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
141
|
African Swine Fever Virus - The Possible Role of Flies and Other Insects in Virus Transmission. J Vet Res 2020; 64:1-7. [PMID: 32258793 PMCID: PMC7106000 DOI: 10.2478/jvetres-2020-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022] Open
Abstract
African swine fever (ASF) is an acute viral haemorrhagic disease of pigs and wild boars. It presents a serious threat to pig production worldwide, and since 2007, ASF outbreaks have been recorded in the Caucasus, Eastern Europe, and the Baltic States. In 2014, the disease was detected in Poland. ASF is on the list of notifiable diseases of the World Organisation for Animal Health (OIE). Due to the lack of an available vaccine and treatment, the countermeasures against the disease consist in early detection of the virus in the pig population and control of its spread through the elimination of herds affected by disease outbreaks. Knowledge of the potential vectors of the virus and its persistence in the environment is crucial to prevent further disease spread and to understand the new epidemiology for how it compares to the previous experience in Spain gathered in the 1970s and 1980s.
Collapse
|
142
|
Cukor J, Linda R, Václavek P, Mahlerová K, Šatrán P, Havránek F. Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transbound Emerg Dis 2020; 67:1068-1073. [PMID: 31886951 DOI: 10.1111/tbed.13468] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 11/29/2022]
Abstract
For the monitoring of wild boar interactions with conspecific carcasses, seven wild boar carcasses were placed in different sites in the Czech Republic during winter season. Data were collected by camera traps. In total, 732 visits were recorded of wild boars at the carcass sites. Direct contact with the carcass was detected in 81% of the records. Cannibalism was observed in 9.8% of all recorded visits. The first direct contact was observed on average 30 days after the carcass had been placed in its respective site. Cannibalism was observed on average after 70 days. The effect of sex-age class on direct contact was not proven in our study. The presented findings show that cannibalism in wild boar can play a substantial role in the ASF epidemic. These results highlighted the importance of the removal of infected carcasses from the habitat, which is crucial for African swine fever eradication.
Collapse
Affiliation(s)
- Jan Cukor
- Forestry and Game Management Research Institute, v.v.i., Jíloviště, Czech Republic.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Rostislav Linda
- Forestry and Game Management Research Institute, v.v.i., Jíloviště, Czech Republic.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Petr Václavek
- State Veterinary Institute Jihlava, Jihlava, Czech Republic
| | - Karolina Mahlerová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Petr Šatrán
- State Veterinary Administration, Prague, Czech Republic
| | - František Havránek
- Forestry and Game Management Research Institute, v.v.i., Jíloviště, Czech Republic
| |
Collapse
|
143
|
Taylor RA, Condoleo R, Simons RRL, Gale P, Kelly LA, Snary EL. The Risk of Infection by African Swine Fever Virus in European Swine Through Boar Movement and Legal Trade of Pigs and Pig Meat. Front Vet Sci 2020; 6:486. [PMID: 31998765 PMCID: PMC6962172 DOI: 10.3389/fvets.2019.00486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is currently spreading westwards throughout Europe and eastwards into China, with cases occurring in both wild boar and domestic pigs. A generic risk assessment framework is used to determine the probability of first infection with ASF virus (ASFV) at a fine spatial scale across European Union Member States. The framework aims to assist risk managers across Europe with their ASF surveillance and intervention activities. Performing the risk assessment at a fine spatial scale allows for hot-spot surveillance, which can aid risk managers by directing surveillance or intervention resources at those areas or pathways deemed most at risk, and hence enables prioritization of limited resources. We use 2018 cases of ASF to estimate prevalence of the disease in both wild boar and pig populations and compute the risk of initial infection for 2019 at a 100 km2 cell resolution via three potential pathways: legal trade in live pigs, natural movement of wild boar, and legal trade in pig meat products. We consider the number of pigs, boar and amount of pig meat entering our area of interest, the prevalence of the disease in the origin country, the probability of exposure of susceptible pigs or boar in the area of interest to introduced infected pigs, boar, or meat from an infected pig, and the probability of transmission to susceptible animals. We provide maps across Europe indicating regions at highest risk of initial infection. Results indicate that the risk of ASF in 2019 was predominantly focused on those regions which already had numerous cases in 2018 (Poland, Lithuania, Hungary, Romania, and Latvia). The riskiest pathway for ASFV transmission to pigs was the movement of wild boar for Eastern European countries and legal trade of pigs for Western European countries. New infections are more likely to occur in wild boar rather than pigs, for both the pig meat and wild boar movement pathways. Our results provide an opportunity to focus surveillance activities and thus increase our ability to detect ASF introductions earlier, a necessary requirement if we are to successfully control the spread of this devastating disease for the pig industry.
Collapse
Affiliation(s)
- Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Roberto Condoleo
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Rome, Italy
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Paul Gale
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Louise A. Kelly
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
144
|
Yuan L, Hensley C, Mahsoub HM, Ramesh AK, Zhou P. Microbiota in viral infection and disease in humans and farm animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:15-60. [PMID: 32475521 PMCID: PMC7181997 DOI: 10.1016/bs.pmbts.2020.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The influence of the microbiota on viral infection susceptibility and disease outcome is undisputable although varies among viruses. The purpose of understanding the interactions between microbiota, virus, and host is to identify practical, effective, and safe approaches that target microbiota for the prevention and treatment of viral diseases in humans and animals, as currently there are few effective and reliable antiviral therapies available. The initial step for achieving this goal is to gather clinical evidences, focusing on the viral pathogens-from human and animal studies-that have already been shown to interact with microbiota. The subsequent step is to identify mechanisms, through experimental evidences, to support the development of translational applications that target microbiota. In this chapter, we review evidences of virus infections altering microbiota and of microbiota enhancing or suppressing infectivity, altering host susceptibility to certain viral diseases, and influencing vaccine immunogenicity in humans and farm animals.
Collapse
Affiliation(s)
- Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States.
| | - Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Ashwin K Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| |
Collapse
|
145
|
Pereira de Oliveira R, Hutet E, Paboeuf F, Duhayon M, Boinas F, Perez de Leon A, Filatov S, Vial L, Le Potier MF. Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS One 2019; 14:e0225657. [PMID: 31774871 PMCID: PMC6881060 DOI: 10.1371/journal.pone.0225657] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
African swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids caused by African swine fever virus (ASFV), which threatens the swine industry globally. In its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as warthogs (Phacochoerus spp.) that are bitten by infected soft ticks inhabiting their burrows. While the ability of some Afrotropical soft ticks to transmit and maintain ASFV is well established, the vector status of Palearctic soft tick species for ASFV strains currently circulating in Eurasia remains largely unknown. For example, the Iberian soft tick O. erraticus is a known vector and reservoir of ASFV, but its ability to transmit different ASFV strains has not been assessed since ASF re-emerged in Europe in 2007. Little is known about vector competence for ASFV in other species, such as O. verrucosus, which occurs in southern parts of Eastern Europe, including Ukraine and parts of Russia, and in the Caucasus. Therefore, we conducted transmission trials with two Palearctic soft tick species, O. erraticus and O. verrucosus, and the Afrotropical species O. moubata. We tested the ability of ticks to transmit virulent ASFV strains, including one of direct African origin (Liv13/33), and three from Eurasia that had been involved in previous (OurT88/1), and the current epizooties (Georgia2007/1 and Ukr12/Zapo). Our experimental results showed that O. moubata was able to transmit the African and Eurasian ASFV strains, whereas O. erraticus and O. verrucosus failed to transmit the Eurasian ASFV strains. However, naïve pigs showed clinical signs of ASF when inoculated with homogenates of crushed O. erraticus and O. verrucosus ticks that fed on viraemic pigs, which proved the infectiousness of ASFV contained in the ticks. These results documented that O. erraticus and O. verrucosus are unlikely to be capable vectors of ASFV strains currently circulating in Eurasia. Additionally, the persistence of infection in soft ticks for several months reaffirms that the infectious status of a given tick species is only part of the data required to assess its vector competence for ASFV.
Collapse
Affiliation(s)
- Rémi Pereira de Oliveira
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
- UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- University of Montpellier, Montpellier, France
| | - Evelyne Hutet
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Frédéric Paboeuf
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Maxime Duhayon
- UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Fernando Boinas
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Adalberto Perez de Leon
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, USDA-ARS, Kerrville, Texas, United States of America
| | - Serhii Filatov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, NSC IECVM), Kharkiv, Ukraine
| | - Laurence Vial
- UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- University of Montpellier, Montpellier, France
| | - Marie-Frédérique Le Potier
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
- * E-mail:
| |
Collapse
|
146
|
Evidence for the presence of African swine fever virus in apparently healthy pigs in South-Kivu Province of the Democratic Republic of Congo. Vet Microbiol 2019; 240:108521. [PMID: 31902515 PMCID: PMC7045278 DOI: 10.1016/j.vetmic.2019.108521] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
The high level of antibody in adult animal kept in free-range system emphasis use of good husbandry practices. The presence of viral DNA in apparently healthy animals help in understanding the persistence of ASF. The differences in ecological conditions may play a key role in virus transmission. Identification of ASFV genotype IX confirms spread of the virus throughout the country.
African swine fever (ASF) is the most important disease constraining smallholder pig production in the Democratic Republic of Congo, causing high mortality in domestic pigs with severe impacts on the livelihoods of local populations. This study was conducted with the aim of determining the prevalence of ASF and circulating virus genotypes in asymptomatic pigs raised on smallholder farms in the South Kivu province to understand the transmission dynamics of ASF and ultimately improving disease control. A cross-sectional survey was carried out in 5 districts where 267 pig blood were screened for both antibody and viral genome using indirect Enzyme Linked Immunosorbent Assay (ELISA) and polymerase chain reaction (PCR) respectively. Additionally, amplicons from PCR positive samples were sequenced by Sanger method for genetic analysis of ASF virus (ASFV) based on the C-terminal region of the B646L gene that encodes the major capsid protein p72 and the gene E183L encoding the p54 protein. The overall seroprevalence obtained based on antibody to p30 protein was 37 % and was significantly higher (P < 0.05) in adult (>1 year) animals (44.7 %) than in younger (<1 year) ones (33.5 %). Moreover, the seropositivity varied significantly (P < 0.05) according to the pig husbandry system practiced within the districts investigated with Uvira (55 %) and Mwenga (42.2 %) having the highest ASFV antibodies, while the lowest (10.5 %) were in Kalehe. Free-range pigs exhibited a higher level of seropositivity to ASFV antibody (68.9 %) than pigs kept in the pigsty housing system (21.6 %). However, no statistically significant differences (P > 0.05) were observed when sex of the animal and breed were factored. PCR detection of ASFV amplified a specific band of expected size (257 bp) in 61 out of 267 blood samples, confirming the presence of the viral DNA in 22.8 % of asymptomatic domestic pigs. Statistical analysis revealed that ASFV infection in domestic pigs varied significantly (p < 0.001) according to geographical location and breed, with the highest infection rate found in Walungu district (33.7 %) while the lowest was registered in Kalehe (15.8 %). Local pigs (27.2 %) were more infected than crosses (9.2 %). Phylogenetic analyses based on partial sequences of the p72 and p54 genes revealed that all the ASFV detected belonged to genotype IX, which has previously been reported in other parts of DR Congo, and was clustered together with isolates from Kenya, Uganda and Republic of Congo. This study avails the first evidence of the presence of ASF virus in domestic pigs in the absence of outbreaks in South Kivu province, eastern DR Congo, indicating a need to raise awareness among pig farmers and veterinary authorities on the application of biosecurity measures and good husbandry practices to control the disease.
Collapse
|
147
|
Nielsen SS, Alvarez J, Bicout D, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Michel V, Miranda MA, Roberts H, Sihvonen L, Spoolder H, Ståhl K, Viltrop A, Winckler C, Boklund A, Bøtner A, Gonzales Rojas JL, More SJ, Thulke HH, Antoniou SE, Cortinas Abrahantes J, Dhollander S, Gogin A, Papanikolaou A, Gonzalez Villeta LC, Gortázar Schmidt C. Risk assessment of African swine fever in the south-eastern countries of Europe. EFSA J 2019; 17:e05861. [PMID: 32626162 PMCID: PMC7008867 DOI: 10.2903/j.efsa.2019.5861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The European Commission requested EFSA to estimate the risk of spread of African swine fever (ASF) and to identify potential risk factors (indicators) for the spread of ASF, given introduction in the south-eastern countries of Europe (region of concern, ROC), namely Albania, Bosnia and Herzegovina, Croatia, Greece, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia. Three EU Member States (MS) - Croatia, Greece and Slovenia - were included in the ROC due to their geographical location and ASF-free status. Based on collected information on potential risk factors (indicators) for each country and the relevant EU regulations in force, the estimated probability of spread of ASF within the ROC within one year after introduction into the ROC was assessed to be very high (from 66% to 100%). This estimate was determined after considering the high number of indicators present in most of the countries in the ROC and the known effect that these indicators can have on ASF spread, especially those related to the structure of the domestic pig sector, the presence of wild boar and social factors. The presence of indicators varies between countries in the ROC. Each country is at risk of ASF spread following introduction; however, some countries may have a higher probability of ASF spread following introduction. In addition, the probability of ASF spread from the ROC to EU MSs outside the ROC within one year after introduction of ASF in the ROC was estimated to be very low to low (from 0% to 15%). This estimate was based on the comparison of the indicators present in the ROC and the already affected countries in south-eastern Europe, such as Bulgaria and Romania, where there was no evidence of ASF spread to other EU MS within one year.
Collapse
|
148
|
Cadenas-Fernández E, Sánchez-Vizcaíno JM, Pintore A, Denurra D, Cherchi M, Jurado C, Vicente J, Barasona JA. Free-Ranging Pig and Wild Boar Interactions in an Endemic Area of African Swine Fever. Front Vet Sci 2019; 6:376. [PMID: 31737649 PMCID: PMC6831522 DOI: 10.3389/fvets.2019.00376] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 12/05/2022] Open
Abstract
African swine fever virus (ASFV) is spreading throughout Eurasia and there is no vaccine nor treatment available, so the control is based on the implementation of strict sanitary measures. These measures include depopulation of infected and in-contact animals and export restrictions, which can lead to important economic losses, making currently African swine fever (ASF) the greatest threat to the global swine industry. ASF has been endemic on the island of Sardinia since 1978, the longest persistence of anywhere in Eurasia. In Sardinia, eradication programs have failed, in large part due to the lack of farm professionalism, the high density of wild boar and the presence of non-registered domestic pigs (free-ranging pigs). In order to clarify how the virus is transmitted from domestic to wild swine, we examined the interaction between free-ranging pigs and wild boar in an ASF-endemic area of Sardinia. To this end, a field study was carried out on direct and indirect interactions, using monitoring by camera trapping in different areas and risk points. Critical time windows (CTWs) for the virus to survive in the environment (long window) and remain infectious (short window) were estimated, and based on these, the number of indirect interactions were determined. Free-ranging pigs indirectly interacted often with wild boar (long window = 6.47 interactions/day, short window = 1.31 interactions/day) and these interactions (long window) were mainly at water sources. They also directly interacted 0.37 times per day, especially between 14:00 and 21:00 h, which is much higher than for other interspecific interactions observed in Mediterranean scenarios. The highly frequent interactions at this interspecific interface may help explain the more than four-decade-long endemicity of ASF on the island. Supporting that free-ranging pigs can act as a bridge to transmit ASFV between wild boar and registered domestic pigs. This study contributes broadly to improving the knowledge on the estimation of frequencies of direct and indirect interactions between wild and free-ranging domestic swine. As well as supporting the importance of the analysis of interspecific interactions in shared infectious diseases, especially for guiding disease management. Finally, this work illustrates the power of the camera-trapping method for analyzing interspecific interfaces.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Daniele Denurra
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Marcella Cherchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Cristina Jurado
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Joaquín Vicente
- Spanish Wildlife Research Institute (IREC) (CSIC-UCLM), Ciudad Real, Spain
| | - Jose A Barasona
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
149
|
Abstract
African swine fever virus (ASFV), an Asfivirus affecting pigs and wild boars with up to 100% case fatality rate, is currently rampaging throughout China and some other countries in Asia. There is an urgent need to develop therapeutic and preventive reagents against the virus. Our crystallographic and biochemical studies reveal that ASFV E165R is a member of trimeric dUTP nucleotidohydrolase (dUTPase) family that catalyzes the hydrolysis of dUTP into dUMP. Our apo-E165R and E165R-dUMP structures reveal the constitutive residues and the configuration of the active center of this enzyme in rich detail and give evidence that the active center of E165R is very similar to that of dUTPases from Plasmodium falciparum and Mycobacterium tuberculosis, which have already been used as targets for designing drugs. Therefore, our high-resolution structures of E165R provide useful structural information for chemotherapeutic drug design. E165R, a highly specific dUTP nucleotidohydrolase (dUTPase) encoded by the African swine fever virus (ASFV) genome, is required for productive replication of ASFV in swine macrophages. Here, we solved the high-resolution crystal structures of E165R in its apo state and in complex with its product dUMP. Structural analysis explicitly defined the architecture of the active site of the enzyme as well as the interaction between the active site and the dUMP ligand. By comparing the ASFV E165R structure with dUTPase structures from other species, we found that the active site of E165R is highly similar to those of dUTPases from Mycobacterium tuberculosis and Plasmodium falciparum, against which small-molecule chemicals have been developed, which could be the potential drug or lead compound candidates for ASFV. Our results provide important basis for anti-ASFV drug design by targeting E165R.
Collapse
|
150
|
Herm R, Tummeleht L, Jürison M, Vilem A, Viltrop A. Trace amounts of African swine fever virus DNA detected in insects collected from an infected pig farm in Estonia. Vet Med Sci 2019; 6:100-104. [PMID: 31560174 PMCID: PMC7036316 DOI: 10.1002/vms3.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background African swine fever (ASF), a severe multi‐systemic disease in pigs, was introduced into Estonia in 2014. The majority of outbreaks have occurred during the summer months. Given that ASFV is transmitted in a sylvatic cycle that includes the transmission by African soft ticks and that mechanical transmission by flying insects was shown, transmission by other arthropod vectors need to be considered. Objectives Here, we report the results of a pilot study on flying insects caught on an outbreak farm during epidemiological investigations. Methods In brief, 15 different insect species (flies and mosquitoes) were collected by random catch using an aerial net. Nucleic acids derived from these samples or their pools were tested for African swine fever virus (ASFV) DNA by real‐time PCR. Results and Conclusions Viral DNA was detected in small quantities in two samples from flies and mosquitoes. Given the slow spread of virus within the farm, the impact of these findings seems rather low, but a role in local transmission cannot be ruled out. However, given the very low number of insects sampled, and taken into the account that viral isolation was not performed and insects outside the farm were not investigated, future investigations are needed to assess the true impact of insects as mechanical vectors.
Collapse
Affiliation(s)
- Reet Herm
- Equine Clinic, Chair of Clinical Veterinary Medicine, Estonian University of Life Sciences, Tartu, Estonia
| | - Lea Tummeleht
- Chair of Veterinary Bio- and Population Medicine, Estonian University of Life Sciences, Tartu, Estonia
| | - Margret Jürison
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Annika Vilem
- Department of Molecular Analysis, Veterinary and Food Laboratory, Tartu, Estonia
| | - Arvo Viltrop
- Chair of Veterinary Bio- and Population Medicine, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|