101
|
Shebs-Maurine EL, Torres ES, Yeh-Parker Y, de Mello AS. Application of MS bacteriophages on contaminated trimmings reduces Escherichia coli O157 and non-O157 in ground beef. Meat Sci 2020; 170:108243. [PMID: 32688222 DOI: 10.1016/j.meatsci.2020.108243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
According to the United States Food and Drug Administration (FDA) agency, bacteriophage solutions targeting the serotype O157:H7 are Generally Recognized as Safe (GRAS) to control STEC during beef processing. However, outbreaks involving the "Big Six" STEC increased the industry concern about those serotypes. The objective of this study was to test the efficacy of MS bacteriophages to reduce the "Big Six" non-O157 STEC in beef. The lysing efficacy of phages isolated for each specific serotype varied from 96.2% to 99.9% in vitro. When applied to contaminated trim, reductions ranging from 0.7 to 1.3 Log of all STEC were observed in ground beef. Bacteriophages may provide an additional barrier against the "Big Six" STEC in ground beef. Results of this research provide support documentation to the FDA to extend GRAS status for bacteriophages as processing aids against all adulterant STEC.
Collapse
Affiliation(s)
- E L Shebs-Maurine
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - E S Torres
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - Y Yeh-Parker
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - A S de Mello
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America.
| |
Collapse
|
102
|
Phothaworn P, Supokaivanich R, Lim J, Klumpp J, Imam M, Kutter E, Galyov EE, Dunne M, Korbsrisate S. Development of a broad-spectrum Salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiol 2020; 92:103586. [PMID: 32950171 DOI: 10.1016/j.fm.2020.103586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Salmonella is one of the most common agents of foodborne disease worldwide. As natural alternatives to traditional antimicrobial agents, bacteriophages (phages) are emerging as highly effective biocontrol agents against Salmonella and other foodborne bacteria. Due to the high diversity within the Salmonella genus and emergence of drug resistant strains, improved efforts are necessary to find broad range and strictly lytic Salmonella phages for use in food biocontrol. Here, we describe the isolation and characterization of two Salmonella phages: ST-W77 isolated on S. Typhimurium and SE-W109 isolated on S. Enteritidis with extraordinary Salmonella specificity. Whole genome sequencing identified ST-W77 as a Myovirus within the Viunalikevirus genus and SE-W109 as a Siphovirus within the Jerseylikevirus genus. Infectivity studies using a panel of S. Typhimurium cell wall mutants revealed both phages require the lipopolysaccharide O-antigen, with SE-W109 also recognizing the flagella, during infection of Salmonella. A combination of both phages was capable of prolonged (one-week) antibacterial activity when added to milk or chicken meat contaminated with Salmonella. Due to their broad host ranges, strictly lytic lifestyles and lack of lysogeny-related genes or virulence genes in their genomes, ST-W77 and SE-W109 are ideal phages for further development as Salmonella biocontrol agents for food production.
Collapse
Affiliation(s)
- Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Rattaya Supokaivanich
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jiali Lim
- DSO National Laboratories, Singapore, 117510, Singapore
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
| | - Mohammed Imam
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7HN, United Kingdom
| | - Elizabeth Kutter
- Bacteriophage Lab, the Evergreen State College, Olympia, WA, USA
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7HN, United Kingdom
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland.
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
103
|
El-Mowafy M, Elgaml A, Shaaban M. New Approaches for Competing Microbial Resistance and Virulence. Microorganisms 2020. [DOI: 10.5772/intechopen.90388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
104
|
Jiang L, Zheng R. Isolation and Characterization of a Lytic Salmonella paratyphi Phage and Its Antibiofilm Activity Individually or Collaborative with Kanamycin Sulfate. Viral Immunol 2020; 33:521-529. [PMID: 32397917 DOI: 10.1089/vim.2020.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salmonella is among the most serious of foodborne pathogens worldwide and distributed widely in the natural environment; in addition, it has caused severe medical problems and foodborne diseases. Bacterial biofilm was the multicellular community of microorganisms that attached to nonbiological and biological surfaces. Phages and their derivatives are ideal candidates for replacing and compensating antibiotic resistance problems in the future. In this study, a virulent phage of KM15 was isolated from pig slaughterhouse sump samples in Kunming, China. It belonged to the Siphoviridae family, and optimal growth temperature was 42°C, the pH of optimal preservation buffer was 6-7, optimal multiplicity of infection was 0.0001, and the genome size was 41,869 bp. The Salmonella paratyphi A and Salmonella paratyphi B have a broad spectrum of antibiotic resistance and were isolated from clinical patients in the First People's Hospital of Yunnan Province; fortunately, most of them can be lysed by phage KM15. Collaboration of phage KM15 and kanamycin sulfate has a better antibiofilm effect than KM15 and kanamycin sulfate alone, in low-concentration bacterial culture; KM15 has better antibiofilm effect than kanamycin sulfate in high-concentration bacterial culture. The data of this study provided a strong evidence of application of phage to reduce the growth of Salmonella biofilm, which was important for public health.
Collapse
Affiliation(s)
- Liming Jiang
- School of Marine Sciences, Ningbo University, Ningbo, P.R. China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, P.R. China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, P.R. China.,Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
105
|
Vikram A, Tokman JI, Woolston J, Sulakvelidze A. Phage Biocontrol Improves Food Safety by Significantly Reducing the Level and Prevalence of Escherichia coli O157:H7 in Various Foods. J Food Prot 2020; 83:668-676. [PMID: 32221572 DOI: 10.4315/0362-028x.jfp-19-433] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/09/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Management of Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, in food products is a major challenge for the food industry. Several interventions, such as irradiation, chemical disinfection, and pasteurization, have had variable success controlling STEC contamination. However, these interventions also indiscriminately kill beneficial bacteria in foods, may impact organoleptic properties of foods, and are not always environmentally friendly. Biocontrol using bacteriophage-based products to reduce or eliminate specific foodborne pathogens in food products has been gaining attention due to the specificity, safety, and environmentally friendly properties of lytic bacteriophages. We developed EcoShield PX, a cocktail of lytic bacteriophages, that specifically targets STEC. This study was conducted to examine the efficacy of this bacteriophage cocktail for reducing the levels of E. coli O157:H7 in eight food products: beef chuck roast, ground beef, chicken breast, cooked chicken, salmon, cheese, cantaloupe, and romaine lettuce. The food products were challenged with E. coli O157:H7 at ca. 3.0 log CFU/g and treated with the bacteriophage preparation at ca. 1 × 106, 5 × 106, or 1 × 107 PFU/g. Application of 5 × 106 and 1 × 107 PFU/g resulted in significant reductions (P < 0.05) in E. coli O157:H7 levels of up to 97% in all foods. When bacteriophages (ca. 1 × 106 PFU/g) were used to treat lower levels of E. coli O157:H7 (ca. 1 to 10 CFU/10 g) on beef chuck roast samples, mimicking the levels of STEC found under real-life conditions in food processing plants, the prevalence of STEC in the samples was significantly reduced (P < 0.05) by ≥80%. Our results suggest that this STEC-targeting bacteriophage preparation can result in significant reduction of both the levels and prevalence of STEC in various foods and, therefore, may help improve the safety and reduce the risk of recalls of foods at high risk for STEC contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Amit Vikram
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, Maryland 21046, USA
| | - Jeffrey I Tokman
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, Maryland 21046, USA
| | - Joelle Woolston
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, Maryland 21046, USA
| | | |
Collapse
|
106
|
Grygorcewicz B, Chajęcka‐Wierzchowska W, Augustyniak A, Wasak A, Stachurska X, Nawrotek P, Dołęgowska B. In‐milk inactivation of
Escherichia coli
O157:H7 by the environmental lytic bacteriophage ECPS‐6. J Food Saf 2020. [DOI: 10.1111/jfs.12747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bartłomiej Grygorcewicz
- Department of Microbiology, Immunology, and Laboratory MedicinePomeranian Medical University in Szczecin Szczecin Poland
| | | | - Adrian Augustyniak
- Building Materials and Construction ChemistryTechnische Universität Berlin Berlin Germany
| | - Agata Wasak
- Department of Immunology, Microbiology and Physiological ChemistryWest Pomeranian University of Technology Szczecin Poland
| | - Xymena Stachurska
- Department of Immunology, Microbiology and Physiological ChemistryWest Pomeranian University of Technology Szczecin Poland
| | - Paweł Nawrotek
- Department of Immunology, Microbiology and Physiological ChemistryWest Pomeranian University of Technology Szczecin Poland
| | - Barbara Dołęgowska
- Department of Microbiology, Immunology, and Laboratory MedicinePomeranian Medical University in Szczecin Szczecin Poland
| |
Collapse
|
107
|
Bacteriophage-Insensitive Mutants of Antimicrobial-Resistant Salmonella Enterica are Altered in their Tetracycline Resistance and Virulence in Caco-2 Intestinal Cells. Int J Mol Sci 2020; 21:ijms21051883. [PMID: 32164202 PMCID: PMC7084636 DOI: 10.3390/ijms21051883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages have shown promise as therapeutic alternatives to antibiotics for the control of infectious bacteria, including the human pathogen Salmonella. However, the development of effective phage-based applications requires the elucidation of key interactions between phages and target hosts, particularly since host resistance to phage is inevitable. Little is known about the alteration of host phenotypes following the development of resistance to phage. The aim of this study is to evaluate the antibiotic susceptibility and virulence of a Salmonella isolate following the development of resistance to bacteriophage SI1. We observed enhanced susceptibility to tetracycline and decreased invasion capacity in a differentiated Caco-2 intestinal cell line. Whole genome sequence analysis revealed an array of mutations, most notably, truncations in vgrG1_2, a core gene involved in Type VI secretion and mutations in the lipopolysaccharide, thereby indicating the plausible attachment site of phage SI1. These findings shed light on understanding the underlying mechanism for phage immunity within the host. Importantly, we reveal an associated genetic cost to the bacterial host with developing resistance to phages. Taken together, these results will aid in advancing strategies to delay or eliminate the development of host resistance when designing informed phage-based antimicrobials.
Collapse
|
108
|
Li Z, Ma W, Li W, Ding Y, Zhang Y, Yang Q, Wang J, Wang X. A broad-spectrum phage controls multidrug-resistant Salmonella in liquid eggs. Food Res Int 2020; 132:109011. [PMID: 32331668 DOI: 10.1016/j.foodres.2020.109011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Salmonella is a foodborne pathogen constantly threating public health. The widespread use of antibiotics and globalization of the food industry result in rapid growth of drug-resistance. Eggs contaminated by multidrug-resistant (MDR) Salmonella are one of the riskiest factors of salmonellosis, which are frequently associated with outbreaks worldwide. Thus, there are increasing needs for the development of new technologies in controlling MDR pathogens and for the confirmation of their practical efficiency in target food matrices. In this study, 43 Salmonella phages were isolated from environmental resources and among them, phage D1-2 was selected since it exhibited the most potent lytic ability and the broadest host spectrum against tested Salmonella strains. Further study demonstrated that D1-2 shows high pH and thermal tolerances and a short latent period, together with a low frequency of emergence of phage resistance. D1-2 effectively inhibited the growth of two MDR Salmonella strains in liquid egg white and egg yolk at both 4 °C and 25 °C. Morphology and phylogeny indicated that D1-2 belongs to the Myoviridae family. Genome analysis of D1-2 revealed a linear dsDNA sequence with no homology to virulence or antibiotic-resistance associated genes, presenting D1-2 is a promising candidate for the biocontrol of MDR Salmonella in highly risky foods.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenjuan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wanning Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yifeng Ding
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qile Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
109
|
Leon-Velarde CG, Jun JW, Skurnik M. Yersinia Phages and Food Safety. Viruses 2019; 11:E1105. [PMID: 31795231 PMCID: PMC6950378 DOI: 10.3390/v11121105] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
One of the human- and animal-pathogenic species in genus Yersinia is Yersinia enterocolitica, a food-borne zoonotic pathogen that causes enteric infections, mesenteric lymphadenitis, and sometimes sequelae such as reactive arthritis and erythema nodosum. Y. enterocolitica is able to proliferate at 4 C, making it dangerous if contaminated food products are stored under refrigeration. The most common source of Y. enterocolitica is raw pork meat. Microbiological detection of the bacteria from food products is hampered by its slow growth rate as other bacteria overgrow it. Bacteriophages can be exploited in several ways to increase food safety with regards to contamination by Y. enterocolitica. For example, Yersinia phages could be useful in keeping the contamination of food products under control, or, alternatively, the specificity of the phages could be exploited in developing rapid and sensitive diagnostic tools for the identification of the bacteria in food products. In this review, we will discuss the present state of the research on these topics.
Collapse
Affiliation(s)
- Carlos G. Leon-Velarde
- Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7, Canada;
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 HY Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, 00029 HUS Helsinki, Finland
| |
Collapse
|
110
|
Yang Z, Shi Y, Zhang C, Luo X, Chen Y, Peng Y, Gong Y. Lytic Bacteriophage Screening Strategies for Multidrug-Resistant Bloodstream Infections in a Burn Intensive Care Unit. Med Sci Monit 2019; 25:8352-8362. [PMID: 31693655 PMCID: PMC6858784 DOI: 10.12659/msm.917706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and multidrug resistance (MDR) in patients with bloodstream infection (BSI) has resulted in treatment using bacteriophage. This study aimed to identify Gram-negative bacilli and Gram-positive cocci and antibiotic resistance in patients with BSI in a burn intensive care unit (BICU). The environment, including sewage systems, were investigated for the presence of lytic bacteriophage. MATERIAL AND METHODS Between January 2011 to December 2017, 486 patients with BSI were admitted to the BICU. Blood culture identified the main infectious organisms. Bacterial screening tests for antibiotic resistance included the D test and the modified Hodge test (MHT). Lytic bacteriophage was isolated from the environment. RESULTS In 486 patients with BSI, the main causative organisms were Gram-negative bacilli (64.6%), Gram-positive cocci (27.7%), and fungi (7.7%). The main pathogenic organisms that showed multidrug resistance (MDR) were Acinetobacter baumannii (26.0%), Staphylococcus aureus (16.8%), and Pseudomonas aeruginosa (14.2%). Bacteriophage was mainly isolated from Gram-negative bacilli. Screening of hospital and residential sewage systems identified increased levels of bacteriophage in hospital sewage. CONCLUSIONS The causative organisms of BSI and the presence of MDR in a hospital BICU were not typical, which supports the need for routine bacterial monitoring. Hospital sewage provides a potential source of bacteriophage for the treatment of MDR pathogenic bacteria.
Collapse
|
111
|
Połaska M, Sokołowska B. Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiol 2019; 5:324-346. [PMID: 31915746 PMCID: PMC6946638 DOI: 10.3934/microbiol.2019.4.324] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are viruses that are ubiquitous in nature and infect only bacterial cells. These organisms are characterized by high specificity, an important feature that enables their use in the food industry. Phages are applied in three sectors in the food industry: primary production, biosanitization, and biopreservation. In biosanitization, phages or the enzymes that they produce are mainly used to prevent the formation of biofilms on the surface of equipment used in the production facilities. In the case of biopreservation, phages are used to extend the shelf life of products by combating pathogenic bacteria that spoil the food. Although phages are beneficial in controlling the food quality, they also have negative effects. For instance, the natural ability of phages that are specific to lactic acid bacteria to destroy the starter cultures in dairy production incurs huge financial losses to the dairy industry. In this paper, we discuss how bacteriophages can be either an effective weapon in the fight against bacteria or a bane negatively affecting the quality of food products depending on the type of industry they are used.
Collapse
Affiliation(s)
- Marzena Połaska
- Institute of Agricultural and Food Biotechnology, Department of Microbiology, 36 Rakowiecka, 02-532 Warsaw, Poland
| | | |
Collapse
|
112
|
Hudson LK, Peters TL, Song Y, Denes TG. Complete Genome Sequences and Transmission Electron Micrographs of Listeria Phages of the Genus Homburgvirus. Microbiol Resour Announc 2019; 8:e00825-19. [PMID: 31601662 PMCID: PMC6787319 DOI: 10.1128/mra.00825-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022] Open
Abstract
Bacteriophages that infect the foodborne pathogen Listeria monocytogenes were previously isolated from New York dairy farms. The complete genome sequences for three of these Listeria phages, with genome sizes of 64.6 to 65.7 kb, are presented here. Listeria phages LP-010, LP-013, and LP-031-2 are siphoviruses that belong to the genus Homburgvirus.
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Tracey L Peters
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Yaxiong Song
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas G Denes
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
113
|
Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019; 2019:3730519. [PMID: 31582898 PMCID: PMC6754933 DOI: 10.1155/2019/3730519] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
114
|
Abstract
The continuous evolvement of bacterial resistance to most, if not all, available antibiotics is a worldwide problem. These strains, frequently isolated from military-associated environments, have created an urgent need to develop supplementary anti-infective modalities. One of the leading directions is phage therapy, which includes the administration of bacteriophages, viruses that specifically target bacteria, as biotherapies. Although neglected in the West until recent years, bacteriophages have been widely studied and clinically administered in the former Soviet Union and Eastern Europe for over a century, where they were found to be incredibly efficient at battling numerous infectious diseases.In this review, we discuss the high potential of phage therapy as a solution for resistant bacterial infectious diseases relating to military medicine. By describing the historical development and knowledge acquired on phage therapy, we define the advantages of bacteriophages for combating resistant bacteria in multiple settings, such as trauma injuries and foodborne illnesses, as a preventive tool and therapy against biological warfare agents, and more. We also present the most recent successful clinical applications of bacteriophages in military settings worldwide.We believe that augmenting military medicine by integrating phage therapy is an important and required step in preparedness for the rapidly approaching post-antibiotic era.
Collapse
|
115
|
Fernández L, Gutiérrez D, García P, Rodríguez A. The Perfect Bacteriophage for Therapeutic Applications-A Quick Guide. Antibiotics (Basel) 2019; 8:E126. [PMID: 31443585 PMCID: PMC6783975 DOI: 10.3390/antibiotics8030126] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
The alarming spread of multiresistant infections has kick-started the quest for alternative antimicrobials. In a way, given the steady increase in untreatable infectious diseases, success in this endeavor has become a matter of life and death. Perhaps we should stop searching for an antibacterial panacea and explore a multifaceted strategy in which a wide range of compounds are available on demand depending on the specific situation. In the context of this novel tailor-made approach to combating bacterial pathogens, the once forgotten phage therapy is undergoing a revival. Indeed, the compassionate use of bacteriophages against seemingly incurable infections has been attracting a lot of media attention lately. However, in order to take full advantage of this strategy, bacteria's natural predators must be taken from their environment and then carefully selected to suit our needs. In this review, we have explored the vast literature regarding phage isolation and characterization for therapeutic purposes, paying special attention to the most recent studies, in search of findings that hint at the most efficient strategies to identify suitable candidates. From this information, we will list and discuss the traits that, at the moment, are considered particularly valuable in phages destined for antimicrobial therapy applications. Due to the growing importance given to biofilms in the context of bacterial infections, we will dedicate a specific section to those characteristics that indicate the suitability of a bacteriophage as an antibiofilm agent. Overall, the objective is not just to have a large collection of phages, but to have the best possible candidates to guarantee elimination of the target pathogens.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), (DairySafe Group), Paseo Río Linares s/n -Villaviciosa, 33300 Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
| | - Diana Gutiérrez
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), (DairySafe Group), Paseo Río Linares s/n -Villaviciosa, 33300 Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), (DairySafe Group), Paseo Río Linares s/n -Villaviciosa, 33300 Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
116
|
Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat Commun 2019; 10:3048. [PMID: 31296855 PMCID: PMC6624301 DOI: 10.1038/s41467-019-10955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation—in particular transcription antitermination—is largely unknown. Here we report the 3.4 Å and 4.0 Å cryo-EM structures of two bacterial transcription elongation complexes (P7-NusA-TEC and P7-TEC) comprising the bacteriophage protein P7, a master host-transcription regulator encoded by bacteriophage Xp10 of the rice pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and discuss the mechanisms by which P7 modulates the host bacterial RNAP. The structures together with biochemical evidence demonstrate that P7 prevents transcription termination by plugging up the RNAP RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Moreover, P7 inhibits transcription initiation by restraining RNAP-clamp motions. Our study reveals the structural basis for transcription antitermination by phage proteins and provides insights into bacterial transcription regulation. Bacteriophages reprogram the host transcriptional machinery. Here the authors provide insights into the mechanism of how bacteriophages regulate host transcription by determining the cryo-EM structures of two bacterial transcription elongation complexes bound with the bacteriophage master host-transcription regulator protein P7.
Collapse
|
117
|
Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Crit Rev Food Sci Nutr 2019; 60:2277-2293. [PMID: 31257907 DOI: 10.1080/10408398.2019.1632790] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Attachment of microorganisms to food contact surfaces and the subsequent formation of biofilms may cause equipment damage, food spoilage and even diseases. Mixed-species biofilms are ubiquitous in the food industry and they generally exhibit higher resistance to disinfectants and antimicrobials compared to single-species biofilms. The physiology and metabolic activity of microorganisms in mixed-species biofilms are however rather complicated to study, and despite targeted research efforts, the potential role of mixed-species biofilms in food industry is still rather unexplored. In this review, we summarize recent studies in the context of bacterial social interactions in mixed-species biofilms, resistance to disinfectants, detection methods, and potential novel strategies to control the formation of mixed-species biofilms for enhanced food safety and food quality.
Collapse
Affiliation(s)
- Lei Yuan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
118
|
Bioinformatic analyses of a potential Salmonella-virus-FelixO1 biocontrol phage BPS15S6 and the characterisation and anti-Enterobacteriaceae-pathogen activity of its endolysin LyS15S6. Antonie van Leeuwenhoek 2019; 112:1577-1592. [DOI: 10.1007/s10482-019-01283-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
|
119
|
Sommer J, Trautner C, Witte AK, Fister S, Schoder D, Rossmanith P, Mester PJ. Don't Shut the Stable Door after the Phage Has Bolted-The Importance of Bacteriophage Inactivation in Food Environments. Viruses 2019; 11:E468. [PMID: 31121941 PMCID: PMC6563225 DOI: 10.3390/v11050468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, a new potential measure against foodborne pathogenic bacteria was rediscovered-bacteriophages. However, despite all their advantages, in connection to their widespread application in the food industry, negative consequences such as an uncontrolled phage spread as well as a development of phage resistant bacteria can occur. These problems are mostly a result of long-term persistence of phages in the food production environment. As this topic has been neglected so far, this article reviews the current knowledge regarding the effectiveness of disinfectant strategies for phage inactivation and removal. For this purpose, the main commercial phage products, as well as their application fields are first discussed in terms of applicable inactivation strategies and legal regulations. Secondly, an overview of the effectiveness of disinfectants for bacteriophage inactivation in general and commercial phages in particular is given. Finally, this review outlines a possible strategy for users of commercial phage products in order to improve the effectiveness of phage inactivation and removal after application.
Collapse
Affiliation(s)
- Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Christoph Trautner
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Anna Kristina Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- HTK Hygiene Technologie Kompetenzzentrum GmbH, Buger Str. 80, 96049 Bamberg, Germany.
| | - Susanne Fister
- Former member of Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animal and Public Veterinary Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Patrick-Julian Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
120
|
Ahasan MS, Kinobe R, Elliott L, Owens L, Scott J, Picard J, Huerlimann R, Ariel E. Bacteriophage versus antibiotic therapy on gut bacterial communities of juvenile green turtle, Chelonia mydas. Environ Microbiol 2019; 21:2871-2885. [PMID: 31037801 DOI: 10.1111/1462-2920.14644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Green turtles are endangered marine herbivorous hindgut fermenters that contribute to a variety of marine ecosystems. Debilitated turtles are often rehabilitated in turtle hospitals. Since accurate diagnosis of disease is difficult, broad-spectrum antibiotics are routinely used as a general treatment, potentially causing collateral damage to the gut microbiome of the patient. Here, we evaluated the concept of the application of bacteriophage (phages) to eliminate targeted intestinal bacteria as an alternative to a broad-spectrum antibiotic (enrofloxacin) in clinically healthy, captive green turtles. Additionally, the impact of a broad-spectrum antibiotic (enrofloxacin) and phage therapy on the gut bacterial communities of green turtles was evaluated. Gut bacterial communities in faecal samples were analysed by sequencing the V1-V3 regions of the bacterial 16S rRNA. Bacteria-specific phage cocktails significantly (P < 0.05) reduced targeted Acinetobacter in phage-treated turtles during the therapy. Compared to control, no significant difference was observed in the bacterial diversity and compositions in phage-treated turtles. In contrast, bacterial diversity was significantly (P < 0.05) reduced in antibiotic-treated turtles at day 15 and throughout the trial. The alteration in the bacterial microbiota of antibiotic-treated turtles was largely due to an increase in abundance of Gram-positive Firmicutes and a concurrent decrease in Gram-negative Bacteroidetes, Proteobacteria and Verrucomicrobia. Additionally, we observed the relative abundance of several bacteria at lower taxonomic level was much less affected by phages than by antibiotics. These data offer the proof of concept of phage therapy to manipulate transient as well as indigenous bacterial flora in gut-related dysbiosis of turtles.
Collapse
Affiliation(s)
- Md Shamim Ahasan
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Robert Kinobe
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lisa Elliott
- AusPhage, 10 Heather Avenue, Rasmussen, Queensland, 4811, Australia
| | - Leigh Owens
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jenni Scott
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jacqueline Picard
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ellen Ariel
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
121
|
Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019; 29:e2041. [PMID: 31050070 DOI: 10.1002/rmv.2041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
Bacteriophages or phages, being the most abundant entities on earth, represent a potential solution to a diverse range of problems. Phages are successful antibacterial agents whose use in therapeutics was hindered by the discovery of antibiotics. Eventually, because of the development and spread of antibiotic resistance among most bacterial species, interest in phage as therapeutic entities has returned, because their noninfectious nature to humans should make them safe for human nanomedicine. This review highlights the most recent advances and progress in phage therapy and bacterial hosts against which phage research is currently being conducted with respect to food, human, and marine pathogens. Bacterial immunity against phages and tactics of phage revenge to defeat bacterial defense systems are also summarized. We have also discussed approved phage-based products (whole phage-based products and phage proteins) and shed light on their influence on the eukaryotic host with respect to host safety and induction of immune response against phage preparations. Moreover, creation of phages with desirable qualities and their uses in cancer treatment, vaccine production, and other therapies are also reviewed to bring together evidence from the scientific literature about the potentials and possible utility of phage and phage encoded proteins in the field of therapeutics and industrial biotechnology.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Momna Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
122
|
Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev 2019; 145:4-17. [PMID: 30659855 DOI: 10.1016/j.addr.2019.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The human body is a large reservoir for bacterial viruses known as bacteriophages (phages), which participate in dynamic interactions with their bacterial and human hosts that ultimately affect human health. The current growing interest in human resident phages is paralleled by new uses of phages, including the design of engineered phages for therapeutic applications. Despite the increasing number of clinical trials being conducted, the understanding of the interaction of phages and mammalian cells and tissues is still largely unknown. The presence of phages in compartments within the body previously considered purely sterile, suggests that phages possess a unique capability of bypassing anatomical and physiological barriers characterized by varying degrees of selectivity and permeability. This review will discuss the direct evidence of the accumulation of bacteriophages in various tissues, focusing on the unique capability of phages to traverse relatively impermeable barriers in mammals and its relevance to its current applications in therapy.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Jesse St Jean
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada.
| |
Collapse
|
123
|
Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int 2019; 119:530-540. [DOI: 10.1016/j.foodres.2017.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022]
|
124
|
Feyereisen M, Mahony J, Lugli GA, Ventura M, Neve H, Franz CMAP, Noben JP, O'Sullivan T, Sinderen DV. Isolation and Characterization of Lactobacillus brevis Phages. Viruses 2019; 11:v11050393. [PMID: 31035495 PMCID: PMC6563214 DOI: 10.3390/v11050393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Lactobacillus brevis has been widely used in industry for fermentation purposes. However, it is also associated with the spoilage of foods and beverages, in particular, beer. There is an increasing demand for natural food preservation methods, and in this context, bacteriophages possess the potential to control such spoilage bacteria. Just a few studies on phages infecting Lactobacillus brevis have been performed to date and in the present study, we report the isolation and characterization of five virulent phages capable of infecting Lb. brevis strains. The analysis reveals a high diversity among the isolates, with members belonging to both, the Myoviridae and Siphoviridae families. One isolate, designated phage 3-521, possesses a genome of 140.8 kb, thus representing the largest Lb. brevis phage genome sequenced to date. While the isolated phages do not propagate on Lb. brevis beer-spoiling strains, phages showed activity against these strains, impairing the growth of some Lb. brevis strains. The results highlight the potential of bacteriophage-based treatments as an effective approach to prevent bacterial spoilage of beer.
Collapse
Affiliation(s)
- Marine Feyereisen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Charles M A P Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Tadhg O'Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, 2382 Zoeterwoude, The Netherlands.
| | - Douwe van Sinderen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
125
|
Born Y, Knecht LE, Eigenmann M, Bolliger M, Klumpp J, Fieseler L. A major-capsid-protein-based multiplex PCR assay for rapid identification of selected virulent bacteriophage types. Arch Virol 2019; 164:819-830. [PMID: 30673846 PMCID: PMC6394723 DOI: 10.1007/s00705-019-04148-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
Bacteriophages represent a promising alternative for controlling pathogenic bacteria. They are ubiquitous in the environment, and their isolation is usually simple and fast. However, not every phage is suitable for biocontrol applications. It must be virulent (i.e., strictly lytic), non-transducing, and safe. We have developed a method for identifying selected types of virulent phages at an early stage of the isolation process to simplify the search for suitable candidates. Using the major capsid protein (MCP) as a phylogenetic marker, we designed degenerate primers for the identification of Felix O1-, GJ1-, N4-, SP6-, T4-, T7-, and Vi1-like phages in multiplex PCR setups with single phage plaques as templates. Performance of the MCP PCR assay was evaluated with a set of 26 well-characterized phages. Neither false-positive nor false-negative results were obtained. In addition, 154 phages from enrichment cultures from various environmental samples were subjected to MCP PCR analysis. Eight of them, specific for Salmonella enterica, Escherichia coli, or Erwinia amylovora, belonged to one of the selected phage types. Their PCR-based identification was successfully confirmed by pulsed-field gel electrophoresis of the phage genomes, electron microscopy, and sequencing of the amplified mcp gene fragment. The MCP PCR assay was shown to be a simple method for preliminary assignment of new phages to a certain group and thus to identify candidates for biocontrol immediately after their isolation. Given that sufficient sequence data are available, this method can be extended to any phage group of interest.
Collapse
Affiliation(s)
- Yannick Born
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Leandra E Knecht
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mirjam Eigenmann
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Michel Bolliger
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| |
Collapse
|
126
|
Cordova AV, Laglaguano JC. Bacteriophages applications in agriculture. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The bacteriophages life cycle has two stages: a lytic stage where the phages reproduce inside the bacteria and lyse bacteria and a lysogenic stage where the phage is in a stationary stage where do not exist phage reproduction. The understanding of the life cycle of phages is fundamental to understand the advantages of phage offers as biological control applications and how engineered phages work. The bacteriophages are an alternative to fight against the antimicrobial or pesticides because phages offer advantages such as high host specificity, the ability of long term effect, are active against dividing or not dividing bacterial cells, effective elimination of biofilms and are capable vehicles for nucleic acids delivery. Phages have been isolated from water or soil samples in different parts of the world and for specific bacterial pathogens. In the following review, in the main topics in bacteriophages and its applications in agriculture: the bacteriophages life cycle, advantages of phages in biological control applications, the last isolated phages and described for different pathogens and the last advances in phage engineering applications for biological control.
Collapse
Affiliation(s)
- Airina Valentina Cordova
- School of Chemical Sciences and Engineering. Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Juan Carlos Laglaguano
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
127
|
Saha D, Mukherjee R. Ameliorating the antimicrobial resistance crisis: phage therapy. IUBMB Life 2019; 71:781-790. [DOI: 10.1002/iub.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Dibya Saha
- Department of Biology; Indian Institute of Science Education and Research; Tirupati India
| | - Raju Mukherjee
- Department of Biology; Indian Institute of Science Education and Research; Tirupati India
| |
Collapse
|
128
|
Gutiérrez D, Fernández L, Rodríguez A, García P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front Microbiol 2019; 10:12. [PMID: 30723460 PMCID: PMC6349743 DOI: 10.3389/fmicb.2019.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
The growing human population is currently facing an unprecedented challenge regarding global food sustainability. Thus, it is of paramount to maintain food production and quality while avoiding a negative impact on climate change and the environment at large. Along the food chain, several practices could compromise future food safety and human health. One example is the widespread use of antibiotics and disinfectants in dairy production, which has contributed to the current antibiotic resistance crisis. Moreover, the uncontrolled release of antimicrobials to the environment poses a significant threat to natural ecosystems. For these reasons, research has recently focused on exploiting natural antimicrobials with the goal of achieving a safer and more sustainable dairy production chain. In this context, bacteriophages, viruses that infect bacteria, may become good allies to prevent and treat diseases in cattle, or be used as disinfectants in dairy facilities and as preservatives in dairy products. This review provides an overview of the current research regarding the use of phages as a global approach to reduce economic losses and food waste, while increasing food safety and reducing the environmental impact of food production. Our current understanding of progress, solutions, and future challenges in dairy production, processing, safety, waste processing, and quality assurance is also discussed.
Collapse
Affiliation(s)
| | | | | | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
129
|
Cha Y, Chun J, Son B, Ryu S. Characterization and Genome Analysis of Staphylococcus aureus Podovirus CSA13 and Its Anti-Biofilm Capacity. Viruses 2019; 11:v11010054. [PMID: 30642091 PMCID: PMC6356323 DOI: 10.3390/v11010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is one of the notable human pathogens that can be easily encountered in both dietary and clinical surroundings. Among various countermeasures, bacteriophage therapy is recognized as an alternative method for resolving the issue of antibiotic resistance. In the current study, bacteriophage CSA13 was isolated from a chicken, and subsequently, its morphology, physiology, and genomics were characterized. This Podoviridae phage displayed an extended host inhibition effect of up to 23 h of persistence. Its broad host spectrum included methicillin susceptible S. aureus (MSSA), methicillin resistant S. aureus (MRSA), local S. aureus isolates, as well as non-aureus staphylococci strains. Moreover, phage CSA13 could successfully remove over 78% and 93% of MSSA and MRSA biofilms in an experimental setting, respectively. Genomic analysis revealed a 17,034 bp chromosome containing 18 predicted open reading frames (ORFs) without tRNAs, representing a typical chromosomal structure of the staphylococcal Podoviridae family. The results presented here suggest that phage CSA13 can be applicable as an effective biocontrol agent against S. aureus.
Collapse
Affiliation(s)
- Yoyeon Cha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Jihwan Chun
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Center for Food and Bioconvergence4, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Center for Food and Bioconvergence4, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
130
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. Bacteriophages in Food Applications: From Foe to Friend. Annu Rev Food Sci Technol 2019; 10:151-172. [PMID: 30633564 DOI: 10.1146/annurev-food-032818-121747] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) have traditionally been considered troublesome in food fermentations, as they are an important cause of starter-culture failure and trigger significant financial losses. In addition, from an evolutionary perspective, phages have contributed to the pathogenicity of many bacteria through transduction of virulence genes. In contrast, phages have played an important positive role in molecular biology. Moreover, these agents are increasingly being recognized as a potential solution to the detection and biocontrol of various undesirable bacteria, which cause either spoilage of food materials, decreased microbiological safety of foods, or infectious diseases in food animals and crops. The documented successful applications of phages and various phage-derived molecules are discussed in this review, as are many promising new uses that are currently under development.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland;
| | | | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland; .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
131
|
Alves D, Marques A, Milho C, Costa MJ, Pastrana LM, Cerqueira MA, Sillankorva SM. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. Int J Food Microbiol 2018; 291:121-127. [PMID: 30496941 DOI: 10.1016/j.ijfoodmicro.2018.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023]
Abstract
Despite the recent advances achieved in food industries to fulfil the growing consumer demand for high quality and food safety, microbial contamination remains a serious issue. This study aimed to incorporate ϕIBB-PF7A bacteriophage (phage) onto sodium alginate-based films crosslinked with calcium chloride, to prevent poultry spoilage caused by Pseudomonas fluorescens. Films were prepared by casting and characterized in terms of phage loading, distribution, stability, release profile and antimicrobial performance. Results showed that phages were successfully incorporated as evidenced by their viability and homogeneous distribution within the films as assessed by microscopy. A decrease in phage viability was only detected after 8 weeks when stored under refrigerated conditions. Antimicrobial activity demonstrated that incorporated phages significantly impaired P. fluorescens growth. Films' antimicrobial efficacy was further demonstrated on chicken breast fillets artificially inoculated, decreasing 2Log P. fluorescens viable cell counts in the first two days and reductions were maintained up to 5 days of exposure (1 Log). These results highlight that phage incorporation onto sodium-alginate-based films constitutes a simple approach of preserving the antimicrobial activity of phages in a dried and insoluble format, that can further be applied in food industry for the prevention of microbial spoilage.
Collapse
Affiliation(s)
- Diana Alves
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Arlete Marques
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catarina Milho
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria José Costa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Maria Sillankorva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
132
|
Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One 2018; 13:e0206278. [PMID: 30356310 PMCID: PMC6200275 DOI: 10.1371/journal.pone.0206278] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Phage therapy is the use of lytic bacteriophages to cure infections caused by bacteria. The aim of this study is to isolate and to characterize the bacteriophages against Escherichia coli isolated from clinical samples. For isolation of bacteriophages, water samples were collected from the Ganges River, and phage enrichment method was followed for phage isolation. Microbiological, genomic and lyophilization experiments were carried out to characterize the bacteriophage. Galleria mellonella was used to study the potential of phages against E. coli infection. Escherichia phage myPSH1131 belonging to Podoviridae family and found to have broad host range infectivity (n = 31) to infect Enterohemorrhagic E. coli (n = 9), Enteropathogenic E. coli (n = 6), Enterotoxigenic E. coli (n = 3), Enteroaggregative E. coli (n = 3), Uropathogenic E. coli (n = 9) and one unknown E. coli. The genome size is 76,163 base pairs (97 coding regions) and their genes show high similarity to SU10 phage. Lyophilization studies showed that the use of 1M sucrose, 2% gelatin and the combination of both 0.5M sucrose plus 1% gelatin could restore phage viability up to 20 months at 4°C. For in vivo studies, it was observed that a single phage dose can reduce the E. coli infection but to achieve 100% survival rate the infected larvae should be treated with three phage doses (20 μL, 103 PFU/mL) at 6 hours interval. The characterized Escherichia phage myPSH1131 was found to have broad host range activity against E. coli pathogens and in vivo studies showed that multiple doses are required for effective treatment.
Collapse
Affiliation(s)
- Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ashok J. Tamhankar
- Global Health-Health Systems and Policy (HSP): Medicines, focusing antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Indian Initiative for Management of Antibiotic Resistance, Deonar, Mumbai, India
| | - Cecilia Stalsby Lundborg
- Global Health-Health Systems and Policy (HSP): Medicines, focusing antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
133
|
LeLièvre V, Besnard A, Schlusselhuber M, Desmasures N, Dalmasso M. Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol 2018; 78:89-98. [PMID: 30497612 DOI: 10.1016/j.fm.2018.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
Abstract
Controlling the presence of pathogenic bacteria, such as Salmonella sp., in dairy products production is a burning issue since contamination with Salmonella can occur at any stage of the production chain. The use of Salmonella-phages applied as control agents has gained considerable interest. Nonetheless, Salmonella-phage applications specifically intended for ensuring the safety of dairy products are scarce. This review identifies recent advances in the use of Salmonella-phages that are or could be applied along the dairy food chain, in a farm-to-fork approach. Salmonella-phages can be promising tools to reduce the shedding of Salmonella in cattle, and to reduce and control Salmonella occurrence in postharvest food (such as food additives), and in food processing facilities (such as biosanitizing agents). These control measures, combined with existing methods and other biocontrol agents, constitute new opportunities to reduce Salmonella occurrence along the dairy food production, and consequently to alleviate the risk of Salmonella contamination in dairy products.
Collapse
|
134
|
Dong Z, Xing S, Liu J, Tang X, Ruan L, Sun M, Tong Y, Peng D. Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J Gen Virol 2018; 99:1453-1462. [DOI: 10.1099/jgv.0.001133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zhaoxia Dong
- 1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Shaozhen Xing
- 2State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jin Liu
- 1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xizhe Tang
- 1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Lifang Ruan
- 1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Ming Sun
- 1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yigang Tong
- 2State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Donghai Peng
- 1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| |
Collapse
|
135
|
Weinroth MD, Britton BC, Belk KE. Genetics and microbiology of meat. Meat Sci 2018; 144:15-21. [DOI: 10.1016/j.meatsci.2018.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
136
|
Son HM, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Application of bacteriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl Microbiol Biotechnol 2018; 102:10259-10271. [DOI: 10.1007/s00253-018-9399-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
|
137
|
de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends Microbiol 2018; 27:51-63. [PMID: 30181062 DOI: 10.1016/j.tim.2018.08.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/07/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023]
Abstract
The host range of a bacteriophage is the taxonomic diversity of hosts it can successfully infect. Host range, one of the central traits to understand in phages, is determined by a range of molecular interactions between phage and host throughout the infection cycle. While many well studied model phages seem to exhibit a narrow host range, recent ecological and metagenomics studies indicate that phages may have specificities that range from narrow to broad. There is a growing body of studies on the molecular mechanisms that enable phages to infect multiple hosts. These mechanisms, and their evolution, are of considerable importance to understanding phage ecology and the various clinical, industrial, and biotechnological applications of phage. Here we review knowledge of the molecular mechanisms that determine host range, provide a framework defining broad host range in an evolutionary context, and highlight areas for additional research.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8 3584 CH Utrecht, The Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Franklin L Nobrega
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands; Laboratory for Microbiology, Wageningen University, Stippeneng 4 6708 WE, Wageningen, The Netherlands; These authors made equal contributions
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8 3584 CH Utrecht, The Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525GA Nijmegen, The Netherlands; These authors made equal contributions.
| |
Collapse
|
138
|
Bone S, Alum A, Markovski J, Hristovski K, Bar-Zeev E, Kaufman Y, Abbaszadegan M, Perreault F. Physisorption and chemisorption of T4 bacteriophages on amino functionalized silica particles. J Colloid Interface Sci 2018; 532:68-76. [PMID: 30077067 DOI: 10.1016/j.jcis.2018.07.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
Bacteriophages, or phages, are receiving increasing interest as recognition tools for the design of bioactive surfaces. However, to maintain the activity of surface-bound phages, the immobilization strategy must provide the right orientation and not compromise the phages' integrity. The objectives of this study were to characterize the phage sorption capacity and the immobilized phage activity for aminated silica particles functionalized with T4 phages. Two functionalization strategies were compared; physisorption, based on electrostatic adhesion, and chemisorption, where the phage and the particle are coupled using a carbodiimide cross-linker. We report that chemisorption, at maximum adsorption conditions on 1 µm particles, yielded 16 functional phages per particle, which is 2.5 times more than by the physisorption method. Particle diameter is shown to have an important impact on phage attachment and 1.8 µm particles were found to have ∼4 times more phages per surface area than 0.5 µm particles. Higher surface coverage is attributed to the lower steric hindrance on bigger particles. These findings provide important guidelines for the design of phage-functionalized particles for environmental, biomedical, or sensing applications.
Collapse
Affiliation(s)
- Stephanie Bone
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; National Science Foundation Water & Environmental Technology Center, United States
| | - Jasmina Markovski
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States; The Polytechnic School, Arizona State University, Mesa, AZ 85212, United States
| | - Kiril Hristovski
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States; The Polytechnic School, Arizona State University, Mesa, AZ 85212, United States
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Israel
| | - Yair Kaufman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Israel
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; National Science Foundation Water & Environmental Technology Center, United States
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
139
|
Squires RA. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. N Z Vet J 2018; 66:229-235. [PMID: 29925297 DOI: 10.1080/00480169.2018.1491348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteriophages (or phages) are naturally-occurring viruses that can infect and kill bacteria. They are remarkably diverse, numerous and widespread. Each phage has a narrow host range yet a large majority of bacteria studied so far play host to bacteriophages, hence the remarkable phage diversity. Phages were discovered just over 100 years ago and they have been used for treatment of bacterial infections in humans and other animals since the 1920s. They have also been studied intensively and this has led to, and continues to lead to, major insights in the fields of molecular biology and recombinant DNA technology, including that DNA is the genetic material, nucleotides are arranged in triplets to make codons, and messenger RNA is needed for protein synthesis. This article begins with a description of bacteriophages and explains why there has recently been a strong resurgence of interest in their clinical use for treatment of bacterial infections, particularly those caused by organisms resistant to multiple antimicrobial compounds. The history of bacteriophage therapy is briefly reviewed, followed by a review and critique of promising but very limited clinical research on the use of bacteriophages to treat bacterial infections in dogs. Other potential veterinary uses and benefits of bacteriophage therapy are also briefly discussed. There are important practical challenges that will have to be overcome before widespread implementation and commercialisation of bacteriophage therapy can be achieved, which are also considered.
Collapse
Affiliation(s)
- R A Squires
- a Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Australia
| |
Collapse
|
140
|
Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res 2018; 212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
|
141
|
Gokulan K, Bekele AZ, Drake KL, Khare S. Responses of intestinal virome to silver nanoparticles: safety assessment by classical virology, whole-genome sequencing and bioinformatics approaches. Int J Nanomedicine 2018; 13:2857-2867. [PMID: 29844669 PMCID: PMC5961469 DOI: 10.2147/ijn.s161379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Effects of silver nanoparticles (AgNP) on the intestinal virome/phage community are mostly unknown. The working hypothesis of this study was that the exposure of pharmaceutical/nanomedicine and other consumer-use material containing silver ions and nanoparticles to the gastrointestinal tract may result in disturbance of the beneficial gut viruses/phages. Methods This study assesses the impact of AgNP on the survival of individual bacteriophages using classical virology cultivation and electron microscopic techniques. Moreover, how the ingested AgNP may affect the intestinal virus/phages was investigated by conducting whole-genome sequencing (WGS). Results The viral cultivation methods showed minimal effect on selected viruses during short-term exposure (24 h) to 10 nm AgNP. However, long-term exposure (7 days) resulted in significant reduction in the viral/phage population. Data obtained from WGS were filtered and compared with a nonredundant viral database composed of the complete viral genomes from NCBI using KRAKEN (confidence scoring threshold of 0.5). To compare the relative differential changes, the sequence counts in each treatment group were normalized to account for differences in DNA sequencing library sizes. Bioinformatics techniques were developed to visualize the virome comparative changes in a phylogenic tree graph. The computed data revealed that AgNP had an impact on several intestinal bacteriophages that prey on bacterial genus Enterobacteria, Yersinia and Staphylococcus as host species. Moreover, there was an independent effect of nanoparticles and released ions. Conclusion Overall, this study reveals that the small-size AgNP could lead to perturbations of the gut microbial ecosystem, leading to the inactivation of resident phages that play an important role in influencing gastrointestinal health.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Aschalew Z Bekele
- Division of Microbiology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Sangeeta Khare
- Division of Microbiology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
142
|
Bacteriophage cocktail for biocontrol of Escherichia coli O157:H7: Stability and potential allergenicity study. PLoS One 2018; 13:e0195023. [PMID: 29763937 PMCID: PMC5953568 DOI: 10.1371/journal.pone.0195023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli O157:H7 has become a global public health and a food safety problem. Despite the implementation of control strategies that guarantee the safety in various products, outbreaks persist and new alternatives are necessary to reduce this pathogen along the food chain. Recently, our group isolated and characterised lytic bacteriophages against E. coli O157:H7 with potential to be used as biocontrol agents in food. To this end, phages need certain requirements to allow their manufacture and application. The aim of this study was to determine the physical stability and allergenic potential of free and microencapsulated (ME) bacteriophage cocktails against E. coli O157:H7. In vitro and in vivo studies were performed to determine phage survival under different pH, gastrointestinal conditions, temperature and UV light intensities. Results showed that the stability of ME phages was significantly (P<0.05) higher than free phages after ultraviolet irradiation, pH conditions between 3 to 7, and exposure to temperatures between at -80°C and 70°C. Both formulations were highly sensitive to very low pH in simulated gastric fluid, but stable in bile salts. In vivo studies in mice confirmed these phages passed through the gastrointestinal tract and were excreted in faeces. In silico, full-length alignment analysis showed that all phage proteins were negative for allergenic potential, but different predicting criteria classified seven phage proteins with a very low probability to be an allergen. In conclusion, these data demonstrated that microencapsulation provided a greater stability to phage formulation under stress conditions and assure a more suitable commercial formulation for the biological control of E. coli O157:H7.
Collapse
|
143
|
Bacteriophages as modulator for the human gut microbiota: Release from dairy food systems and survival in a dynamic human gastrointestinal model. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
144
|
Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage Applications for Food Production and Processing. Viruses 2018; 10:E205. [PMID: 29671810 PMCID: PMC5923499 DOI: 10.3390/v10040205] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods.
Collapse
Affiliation(s)
- Zachary D Moye
- Intralytix, Inc., The Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - Joelle Woolston
- Intralytix, Inc., The Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | | |
Collapse
|
145
|
Marquardt RR, Li S. Antimicrobial resistance in livestock: advances and alternatives to antibiotics. Anim Front 2018; 8:30-37. [PMID: 32002216 PMCID: PMC6951930 DOI: 10.1093/af/vfy001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ronald R Marquardt
- Department of Animal Sciences, The University of Manitoba, Winnipeg MB, Canada
- All Natural Nutritional Products (ANNP) Inc., The University of Manitoba Smartpark, Winnipeg MB, Canada
| | - Suzhen Li
- All Natural Nutritional Products (ANNP) Inc., The University of Manitoba Smartpark, Winnipeg MB, Canada
| |
Collapse
|
146
|
Breitbart M, Malki K, Sawaya NA, Bonnain C, Martin MO. Elementary Student Outreach Activity Demonstrating the Use of Phage Therapy Heroes to Combat Bacterial Infections. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2018; 19:jmbe-19-30. [PMID: 29904530 PMCID: PMC5969416 DOI: 10.1128/jmbe.v19i1.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/08/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Mya Breitbart
- University of South Florida, Saint Petersburg, FL 33701
| | - Kema Malki
- University of South Florida, Saint Petersburg, FL 33701
| | | | | | | |
Collapse
|
147
|
Heo S, Kim MG, Kwon M, Lee HS, Kim GB. Inhibition of Clostridium perfringens using Bacteriophages and Bacteriocin Producing Strains. Korean J Food Sci Anim Resour 2018; 38:88-98. [PMID: 29725227 PMCID: PMC5932972 DOI: 10.5851/kosfa.2018.38.1.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/02/2022] Open
Abstract
In this study, we isolated and characterized a bacteriocin-producing strain and two bacteriophages (P4, A3), showing antimicrobial effects against Clostridium perfringens, from chicken and swine feces by the spot-on-the lawn antagonism method. The selected strain was identified as Streptococcus hyointestinalis by 16S rRNA gene sequencing. The bacteriocin from the isolated strain exhibited strong inhibitory activity against four strains of C. perfringens and all the tested strains of Listeria monocytogenes, and the bacteriocin were highly heat- and pH-stable even at pH 2, pH 10 and 121℃ for 15 min. We also evaluated the combined effects of the isolated bacteriocin and phages. Combining the phage treatments and bacteriocin resulted in a synergetic effect compared with the phage or the bacteriocin alone. In addition, during the probiotic test, the bacteriocin-producing S. hyointestinalis B19 strain reduced the population of C. perfringens significantly. Treatment with S. hyointestinalis B19 and a cocktail of lytic bacteriophages eradicated the C. perfringens KCTC 3269T, completely. Consequently, the isolated bacteriocin and bacteriophages represent candidates for effective biocontrol of C. perfringens, and bacteriocin-producing S. hyointestinalis B19 is a potential probiotic candidate for use in domestic animals.
Collapse
Affiliation(s)
- Sunhak Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Min Gon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Mirae Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hee Soo Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
148
|
Parmar KM, Dafale NA, Tikariha H, Purohit HJ. Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria. Arch Microbiol 2018; 200:611-622. [PMID: 29330592 DOI: 10.1007/s00203-017-1471-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022]
Abstract
Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.
Collapse
Affiliation(s)
- Krupa M Parmar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
149
|
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet Sci 2018; 4:237. [PMID: 29359135 PMCID: PMC5766636 DOI: 10.3389/fvets.2017.00237] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| |
Collapse
|
150
|
Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci U S A 2018; 115:567-572. [PMID: 29298913 DOI: 10.1073/pnas.1714658115] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Engineered bacteriophages provide powerful tools for biotechnology, diagnostics, pathogen control, and therapy. However, current techniques for phage editing are experimentally challenging and limited to few phages and host organisms. Viruses that target Gram-positive bacteria are particularly difficult to modify. Here, we present a platform technology that enables rapid, accurate, and selection-free construction of synthetic, tailor-made phages that infect Gram-positive bacteria. To this end, custom-designed, synthetic phage genomes were assembled in vitro from smaller DNA fragments. We show that replicating, cell wall-deficient Listeria monocytogenes L-form bacteria can reboot synthetic phage genomes upon transfection, i.e., produce virus particles from naked, synthetic DNA. Surprisingly, Listeria L-form cells not only support rebooting of native and synthetic Listeria phage genomes but also enable cross-genus reactivation of Bacillus and Staphylococcus phages from their DNA, thereby broadening the approach to phages that infect other important Gram-positive pathogens. We then used this platform to generate virulent phages by targeted modification of temperate phage genomes and demonstrated their superior killing efficacy. These synthetic, virulent phages were further armed by incorporation of enzybiotics into their genomes as a genetic payload, which allowed targeting of phage-resistant bystander cells. In conclusion, this straightforward and robust synthetic biology approach redefines the possibilities for the development of improved and completely new phage applications, including phage therapy.
Collapse
|