101
|
Guo C, Tang Y, Li Q, Yang Z, Guo Y, Chen C, Zhang Y. Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma. Comput Biol Med 2023; 158:106872. [PMID: 37030269 DOI: 10.1016/j.compbiomed.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Belonging to type 1 innate lymphoid cells (ILC1), natural killer (NK) cells play an important role not only in fighting microbial infections but also in anti-tumor response. Hepatocellular carcinoma (HCC) represents an inflammation-related malignancy and NK cells are enriched in the liver, making them an essential component of the HCC immune microenvironment. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis to identify the NK cell marker genes (NKGs) and uncovered 80 prognosis-related ones by the TCGA-LIHC dataset. Based on prognostic NKGs, HCC patients were categorized into two subtypes with distinct clinical outcomes. Subsequently, we conducted LASSO-COX and stepwise regression analysis on prognostic NKGs to establish a five-gene (UBB, CIRBP, GZMH, NUDC, and NCL) prognostic signature-NKscore. Different mutation statuses of the two risk groups stratified by NKscore were comprehensively characterized. Besides, the established NKscore-integrated nomogram presented enhanced predictive performance. Single sample gene set enrichment analysis (ssGSEA) analysis was used to uncover the landscape of the tumor immune microenvironment (TIME) and the high-NKscore risk group was characterized with an immune-exhausted phenotype while the low-NKscore risk group held relatively strong anti-cancer immunity. T cell receptor (TCR) repertoire, tumor inflammation signature (TIS), and Immunophenoscore (IPS) analyses revealed differences in immunotherapy sensitivity between the two NKscore risk groups. Taken together, we developed a novel NK cell-related signature to predict the prognosis and immunotherapy efficacy for HCC patients.
Collapse
Affiliation(s)
- Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Tapai, Macau, 999078, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China
| | - Qizhuo Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqi Guo
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Yongqiang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
102
|
Naruse TK, Konishi-Takemura M, Yanagida R, Sharma G, Vajpayee M, Terunuma H, Mehra NK, Kaur G, Kimura A. Killer cell immunoglobulin-like receptor three domains long cytoplasmic tail 1 gene *007 may modulate disease progression of human immunodeficiency virus-1 infection in the Japanese population. Int J Immunogenet 2023; 50:48-52. [PMID: 36807537 DOI: 10.1111/iji.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
One of the KIR allele, KIR3DL1*007, was associated with the progression to acquired immunodeficiency syndrome and not with the susceptibility to HIV-1 infection in the Japanese and Indian populations, implying that KIR3DL1*007-positive NK cells might eliminate HIV-infected cells less effectively than NK cells bearing the other KIR3DL1 alleles or KIR3DS1 alleles.
Collapse
Affiliation(s)
- Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Makiko Konishi-Takemura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Yanagida
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
103
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
104
|
Tang Y, Ma S, Lin S, Wu Y, Chen S, Liu G, Ma L, Wang Z, Jiang L, Wang Y. Cell-free protein synthesis of CD1E and B2M protein and in vitro interaction. Protein Expr Purif 2023; 203:106209. [PMID: 36460227 DOI: 10.1016/j.pep.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
CD1E, one of the most important glycolipid antigens on T cell membranes, is required for glycolipid antigen presentation on the cell surface. Cell-based recombinant expression systems have many limitations for synthesizing transmembrane proteins such as CD1E, including low protein yields and miss folding. To overcome these challenges, here we successfully synthesized high-quality soluble CD1E using an E.coli cell-free protein synthesis system (CFPS) with the aid of detergent. Following purification by Ni2+ affinity chromatography, we were able to obtain CD1E with ≥90% purity. Furthermore, we used the string website to predict the protein interaction network of CD1E and identified a potential binding partner━B2M. Similarly, we synthesized soluble B2M in the E.coli CFPS. Finally, we verified the interaction between CD1E and B2M by using Surface Plasmon Resonance (SPR). Taken together, the methods described here provide an alternative way to obtain active transmembrane protein and may facilitate future structural and functional studies on CD1E.
Collapse
Affiliation(s)
- Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory LTD, Anyang, Henan province, 455000, China
| | - Yinrong Wu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Siyang Chen
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and RegμLation, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lele Jiang
- Surgical Diagnostics Pty Ltd, Roseville, Sydney, 2069, Australia.
| | - Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
105
|
Azoulay T, Slouzky I, Karmona M, Filatov M, Hayun M, Ofran Y, Sarig G, Ringelstein-Harlev S. Compromised activity of natural killer cells in diffuse large b-cell lymphoma is related to lymphoma-induced modification of their surface receptor expression. Cancer Immunol Immunother 2023; 72:707-718. [PMID: 36048214 DOI: 10.1007/s00262-022-03284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
While natural killer (NK) cells are essential players in detection and elimination of malignant cells, these surveillance properties can be compromised by cancer cells. Since NK cell education primarily occurs in the bone marrow and lymphoid tissue, this process might be particularly affected by their infiltration with lymphoma cells. This study aimed to explore functional properties of diffuse large B-cell lymphoma (DLBCL) patient NK cells, which could potentially promote tumour immune evasion and disease propagation.NK cells isolated from the peripheral blood (PB) of 26 DLBCL patients and 13 age-matched healthy controls (HC) were analysed. The cytotoxic CD56dim subtype was the only one identified in patients. Compared to HC, patient cells demonstrated low levels of inhibitory CD158a/b along with decreased expression of activating NKG2D and CD161 and increased inhibitory NKG2A levels. Patient NK cell cytotoxic activity was impaired, as were their degranulation and inflammatory cytokine production, which partially recovered following non-receptor-dependant stimulation.The phenotypically skewed and restricted population of patient NK cells, along with their blunted cytotoxic and immune-regulatory activity, appear to be driven by exposure to lymphoma environment. These NK cell functional aberrations could support lymphoma immune evasion and should be considered in the era of cellular therapy.
Collapse
Affiliation(s)
- Tehila Azoulay
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Ilana Slouzky
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Michal Karmona
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | | | - Michal Hayun
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Sarig
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
106
|
Saini P, Adeniji OS, Bordoloi D, Kinslow J, Martinson J, Parent DM, Hong KY, Koshy J, Kulkarni AJ, Zilberstein NF, Balk RA, Moy JN, Giron LB, Tracy RP, Keshavarzian A, Muthumani K, Landay A, Weiner DB, Abdel-Mohsen M. Siglec-9 Restrains Antibody-Dependent Natural Killer Cell Cytotoxicity against SARS-CoV-2. mBio 2023; 14:e0339322. [PMID: 36728420 PMCID: PMC9973332 DOI: 10.1128/mbio.03393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.
Collapse
Affiliation(s)
- Pratima Saini
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Kai Ying Hong
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
107
|
Role of T Cells in Vaccine-Mediated Immunity against Marek’s Disease. Viruses 2023; 15:v15030648. [PMID: 36992357 PMCID: PMC10055809 DOI: 10.3390/v15030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development.
Collapse
|
108
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
109
|
Co-expression of activating and inhibitory receptors on peritoneal fluid NK cells in women with endometriosis. J Reprod Immunol 2023; 155:103765. [PMID: 36442371 DOI: 10.1016/j.jri.2022.103765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The detailed mechanism underlying endometriosis development remains unclear; few reports have suggested the involvement of immune and genetic factors. This study aims to investigate the role of NK cells in endometriosis by analyzing the co-expression of activating (NKp46, NKG2C, and NKG2D) and inhibitory receptors (NKG2A and CD158a) on NK cells and their subsequent cytokine production in the peritoneal fluid (PF). Sixty-two patients were enrolled for this study from Hyogo Medical University between February 2018 and April 2022. Results showed that the proportions of CD56+/NKp46+, CD56dim/NKp46+, NKG2C+/NKp46+, and NKG2D+/NKp46+ NK cells were significantly lower in the endometriosis group than those in the control group. Meanwhile, within the peritoneal endometriosis (n = 21) and deep infiltrating endometriosis (n = 11) groups, the co-expression of NKG2D+/NKp46+ and CD16+/NKp46+. Additionally, the abundance of IFN-γ-producing NK cells was significantly increased in the endometriosis group compared to controls, and a significant negative correlation was noted between NKp46 expression on NK cells and type 1 cytokine (IFN-γ and TNF-α) production. Taken together, the findings of this study indicate that NK cell cytotoxicity in endometriosis is reduced due to changes in NKp46 expression, as well as activating receptors co-expressed with NKp46. Consequently, NK cells do not eliminate endometrial cells in the abdominal cavity, resulting in the production of TNF-α and IFN-γ.
Collapse
|
110
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
111
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
112
|
Al Olabi R, Hendy AEA, Alkassab MB, Alnajm K, Elias M, Ibrahim M, Carlyle JR, Makrigiannis AP, Rahim MMA. The inhibitory NKR-P1B receptor regulates NK cell-mediated mammary tumor immunosurveillance in mice. Oncoimmunology 2023; 12:2168233. [PMID: 36704449 PMCID: PMC9872954 DOI: 10.1080/2162402x.2023.2168233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are an important component of anti-cancer immunity, and their activity is regulated by an array of activating and inhibitory receptors. In mice, the inhibitory NKR-P1B receptor is expressed in NK cells and recognizes the C-type lectin-related protein-b (Clr-b) ligand. NKR-P1B:Clr-b interactions represent a 'missing-self' recognition system to monitor cellular levels of Clr-b on healthy and diseased cells. Here, we report an important role for NKR-P1B:Clr-b interactions in tumor immunosurveillance in MMTV-PyVT mice, which develop spontaneous mammary tumors. MMTV-PyVT mice on NKR-P1B-deficient genetic background developed mammary tumors earlier than on wild-type (WT) background. A greater proportion of tumor-infiltrating NK cells downregulate expression of the transcription factor Eomesodermin (EOMES) in NKR-P1B-deficient mice compared to WT mice. Tumor-infiltrating NK cells also downregulated CD49b expression but gain CD49a expression and exhibit effector functions, such as granzyme B upregulation and proliferation in mammary tumors. However, unlike the EOMES+ NK cells, the EOMES‒ NK cell subset is unable to respond to further in vitro stimulation and exhibits phenotypic alterations associated with immune dysfunction. These alterations included increased expression of PD-1, LAG-3, and TIGIT and decreased expression of NKp46, Ly49C/I, CD11b, and KLRG-1. Furthermore, tumor-infiltrating NKR-P1B-deficient NK cells exhibited an elevated dysfunctional immune phenotype compared to WT NK cells. These findings demonstrate that the NKR-P1B receptor plays an important role in mammary tumor surveillance by regulating anti-cancer immune responses and functional homeostasis in NK cells.
Collapse
Affiliation(s)
- Raghd Al Olabi
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Abd El Aziz Hendy
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | - Karla Alnajm
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Manahel Elias
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Mary Ibrahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew P. Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mir Munir A Rahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada,CONTACT Mir Munir A Rahim Department of Biomedical Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
113
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
114
|
Antitumor Immunity Exerted by Natural Killer and Natural Killer T Cells in the Liver. J Clin Med 2023; 12:jcm12030866. [PMID: 36769513 PMCID: PMC9917438 DOI: 10.3390/jcm12030866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The liver plays crucial roles in systemic immunity and greatly contributes to the systemic defense mechanism. Antitumor immunity in the liver is especially critical for the defense against systemic tumor cell dissemination. To achieve effective defense against metastatic tumor cells, liver immune cells with powerful cytotoxic activities construct a potent defense mechanism. In the liver, as compared with other organs, there is a significantly more intense percentage of innate immune lymphocytes, such as natural killer (NK) and NKT cells. These characteristic lymphocytes survey the portal blood transferred to the liver from the alimentary tract and eliminate malignant cells with their robust cytotoxic ability. Additionally, with their active cytokine-producing capacity, these innate lymphocytes initiate immunological sequences by adaptive immune cells. Therefore, they are crucial contributors to systemic antitumor immunity. These attractive immune cells help conduct a fundamental investigation of tumor immunity and act as a target of clinical measures for cancer therapies. This review discusses the mechanisms of these innate lymphocytes regarding recognition and cytotoxicity against tumor cells and the possibility of clinical applications for therapeutic measures.
Collapse
|
115
|
Zhu Y, Shi J. Cytotoxic and chemotactic dynamics of NK cells quantified by live-cell imaging. Methods Cell Biol 2023; 173:49-64. [PMID: 36653085 DOI: 10.1016/bs.mcb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural Killer (NK) cells detect and eliminate virus-infected cells and cancer cells, and are crucial players of the human immune defense system. Although the relevant molecular machineries involved in NK cell activation and NK-target cell interactions are largely known, how their collective signaling modulates the dynamic behaviors of NK cells, e.g., motility and cytotoxicity, and the rate-limiting kinetics involved are still in need of comprehensive investigations. In traditional bulk killing assays, heterogeneity and kinetic details of individual NK-target cell interactions are masked, seriously limiting analysis of the underlying dynamic mechanisms. Here we present detailed protocols of a number of live-cell imaging assays using fluorescent protein reporters and/or a live-cell dye that enable the acquisition of quantitative kinetic data at the single cell level for elucidating the mechanism underlying the interaction dynamics of primary human NK cells and epithelial cancer cells. Moreover, we discuss how the imaging data can be analyzed either alone or in combination to quantify and determine the key dynamic steps/intermediates involved in specific NK cell activity, e.g., NK cell cytotoxic modes and their associated kinetics, and NK cell motility toward different cancer targets. These live-cell imaging assays can be easily adapted to analyze the rate-limiting kinetics and heterogeneity of other cell-cell interaction dynamics, e.g., in T cell function.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jue Shi
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
116
|
Oh BLZ, Chan LWY, Chai LYA. Manipulating NK cellular therapy from cancer to invasive fungal infection: promises and challenges. Front Immunol 2023; 13:1044946. [PMID: 36969979 PMCID: PMC10034767 DOI: 10.3389/fimmu.2022.1044946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
The ideal strategy to fight an infection involves both (i) weakening the invading pathogen through conventional antimicrobial therapy, and (ii) strengthening defense through the augmentation of host immunity. This is even more pertinent in the context of invasive fungal infections whereby the majority of patients have altered immunity and are unable to mount an appropriate host response against the pathogen. Natural killer (NK) cells fit the requirement of an efficient, innate executioner of both tumour cells and pathogens – their unique, targeted cell killing mechanism, combined with other arms of the immune system, make them potent effectors. These characteristics, together with their ready availability (given the various sources of extrinsic NK cells available for harvesting), make NK cells an attractive choice as adoptive cellular therapy against fungi in invasive infections. Improved techniques in ex vivo NK cell activation with expansion, and more importantly, recent advances in genetic engineering including state-of-the-art chimeric antigen receptor platform development, have presented an opportune moment to harness this novel therapeutic as a key component of a multipronged strategy against invasive fungal infections.
Collapse
Affiliation(s)
- Bernice Ling Zhi Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Louis Wei Yong Chan
- Clinician Scientist Academy, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- *Correspondence: Louis Yi Ann Chai,
| |
Collapse
|
117
|
Aguilar OA, Gonzalez-Hinojosa MD, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, Lanier LL. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol 2023; 113:27-40. [PMID: 36822164 PMCID: PMC10197019 DOI: 10.1093/jleuko/qiac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria D.R. Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Alberto J. Millan
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Present Address: Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
118
|
Wang JZ, Nassiri F, Bi L, Zadeh G. Immune Profiling of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:189-198. [PMID: 37432628 DOI: 10.1007/978-3-031-29750-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Though meningiomas are generally regarded as benign tumors, there is increasing awareness of a large group of meningiomas that are biologically aggressive and refractory to the current standards of care treatment modalities. Coinciding with this has been increasing recognition of the important that the immune system plays in mediating tumor growth and response to therapy. To address this point, immunotherapy has been leveraged for several other cancers such as lung, melanoma, and recently glioblastoma in the context of clinical trials. However, first deciphering the immune composition of meningiomas is essential in order to determine the feasibility of similar therapies for these tumors. Here in this chapter, we review recent updates on characterizing the immune microenvironment of meningiomas and identify potential immunological targets that hold promise for future immunotherapy trials.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
119
|
Khadela A, Shah Y, Mistry P, Bodiwala K, CB A. Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technol Cancer Res Treat 2023; 22:15330338221150559. [PMID: 36683526 PMCID: PMC9893386 DOI: 10.1177/15330338221150559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The immune system plays a significant role in the development, invasion, progression, and metastasis of head and neck cancer. Over the last decade, the emergence of immunotherapy has irreversibly altered the paradigm of cancer treatment. The current treatment modalities for head and neck squamous cell carcinoma (HNSCC) include surgery, radiotherapy, and adjuvant or neoadjuvant chemotherapy which has failed to provide satisfactory clinical outcomes. To encounter this, there is a need for a novel or targeted therapy such as immunological targets along with conventional treatment strategy for optimal therapeutic outcomes. The immune system can contribute to promoting metastasis, angiogenesis, and growth by exploiting the tumor's influence on the microenvironment. Immunological targets have been found effective in recent clinical studies and have shown promising results. This review outlines the important immunological targets and the medications acting on them that have already been explored, are currently under clinical trials and are further being targeted.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Priya Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kunjan Bodiwala
- Department of Pharmaceutical chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Avinash CB
- Medical Oncologist, ClearMedi Radiant Hospital, Mysore, India
| |
Collapse
|
120
|
Monos DS, Rajalingam R. The Major Histocompatibility Complex. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
121
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
122
|
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol 2023; 65:101706. [PMID: 36542944 DOI: 10.1016/j.smim.2022.101706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Department of Medicine and Life Sciences. Univ. Pompeu Fabra. Barcelona, Spain.
| | - Andrea De Maria
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Madrid, Spain.
| |
Collapse
|
123
|
Zoghi S, Masoumi F, Rezaei N. The immune system. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
124
|
Tembhurne AK, Maheshwari A, Warke H, Chaudhari H, Kerkar SC, Deodhar K, Rekhi B, Mania-Pramanik J. Killer cell immunoglobulin-like receptor (KIR) gene contents: Are they associated with cervical cancer? J Med Virol 2023; 95:e27873. [PMID: 35593263 DOI: 10.1002/jmv.27873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are required for natural killer cell function against virus-infected cells or tumor cells. KIR gene content polymorphisms in Indian women with cervical cancer (CaCx) remain unexplored. Hence, we analyzed the frequencies of KIR genes, KIR haplotypes, and Bx subsets to draw their association with CaCx. The polymerase chain reaction-sequence-specific primer method was used for KIR genotyping in three groups of women: healthy controls (n = 114), women with human papillomavirus (HPV) infection (n = 70), and women with CaCx (n = 120). The results showed that the frequency of KIR2DS5 was significantly higher in women with CaCx compared to women with HPV infection (p = 0.02) and healthy controls (p = 0.01). Whereas the frequency of KIR2DL5B was significantly higher in healthy controls than in women with HPV infection (p = 0.02). The total number of activating KIR genes was higher in women with CaCx than in healthy controls (p = 0.006), indicating their positive association with CaCx. Moreover, the C4T4 subset was higher in women with CaCx than in women with HPV infection, though not significant. In conclusion, our findings highlight KIR2DS5, the C4T4 subset, and activating KIR genes are susceptible factors or positively associated with CaCx. Besides KIR2DL5B, this study also reported for the first time significantly high frequency of KIR2DL1 in healthy controls, indicating its possible protective association against CaCx. Further, significantly high frequency of KIR2DL3 observed in HPV-infected women might be also a promising biomarker for viral infections. Thus, the study confirms the association of KIR genes with cervical cancer in women with HPV infection.
Collapse
Affiliation(s)
- Alok K Tembhurne
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | - Himangi Warke
- Seth GS Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - Hemangi Chaudhari
- Seth GS Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - Shilpa C Kerkar
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | | | | |
Collapse
|
125
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
126
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
127
|
Baroja-Mazo A, Peñín-Franch A, Lucas-Ruiz F, de Torre-Minguela C, Alarcón-Vila C, Hernández-Caselles T, Pelegrín P. P2X7 receptor activation impairs antitumour activity of natural killer cells. Br J Pharmacol 2023; 180:111-128. [PMID: 36098250 PMCID: PMC10092446 DOI: 10.1111/bph.15951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE A high number of intratumoural infiltrating natural killer (NK) cells is associated with better survival in several types of cancer, constituting an important first line of defence against tumours. Hypoxia in the core of solid tumours induces cellular stress and ATP release into the extracellular space where it triggers purinergic receptor activation on tumour-associated immune cells. The aim of this study was to assess whether activation of the purinergic receptor P2X7 by extracellular ATP plays a role in the NK cells antitumour activity. EXPERIMENTAL APPROACH We carried out in vitro experiments using purified human NK cells triggered through P2X7 by extracellular ATP. NK cell killing activity against the tumour target cells K562 was studied by means of NK cytotoxicity assays. Likewise, we designed a subcutaneous solid tumour in vivo mouse model. KEY RESULTS In this study we found that human NK cells, expressing a functional plasma membrane P2X7, acquired an anergic state after ATP treatment, which impaired their antitumour activity and decreased IFN-γ secretion. This effect was reversed by specific P2X7 antagonists and pretreatment with either IL-2 or IL-15. Furthermore, genetic P2rx7 knockdown resulted in improved control of tumour size by NK cells. In addition, IL-2 therapy restored the ability of NK cells to diminish the size of tumours. CONCLUSIONS AND IMPLICATIONS Our results show that P2X7 activation represents a new mechanism whereby NK cells may lose antitumour effectiveness, opening the possibility of generating modified NK cells lacking P2X7 but with improved antitumour capacity.
Collapse
Affiliation(s)
- Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alejandro Peñín-Franch
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Fernando Lucas-Ruiz
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos de Torre-Minguela
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Cristina Alarcón-Vila
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
128
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
129
|
Kristensen AB, Wragg KM, Vanderven HA, Lee WS, Silvers J, Kent HE, Grant MD, Kelleher AD, Juno JA, Kent SJ, Parsons MS. Phenotypic and functional characteristics of highly differentiated CD57+NKG2C+ NK cells in HIV-1-infected individuals. Clin Exp Immunol 2022; 210:163-174. [PMID: 36053502 PMCID: PMC9750827 DOI: 10.1093/cei/uxac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are important anti-viral effector cells. The function and phenotype of the NK cells that constitute an individual's NK cell repertoire can be influenced by ongoing or previous viral infections. Indeed, infection with human cytomegalovirus (HCMV) drives the expansion of a highly differentiated NK cell population characterized by expression of CD57 and the activating NKG2C receptor. This NK cell population has also been noted to occur in HIV-1-infected individuals. We evaluated the NK cells of HIV-1-infected and HIV-1-uninfected individuals to determine the relative frequency of highly differentiated CD57+NKG2C+ NK cells and characterize these cells for their receptor expression and responsiveness to diverse stimuli. Highly differentiated CD57+NKG2C+ NK cells occurred at higher frequencies in HCMV-infected donors relative to HCMV-uninfected donors and were dramatically expanded in HIV-1/HCMV co-infected donors. The expanded CD57+NKG2C+ NK cell population in HIV-1-infected donors remained stable following antiretroviral therapy. CD57+NKG2C+ NK cells derived from HIV-1-infected individuals were robustly activated by antibody-dependent stimuli that contained anti-HIV-1 antibodies or therapeutic anti-CD20 antibody, and these NK cells mediated cytolysis through NKG2C. Lastly, CD57+NKG2C+ NK cells from HIV-1-infected donors were characterized by reduced expression of the inhibitory NKG2A receptor. The abundance of highly functional CD57+NKG2C+ NK cells in HIV-1-infected individuals raises the possibility that these NK cells could play a role in HIV-1 pathogenesis or serve as effector cells for therapeutic/cure strategies.
Collapse
Affiliation(s)
- Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Silvers
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Helen E Kent
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
130
|
Zhang X, Zhang Y, Liu H, Tang K, Zhang C, Wang M, Xue M, Jia X, Hu H, Li N, Zhuang R, Jin B, Zhang F, Zhang Y, Ma Y. IL-15 induced bystander activation of CD8 + T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. Front Cell Infect Microbiol 2022; 12:1084841. [PMID: 36590594 PMCID: PMC9797980 DOI: 10.3389/fcimb.2022.1084841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hantaan virus (HTNV) can cause endothelium injury in hemorrhagic fever with renal syndrome (HFRS) patients. Bystander activation of CD8+ T cells by virus infection has been shown that was involved in host injury, but it is unclear during HTNV infection. This project aimed to study the effect of bystander-activated CD8+ T cell responses in HTNV infection. Methods The in vitro infection model was established to imitate the injury of endothelium in HFRS patients. Flow cytometry was performed to detect the expression of markers of tetramer+ CD8+ T cells and human umbilical vein endothelial cells (HUVECs). The levels of interleukin-15 (IL-15) in serum and supermanant were detected using ELISA kit. The expression of MICA of HUVECs was respectively determined by flow cytometry and western blot. The cytotoxicity of CD8+ T cells was assessed through the cytotoxicity assay and antibody blocking assay. Results EBV or CMV-specific CD8+ T cells were bystander activated after HTNV infection in HFRS patients. HTNV-infected HUVECs in vitro could produce high levels of IL-15, which was positively correlated with disease severity and the expression of NKG2D on bystander-activated CD8+ T cells. Moreover, the elevated IL-15 could induce activation of CD122 (IL-15Rβ)+NKG2D+ EBV/CMV-specific CD8+ T cells. The expression of IL-15Rα and ligand for NKG2D were upregulated on HTNV-infected HUVECs. Bystander-activated CD8+ T cells could exert cytotoxicity effects against HTNV-infected HUVECs, which could be enhanced by IL-15 stimulation and blocked by NKG2D antibody. Discussion IL-15 induced bystander activation of CD8+ T cells through NKG2D, which may mediate endothelium injury during HTNV infection in HFRS patients.
Collapse
Affiliation(s)
- Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Yusi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - He Liu
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Kang Tang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Chunmei Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Manling Xue
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Xiaozhou Jia
- Department of Infectious Diseases, Eighth Hospital of Xi'an, Xi’an, China
| | - Haifeng Hu
- Center for Infectious Diseases, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ran Zhuang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Boquan Jin
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| | - Ying Ma
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| |
Collapse
|
131
|
Imianowski CJ, Whiteside SK, Lozano T, Evans AC, Benson JD, Courreges CJ, Sadiyah F, Lau CM, Zandhuis ND, Grant FM, Schuijs MJ, Vardaka P, Kuo P, Soilleux EJ, Yang J, Sun JC, Kurosaki T, Okkenhaug K, Halim TY, Roychoudhuri R. BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis. J Exp Med 2022; 219:e20211476. [PMID: 36178457 PMCID: PMC9529614 DOI: 10.1084/jem.20211476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/11/2021] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.
Collapse
Affiliation(s)
- Charlotte J. Imianowski
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Sarah K. Whiteside
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Teresa Lozano
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | | | - Jayme D. Benson
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Firas Sadiyah
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Colleen M. Lau
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Nordin D. Zandhuis
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Francis M. Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Martijn J. Schuijs
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Panagiota Vardaka
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Paula Kuo
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | | | - Jie Yang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| |
Collapse
|
132
|
Bian X, Yin S, Yang S, Jiang X, Wang J, Zhang M, Zhang L. Roles of platelets in tumor invasion and metastasis: A review. Heliyon 2022; 8:e12072. [PMID: 36506354 PMCID: PMC9730139 DOI: 10.1016/j.heliyon.2022.e12072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The invasion and metastasis of malignant tumors are major causes of death. The most common metastases of cancer are lymphatic metastasis and hematogenous metastasis. Hematogenous metastasis often leads to rapid tumor dissemination. The mechanism of hematogenous metastasis of malignant tumors is very complex. Some experts have found that platelets play an important role in promoting tumor hematogenous metastasis. Platelets may be involved in many processes, such as promoting tumor cell survival, helping tumor cells escape immune surveillance, helping tumors attach to endothelial cells and penetrating capillaries for distant metastasis. However, recent studies have shown that platelets can also inhibit tumor metastasis. At present, the function of platelets in tumor progression has been widely studied, and they not only promote tumor cell metastasis, but also have an inhibitory effect. Therefore, in-depth and summary research of the molecular mechanism of platelets in tumor cell metastasis is of great significance for the screening and treatment of cancer patients. The following is a brief review of the role of platelets in the process of malignant tumor metastasis.
Collapse
Affiliation(s)
- Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Wang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
133
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
134
|
Nakazawa T, Morimoto T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Nakase H, Tsujimura T. Establishment of an efficient ex vivo expansion strategy for human natural killer cells stimulated by defined cytokine cocktail and antibodies against natural killer cell activating receptors. Regen Ther 2022; 21:185-191. [PMID: 35919498 PMCID: PMC9309574 DOI: 10.1016/j.reth.2022.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Cell-based immunotherapy is categorized as a regenerative therapy under the Regenerative Medicine Safety Act in Japan. Natural killer (NK) cell-based immunotherapy is considered a promising strategy for treating cancer, including glioblastoma (GBM). We previously reported an expansion method for highly purified human peripheral blood-derived NK cells using a cytokine cocktail. Here, we aimed to establish a more efficient NK cell expansion method as compared to our previously reported method. Methods T cell-depleted human peripheral blood mononuclear cells (PBMCs) were isolated from three healthy volunteers. The depleted PBMCs were cultured in the presence of recombinant human interleukin (rhIL)-18 and high-dose rhIL-2 in anti-NKp46 and/or anti-CD16 antibody immobilization settings. After 14 days of expansion, the purity and expansion ratio of CD3-CD56+ NK cells were determined. The cytotoxicity-mediated growth inhibition of T98G cells (an NK activity-sensitive GBM cell line) was evaluated using a non-labeling, impedance-based real-time cell analyzer. Results Anti-NKp46 stimulation increased the NK cell purity and expansion ratio as compared to the non-antibody-stimulated population. Anti-CD16 stimulation weakly enhanced the NK cell expansion ratio of the non-antibody-stimulated population and enhanced the NK cell purity and expansion ratio of anti-NKp46-stimulated populations. All NK cell-containing populations tested distinctly inhibited T98G cell growth. These effects tended to be enhanced in an NK cell purity-dependent manner. In some cases, anti-CD16 stimulation decreased growth inhibition of T98G cell compared to other conditions despite the comparable NK cell purity. Conclusions We established a robust large-scale feeder-free expansion system for highly purified human NK cells using a defined cytokine cocktail and anti-NK cell activating receptor antibodies. The expansion system could be feasible for autologous or allogeneic NK cell-based immunotherapy of GBM. Moreover, it is easily controlled under Japanese law on regenerative medicine.
Collapse
|
135
|
Zhu H, Guo L, Yu D, Du X. New insights into immunomodulatory properties of lactic acid bacteria fermented herbal medicines. Front Microbiol 2022; 13:1073922. [DOI: 10.3389/fmicb.2022.1073922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 pandemic has brought more attention to the immune system, the body’s defense against infectious diseases. The immunomodulatory ability of traditional herbal medicine has been confirmed through clinical trial research, and has obvious advantages over prescription drugs due to its high number of potential targets and low toxicity. The active compounds of herbal drugs primarily include polysaccharides, saponins, flavonoids, and phenolics and can be modified to produce new active compounds after lactic acid bacteria (LAB) fermentation. LAB, primary source of probiotics, can produce additional immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. Moreover, several compounds from herbal medicines can promote the growth and production of LAB-based immune active metabolites. Thus, LAB-mediated fermentation of herbal medicines has become a novel strategy for regulating human immune responses. The current review discusses the immunomodulatory properties and active compounds of LAB fermented herbal drugs, the interaction between LAB and herbal medicines, and changes in immunoregulatory components that occur during fermentation. This study also discusses the mechanisms by which LAB-fermented herbal medicines regulate the immune response, including activation of the innate or adaptive immune system and the maintenance of intestinal immune homeostasis.
Collapse
|
136
|
Preventing Surgery-Induced NK Cell Dysfunction Using Anti-TGF-β Immunotherapeutics. Int J Mol Sci 2022; 23:ijms232314608. [PMID: 36498937 PMCID: PMC9737532 DOI: 10.3390/ijms232314608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Natural Killer (NK) cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed postoperatively. This dysfunction is associated with increased morbidity and cancer recurrence. NK activity depends on the integration of activating and inhibitory signals, which may be modulated by transforming growth factor-beta (TGF-β). We hypothesized that impaired postoperative NK cell IFNγ production is due to altered signaling pathways caused by postoperative TGF-β. NK cell receptor expression, downstream phosphorylated targets, and IFNγ production were assessed using peripheral blood mononuclear cells (PBMCs) from patients undergoing cancer surgery. Healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma and in the presence/absence of a TGF-β-blocking monoclonal antibody (mAb) or the small molecule inhibitor (smi) SB525334. Single-cell RNA sequencing (scRNA-seq) was performed on PBMCs from six patients with colorectal cancer having surgery at baseline/on POD1. Intracellular IFNγ, activating receptors (CD132, CD212, NKG2D, DNAM-1), and downstream target (STAT5, STAT4, p38 MAPK, S6) phosphorylation were significantly reduced on POD1. Furthermore, this dysfunction was phenocopied in healthy NK cells through incubation with rTGF-β1 or POD1 plasma and was prevented by the addition of anti-TGF-β immunotherapeutics (anti-TGF-β mAb or TGF-βR smi). Targeted gene analysis revealed significant decreases in S6 and FKBP12, an increase in Shp-2, and a reduction in NK metabolism-associated transcripts on POD1. pSmad2/3 was increased and pS6 was reduced in response to rTGF-β1 on POD1, changes that were prevented by anti-TGF-β immunotherapeutics. Together, these results suggest that both canonical and mTOR pathways downstream of TGF-β mediate phenotypic changes that result in postoperative NK cell dysfunction.
Collapse
|
137
|
Fionda C, Ruggeri S, Sciumè G, Laffranchi M, Quinti I, Milito C, Palange P, Menichini I, Sozzani S, Frati L, Gismondi A, Santoni A, Stabile H. Age-dependent NK cell dysfunctions in severe COVID-19 patients. Front Immunol 2022; 13:1039120. [PMID: 36466890 PMCID: PMC9713640 DOI: 10.3389/fimmu.2022.1039120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023] Open
Abstract
Natural Killer (NK) cells are key innate effectors of antiviral immune response, and their activity changes in ageing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated the age-related changes of NK cell phenotype and function during SARS-CoV-2 infection, by comparing adult and elderly patients both requiring mechanical ventilation. Adult patients had a reduced number of total NK cells, while elderly showed a peculiar skewing of NK cell subsets towards the CD56lowCD16high and CD56neg phenotypes, expressing activation markers and check-point inhibitory receptors. Although NK cell degranulation ability is significantly compromised in both cohorts, IFN-γ production is impaired only in adult patients in a TGF-β-dependent manner. This inhibitory effect was associated with a shorter hospitalization time of adult patients suggesting a role for TGF-β in preventing an excessive NK cell activation and systemic inflammation. Our data highlight an age-dependent role of NK cells in shaping SARS-CoV-2 infection toward a pathophysiological evolution.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Ruggeri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ilaria Menichini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Luigi Frati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
138
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
139
|
Koh SK, Park J, Kim SE, Lim Y, Phan MTT, Kim J, Hwang I, Ahn YO, Shin S, Doh J, Cho D. Natural Killer Cell Expansion and Cytotoxicity Differ Depending on the Culture Medium Used. Ann Lab Med 2022; 42:638-649. [PMID: 35765872 PMCID: PMC9277036 DOI: 10.3343/alm.2022.42.6.638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/12/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Adoptive cell therapy using umbilical cord blood (UCB)-derived allogeneic natural killer (NK) cells has shown encouraging results. However, because of the insufficient availability of NK cells and limited UCB volume, more effective culture methods are required. NK cell expansion and functionality are largely affected by the culture medium. While human serum is a major affecting component in culture media, the way it regulates NK cell functionality remains elusive. We elucidated the effects of different culture media and human serum supplementation on UCB NK cell expansion and functionality. Methods UCB NK cells were cultured under stimulation with K562-OX40L-mbIL-18/21 feeder cells and IL-2 and IL-15 in serum-containing and serum-free culture media. The effects of the culture media and human serum supplementation on NK cell expansion and cytotoxicity were evaluated by analyzing the expansion rate, activating and inhibitory receptor levels, and the cytotoxicity of the UCB NK cells. Results The optimal medium for NK cell expansion was Dulbecco’s modified Eagle’s medium/Ham’s F12 with supplements and that for cytotoxicity was AIM V supplemented with Immune Cell Serum Replacement. Shifting media is an advantageous strategy for obtaining several highly functional UCB NK cells. Live cell imaging and killing time measurement revealed that human serum enhanced NK cell proliferation but delayed target recognition, resulting in reduced cytotoxicity. Conclusions Culture medium supplementation with human serum strongly affects UCB NK cell expansion and functionality. Thus, culture media should be carefully selected to ensure both NK cell quantity and quality for adoptive cell therapy.
Collapse
Affiliation(s)
- Seung Kwon Koh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Jeehun Park
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Yuree Lim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Minh-Trang Thi Phan
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Ilwoong Hwang
- Department of Emergency Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Yong-Oon Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University, Seoul, Korea.,Department of Laboratory Medicine, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Hospital, Seoul, Korea
| | - Junsang Doh
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul, Korea.,Institute of Engineering Research, Bio-MAX Institute, Seoul National University, Seoul, Korea
| | - Duck Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea.,Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea.,Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
140
|
Liu Z, Guo Y, Huang L, Jia Y, Liu H, Peng F, Duan L, Zhang H, Fu R. Bone marrow mesenchymal stem cells regulate the dysfunction of NK cells via the T cell immunoglobulin and ITIM domain in patients with myelodysplastic syndromes. Cell Commun Signal 2022; 20:169. [PMID: 36303184 DOI: 10.1186/s12964-022-00985-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a clonal disease of hematopoietic cells, characterized by hematopoietic cell hematopoiesis and a high risk of transformation into acute myeloid leukemia (AML). Although the underlying mechanism is unclear, MDS is often associated with immune system disorders, especially cellular immune abnormalities. We analyzed the number of lymphocyte subsets by flow cytometry assay and explored the alteration of lymphocyte subsets in MDS. METHODS Healthy controls, inpatients with primary MDS and patients with AML diagnosed from January 2017 to July 2021 were included. Flow cytometry assays were used to study lymphocyte subsets obtained from the bone marrow of the participants as well as changes in natural killer (NK) cell function. One-way analysis of variance and Student's t-test were used to analyze the data. RESULTS We found a reduction in the number and function of NK cells in patients with MDS. By further measuring the activating and inhibitory receptors on the surface of NK cells, we found that the T cell immunoglobulin and ITIM domain (TIGIT) was the highest expressed marker on NK cells. Additionally, the expression of CD155, which is the ligand of TIGIT, was significantly higher than expressions of CD112 and CD113 on bone marrow mesenchymal stem cells (BMSCs). CONCLUSIONS The co-culture results of BMSCs and NK cells demonstrated that BMSCs regulate NK cells through the TIGIT/CD155 interaction, indicating that NK cells play a vital role in MDS progression. BMSCs regulate the function of NK cells via TIGIT/CD155. Video Abstract.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Lei Huang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yue Jia
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Lixiang Duan
- Yuncheng Central Hospital, Yuncheng, Shanxi, People's Republic of China
| | - Hongkai Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
141
|
Cronk JM, Dziewulska KH, Puchalski P, Crittenden RB, Hammarskjöld ML, Brown MG. Altered-Self MHC Class I Sensing via Functionally Disparate Paired NK Cell Receptors Counters Murine Cytomegalovirus gp34-Mediated Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1545-1554. [PMID: 36165178 PMCID: PMC9529956 DOI: 10.4049/jimmunol.2200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
The murine CMV (MCMV) immunoevasin m04/gp34 escorts MHC class I (MHC I) molecules to the surface of infected cells where these complexes bind Ly49 inhibitory receptors (IRs) and prevent NK cell attack. Nonetheless, certain self-MHC I-binding Ly49 activating and inhibitory receptors are able to promote robust NK cell expansion and antiviral immunity during MCMV infection. A basis for MHC I-dependent NK cell sensing of MCMV-infected targets and control of MCMV infection however remains unclear. In this study, we discovered that the Ly49R activation receptor is selectively triggered during MCMV infection on antiviral NK cells licensed by the Ly49G2 IR. Ly49R activating receptor recognition of MCMV-infected targets is dependent on MHC I Dk and MCMV gp34 expression. Remarkably, although Ly49R is critical for Ly49G2-dependent antiviral immunity, blockade of the activation receptor in Ly49G2-deficient mice has no impact on virus control, suggesting that paired Ly49G2 MCMV sensing might enable Ly49R+ NK cells to better engage viral targets. Indeed, MCMV gp34 facilitates Ly49G2 binding to infected cells, and the IR is required to counter gp34-mediated immune evasion. A specific requirement for Ly49G2 in antiviral immunity is further explained by its capacity to license cytokine receptor signaling pathways and enhance Ly49R+ NK cell proliferation during infection. These findings advance our understanding of the molecular basis for functionally disparate self-receptor enhancement of antiviral NK cell immunity.
Collapse
Affiliation(s)
- John M Cronk
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Karolina H Dziewulska
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Patryk Puchalski
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Rowena B Crittenden
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Marie-Louise Hammarskjöld
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
| | - Michael G Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA;
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
142
|
Jeong S, Kim YG, Kim S, Kim K. Enhanced anticancer efficacy of primed natural killer cells via coacervate-mediated exogenous interleukin-15 delivery. Biomater Sci 2022; 10:5968-5979. [PMID: 36048163 DOI: 10.1039/d2bm00876a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effective exogenous delivery of interleukin (IL)-15 to natural killer (NK) cells with subsequent anticancer efficacy could be a promising immune cell-based cancer immunotherapy. For the protection of encapsulated cargo IL-15 while maintaining its bioactivity under physiological conditions, we utilized a coacervate (Coa) consisting of a cationic methoxy polyethylene glycol-poly(ethylene arginyl aspartate diglyceride) (mPEG-PEAD) polymer, anionic counterpart heparin, and cargo IL-15. mPEGylation into the backbone cation effectively preserved the colloidal stability of Coa in harsh environments and enhanced the protection of cargo IL-15 than normal Coa without mPEGylation. Proliferation and anticancer efficacy of primed NK cells through co-culture with multiple cancer cell lines were enhanced in the mPEG-Coa group due to the maintained bioactivity of cargo IL-15 during the ex vivo expansion of NK cells. These facilitated functions of NK cells were also supported by the increased expression of mRNAs related to anticancer effects of NK cells, including cytotoxic granules, death ligands, anti-apoptotic proteins, and activation receptors. In summary, our Coa-mediated exogenous IL-15 delivery could be an effective ex vivo priming technique for NK cells with sustained immune activation that can effectively facilitate its usage for cancer immunotherapy.
Collapse
Affiliation(s)
- Sehwan Jeong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Young Guk Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
143
|
Koh JY, Rha MS, Choi SJ, Lee HS, Han JW, Nam H, Kim DU, Lee JG, Kim MS, Park JY, Park SH, Joo DJ, Shin EC. Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner. J Hepatol 2022; 77:1059-1070. [PMID: 35644434 DOI: 10.1016/j.jhep.2022.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The liver provides a unique niche of lymphocytes enriched with a large proportion of innate-like T cells. However, the heterogeneity and functional characteristics of the hepatic T-cell population remain to be fully elucidated. METHODS We obtained liver sinusoidal mononuclear cells from the liver perfusate of healthy donors and recipients with HBV-associated chronic liver disease (CLD) during liver transplantation. We performed a CITE-seq analysis of liver sinusoidal CD45+ cells in combination with T cell receptor (TCR)-seq and flow cytometry to examine the phenotypes and functions of liver sinusoidal CD8+ T cells. RESULTS We identified a distinct CD56hiCD161-CD8+ T-cell population characterized by natural killer (NK)-related gene expression and a uniquely restricted TCR repertoire. The frequency of these cells among the liver sinusoidal CD8+ T-cell population was significantly increased in patients with HBV-associated CLD. Although CD56hiCD161-CD8+ T cells exhibit weak responsiveness to TCR stimulation, CD56hiCD161-CD8+ T cells highly expressed various NK receptors, including CD94, killer immunoglobulin-like receptors, and NKG2C, and exerted NKG2C-mediated NK-like effector functions even in the absence of TCR stimulation. In addition, CD56hiCD161-CD8+ T cells highly respond to innate cytokines, such as IL-12/18 and IL-15, in the absence of TCR stimulation. We validated the results from liver sinusoidal CD8+ T cells using intrahepatic CD8+ T cells obtained from liver tissues. CONCLUSIONS In summary, the current study found a distinct CD56hiCD161-CD8+ T-cell population characterized by NK-like activation via TCR-independent NKG2C ligation. Further studies are required to elucidate the roles of liver sinusoidal CD56hiCD161-CD8+ T cells in immune responses to microbial pathogens or liver immunopathology. LAY SUMMARY The role of different immune cell populations in the liver is becoming an area of increasing interest. Herein, we identified a distinct T-cell population that had features similar to those of natural killer (NK) cells - a type of innate immune cell. This distinct population was expanded in the livers of patients with chronic liver disease and could thus have pathogenic relevance.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Heejin Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
144
|
PD-1 expression on mouse intratumoral NK cells and its effects on NK cell phenotype. iScience 2022; 25:105137. [PMID: 36185379 PMCID: PMC9523278 DOI: 10.1016/j.isci.2022.105137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023] Open
Abstract
Although PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells and a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Tumor-infiltrating NK cells that express PD-1 were highly associated with the expression of CXCR6. Furthermore, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wild-type mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells. These data demonstrate that there may be a role for the PD-1/PD-L1 axis in tumor-infiltrating NK cells in vivo. NK cells from PD-1 deficient mice have a more mature phenotype Elimination of MHC-I-deficient cells is impaired in PD-1−/− mice PD-1 expression on NK cells is associated with surface expression of CXCR6 PD-1/PD-L1 interactions on NK cells may occur in cis
Collapse
|
145
|
Xu HR, Chen JJ, Shen JM, Ding WH, Chen J. TYRO protein tyrosine kinase-binding protein predicts favorable overall survival in osteosarcoma and correlates with antitumor immunity. Medicine (Baltimore) 2022; 101:e30878. [PMID: 36181123 PMCID: PMC9524921 DOI: 10.1097/md.0000000000030878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To explore the prognostic significance and underlying mechanism of TYRO protein tyrosine kinase-binding protein (TYROBP) in osteosarcoma. Firstly, the expression of TYROBP was analyzed using the t test. The Kaplan-Meier plotter analysis and a receiver operating characteristic curve were performed to evaluate the influence of TYROBP on overall survival (OS). Further, Cox regression analysis was conducted to predict the independent prognostic factors for OS of osteosarcoma patients, and a nomogram was constructed. Then, the relationship between TYROBP and clinicopathological characteristics was determined using statistical methods. Enrichment analyses were conducted to evaluate the biological functions of TYROBP. Finally, the ESTIMATE algorithm was used to assess the association of TYROBP with immune cell infiltration. TYROBP was significantly increased in osteosarcoma (all P < .001). However, the high expression of TYROBP was related to better OS in osteosarcoma patients. Cox regression analysis showed that TYROBP was an independent prognostic factor for predicting OS (P = .005), especially in patients of the male sex, age <18 years, metastasis, and tumor site leg/foot (all P < .05). Besides, TYROBP mRNA expression was significantly associated with the tumor site (P < .01) but had no remarkable relationship with age, gender, and metastasis status (all P > .05). Functional annotation and gene set enrichment analysis (GSEA) revealed that TYROBP was mainly involved in immune-related pathways. Importantly, TYROBP positively correlated with immune scores (P < .001, R = .87). TYROBP served as an independent prognostic biomarker for OS in osteosarcoma. High TYROBP expression might prolong the survival of osteosarcoma patients mainly through promoting antitumor immunity.
Collapse
Affiliation(s)
- Hai-Ru Xu
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun-Jie Chen
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin-Ming Shen
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei-Hang Ding
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Chen
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Jie Chen, Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou 310002, Zhejiang, China (e-mail: )
| |
Collapse
|
146
|
Alsulami K, Sadouni M, Tremblay-Sher D, Baril JG, Trottier B, Dupuy FP, Chartrand-Lefebvre C, Tremblay C, Durand M, Bernard NF. High frequencies of adaptive NK cells are associated with absence of coronary plaque in cytomegalovirus infected people living with HIV. Medicine (Baltimore) 2022; 101:e30794. [PMID: 36197157 PMCID: PMC9509172 DOI: 10.1097/md.0000000000030794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to evaluate whether adaptive NKG2C+CD57+ natural killer (adapNK) cell frequencies are associated with pre-clinical coronary atherosclerosis in participants of the Canadian HIV and Aging Cohort Study. This cross-sectional study included 194 Canadian HIV and Aging Cohort Study participants aged ≥ 40 years of which 128 were cytomegalovirus (CMV)+ people living with HIV (PLWH), 8 were CMV-PLWH, 37 were CMV mono-infected individuals, and 21 were neither human immunodeficiency virus nor CMV infected. Participants were evaluated for the frequency of their adapNK cells and total plaque volume (TPV). TPV was assessed using cardiac computed tomography. Participants were classified as free of, or having, coronary atherosclerosis if their TPV was "0" and ">0," respectively. The frequency of adapNK cells was categorized as low, intermediate or high if they constituted <4.6%, between ≥4.6% and 20% and >20%, respectively, of the total frequency of CD3-CD56dim NK cells. The association between adapNK cell frequency and TPV was assessed using an adjusted Poisson regression analysis. A greater proportion of CMV+PLWH with TPV = 0 had high adapNK cell frequencies than those with TPV > 0 (61.90% vs 39.53%, P = .03) with a similar non-significant trend for CMV mono-infected participants (46.15% vs 34.78%). The frequency of adapNK cells was negatively correlated with TPV. A high frequency of adapNK cells was associated with a relative risk of 0.75 (95% confidence intervals 0.58, 0.97, P = .03) for presence of coronary atherosclerosis. This observation suggests that adapNK cells play a protective role in the development of coronary atherosclerotic plaques.
Collapse
Affiliation(s)
- Khlood Alsulami
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Manel Sadouni
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Daniel Tremblay-Sher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Jean-Guy Baril
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Carl Chartrand-Lefebvre
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard, Research Institute of the McGill University Health Centre, Glen site, Bloc E, 1001 Decarie Blvd., Room EM3.3238, Montreal, QC H4A 3J1, Canada (e-mail: )
| |
Collapse
|
147
|
Studying the Anticancer Effects of Thymoquinone on Breast Cancer Cells through Natural Killer Cell Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9218640. [PMID: 36199754 PMCID: PMC9527111 DOI: 10.1155/2022/9218640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy is quickly growing and can now be viewed as the “fifth column” of cancer treatment. In addition, cancer immunotherapy has shown promising results with different kinds of cancers and may be used as a complementary therapy with various types of treatments. Thus, “immuno-oncology” is showing astounding advantages. However, one of the main challenges that face this type of therapy is that cancer cells can evade immune system elimination through different mechanisms. Many studies were done to overcome this issue including adding immune stimulants to generate synergistic effects or by genetically modifying NK cells themselves to be stronger and more resistant. Nigella sativa, also known as black cumin, is a well-known example of a widely applicable herbal medicine. It can effectively treat a variety of diseases, such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer qualities of Nigella sativa appear to be mediated by an immune-modulatory effect that stimulates human natural killer (NK) cells. These are a type of lymphocyte and first line of defense against pathogens. Objectives. In this study, we investigated the therapeutic effect of thymoquinone, a major component of Nigella sativa, on the cytotoxic pathways of NK cells. Methods. NK cells were cultured with breast cancer cell line Michigan Cancer Foundation-7 (MCF-7); and were treated with Thymoquinone. The cytotoxicity of NK cells on cancer cells was measured. The cultured media were then collected and measured via enzyme-linked immunosorbent assay (ELISA) for concentrations of perforin, granzyme B and interferon-α (IFN-α). Results. The cytotoxic effect of NK cells on tumor cells was increased in the presence of thymoquinone, with an increased release of perforin, granzyme B, and IFN-α. Conclusion. Thymoquinone promotes the cytotoxic activity of NK cells against breast cancer MCF-7 cells.
Collapse
|
148
|
The new progress in cancer immunotherapy. Clin Exp Med 2022:10.1007/s10238-022-00887-0. [DOI: 10.1007/s10238-022-00887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe cross talk between immune and non-immune cells in the tumor microenvironment leads to immunosuppression, which promotes tumor growth and survival. Immunotherapy is an advanced treatment that boosts humoral and cellular immunity rather than using chemotherapy or radiation-based strategy associated with non-specific targets and toxic effects on normal cells. Immune checkpoint inhibitors and T cell-based immunotherapy have already exhibited significant effects against solid tumors and leukemia. Tumor cells that escape immune surveillance create a major obstacle to acquiring an effective immune response in cancer patients. Tremendous progress had been made in recent years on a wide range of innate and adaptive immune checkpoints which play a significant role to prevent tumorigenesis, and might therefore be potential targets to suppress tumor cells growth. This review aimed to summarize the underlying molecular mechanisms of existing immunotherapy approaches including T cell and NK-derived immune checkpoint therapy, as well as other intrinsic and phagocytosis checkpoints. Together, these insights will pave the way for new innate and adaptive immunomodulatory targets for the development of highly effective new therapy in the future.
Collapse
|
149
|
Kuroshima S, Al‐Omari FA, Sasaki M, Sawase T. Medication‐related osteonecrosis of the jaw: A literature review and update. Genesis 2022; 60:e23500. [DOI: 10.1002/dvg.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Farah A. Al‐Omari
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| |
Collapse
|
150
|
Yu Y, Tang Z, Xie M, Li J, Hang CC, An L, Li C. Glucocorticoid receptor expression in patients with cardiac arrest in the early period after the return of spontaneous circulation: a prospective observational single-centre study. BMJ Open 2022; 12:e060246. [PMID: 36691201 PMCID: PMC9462114 DOI: 10.1136/bmjopen-2021-060246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Rapid changes in glucocorticoid (GC) levels and adrenal insufficiency are related to the development of post-cardiac arrest (CA) syndrome. However, GC receptor (GR) expression changes have not been studied. Hence, this study aimed to investigate the association of early changes in GR expression and prognosis and immune response in patients who experienced CA. DESIGN Prospective observational study. SETTING Emergency department. PARTICIPANTS Patients (85) in the early period of return of spontaneous circulation (ROSC) after CA were admitted between October 2018 and October 2019. After a physical examination, age-matched and sex-matched healthy individuals (40) were recruited for the control group. PRIMARY AND SECONDARY OUTCOME MEASURES GR expression and cell counts of circulatory T and B lymphocytes, natural killer cells and regulatory T (Treg) cells were assessed. Plasma total cortisol and adrenocorticotrophic hormone (ACTH) levels were also tested. RESULTS All cell counts were lower, and plasma total cortisol levels were higher (p<0.001) in patients who experienced CA than in the healthy control group. GR expression in Treg cells and CD3+CD4+ T lymphocytes were not significantly different, but the mean fluorescence intensity and GR expression in other cells were lower in patients who experienced CA (p<0.05) than in the healthy control group. ACTH levels were not different. There were no significant differences between survivors and non-survivors. CONCLUSIONS This study revealed that GR expression and cell counts rapidly decreased, whereas plasma total cortisol levels increased in the early period after ROSC among patients who experienced CA. Our findings provide important information about GR level and function, and immunosuppressive status in these patients. Assessing GR expression in patients who experienced CA may help screening for those who are more sensitive to GC therapy.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Miaorong Xie
- Department of Emergency Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Jiabao Li
- Department of Critical Care, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Chen-Chen Hang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Le An
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| |
Collapse
|