101
|
Hegde MM, Sandbhor P, J. A, Gota V, Goda JS. Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Front Oncol 2023; 13:1168454. [PMID: 37483515 PMCID: PMC10357293 DOI: 10.3389/fonc.2023.1168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors of the Central nervous System (CNS) are a spectrum of neoplasms that range from benign lesions to highly malignant and aggressive lesions. Despite aggressive multimodal treatment approaches, the morbidity and mortality are high with dismal survival outcomes in these malignant tumors. Moreover, the non-specificity of conventional treatments substantiates the rationale for precise therapeutic strategies that selectively target infiltrating tumor cells within the brain, and minimize systemic and collateral damage. With the recent advancement of nanoplatforms for biomaterials applications, lipid-based nanoparticulate systems present an attractive and breakthrough impact on CNS tumor management. Lipid nanoparticles centered immunotherapeutic agents treating malignant CNS tumors could convene the clear need for precise treatment strategies. Immunotherapeutic agents can selectively induce specific immune responses by active or innate immune responses at the local site within the brain. In this review, we discuss the therapeutic applications of lipid-based nanoplatforms for CNS tumors with an emphasis on revolutionary approaches in brain targeting, imaging, and drug and gene delivery with immunotherapy. Lipid-based nanoparticle platforms represent one of the most promising colloidal carriers for chemotherapeutic, and immunotherapeutic drugs. Their current application in oncology especially in brain tumors has brought about a paradigm shift in cancer treatment by improving the antitumor activity of several agents that could be used to selectively target brain tumors. Subsequently, the lab-to-clinic transformation and challenges towards translational feasibility of lipid-based nanoplatforms for drug and gene/immunotherapy delivery in the context of CNS tumor management is addressed.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Aishwarya J.
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikram Gota
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Jayant S. Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
102
|
Tang C, Kurata S, Fuse N. Re-recognition of innate immune memory as an integrated multidimensional concept. Microbiol Immunol 2023. [PMID: 37311618 DOI: 10.1111/1348-0421.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
In the past decade, the concept of immunological memory, which has long been considered a phenomenon observed in the adaptive immunity of vertebrates, has been extended to the innate immune system of various organisms. This de novo immunological memory is mainly called "innate immune memory", "immune priming", or "trained immunity" and has received increased attention because of its potential for clinical and agricultural applications. However, research on different species, especially invertebrates and vertebrates, has caused controversy regarding this concept. Here we discuss the current studies focusing on this immunological memory and summarize several mechanisms underlying it. We propose "innate immune memory" as a multidimensional concept as an integration between the seemingly different immunological phenomena.
Collapse
Affiliation(s)
- Chang Tang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
103
|
Jin C, Luo Y, Liang Z, Li X, Kołat D, Zhao L, Xiong W. Crucial role of the transcription factors family activator protein 2 in cancer: current clue and views. J Transl Med 2023; 21:371. [PMID: 37291585 PMCID: PMC10249218 DOI: 10.1186/s12967-023-04189-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Chinese Academy for Medical Sciences Oxford Institute, Oxford, UK
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Linyong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
104
|
Anderson JL, Sandstrom K, Smith WR, Wetzel M, Klenchin VA, Evans DT. MHC Class I Ligands of Rhesus Macaque Killer Cell Ig-like Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1815-1826. [PMID: 37036309 PMCID: PMC10192222 DOI: 10.4049/jimmunol.2200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
105
|
Koh EK, Lee HR, Son WC, Park GY, Bae J, Park YS. Antitumor effects of NK cells expanded by activation pre‑processing of autologous feeder cells before irradiation in colorectal cancer. Oncol Lett 2023; 25:232. [PMID: 37153058 PMCID: PMC10157612 DOI: 10.3892/ol.2023.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Natural killer (NK) cells play a crucial role in early immune defenses against transformed cells and are used in the therapeutic management of cancer. However, it is difficult to sufficiently obtain high purity activated NK cells for clinical application. The function of NK cells is dependent on the balance of activating and inhibitory signals. Strong and diverse stimuli are required to increase the function of NK cells. Radiotherapy modulates the expression of various immunomodulatory molecules that recruit and activate NK cells. NK cell-mediated antibody-dependent cellular cytotoxicity is one of the most potent cytotoxic effects of NK cells against target cancer cells. To generate activated and irradiated autologous peripheral blood mononuclear cells (PBMCs), cytokine and monoclonal antibody stimulation followed by ionizing radiation was performed in the present study. The expanded NK cells were cultured for 21 days using activated/irradiated autologous PBMCs. Colorectal cancer cells (SW480 and HT-29) were used to analyze the expression of NK group 2D ligands and EGFR by radiation. The cytotoxicity of radiation plus NK cell-based targeted therapy against colorectal cancer cell lines was analyzed using flow cytometry. Activated and irradiated PBMCs exhibited significantly increased expression of various activating ligands that stimulated NK cells. In total, >10,000-fold high-purity activated NK cells were obtained, with negligible T-cell contamination. To confirm the antitumor activity of the NK cells expanded by this method, the expanded NK cells were treated with cetuximab, radiotherapy, or a combination of cetuximab and radiotherapy in the presence of human colorectal cancer cells. Expanded NK cells were effective at targeting human colorectal cancer cells, particularly when combined with cetuximab and radiotherapy. Thus, in the present study, a novel method for high-purity activated NK cell expansion was developed using activated and irradiated PBMCs. In addition, combined radiotherapy and antibody-based immunotherapy with expanded NK cells may be an effective strategy to enhance the efficiency of treatment against colorectal cancer.
Collapse
Affiliation(s)
- Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Professor Jaeho Bae, Department of Biochemistry, Pusan National University School of Medicine, 49 Busandaehak-ro, Mulgeum-eup, Yangsan, Gyeongsangnam-do 50612, Republic of Korea, E-mail:
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
- Correspondence to: Dr You-Soo Park, Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea, E-mail:
| |
Collapse
|
106
|
Jiang H, Fu H, Min T, Hu P, Shi J. Magnetic-Manipulated NK Cell Proliferation and Activation Enhance Immunotherapy of Orthotopic Liver Cancer. J Am Chem Soc 2023. [PMID: 37262421 DOI: 10.1021/jacs.3c02049] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The immunotherapy of deep solid tumors in the human body, such as liver cancer, still faces great challenges, especially the inactivation and insufficient infiltration of immune cells in solid tumor microenvironment. Natural killer (NK) cells are gaining ever-increasing attention owing to their unique features and are expected to play an important role in the liver cancer immunotherapy. However, NK cells are severely insufficient and inactivated in solid liver tumor due to the highly immunosuppressive intratumor microenvironment, resulting in poor clinical therapeutic efficacy. Herein, we propose a mild magnetocaloric regulation approach using a magnetogenetic nanoplatform MNPs@PEI-FA/pDNA (MPFD), which is synthesized by loading a heat-inducible plasmid DNA (HSP70-IL-2-EGFP) on polyethyleneimine (PEI)- and folic acid (FA)-modified ZnCoFe2O4@ZnMnFe2O4 magnetic nanoparticles (MNPs) to promote the proliferation and activation of tumor-infiltrating NK cells under magnetic manipulation without the limitation of penetration depth for orthotopic liver cancer immunotherapy. The magnetothermally responsive MPFD serves as a magnetism-heat nanotransducer to induce the gene transcription of IL-2 cytokine in orthotopic liver tumor for NK cell proliferation and activation. Both in vitro and in vivo results demonstrate that the remote mild magnetocaloric regulation (∼40 °C) by MPFD initiates the HSP70 promoter to trigger the overexpression of IL-2 cytokine for subsequent secretion, leading to in situ expansion and activation of tumor-infiltrating NK cells through the IL-2/IL-2 receptor (IL-2R) pathways and the resulting prominent tumor inhibition. This work not only evidences the great potential of magnetogenetic nanoplatform but also reveals the underlying proliferation and activation mechanism of NK cells in liver cancer treatment by magnetogenetic nanoplatform.
Collapse
Affiliation(s)
- Han Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Fu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
| | - Tao Min
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Hu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
107
|
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Leone S, Nicolella V, Calabrò M, Montanaro R, Brancaleone V, Pane F, Chiurazzi F, Ruggiero G, Terrazzano G. Adaptive and Innate Cytotoxic Effectors in Chronic Lymphocytic Leukaemia (CLL) Subjects with Stable Disease. Int J Mol Sci 2023; 24:9596. [PMID: 37298547 PMCID: PMC10253385 DOI: 10.3390/ijms24119596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL progression and prognosis. The involvement of immune-mediated mechanisms in CLL control needs to be investigated. We analyse the activation profile of innate and adaptive cytotoxic immune effectors in a cohort of 26 CLL patients with stable disease, as key elements for immune-mediated control of cancer progression. We observed an increase in CD54 expression and interferon (IFN)-γ production by cytotoxic T cells (CTL). CTL ability to recognise tumour-targets depends on human leukocyte antigens (HLA)-class I expression. We observed a decreased expression of HLA-A and HLA-BC on B cells of CLL subjects, associated with a significant reduction in intracellular calnexin that is relevant for HLA surface expression. Natural killer (NK) cells and CTL from CLL subjects show an increased expression of the activating receptor KIR2DS2 and a reduction of 3DL1 and NKG2A inhibiting molecules. Therefore, an activation profile characterises CTL and NK cells of CLL subjects with stable disease. This profile is conceivable with the functional involvement of cytotoxic effectors in CLL control.
Collapse
Affiliation(s)
- Valentina Rubino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Flavia Carriero
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Anna Teresa Palatucci
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Stefania Leone
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Valerio Nicolella
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Martina Calabrò
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Fabrizio Pane
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Federico Chiurazzi
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| |
Collapse
|
108
|
Koh EK, Lee HR, Son WC, Park GY, Kim J, Bae JH, Park YS. Combinatorial immunotherapy with gemcitabine and ex vivo-expanded NK cells induces anti-tumor effects in pancreatic cancer. Sci Rep 2023; 13:7656. [PMID: 37169953 PMCID: PMC10175562 DOI: 10.1038/s41598-023-34827-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Pancreatic cancer is difficult to diagnose at the initial stage and is often discovered after metastasis to nearby organs. Gemcitabine is currently used as a standard treatment for pancreatic cancer. However, since chemotherapy for pancreatic cancer has not yet reached satisfactory therapeutic results, adjuvant chemotherapy methods are attempted. It can be expected that combining immune cell therapy with existing anticancer drug combination treatment will prevent cancer recurrence and increase survival rates. We isolated natural killer (NK) cells and co-cultured them with strongly activated autologous peripheral blood mononuclear cells (PBMCs) as feeder cells, activated using CD3 antibody, IFN-r, IL-2, and γ-radiation. NK cells expanded in this method showed greater cytotoxicity than resting NK cells, when co-cultured with pancreatic cancer cell lines. Tumor growth was effectively inhibited in a pancreatic cancer mouse xenograft model. Therapeutic efficacy was increased by using gemcitabine and erlotinib in combination. These findings suggest that NK cells cultured by the method proposed here have excellent anti-tumor activity. We demonstrate that activated NK cells can efficiently inhibit pancreatic tumors when used in combination with gemcitabine-based therapy.
Collapse
Affiliation(s)
- Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Juhee Kim
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea.
| |
Collapse
|
109
|
Liu K, Sadeghipour N, Hoover AR, Valero TI, Furrer C, Adams J, Naqash AR, Zhao M, Papin JF, Chen WR. Single-cell transcriptomics reveals that tumor-infiltrating natural killer cells are activated by localized ablative immunotherapy and share anti-tumor signatures induced by immune checkpoint inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539163. [PMID: 37205468 PMCID: PMC10187236 DOI: 10.1101/2023.05.02.539163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rationale Natural killer (NK) cells provide protective anti-cancer immunity. However, the cancer therapy induced activation gene signatures and pathways in NK cells remain unclear. Methods We applied a novel localized ablative immunotherapy (LAIT) by synergizing photothermal therapy (PTT) with intra-tumor delivering of the immunostimulant N-dihydrogalactochitosan (GC), to treat breast cancer using a mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) mouse model. We performed single-cell RNA sequencing (scRNAseq) analysis to unveil the cellular heterogeneity and compare the transcriptional alterations induced by PTT, GC, and LAIT in NK cells within the tumor microenvironment (TME). Results ScRNAseq showed that NK subtypes, including cycling, activated, interferon-stimulated, and cytotoxic NK cells. Trajectory analysis revealed a route toward activation and cytotoxicity following pseudotime progression. Both GC and LAIT elevated gene expression associated with NK cell activation, cytolytic effectors, activating receptors, IFN pathway components, and cytokines/chemokines in NK subtypes. Single-cell transcriptomics analysis using immune checkpoint inhibitor (ICI)-treated animal and human samples revealed that ICI-induced NK activation and cytotoxicity across several cancer types. Furthermore, ICI-induced NK gene signatures were also induced by LAIT treatment. We also discovered that several types of cancer patients had significantly longer overall survival when they had higher expression of genes in NK cells that were also specifically upregulated by LAIT. Conclusion Our findings show for the first time that LAIT activates cytotoxicity in NK cells and the upregulated genes positively correlate with beneficial clinical outcomes for cancer patients. More importantly, our results further establish the correlation between the effects of LAIT and ICI on NK cells, hence expanding our understanding of mechanism of LAIT in remodeling TME and shedding light on the potentials of NK cell activation and anti-tumor cytotoxic functions in clinical applications.
Collapse
|
110
|
Abnousian A, Vasquez J, Sasaninia K, Kelley M, Venketaraman V. Glutathione Modulates Efficacious Changes in the Immune Response against Tuberculosis. Biomedicines 2023; 11:biomedicines11051340. [PMID: 37239011 DOI: 10.3390/biomedicines11051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB.
Collapse
Affiliation(s)
- Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Vasquez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Melissa Kelley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
111
|
Guo C, Tang Y, Li Q, Yang Z, Guo Y, Chen C, Zhang Y. Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma. Comput Biol Med 2023; 158:106872. [PMID: 37030269 DOI: 10.1016/j.compbiomed.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Belonging to type 1 innate lymphoid cells (ILC1), natural killer (NK) cells play an important role not only in fighting microbial infections but also in anti-tumor response. Hepatocellular carcinoma (HCC) represents an inflammation-related malignancy and NK cells are enriched in the liver, making them an essential component of the HCC immune microenvironment. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis to identify the NK cell marker genes (NKGs) and uncovered 80 prognosis-related ones by the TCGA-LIHC dataset. Based on prognostic NKGs, HCC patients were categorized into two subtypes with distinct clinical outcomes. Subsequently, we conducted LASSO-COX and stepwise regression analysis on prognostic NKGs to establish a five-gene (UBB, CIRBP, GZMH, NUDC, and NCL) prognostic signature-NKscore. Different mutation statuses of the two risk groups stratified by NKscore were comprehensively characterized. Besides, the established NKscore-integrated nomogram presented enhanced predictive performance. Single sample gene set enrichment analysis (ssGSEA) analysis was used to uncover the landscape of the tumor immune microenvironment (TIME) and the high-NKscore risk group was characterized with an immune-exhausted phenotype while the low-NKscore risk group held relatively strong anti-cancer immunity. T cell receptor (TCR) repertoire, tumor inflammation signature (TIS), and Immunophenoscore (IPS) analyses revealed differences in immunotherapy sensitivity between the two NKscore risk groups. Taken together, we developed a novel NK cell-related signature to predict the prognosis and immunotherapy efficacy for HCC patients.
Collapse
Affiliation(s)
- Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Tapai, Macau, 999078, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China
| | - Qizhuo Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqi Guo
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Yongqiang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
112
|
Yu J, Caligiuri MA. Viral- and tumor-reactive natural killer cells. Semin Immunol 2023; 67:101749. [PMID: 36965383 PMCID: PMC10192023 DOI: 10.1016/j.smim.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
When we can understand what natural killer (NK) cells recognize during an encounter with an infectious pathogen or a tumor cell, and when we can understand how the NK cell responds to that encounter, we can then begin to understand the role of NK cells in human health and how to improve upon their role for the prevention and treatment of human disease. In the quest to understand how these cells function in antiviral and antitumoral immunity, there have been previously described mechanisms established for NK cells to participate in clearing viral infections and tumors, including classical NK cell antibody dependent cellular cytotoxicity (ADCC) as well as recognition and elimination of transformed malignant cells through direct ligand interactions. However, it is now clear that there are additional mechanisms by which NK cells can participate in these critical immune tasks. Here we review two recently described types of NK cell recognition and response: the first is to primary infection with herpes virus, recognized and responded to by non-specific Fc bridged cellular cytotoxicity (FcBCC), and the second describes a novel phenotypic and functional response when a subset of NK cells recognize myeloid leukemia.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| |
Collapse
|
113
|
Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. SMALL METHODS 2023; 7:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy has been a revolutionary cancer treatment modality because it can not only eliminate primary tumors but also prevent metastases and recurrent tumors. Immunogenic cell death (ICD) induced by various treatment modalities, including chemotherapy, phototherapy, and radiotherapy, converts dead cancer cells into therapeutic vaccines, eliciting a systemic antigen-specific antitumor. However, the outcome effect of cancer immunotherapy induced by ICD has been limited due to the low accumulation efficiency of ICD inducers in the tumor site and concomitant damage to normal tissues. The boom in smart nanomaterials is conducive to overcoming these hurdles owing to their virtues of good stability, targeted lesion site, high bioavailability, on-demand release, and good biocompatibility. Herein, the design of targeted nanomaterials, various ICD inducers, and the applications of nanomaterials responsive to different stimuli, including pH, enzymes, reactive oxygen species, or dual responses are summarized. Furthermore, the prospect and challenges are briefly outlined to provide reference and inspiration for designing novel smart nanomaterials for immunotherapy induced by ICD.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Cheng Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
114
|
Hojjatipour T, Maali A, Azad M. Natural killer cell epigenetic reprogramming in tumors and potential for cancer immunotherapy. Epigenomics 2023; 15:249-266. [PMID: 37125432 DOI: 10.2217/epi-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Natural killer (NK) cells are critical members of the innate lymphoid cell population and have a pivotal role in cancer eradication. NK cell maturation, development and function are tightly regulated by epigenetic modifications, which can also be recruited for cancer propagation and immune escape. NK cells have the potential to be activated against tumors through several epigenetic regulators. Given that epigenetic changes are inducible and reversible, focusing on aberrant epigenetic regulations recruited by tumor cells provides a tremendous opportunity for cancer treatment. This review presents a comprehensive picture of NK cell normal epigenetic regulation and cancer-driven epigenetic modifications. From our perspective, a better understanding of epigenetic regulators that can edit and revise NK cells' activity is a promising avenue for NK cell-based therapy in cancer management.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology & Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
115
|
Bogomiakova ME, Sekretova EK, Anufrieva KS, Khabarova PO, Kazakova AN, Bobrovsky PA, Grigoryeva TV, Eremeev AV, Lebedeva OS, Bogomazova AN, Lagarkova MA. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res Ther 2023; 14:77. [PMID: 37038186 PMCID: PMC10088155 DOI: 10.1186/s13287-023-03308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells. Meanwhile, the possibility of NK-cell activation has not been previously considered. This study focused on the comparison of autologous and allogeneic immune response to iPSC-derived cells and isogeneic parental somatic cells used for reprogramming. METHODS We established an isogeneic cell model consisting of parental dermal fibroblasts, fibroblast-like iPSC-derivatives (iPS-fibro) and iPS-fibro lacking beta-2-microglobulin (B2M). Using the cells obtained from two patients, we analyzed the activation of autologous and allogeneic T-lymphocytes and NK-cells co-cultured with target cells. RESULTS Here we report that cells differentiated from iPSCs can be recognized by NK-cells rather than by autologous T-cells. We observed that iPS-fibro elicited a high level of NK-cell degranulation and cytotoxicity, while isogeneic parental skin fibroblasts used to obtain iPSCs barely triggered an NK-cell response. iPSC-derivatives with B2M knockout did not cause an additional increase in NK-cell activation, although they were devoid of HLA-I, the major inhibitory molecules for NK-cells. Transcriptome analysis revealed a significant imbalance of ligands for activating and inhibitory NK-cell receptors in iPS-fibro. Compared to parental fibroblasts, iPSC-derivatives had a reduced expression of HLA-I simultaneously with an increased gene expression of major activating ligands, such as MICA, NECTIN2, and PVR. The lack of inhibitory signals might be due to insufficient maturity of cells differentiated from iPSCs. In addition, we showed that pretreatment of iPS-fibro with proinflammatory cytokine IFNγ restored the ligand imbalance, thereby reducing the degranulation and cytotoxicity of NK-cells. CONCLUSION In summary, we showed that iPSC-derived cells can be sensitive to the cytotoxic potential of autologous NK-cells regardless of HLA-I status. Thus, the balance of ligands for NK-cell receptors should be considered prior to iPSC-based cell therapies. Trial registration Not applicable.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435.
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435.
| | - Elizaveta K Sekretova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| | - Ksenia S Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Polina O Khabarova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| | - Anastasia N Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Pavel A Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | | | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| |
Collapse
|
116
|
Righi C, Franzoni G, Feliziani F, Jones C, Petrini S. The Cell-Mediated Immune Response against Bovine alphaherpesvirus 1 (BoHV-1) Infection and Vaccination. Vaccines (Basel) 2023; 11:vaccines11040785. [PMID: 37112697 PMCID: PMC10144493 DOI: 10.3390/vaccines11040785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Bovine Alphaherpesvirus 1 (BoHV-1) is one of the major respiratory pathogens in cattle worldwide. Infection often leads to a compromised host immune response that contributes to the development of the polymicrobial disease known as “bovine respiratory disease”. After an initial transient phase of immunosuppression, cattle recover from the disease. This is due to the development of both innate and adaptive immune responses. With respect to adaptive immunity, both humoral and cell-mediated immunity are required to control infection. Thus, several BoHV-1 vaccines are designed to trigger both branches of the adaptive immune system. In this review, we summarize the current knowledge on cell-mediated immune responses directed against BoHV-1 infection and vaccination.
Collapse
Affiliation(s)
- Cecilia Righi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Francesco Feliziani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| |
Collapse
|
117
|
Pan M, Wang F, Nan L, Yang S, Qi J, Xie J, Shao S, Zou H, Wang M, Sun F, Zhang J. αVEGFR2-MICA fusion antibodies enhance immunotherapy effect and synergize with PD-1 blockade. Cancer Immunol Immunother 2023; 72:969-984. [PMID: 36227341 DOI: 10.1007/s00262-022-03306-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Antiangiogenic therapy has shown significant clinical benefits in gastric cancer (GC) and non-small cell lung cancer (NSCLC). However, their effectiveness is limited by the immunosuppressive tumor microenvironment. The MHC class I chain-related molecules A and B (MICA/B) are expressed in many human cancers, enabling elimination of cancer cells by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. To improve antiangiogenic therapy and prolong its efficacy, we generated a bi-specific fusion protein (mAb04-MICA). This was comprised of an antibody targeting VEGFR2 fused to a MICA α1-α2 ectodomain. mAb04-MICA inhibited proliferation of GC and NSCLC cells through specific binding to VEGFR2 and had superior anti-tumor efficacy in both GC and NSCLC-bearing mouse models compared with ramucirumab. Further investigation revealed that the mAb04-MICA promoted NKG2D+ NK cell activation and induced the tumor-associated macrophage (TAM) polarization from M2 type to M1 type both in vitro and in vivo. The polarization of TAMs upon NKG2D and MICA mediated activation has not yet been reported. Moreover, given the up-regulation of PD-L1 in tumors during anti-angiogenesis therapy, anti-PD-1 antibody enhanced the anti-tumoral activity of mAb04-MICA through stimulating infiltration and activation of NKs and CD8+T cells in responding tumors. Our findings demonstrate that dual targeting of angiogenesis and NKG2D, or in combination with the PD-1/PD-L1 blockade, is a promising anti-tumor therapeutic strategy. This is accomplished through maintaining or reinstating tumor immunosurveillance during treatment, which expands the repertoire of anti-angiogenesis-based cancer immunotherapies.
Collapse
Affiliation(s)
- Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Fei Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Lidi Nan
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Yang
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinyao Qi
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiajun Xie
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuai Shao
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyi Zou
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Min Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Fumou Sun
- Department of Internal Medicine, Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
118
|
Naruse TK, Konishi-Takemura M, Yanagida R, Sharma G, Vajpayee M, Terunuma H, Mehra NK, Kaur G, Kimura A. Killer cell immunoglobulin-like receptor three domains long cytoplasmic tail 1 gene *007 may modulate disease progression of human immunodeficiency virus-1 infection in the Japanese population. Int J Immunogenet 2023; 50:48-52. [PMID: 36807537 DOI: 10.1111/iji.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
One of the KIR allele, KIR3DL1*007, was associated with the progression to acquired immunodeficiency syndrome and not with the susceptibility to HIV-1 infection in the Japanese and Indian populations, implying that KIR3DL1*007-positive NK cells might eliminate HIV-infected cells less effectively than NK cells bearing the other KIR3DL1 alleles or KIR3DS1 alleles.
Collapse
Affiliation(s)
- Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Makiko Konishi-Takemura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Yanagida
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
119
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
120
|
Tang Y, Ma S, Lin S, Wu Y, Chen S, Liu G, Ma L, Wang Z, Jiang L, Wang Y. Cell-free protein synthesis of CD1E and B2M protein and in vitro interaction. Protein Expr Purif 2023; 203:106209. [PMID: 36460227 DOI: 10.1016/j.pep.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
CD1E, one of the most important glycolipid antigens on T cell membranes, is required for glycolipid antigen presentation on the cell surface. Cell-based recombinant expression systems have many limitations for synthesizing transmembrane proteins such as CD1E, including low protein yields and miss folding. To overcome these challenges, here we successfully synthesized high-quality soluble CD1E using an E.coli cell-free protein synthesis system (CFPS) with the aid of detergent. Following purification by Ni2+ affinity chromatography, we were able to obtain CD1E with ≥90% purity. Furthermore, we used the string website to predict the protein interaction network of CD1E and identified a potential binding partner━B2M. Similarly, we synthesized soluble B2M in the E.coli CFPS. Finally, we verified the interaction between CD1E and B2M by using Surface Plasmon Resonance (SPR). Taken together, the methods described here provide an alternative way to obtain active transmembrane protein and may facilitate future structural and functional studies on CD1E.
Collapse
Affiliation(s)
- Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory LTD, Anyang, Henan province, 455000, China
| | - Yinrong Wu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Siyang Chen
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and RegμLation, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lele Jiang
- Surgical Diagnostics Pty Ltd, Roseville, Sydney, 2069, Australia.
| | - Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
121
|
Azoulay T, Slouzky I, Karmona M, Filatov M, Hayun M, Ofran Y, Sarig G, Ringelstein-Harlev S. Compromised activity of natural killer cells in diffuse large b-cell lymphoma is related to lymphoma-induced modification of their surface receptor expression. Cancer Immunol Immunother 2023; 72:707-718. [PMID: 36048214 DOI: 10.1007/s00262-022-03284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
While natural killer (NK) cells are essential players in detection and elimination of malignant cells, these surveillance properties can be compromised by cancer cells. Since NK cell education primarily occurs in the bone marrow and lymphoid tissue, this process might be particularly affected by their infiltration with lymphoma cells. This study aimed to explore functional properties of diffuse large B-cell lymphoma (DLBCL) patient NK cells, which could potentially promote tumour immune evasion and disease propagation.NK cells isolated from the peripheral blood (PB) of 26 DLBCL patients and 13 age-matched healthy controls (HC) were analysed. The cytotoxic CD56dim subtype was the only one identified in patients. Compared to HC, patient cells demonstrated low levels of inhibitory CD158a/b along with decreased expression of activating NKG2D and CD161 and increased inhibitory NKG2A levels. Patient NK cell cytotoxic activity was impaired, as were their degranulation and inflammatory cytokine production, which partially recovered following non-receptor-dependant stimulation.The phenotypically skewed and restricted population of patient NK cells, along with their blunted cytotoxic and immune-regulatory activity, appear to be driven by exposure to lymphoma environment. These NK cell functional aberrations could support lymphoma immune evasion and should be considered in the era of cellular therapy.
Collapse
Affiliation(s)
- Tehila Azoulay
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Ilana Slouzky
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Michal Karmona
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | | | - Michal Hayun
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Sarig
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
122
|
Saini P, Adeniji OS, Bordoloi D, Kinslow J, Martinson J, Parent DM, Hong KY, Koshy J, Kulkarni AJ, Zilberstein NF, Balk RA, Moy JN, Giron LB, Tracy RP, Keshavarzian A, Muthumani K, Landay A, Weiner DB, Abdel-Mohsen M. Siglec-9 Restrains Antibody-Dependent Natural Killer Cell Cytotoxicity against SARS-CoV-2. mBio 2023; 14:e0339322. [PMID: 36728420 PMCID: PMC9973332 DOI: 10.1128/mbio.03393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.
Collapse
Affiliation(s)
- Pratima Saini
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Kai Ying Hong
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
123
|
Role of T Cells in Vaccine-Mediated Immunity against Marek’s Disease. Viruses 2023; 15:v15030648. [PMID: 36992357 PMCID: PMC10055809 DOI: 10.3390/v15030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development.
Collapse
|
124
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
125
|
Co-expression of activating and inhibitory receptors on peritoneal fluid NK cells in women with endometriosis. J Reprod Immunol 2023; 155:103765. [PMID: 36442371 DOI: 10.1016/j.jri.2022.103765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The detailed mechanism underlying endometriosis development remains unclear; few reports have suggested the involvement of immune and genetic factors. This study aims to investigate the role of NK cells in endometriosis by analyzing the co-expression of activating (NKp46, NKG2C, and NKG2D) and inhibitory receptors (NKG2A and CD158a) on NK cells and their subsequent cytokine production in the peritoneal fluid (PF). Sixty-two patients were enrolled for this study from Hyogo Medical University between February 2018 and April 2022. Results showed that the proportions of CD56+/NKp46+, CD56dim/NKp46+, NKG2C+/NKp46+, and NKG2D+/NKp46+ NK cells were significantly lower in the endometriosis group than those in the control group. Meanwhile, within the peritoneal endometriosis (n = 21) and deep infiltrating endometriosis (n = 11) groups, the co-expression of NKG2D+/NKp46+ and CD16+/NKp46+. Additionally, the abundance of IFN-γ-producing NK cells was significantly increased in the endometriosis group compared to controls, and a significant negative correlation was noted between NKp46 expression on NK cells and type 1 cytokine (IFN-γ and TNF-α) production. Taken together, the findings of this study indicate that NK cell cytotoxicity in endometriosis is reduced due to changes in NKp46 expression, as well as activating receptors co-expressed with NKp46. Consequently, NK cells do not eliminate endometrial cells in the abdominal cavity, resulting in the production of TNF-α and IFN-γ.
Collapse
|
126
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
127
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
128
|
Al Olabi R, Hendy AEA, Alkassab MB, Alnajm K, Elias M, Ibrahim M, Carlyle JR, Makrigiannis AP, Rahim MMA. The inhibitory NKR-P1B receptor regulates NK cell-mediated mammary tumor immunosurveillance in mice. Oncoimmunology 2023; 12:2168233. [PMID: 36704449 PMCID: PMC9872954 DOI: 10.1080/2162402x.2023.2168233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are an important component of anti-cancer immunity, and their activity is regulated by an array of activating and inhibitory receptors. In mice, the inhibitory NKR-P1B receptor is expressed in NK cells and recognizes the C-type lectin-related protein-b (Clr-b) ligand. NKR-P1B:Clr-b interactions represent a 'missing-self' recognition system to monitor cellular levels of Clr-b on healthy and diseased cells. Here, we report an important role for NKR-P1B:Clr-b interactions in tumor immunosurveillance in MMTV-PyVT mice, which develop spontaneous mammary tumors. MMTV-PyVT mice on NKR-P1B-deficient genetic background developed mammary tumors earlier than on wild-type (WT) background. A greater proportion of tumor-infiltrating NK cells downregulate expression of the transcription factor Eomesodermin (EOMES) in NKR-P1B-deficient mice compared to WT mice. Tumor-infiltrating NK cells also downregulated CD49b expression but gain CD49a expression and exhibit effector functions, such as granzyme B upregulation and proliferation in mammary tumors. However, unlike the EOMES+ NK cells, the EOMES‒ NK cell subset is unable to respond to further in vitro stimulation and exhibits phenotypic alterations associated with immune dysfunction. These alterations included increased expression of PD-1, LAG-3, and TIGIT and decreased expression of NKp46, Ly49C/I, CD11b, and KLRG-1. Furthermore, tumor-infiltrating NKR-P1B-deficient NK cells exhibited an elevated dysfunctional immune phenotype compared to WT NK cells. These findings demonstrate that the NKR-P1B receptor plays an important role in mammary tumor surveillance by regulating anti-cancer immune responses and functional homeostasis in NK cells.
Collapse
Affiliation(s)
- Raghd Al Olabi
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Abd El Aziz Hendy
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | - Karla Alnajm
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Manahel Elias
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Mary Ibrahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew P. Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mir Munir A Rahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada,CONTACT Mir Munir A Rahim Department of Biomedical Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
129
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
130
|
Antitumor Immunity Exerted by Natural Killer and Natural Killer T Cells in the Liver. J Clin Med 2023; 12:jcm12030866. [PMID: 36769513 PMCID: PMC9917438 DOI: 10.3390/jcm12030866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The liver plays crucial roles in systemic immunity and greatly contributes to the systemic defense mechanism. Antitumor immunity in the liver is especially critical for the defense against systemic tumor cell dissemination. To achieve effective defense against metastatic tumor cells, liver immune cells with powerful cytotoxic activities construct a potent defense mechanism. In the liver, as compared with other organs, there is a significantly more intense percentage of innate immune lymphocytes, such as natural killer (NK) and NKT cells. These characteristic lymphocytes survey the portal blood transferred to the liver from the alimentary tract and eliminate malignant cells with their robust cytotoxic ability. Additionally, with their active cytokine-producing capacity, these innate lymphocytes initiate immunological sequences by adaptive immune cells. Therefore, they are crucial contributors to systemic antitumor immunity. These attractive immune cells help conduct a fundamental investigation of tumor immunity and act as a target of clinical measures for cancer therapies. This review discusses the mechanisms of these innate lymphocytes regarding recognition and cytotoxicity against tumor cells and the possibility of clinical applications for therapeutic measures.
Collapse
|
131
|
Zhu Y, Shi J. Cytotoxic and chemotactic dynamics of NK cells quantified by live-cell imaging. Methods Cell Biol 2023; 173:49-64. [PMID: 36653085 DOI: 10.1016/bs.mcb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural Killer (NK) cells detect and eliminate virus-infected cells and cancer cells, and are crucial players of the human immune defense system. Although the relevant molecular machineries involved in NK cell activation and NK-target cell interactions are largely known, how their collective signaling modulates the dynamic behaviors of NK cells, e.g., motility and cytotoxicity, and the rate-limiting kinetics involved are still in need of comprehensive investigations. In traditional bulk killing assays, heterogeneity and kinetic details of individual NK-target cell interactions are masked, seriously limiting analysis of the underlying dynamic mechanisms. Here we present detailed protocols of a number of live-cell imaging assays using fluorescent protein reporters and/or a live-cell dye that enable the acquisition of quantitative kinetic data at the single cell level for elucidating the mechanism underlying the interaction dynamics of primary human NK cells and epithelial cancer cells. Moreover, we discuss how the imaging data can be analyzed either alone or in combination to quantify and determine the key dynamic steps/intermediates involved in specific NK cell activity, e.g., NK cell cytotoxic modes and their associated kinetics, and NK cell motility toward different cancer targets. These live-cell imaging assays can be easily adapted to analyze the rate-limiting kinetics and heterogeneity of other cell-cell interaction dynamics, e.g., in T cell function.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jue Shi
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
132
|
Oh BLZ, Chan LWY, Chai LYA. Manipulating NK cellular therapy from cancer to invasive fungal infection: promises and challenges. Front Immunol 2023; 13:1044946. [PMID: 36969979 PMCID: PMC10034767 DOI: 10.3389/fimmu.2022.1044946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
The ideal strategy to fight an infection involves both (i) weakening the invading pathogen through conventional antimicrobial therapy, and (ii) strengthening defense through the augmentation of host immunity. This is even more pertinent in the context of invasive fungal infections whereby the majority of patients have altered immunity and are unable to mount an appropriate host response against the pathogen. Natural killer (NK) cells fit the requirement of an efficient, innate executioner of both tumour cells and pathogens – their unique, targeted cell killing mechanism, combined with other arms of the immune system, make them potent effectors. These characteristics, together with their ready availability (given the various sources of extrinsic NK cells available for harvesting), make NK cells an attractive choice as adoptive cellular therapy against fungi in invasive infections. Improved techniques in ex vivo NK cell activation with expansion, and more importantly, recent advances in genetic engineering including state-of-the-art chimeric antigen receptor platform development, have presented an opportune moment to harness this novel therapeutic as a key component of a multipronged strategy against invasive fungal infections.
Collapse
Affiliation(s)
- Bernice Ling Zhi Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Louis Wei Yong Chan
- Clinician Scientist Academy, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- *Correspondence: Louis Yi Ann Chai,
| |
Collapse
|
133
|
Aguilar OA, Gonzalez-Hinojosa MD, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, Lanier LL. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol 2023; 113:27-40. [PMID: 36822164 PMCID: PMC10197019 DOI: 10.1093/jleuko/qiac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria D.R. Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Alberto J. Millan
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Present Address: Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
134
|
Wang JZ, Nassiri F, Bi L, Zadeh G. Immune Profiling of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:189-198. [PMID: 37432628 DOI: 10.1007/978-3-031-29750-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Though meningiomas are generally regarded as benign tumors, there is increasing awareness of a large group of meningiomas that are biologically aggressive and refractory to the current standards of care treatment modalities. Coinciding with this has been increasing recognition of the important that the immune system plays in mediating tumor growth and response to therapy. To address this point, immunotherapy has been leveraged for several other cancers such as lung, melanoma, and recently glioblastoma in the context of clinical trials. However, first deciphering the immune composition of meningiomas is essential in order to determine the feasibility of similar therapies for these tumors. Here in this chapter, we review recent updates on characterizing the immune microenvironment of meningiomas and identify potential immunological targets that hold promise for future immunotherapy trials.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
135
|
Khadela A, Shah Y, Mistry P, Bodiwala K, CB A. Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technol Cancer Res Treat 2023; 22:15330338221150559. [PMID: 36683526 PMCID: PMC9893386 DOI: 10.1177/15330338221150559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The immune system plays a significant role in the development, invasion, progression, and metastasis of head and neck cancer. Over the last decade, the emergence of immunotherapy has irreversibly altered the paradigm of cancer treatment. The current treatment modalities for head and neck squamous cell carcinoma (HNSCC) include surgery, radiotherapy, and adjuvant or neoadjuvant chemotherapy which has failed to provide satisfactory clinical outcomes. To encounter this, there is a need for a novel or targeted therapy such as immunological targets along with conventional treatment strategy for optimal therapeutic outcomes. The immune system can contribute to promoting metastasis, angiogenesis, and growth by exploiting the tumor's influence on the microenvironment. Immunological targets have been found effective in recent clinical studies and have shown promising results. This review outlines the important immunological targets and the medications acting on them that have already been explored, are currently under clinical trials and are further being targeted.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Priya Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kunjan Bodiwala
- Department of Pharmaceutical chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Avinash CB
- Medical Oncologist, ClearMedi Radiant Hospital, Mysore, India
| |
Collapse
|
136
|
Monos DS, Rajalingam R. The Major Histocompatibility Complex. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
137
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
138
|
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol 2023; 65:101706. [PMID: 36542944 DOI: 10.1016/j.smim.2022.101706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Department of Medicine and Life Sciences. Univ. Pompeu Fabra. Barcelona, Spain.
| | - Andrea De Maria
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Madrid, Spain.
| |
Collapse
|
139
|
Zoghi S, Masoumi F, Rezaei N. The immune system. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
140
|
Tembhurne AK, Maheshwari A, Warke H, Chaudhari H, Kerkar SC, Deodhar K, Rekhi B, Mania-Pramanik J. Killer cell immunoglobulin-like receptor (KIR) gene contents: Are they associated with cervical cancer? J Med Virol 2023; 95:e27873. [PMID: 35593263 DOI: 10.1002/jmv.27873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are required for natural killer cell function against virus-infected cells or tumor cells. KIR gene content polymorphisms in Indian women with cervical cancer (CaCx) remain unexplored. Hence, we analyzed the frequencies of KIR genes, KIR haplotypes, and Bx subsets to draw their association with CaCx. The polymerase chain reaction-sequence-specific primer method was used for KIR genotyping in three groups of women: healthy controls (n = 114), women with human papillomavirus (HPV) infection (n = 70), and women with CaCx (n = 120). The results showed that the frequency of KIR2DS5 was significantly higher in women with CaCx compared to women with HPV infection (p = 0.02) and healthy controls (p = 0.01). Whereas the frequency of KIR2DL5B was significantly higher in healthy controls than in women with HPV infection (p = 0.02). The total number of activating KIR genes was higher in women with CaCx than in healthy controls (p = 0.006), indicating their positive association with CaCx. Moreover, the C4T4 subset was higher in women with CaCx than in women with HPV infection, though not significant. In conclusion, our findings highlight KIR2DS5, the C4T4 subset, and activating KIR genes are susceptible factors or positively associated with CaCx. Besides KIR2DL5B, this study also reported for the first time significantly high frequency of KIR2DL1 in healthy controls, indicating its possible protective association against CaCx. Further, significantly high frequency of KIR2DL3 observed in HPV-infected women might be also a promising biomarker for viral infections. Thus, the study confirms the association of KIR genes with cervical cancer in women with HPV infection.
Collapse
Affiliation(s)
- Alok K Tembhurne
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | - Himangi Warke
- Seth GS Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - Hemangi Chaudhari
- Seth GS Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - Shilpa C Kerkar
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | | | | |
Collapse
|
141
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
142
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
143
|
Baroja-Mazo A, Peñín-Franch A, Lucas-Ruiz F, de Torre-Minguela C, Alarcón-Vila C, Hernández-Caselles T, Pelegrín P. P2X7 receptor activation impairs antitumour activity of natural killer cells. Br J Pharmacol 2023; 180:111-128. [PMID: 36098250 PMCID: PMC10092446 DOI: 10.1111/bph.15951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE A high number of intratumoural infiltrating natural killer (NK) cells is associated with better survival in several types of cancer, constituting an important first line of defence against tumours. Hypoxia in the core of solid tumours induces cellular stress and ATP release into the extracellular space where it triggers purinergic receptor activation on tumour-associated immune cells. The aim of this study was to assess whether activation of the purinergic receptor P2X7 by extracellular ATP plays a role in the NK cells antitumour activity. EXPERIMENTAL APPROACH We carried out in vitro experiments using purified human NK cells triggered through P2X7 by extracellular ATP. NK cell killing activity against the tumour target cells K562 was studied by means of NK cytotoxicity assays. Likewise, we designed a subcutaneous solid tumour in vivo mouse model. KEY RESULTS In this study we found that human NK cells, expressing a functional plasma membrane P2X7, acquired an anergic state after ATP treatment, which impaired their antitumour activity and decreased IFN-γ secretion. This effect was reversed by specific P2X7 antagonists and pretreatment with either IL-2 or IL-15. Furthermore, genetic P2rx7 knockdown resulted in improved control of tumour size by NK cells. In addition, IL-2 therapy restored the ability of NK cells to diminish the size of tumours. CONCLUSIONS AND IMPLICATIONS Our results show that P2X7 activation represents a new mechanism whereby NK cells may lose antitumour effectiveness, opening the possibility of generating modified NK cells lacking P2X7 but with improved antitumour capacity.
Collapse
Affiliation(s)
- Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alejandro Peñín-Franch
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Fernando Lucas-Ruiz
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos de Torre-Minguela
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Cristina Alarcón-Vila
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
144
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
145
|
Kristensen AB, Wragg KM, Vanderven HA, Lee WS, Silvers J, Kent HE, Grant MD, Kelleher AD, Juno JA, Kent SJ, Parsons MS. Phenotypic and functional characteristics of highly differentiated CD57+NKG2C+ NK cells in HIV-1-infected individuals. Clin Exp Immunol 2022; 210:163-174. [PMID: 36053502 PMCID: PMC9750827 DOI: 10.1093/cei/uxac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are important anti-viral effector cells. The function and phenotype of the NK cells that constitute an individual's NK cell repertoire can be influenced by ongoing or previous viral infections. Indeed, infection with human cytomegalovirus (HCMV) drives the expansion of a highly differentiated NK cell population characterized by expression of CD57 and the activating NKG2C receptor. This NK cell population has also been noted to occur in HIV-1-infected individuals. We evaluated the NK cells of HIV-1-infected and HIV-1-uninfected individuals to determine the relative frequency of highly differentiated CD57+NKG2C+ NK cells and characterize these cells for their receptor expression and responsiveness to diverse stimuli. Highly differentiated CD57+NKG2C+ NK cells occurred at higher frequencies in HCMV-infected donors relative to HCMV-uninfected donors and were dramatically expanded in HIV-1/HCMV co-infected donors. The expanded CD57+NKG2C+ NK cell population in HIV-1-infected donors remained stable following antiretroviral therapy. CD57+NKG2C+ NK cells derived from HIV-1-infected individuals were robustly activated by antibody-dependent stimuli that contained anti-HIV-1 antibodies or therapeutic anti-CD20 antibody, and these NK cells mediated cytolysis through NKG2C. Lastly, CD57+NKG2C+ NK cells from HIV-1-infected donors were characterized by reduced expression of the inhibitory NKG2A receptor. The abundance of highly functional CD57+NKG2C+ NK cells in HIV-1-infected individuals raises the possibility that these NK cells could play a role in HIV-1 pathogenesis or serve as effector cells for therapeutic/cure strategies.
Collapse
Affiliation(s)
- Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Silvers
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Helen E Kent
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
146
|
Zhang X, Zhang Y, Liu H, Tang K, Zhang C, Wang M, Xue M, Jia X, Hu H, Li N, Zhuang R, Jin B, Zhang F, Zhang Y, Ma Y. IL-15 induced bystander activation of CD8 + T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. Front Cell Infect Microbiol 2022; 12:1084841. [PMID: 36590594 PMCID: PMC9797980 DOI: 10.3389/fcimb.2022.1084841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hantaan virus (HTNV) can cause endothelium injury in hemorrhagic fever with renal syndrome (HFRS) patients. Bystander activation of CD8+ T cells by virus infection has been shown that was involved in host injury, but it is unclear during HTNV infection. This project aimed to study the effect of bystander-activated CD8+ T cell responses in HTNV infection. Methods The in vitro infection model was established to imitate the injury of endothelium in HFRS patients. Flow cytometry was performed to detect the expression of markers of tetramer+ CD8+ T cells and human umbilical vein endothelial cells (HUVECs). The levels of interleukin-15 (IL-15) in serum and supermanant were detected using ELISA kit. The expression of MICA of HUVECs was respectively determined by flow cytometry and western blot. The cytotoxicity of CD8+ T cells was assessed through the cytotoxicity assay and antibody blocking assay. Results EBV or CMV-specific CD8+ T cells were bystander activated after HTNV infection in HFRS patients. HTNV-infected HUVECs in vitro could produce high levels of IL-15, which was positively correlated with disease severity and the expression of NKG2D on bystander-activated CD8+ T cells. Moreover, the elevated IL-15 could induce activation of CD122 (IL-15Rβ)+NKG2D+ EBV/CMV-specific CD8+ T cells. The expression of IL-15Rα and ligand for NKG2D were upregulated on HTNV-infected HUVECs. Bystander-activated CD8+ T cells could exert cytotoxicity effects against HTNV-infected HUVECs, which could be enhanced by IL-15 stimulation and blocked by NKG2D antibody. Discussion IL-15 induced bystander activation of CD8+ T cells through NKG2D, which may mediate endothelium injury during HTNV infection in HFRS patients.
Collapse
Affiliation(s)
- Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Yusi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - He Liu
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Kang Tang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Chunmei Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Manling Xue
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Xiaozhou Jia
- Department of Infectious Diseases, Eighth Hospital of Xi'an, Xi’an, China
| | - Haifeng Hu
- Center for Infectious Diseases, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ran Zhuang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Boquan Jin
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| | - Ying Ma
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| |
Collapse
|
147
|
Imianowski CJ, Whiteside SK, Lozano T, Evans AC, Benson JD, Courreges CJ, Sadiyah F, Lau CM, Zandhuis ND, Grant FM, Schuijs MJ, Vardaka P, Kuo P, Soilleux EJ, Yang J, Sun JC, Kurosaki T, Okkenhaug K, Halim TY, Roychoudhuri R. BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis. J Exp Med 2022; 219:e20211476. [PMID: 36178457 PMCID: PMC9529614 DOI: 10.1084/jem.20211476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/11/2021] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.
Collapse
Affiliation(s)
- Charlotte J. Imianowski
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Sarah K. Whiteside
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Teresa Lozano
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | | | - Jayme D. Benson
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Firas Sadiyah
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Colleen M. Lau
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Nordin D. Zandhuis
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Francis M. Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Martijn J. Schuijs
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Panagiota Vardaka
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Paula Kuo
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | | | - Jie Yang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, UK
| |
Collapse
|
148
|
Bian X, Yin S, Yang S, Jiang X, Wang J, Zhang M, Zhang L. Roles of platelets in tumor invasion and metastasis: A review. Heliyon 2022; 8:e12072. [PMID: 36506354 PMCID: PMC9730139 DOI: 10.1016/j.heliyon.2022.e12072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The invasion and metastasis of malignant tumors are major causes of death. The most common metastases of cancer are lymphatic metastasis and hematogenous metastasis. Hematogenous metastasis often leads to rapid tumor dissemination. The mechanism of hematogenous metastasis of malignant tumors is very complex. Some experts have found that platelets play an important role in promoting tumor hematogenous metastasis. Platelets may be involved in many processes, such as promoting tumor cell survival, helping tumor cells escape immune surveillance, helping tumors attach to endothelial cells and penetrating capillaries for distant metastasis. However, recent studies have shown that platelets can also inhibit tumor metastasis. At present, the function of platelets in tumor progression has been widely studied, and they not only promote tumor cell metastasis, but also have an inhibitory effect. Therefore, in-depth and summary research of the molecular mechanism of platelets in tumor cell metastasis is of great significance for the screening and treatment of cancer patients. The following is a brief review of the role of platelets in the process of malignant tumor metastasis.
Collapse
Affiliation(s)
- Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Wang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
149
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
150
|
Nakazawa T, Morimoto T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Nakase H, Tsujimura T. Establishment of an efficient ex vivo expansion strategy for human natural killer cells stimulated by defined cytokine cocktail and antibodies against natural killer cell activating receptors. Regen Ther 2022; 21:185-191. [PMID: 35919498 PMCID: PMC9309574 DOI: 10.1016/j.reth.2022.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Cell-based immunotherapy is categorized as a regenerative therapy under the Regenerative Medicine Safety Act in Japan. Natural killer (NK) cell-based immunotherapy is considered a promising strategy for treating cancer, including glioblastoma (GBM). We previously reported an expansion method for highly purified human peripheral blood-derived NK cells using a cytokine cocktail. Here, we aimed to establish a more efficient NK cell expansion method as compared to our previously reported method. Methods T cell-depleted human peripheral blood mononuclear cells (PBMCs) were isolated from three healthy volunteers. The depleted PBMCs were cultured in the presence of recombinant human interleukin (rhIL)-18 and high-dose rhIL-2 in anti-NKp46 and/or anti-CD16 antibody immobilization settings. After 14 days of expansion, the purity and expansion ratio of CD3-CD56+ NK cells were determined. The cytotoxicity-mediated growth inhibition of T98G cells (an NK activity-sensitive GBM cell line) was evaluated using a non-labeling, impedance-based real-time cell analyzer. Results Anti-NKp46 stimulation increased the NK cell purity and expansion ratio as compared to the non-antibody-stimulated population. Anti-CD16 stimulation weakly enhanced the NK cell expansion ratio of the non-antibody-stimulated population and enhanced the NK cell purity and expansion ratio of anti-NKp46-stimulated populations. All NK cell-containing populations tested distinctly inhibited T98G cell growth. These effects tended to be enhanced in an NK cell purity-dependent manner. In some cases, anti-CD16 stimulation decreased growth inhibition of T98G cell compared to other conditions despite the comparable NK cell purity. Conclusions We established a robust large-scale feeder-free expansion system for highly purified human NK cells using a defined cytokine cocktail and anti-NK cell activating receptor antibodies. The expansion system could be feasible for autologous or allogeneic NK cell-based immunotherapy of GBM. Moreover, it is easily controlled under Japanese law on regenerative medicine.
Collapse
|