101
|
Baseler WA, Thapa D, Jagannathan R, Dabkowski ER, Croston TL, Hollander JM. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol 2012; 303:C1244-51. [PMID: 23034391 DOI: 10.1152/ajpcell.00137.2012] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dysfunctional mitochondria are central in the pathogenesis of diabetic cardiomyopathy. Mitochondrial proteomic alterations resulting from diabetes mellitus have been reported although the mechanisms driving changes in proteomic signatures are unknown. microRNAs (miRNAs) have been considered as potential regulators of proteins. The goal of this study was to determine whether miRNAs play a role in diabetes-induced mitochondrial proteomic alterations. Quanitative RT-PCR miRNA screening in diabetic mice, 5 wk following multiple low-dose streptozotocin treatment was associated with alteration in the expression of 29 miRNAs in the diabetic heart compared with control. Among those miRNAs upregulated in the diabetic heart was miR-141 (P < 0.002). miRNA target prediction analyses identified miR-141 as a potential regulator of the inner mitochondrial membrane phosphate transporter, solute carrier family 25 member 3 (Slc25a3), which provides inorganic phosphate to the mitochondrial matrix and is essential for ATP production. With the use of a luciferase reporter construct with a Slc25a3 3'-untranslated region (UTR) target sequence, overexpression of miR-141 downregulated luciferase activity levels confirming miR-141/Slc25a3 3'-UTR binding. miR-141 overexpression in HL-1 cells elicited a decrease in Slc25a3 protein content, ATP production and a decrease in ATP synthase activity, similar to the diabetic phenotype (P < 0.05, for both). Diabetic interfibrillar mitochondria (IFM) displayed decreased Slc25a3 protein content, which was inversely correlated with increased miR-141 expression. Further, diabetic IFM ATP synthase activity was also decreased (P < 0.05). Together these results indicate that miR-141 can regulate Slc25a3 protein expression in the diabetic heart. Further, diabetes-induced miRNA changes may influence mitochondrial proteomes and functional processes such as mitochondrial ATP production.
Collapse
Affiliation(s)
- Walter A Baseler
- Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
102
|
Jüllig M, Hickey AJ, Middleditch MJ, Crossman DJ, Lee SC, Cooper GJS. Characterization of proteomic changes in cardiac mitochondria in streptozotocin-diabetic rats using iTRAQ™ isobaric tags. Proteomics Clin Appl 2012; 1:565-76. [PMID: 21136708 DOI: 10.1002/prca.200600831] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes now affects more than 5% of the world's population and heart failure is the most common cause of death amongst diabetic patients. Accumulating evidence supports a view that myocardial mitochondrial structural and functional changes are central to the onset of diabetic heart failure, but the exact nature of these changes at the proteomic level remains unclear.Here we report on proteomic changes in diabetic rat heart mitochondria following 120 days of streptozotocin-diabetes using the recently developed iTRAQ™ labeling method, which permits quantification of proteins directly from complex mixtures, bypassing the limitations associated with gel-based methods such as 2-DE. Of 252 unique proteins identified, 144 were represented in at least three of six individual paired experiments. Relative amounts of 65 proteins differed significantly between the groups, confirming that the cardiac mitochondrial proteome is indeed impacted by diabetes. The most significant changes were increased protein levels of enzymes involved in mitochondrial oxidation of long-chain fatty acids, which was also confirmed by enzyme assays, and decreased levels of multiple enzymes involved in oxidative phosphorylation and catabolism of short-chain fatty acids and branched-chain amino acids. We also found significant changes in levels of several enzymes linked to oxidative stress.
Collapse
Affiliation(s)
- Mia Jüllig
- School of Biological Sciences and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
103
|
Bousette N, Gramolini AO, Kislinger T. Proteomics-based investigations of animal models of disease. Proteomics Clin Appl 2012; 2:638-53. [PMID: 21136864 DOI: 10.1002/prca.200780043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells contain a large yet, constant genome, which contains all the coding information necessary to sustain cellular physiology. However, proteins are the end products of genes, and hence dictate the phenotype of cells and tissues. Therefore, proteomics can provide key information for the elucidation of physiological and pathophysiological mechanisms by identifying the protein profile from cells and tissues. The relatively novel techniques used for the study of proteomics thus have the potential to improve diagnostic, prognostic, as well as therapeutic avenues. In this review, we first discuss the benefits of animal models over the use of human samples for the proteomic analysis of human disease. Next, we aim to demonstrate the potential of proteomics in the elucidation of disease mechanisms that may not be possible by other conventional technologies. Following this, we describe the use of proteomics for the analysis of PTM and protein interactions in animal models and their relevance to the study of human disease. Finally, we discuss the development of clinical biomarkers for the early diagnosis of disease via proteomic analysis of animal models. We also discuss the development of standard proteomes and relate how this data will benefit future proteomic research. A comprehensive review of all animal models used in conjunction with proteomics is beyond the scope of this manuscript. Therefore, we aimed to cover a large breadth of topics, which together, demonstrate the potential of proteomics as a powerful tool in biomedical research.
Collapse
Affiliation(s)
- Nicolas Bousette
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence, Toronto, Ontario, Canada
| | | | | |
Collapse
|
104
|
Magge SN. Cardiovascular Risk in Children and Adolescents with Type 1 and Type 2 Diabetes Mellitus. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 6:591-600. [PMID: 23293697 DOI: 10.1007/s12170-012-0274-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rising rates of both type 1 and type 2 diabetes mellitus in children have led to increased concern regarding cardiovascular disease (CVD) risk during childhood. Diabetic children face prolonged exposure to hyperglycemia, and have increased risk of both microvascular and macrovascular disease. These circumstances may result in a generation of young adults presenting with cardiovascular outcomes, a tremendous personal and public health toll. In this article, we review CVD risk in type 1 and type 2 diabetes, discuss aspects of pathophysiology, and review current methods of CVD risk assessment. We also identify crucial areas in need of future research in order to devise effective prevention and treatment of CVD risk in children.
Collapse
Affiliation(s)
- Sheela N Magge
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia; Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
105
|
Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012; 48:1-26. [PMID: 22504486 DOI: 10.1540/jsmr.48.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Micro- and macrovascular complications are commonly seen in diabetic patients and endothelial dysfunction contributes to the development and progression of the complications. Abnormal functions in endothelial cells lead to the increase in vascular tension and atherosclerosis, followed by systemic hypertension as well as increased incidence of ischemia and stroke in diabetic patients. Mitochondria are organelles serving as a source of energy production and as regulators of cell survival (e.g., apoptosis and cell development) and ion homeostasis (e.g., H(+), Ca(2+)). Endothelial mitochondria are mainly responsible for generation of reactive oxygen species (ROS) and maintaining the Ca(2+) concentration in the cytosol. There is increasing evidence that mitochondrial morphological and functional changes are implicated in vascular endothelial dysfunction. Enhanced mitochondrial fission and/or attenuated fusion lead to mitochondrial fragmentation and disrupt the endothelial physiological function. Abnormal mitochondrial biogenesis and disturbance of mitochondrial autophagy increase the accumulation of damaged mitochondria, such as irreversibly depolarized or leaky mitochondria, and facilitate cell death. Augmented mitochondrial ROS production and Ca(2+) overload in mitochondria not only cause the maladaptive effect on the endothelial function, but also are potentially detrimental to cell survival. In this article, we review the physiological and pathophysiological role of mitochondria in endothelial function with special focus on diabetes.
Collapse
Affiliation(s)
- Meenal Pangare
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
106
|
Impaired protein quality control system underlies mitochondrial dysfunction in skeletal muscle of streptozotocin-induced diabetic rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1189-97. [DOI: 10.1016/j.bbadis.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/20/2022]
|
107
|
Diogo CV, Suski JM, Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Pronicki M, Duszynski J, Pinton P, Portincasa P, Oliveira PJ, Wieckowski MR. Cardiac mitochondrial dysfunction during hyperglycemia--the role of oxidative stress and p66Shc signaling. Int J Biochem Cell Biol 2012; 45:114-22. [PMID: 22776741 DOI: 10.1016/j.biocel.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/15/2012] [Accepted: 07/01/2012] [Indexed: 01/25/2023]
Abstract
Diabetes mellitus is a chronic disease caused by a deficiency in the production of insulin and/or by the effects of insulin resistance. Insulin deficiency leads to hyperglycemia which is the major initiator of diabetic cardiovascular complications escalating with time and driven by many complex biochemical and molecular processes. Four hypotheses, which propose mechanisms of diabetes-associated pathophysiology, are currently considered. Cardiovascular impairment may be caused by an increase in polyol pathway flux, by intracellular advanced glycation end-products formation or increased flux through the hexosamine pathway. The latter of these mechanisms involves activation of the protein kinase C. Cellular and mitochondrial metabolism alterations observed in the course of diabetes are partially associated with an excessive production of reactive oxygen species (ROS). Among many processes and factors involved in ROS production, the 66 kDa isoform of the growth factor adaptor shc (p66Shc protein) is of particular interest. This protein plays a key role in the control of mitochondria-dependent oxidative balance thus it involvement in diabetic complications and other oxidative stress based pathologies is recently intensively studied. In this review we summarize the current understanding of hyperglycemia induced cardiac mitochondrial dysfunction with an emphasis on the oxidative stress and p66Shc protein. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Catia V Diogo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Chen X, Wei S, Yang F. Mitochondria in the pathogenesis of diabetes: a proteomic view. Protein Cell 2012; 3:648-60. [PMID: 22729395 DOI: 10.1007/s13238-012-2043-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is a complex metabolic disorder characterized by chronic hyperglycemia due to absolute or relative lack of insulin. Though great efforts have been made to investigate the pathogenesis of diabetes, the underlying mechanism behind the development of diabetes and its complications remains unexplored. Cumulative evidence has linked mitochondrial modification to the pathogenesis of diabetes and its complications and they are also observed in various tissues affected by diabetes. Proteomics is an attractive tool for the study of diabetes since it allows researchers to compare normal and diabetic samples by identifying and quantifying the differentially expressed proteins in tissues, cells or organelles. Great progress has already been made in mitochondrial proteomics to elucidate the role of mitochondria in the pathogenesis of diabetes and its complications. Further studies on the changes of mitochondrial protein specifically post-translational modifications during the diabetic state using proteomic tools, would provide more information to better understand diabetes.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|
109
|
Vejandla H, Hollander JM, Kothur A, Brock RW. C-Peptide reduces mitochondrial superoxide generation by restoring complex I activity in high glucose-exposed renal microvascular endothelial cells. ISRN ENDOCRINOLOGY 2012; 2012:162802. [PMID: 22778984 PMCID: PMC3388427 DOI: 10.5402/2012/162802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022]
Abstract
Hyperglycemia-mediated microvascular damage has been proposed to originate from excessive generation of mitochondrial superoxide in endothelial cells and is the suggested mechanism by which the pathogenesis of diabetes-induced renal damage occurs. C-peptide has been shown to ameliorate diabetes-induced renal impairment. Yet, the mechanisms underlying this protective benefit remain unclear. The objective of this study was to determine whether C-peptide affords protection to renal microvascular endothelial cell mitochondria during hyperglycemia. Conditionally immortalized murine renal microvascular endothelial cells (MECs) were exposed to low (5.5 mM) or high glucose (25 mM) media with either C-peptide (6.6 nM) or its scrambled sequence control peptide for 24 or 48 hours. Respiratory control ratio, a measure of mitochondrial electrochemical coupling, was significantly higher in high glucose renal MECs treated with C-peptide than those of high glucose alone. C-peptide also restored high glucose-induced renal MEC mitochondrial membrane potential changes back to their basal low glucose state. Moreover, C-peptide prevented the excessive mitochondrial superoxide generation and concomitant reductions in mitochondrial complex I activity which are mediated by the exposure of the renal MECs to high glucose. Together, these data demonstrate that C-peptide protects against high glucose-induced generation of mitochondrial superoxide in renal MECs via restoration of basal mitochondrial function.
Collapse
Affiliation(s)
- Himani Vejandla
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, P.O. Box 9105, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
110
|
Cardiovascular disease risk in young people with type 1 diabetes. J Cardiovasc Transl Res 2012; 5:446-62. [PMID: 22528676 DOI: 10.1007/s12265-012-9363-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the most frequent cause of death in people with type 1 diabetes (T1D), despite modern advances in glycemic control and CVD risk factor modification. CVD risk identification is essential in this high-risk population, yet remains poorly understood. This review discusses the risk factors for CVD in young people with T1D, including hyperglycemia, traditional CVD risk factors (dyslipidemia, smoking, physical activity, hypertension), as well as novel risk factors such as insulin resistance, inflammation, and hypoglycemia. We present evidence that adverse changes in cardiovascular function, arterial compliance, and atherosclerosis are present even during adolescence in people with T1D, highlighting the need for earlier intervention. The methods for investigating cardiovascular risk are discussed and reviewed. Finally, we discuss the observational studies and clinical trials which have thus far attempted to elucidate the best targets for early intervention in order to reduce the burden of CVD in people with T1D.
Collapse
|
111
|
Chronic treatment with long acting phosphodiesterase-5 inhibitor tadalafil alters proteomic changes associated with cytoskeletal rearrangement and redox regulation in Type 2 diabetic hearts. Basic Res Cardiol 2012; 107:249. [PMID: 22311732 DOI: 10.1007/s00395-012-0249-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/16/2012] [Accepted: 01/27/2012] [Indexed: 01/09/2023]
Abstract
Diabetic patients are prone to metabolic perturbations that progressively contribute to structural, functional and proteomic alterations in the myocardium. Phosphodiesterase-5 (PDE-5) inhibitors exhibit cardioprotective effects against ischemic/reperfusion injury, however the effects of chronic administration of PDE-5 inhibitors, particularly under diabetic conditions, remain unknown. Hence, the present study was designed to identify novel protein targets related to long-acting PDE-5 inhibitor tadalafil-induced cardioprotection in diabetes. Using two-dimensional differential in-gel electrophoresis with 3 CyDye labeling and MALDI-TOF/TOF tandem mass spectrometry we identified alterations in the expressions of cardiac proteins in diabetic db/db mice treated with tadalafil. Tadalafil reversed the coordinated alterations of cytoskeletal/contractile proteins such as myosin light chain (MLY) 2 and 4, myosin heavy chain α and myosin-binding protein C which contributes to contractile dysfunction. The expression of intermediate filament protein vimentin and extra-cellular matrix proteins like cysteine and glycine rich protein-3 and collagen type VI α were upregulated in db/db mice indicating cardiac remodeling in diabetes. These detrimental proteomic alterations were reflected in cardiac function which were reversed in tadalafil treated mice. Tadalafil also enhanced antioxidant enzyme glutathione S-transferase Kappa-1 (GSKT-1) and downregulated redox regulatory chaperones like heat shock protein 8 (HSPA8), and 75 kD glucose regulatory protein (75GRP). Furthermore, tadalafil treatment significantly attenuated GSSG/GSH ratio and improved the metabolic status of db/db mice. Chronic treatment with tadalafil in db/db mice modulates proteins involved in cytoskeletal rearrangement and redox signaling of the heart, which may explain the beneficial effects of PDE-5 inhibition in diabetes.
Collapse
|
112
|
Palanisami A, Fang J, Lowder TW, Kunz H, Miller JH. Rapid morphological characterization of isolated mitochondria using Brownian motion. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2012; 4:513-521. [PMID: 26435755 PMCID: PMC4590767 DOI: 10.1039/c2ay05686k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondrial morphology has been associated with numerous pathologies including cancer, diabetes, obesity and heart disease. However, the connection is poorly understood-in part due to the difficulty of characterizing the morphology. This impedes the use of morphology as a tool for disease detection/monitoring. Here, we use the Brownian motion of isolated mitochondria to characterize their size and shape in a high throughput fashion. By using treadmill exercise training, mitochondria from heart and gastrocnemius of Balb/c mice were modulated in size and used to investigate the protocol. Consistent with previous reports, the heart mitochondria of untrained mice increased 5% in diameter immediately after a single bout of moderate exercise (1.091 ± 0.004 μm) as compared to completely sedentary controls (1.040 ± 0.022 μm). In addition, no change was observed in the size of gastrocnemius mitochondria (1.025 ± 0.018 μm), which was also in agreement with previous studies. The method was also successfully applied to smaller Saccharomyces cerevisiae mitochondria.
Collapse
Affiliation(s)
- Akilan Palanisami
- Texas Center for Superconductivity, University of Houston, 202 Houston Science Center, Houston, TX, USA. ; Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom St, Boston, MA, 02114, USA
| | - Jie Fang
- Texas Center for Superconductivity, University of Houston, 202 Houston Science Center, Houston, TX, USA
| | - Thomas W Lowder
- Department of Health and Human Performance, University of Houston, 3855 Holman Street, Houston, TX, USA
| | - Hawley Kunz
- Department of Health and Human Performance, University of Houston, 3855 Holman Street, Houston, TX, USA
| | - John H Miller
- Texas Center for Superconductivity, University of Houston, 202 Houston Science Center, Houston, TX, USA
| |
Collapse
|
113
|
Mineo PM, Cassell EA, Roberts ME, Schaeffer PJ. Chronic cold acclimation increases thermogenic capacity, non-shivering thermogenesis and muscle citrate synthase activity in both wild-type and brown adipose tissue deficient mice. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:395-400. [PMID: 22233932 DOI: 10.1016/j.cbpa.2011.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/31/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
The purpose of this study was to determine whether chronic cold exposure would increase the aerobic capacity of skeletal muscle in UCP-dta mice, a transgenic line lacking brown adipose tissue (BAT). Wild type and UCP-dta mice were acclimated to either warm (23 °C), or cold (4 °C) conditions. Cold increased muscle oxidative capacity nearly equivalently in wild-type and UCP-dta mice, but did not affect the respiratory function of isolated mitochondria. Summit metabolism ( ̇V O2summit) and norepinephrine-induced thermogenesis ( ̇V O2NST) were significantly lower in UCP-dta mice relative to wild-type mice regardless of temperature treatment, but both were significantly higher in cold relative to warm acclimated mice. BAT mass was significantly higher in the cold relative to warm acclimated wild-type mice, but not in cold acclimated UCP-dta mice. BAT citrate synthase activity was lower in transgenic animals regardless of acclimation temperature and BAT citrate synthase activity per depot was significantly higher only in the cold acclimated wild-type mice. Muscle citrate synthase activity was increased in both genotypes. As defects in muscle oxidative function have been observed with obesity and type 2 diabetes, these results suggest that chronic cold exposure is a useful intervention to drive skeletal muscle oxidative capacity in mouse models of obesity.
Collapse
Affiliation(s)
- P M Mineo
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
114
|
Ghosh S, Sulistyoningrum DC, Glier MB, Verchere CB, Devlin AM. Altered glutathione homeostasis in heart augments cardiac lipotoxicity associated with diet-induced obesity in mice. J Biol Chem 2011; 286:42483-42493. [PMID: 22021075 DOI: 10.1074/jbc.m111.304592] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity-related cardiac lipid accumulation is associated with increased myocardial oxidative stress. The role of the antioxidant glutathione in cardiac lipotoxicity is unclear. Cystathionine β-synthase (Cbs) catalyzes the first step in the trans-sulfuration of homocysteine to cysteine, which is estimated to provide ∼50% of cysteine for hepatic glutathione biosynthesis. As cardiac glutathione is a reflection of the liver glutathione pool, we hypothesize that mice heterozygous for targeted disruption of Cbs (Cbs(+/-)) are more susceptible to obesity-related cardiolipotoxicity because of impaired liver glutathione synthesis. Cbs(+/+) and Cbs(+/-) mice were fed a high fat diet (60% energy) from weaning for 13 weeks to induce obesity and had similar increases in body weight and body fat. This was accompanied by increased hepatic triglyceride but no differences in hepatic glutathione levels compared with mice fed chow. However, Cbs(+/-) mice with diet-induced obesity had greater glucose intolerance and lower total and reduced glutathione levels in the heart, accompanied by lower plasma cysteine levels compared with Cbs(+/+) mice. Higher triglyceride concentrations, increased oxidative stress, and increased markers of apoptosis were also observed in heart from Cbs(+/-) mice with diet-induced obesity compared with Cbs(+/+) mice. This study suggests a novel role for Cbs in maintaining the cardiac glutathione pool and protecting against cardiac lipid accumulation and oxidative stress during diet-induced obesity in mice.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Dian C Sulistyoningrum
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Melissa B Glier
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada
| | - C Bruce Verchere
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Angela M Devlin
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
115
|
Mitra R, Nogee DP, Zechner JF, Yea K, Gierasch CM, Kovacs A, Medeiros DM, Kelly DP, Duncan JG. The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol 2011; 52:701-10. [PMID: 22080103 DOI: 10.1016/j.yjmcc.2011.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/30/2011] [Accepted: 10/13/2011] [Indexed: 12/24/2022]
Abstract
We previously demonstrated a cardiac mitochondrial biogenic response in insulin resistant mice that requires the nuclear receptor transcription factor PPARα. We hypothesized that the PPARα coactivator peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is necessary for mitochondrial biogenesis in insulin resistant hearts and that this response was adaptive. Mitochondrial phenotype was assessed in insulin resistant mouse models in wild-type (WT) versus PGC-1α deficient (PGC-1α(-/-)) backgrounds. Both high fat-fed (HFD) WT and 6 week-old Ob/Ob animals exhibited a significant increase in myocardial mitochondrial volume density compared to standard chow fed or WT controls. In contrast, HFD PGC-1α(-/-) and Ob/Ob-PGC-1α(-/-) hearts lacked a mitochondrial biogenic response. PGC-1α gene expression was increased in 6 week-old Ob/Ob animals, followed by a decline in 8 week-old Ob/Ob animals with more severe glucose intolerance. Mitochondrial respiratory function was increased in 6 week-old Ob/Ob animals, but not in Ob/Ob-PGC-1α(-/-) mice and not in 8 week-old Ob/Ob animals, suggesting a loss of the early adaptive response, consistent with the loss of PGC-1α upregulation. Animals that were deficient for PGC-1α and heterozygous for the related coactivator PGC-1β (PGC-1α(-/-)β(+/-)) were bred to the Ob/Ob mice. Ob/Ob-PGC-1α(-/-)β(+/-) hearts exhibited dramatically reduced mitochondrial respiratory capacity. Finally, the mitochondrial biogenic response was triggered in H9C2 myotubes by exposure to oleate, an effect that was blunted with shRNA-mediated PGC-1 "knockdown". We conclude that PGC-1 signaling is important for the adaptive cardiac mitochondrial biogenic response that occurs during the early stages of insulin resistance. This response occurs in a cell autonomous manner and likely involves exposure to high levels of free fatty acids.
Collapse
Affiliation(s)
- Riddhi Mitra
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Prevalence of diabetes and heart failure are increasing exponentially worldwide. Diabetes is well-known to increase the risk of heart failure independent of other traditional risk factors and ischemia. Current evidence indicates the presence of several biochemical and molecular changes associated with diabetes that lead to diastolic dysfunction or American Heart Association stage B heart failure. Some, if not all, changes may also predate the development of frank diabetes. In this review, the authors present some of the epidemiologic evidence and a brief description of major mechanistic pathways that favor the development of heart failure in prediabetic and diabetic states.
Collapse
Affiliation(s)
- Ravi Dhingra
- Section of Cardiology, Heart and Vascular Center, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
117
|
Hollander JM, Baseler WA, Dabkowski ER. Proteomic remodeling of mitochondria in heart failure. ACTA ACUST UNITED AC 2011; 17:262-8. [PMID: 22103917 DOI: 10.1111/j.1751-7133.2011.00254.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is a common disease that has been attributed, in part, to deprivation of cardiac energy. As a result, the interplay between metabolism and adenosine triphosphate production is fundamental in determining the mechanisms driving the disease progression. Due to its central role in energy production, metabolism, calcium homeostasis, and oxidative stress, the mitochondrion has been suggested to play a pivotal role in the progression of the heart to failure. Nevertheless, the mitochondrion's specific role(s) and the proteins contributing to the development and progression of HF are not entirely clear. Thus, changes in mitochondrial proteomic make-up during HF have garnered great interest. With the continued development of advanced tools for assessing proteomic make-up, characterization of mitochondrial proteomic changes during disease states such as HF are being realized. These studies have begun to identify potential biomarkers of disease progression as well as protein targets that may provide an avenue for therapeutic intervention. The goal of this review is to highlight some of the changes in mitochondrial proteomic make-up that are associated with the development of HF in an effort to identify target axes and candidate proteins contributing to disease development. Results from a number of different HF models will be evaluated to gain insight into some of the similarities and differences in mitochondrial proteomic alterations associated with morphological and functional changes that result from the disease. Congest Heart Fail.
Collapse
Affiliation(s)
- John M Hollander
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, USA.
| | | | | |
Collapse
|
118
|
Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN. Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 2011; 301:H2073-80. [PMID: 21873502 DOI: 10.1152/ajpheart.00157.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiac failure is associated with increased levels of oxidized DNA, especially mitochondrial (mtDNA). It is not known if oxidized mtDNA contributes to cardiac dysfunction. To test if protection of mtDNA can reduce cardiac injury, we produced transgenic mice with cardiomyocyte-specific overexpression of the DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1) isoform 2a. In one line of mice, the transgene increased OGG1 activity by 115% in mitochondria and by 28% in nuclei. OGG1 transgenic mice demonstrated significantly lower cardiac mitochondrial levels of the DNA guanine oxidation product 7,8-dihydro-8-oxoguanine (8-oxo-dG) under basal conditions, after doxorubicin administration, or after transaortic constriction (TAC), but the transgene produced no detectable reduction in nuclear 8-oxo-dG content. OGG1 mice were tested for protection from the cardiac effects of TAC 13 wk after surgery. Compared with FVB-TAC mice, hearts from OGG1-TAC mice had lower levels of β-myosin heavy chain mRNA but they did not display significant differences in the ratio of heart weight to tibia length or protection of cardiac function measured by echocardiography. The principle benefit of OGG1 overexpression was a significant decrease in TAC-induced cardiac fibrosis. This protection was indicated by reduced Sirius red staining on OGG1 cardiac sections and by significantly decreased induction of collagen 1 and 3 mRNA expression in OGG1 hearts after TAC surgery. These results provide a new model to assess the damaging cardiac effects of 8-oxo-dG formation and suggest that increased repair of 8-oxo-dG in mtDNA decreases cardiac pathology.
Collapse
Affiliation(s)
- Jianxun Wang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
119
|
Zuo L, Youtz DJ, Wold LE. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation. PLoS One 2011; 6:e23116. [PMID: 21850256 PMCID: PMC3151271 DOI: 10.1371/journal.pone.0023116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/10/2011] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways.
Collapse
Affiliation(s)
- Li Zuo
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dane J. Youtz
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Loren E. Wold
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
120
|
The PPARalpha-PGC-1alpha Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Res 2011; 2008:253817. [PMID: 18288281 PMCID: PMC2225461 DOI: 10.1155/2008/253817] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 09/03/2007] [Indexed: 12/30/2022] Open
Abstract
The mammalian myocardium is an omnivorous organ that relies on multiple substrates in order to fulfill its tremendous energy demands. Cardiac energy metabolism preference is regulated at several critical points, including at the level of gene transcription. Emerging evidence indicates that the nuclear receptor PPARα and its cardiac-enriched coactivator protein, PGC-1α, play important roles in the transcriptional control of myocardial energy metabolism. The PPARα-PGC-1α complex controls the expression of genes encoding enzymes involved in cardiac fatty acid and glucose metabolism as well as mitochondrial biogenesis. Also, evidence has emerged that the activity of the PPARα-PGC-1α complex is perturbed in several pathophysiologic conditions and that altered activity of this pathway may play a role in cardiomyopathic remodeling. In this review, we detail the current understanding of the effects of the PPARα-PGC-1α axis in regulating mitochondrial energy metabolism and cardiac function in response to physiologic and pathophysiologic stimuli.
Collapse
|
121
|
Chowdhury SKR, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion 2011; 11:845-54. [PMID: 21742060 DOI: 10.1016/j.mito.2011.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada R2H 2A6
| | | | | |
Collapse
|
122
|
Abstract
Type 1 diabetes mellitus (T1D) is associated with an increased risk of cardiovascular disease (CVD) that begins in childhood. Youth with T1D develop concerning functional cardiac and vascular defects and evidence of early atherosclerosis, despite modern advancements in risk reduction and glycemic management. Such early defects predict poor long-term outcomes. Women with T1D also have higher CVD risk than expected for unexplained reasons. Insulin resistance (IR) is recently recognized as a prominent factor in T1D youth and adults, but with an atypical clinical phenotype. This IR may contribute to early cardiac and vascular dysfunction and long-term CVD in T1D. A better understanding of potential contributors to cardiovascular dysfunction in T1D youth such as IR and its unique phenotype in T1D, subtle lipid abnormalities, and gender differences is now required to address the current knowledge gaps and to prevent cardiovascular morbidity and mortality in T1D.
Collapse
Affiliation(s)
- Kristen J Nadeau
- Pediatric Endocrinology, University of Colorado/The Children's Hospital, 13123 East 16th Avenue, B265, Aurora, CO 80045, USA.
| | | |
Collapse
|
123
|
Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011; 60:1770-8. [PMID: 21562078 PMCID: PMC3114402 DOI: 10.2337/db10-0351] [Citation(s) in RCA: 402] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Autophagy is a critical cellular system for removal of aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in the development of heart failure, the role of autophagy in the development of diabetic cardiomyopathy has not been studied. We investigated whether chronic activation of the AMP-activated protein kinase (AMPK) by metformin restores cardiac function and cardiomyocyte autophagy in OVE26 diabetic mice. RESEARCH DESIGN AND METHODS OVE26 mice and cardiac-specific AMPK dominant negative transgenic (DN)-AMPK diabetic mice were treated with metformin or vehicle for 4 months, and cardiac autophagy, cardiac functions, and cardiomyocyte apoptosis were monitored. RESULTS Compared with control mice, diabetic OVE26 mice exhibited a significant reduction of AMPK activity in parallel with reduced cardiomyocyte autophagy and cardiac dysfunction in vivo and in isolated hearts. Furthermore, diabetic OVE26 mouse hearts exhibited aggregation of chaotically distributed mitochondria between poorly organized myofibrils and increased polyubiquitinated protein and apoptosis. Inhibition of AMPK by overexpression of a cardiac-specific DN-AMPK gene reduced cardiomyocyte autophagy, exacerbated cardiac dysfunctions, and increased mortality in diabetic mice. Finally, chronic metformin therapy significantly enhanced autophagic activity and preserved cardiac functions in diabetic OVE26 mice but not in DN-AMPK diabetic mice. CONCLUSIONS Decreased AMPK activity and subsequent reduction in cardiac autophagy are important events in the development of diabetic cardiomyopathy. Chronic AMPK activation by metformin prevents cardiomyopathy by upregulating autophagy activity in diabetic OVE26 mice. Thus, stimulation of AMPK may represent a novel approach to treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhonglin Xie
- Section of Molecular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Peroxisome proliferator activated receptor-alpha (PPARα) and PPAR gamma coactivator-1alpha (PGC-1α) regulation of cardiac metabolism in diabetes. Pediatr Cardiol 2011; 32:323-8. [PMID: 21286700 PMCID: PMC3143064 DOI: 10.1007/s00246-011-9889-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Cardiovascular disease is a leading cause of mortality among patients with diabetes, and heart failure exists even in the absence of coronary disease. Myocardial metabolism is altered in the diabetic heart as a result of changes in substrate availability secondary to insulin resistance. The nuclear receptor peroxisome proliferator activated receptor-alpha (PPARα) and PPAR-gamma coactivator-1alpha (PGC-1α) play important roles in transcriptional regulation of myocardial metabolism and contribute significantly to the changes that occur in the diabetic heart. This review summarizes the role of PPARα and PGC-1α in myocardial metabolism in the normal heart and in the diabetic heart.
Collapse
|
125
|
Kitada M, Kume S, Imaizumi N, Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 2011; 60:634-43. [PMID: 21270273 PMCID: PMC3028365 DOI: 10.2337/db10-0386] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Despite the beneficial effects of resveratrol (RSV) on cardiovascular disease and life span, its effects on type 2 diabetic nephropathy remain unknown. This study examined the renoprotective effects of RSV in db/db mice, a model of type 2 diabetes. RESEARCH DESIGN AND METHODS db/db mice were treated with RSV (0.3% mixed in chow) for 8 weeks. We measured urinary albumin excretion (UAE), histological changes (including mesangial expansion, fibronectin accumulation, and macrophage infiltration), oxidative stress markers (urinary excretion and mitochondrial content of 8-hydroxy-2'-deoxyguanosine [8-OHdG], nitrotyrosine expression), and manganese-superoxide dismutase (Mn-SOD) activity together with its tyrosine-nitrated modification and mitochondrial biogenesis in the kidney. Blood glucose, glycated hemoglobin, and plasma lipid profiles were also measured. The phosphorylation of 5'-AMP-activated kinase (AMPK) and expression of silent information regulator 1 (SIRT1) in the kidney were assessed by immunoblotting. RESULTS RSV significantly reduced UAE and attenuated renal pathological changes in db/db mice. Mitochondrial oxidative stress and biogenesis were enhanced in db/db mice; however, Mn-SOD activity was reduced through increased tyrosine-nitrated modification. RSV ameliorated such alterations and partially improved blood glucose, glycated hemoglobin, and abnormal lipid profile in db/db mice. Activation of AMPK was decreased in the kidney of db/db mice compared with db/m mice. RSV neither modified AMPK activation nor SIRT1 expression in the kidney. CONCLUSIONS RSV ameliorates renal injury and enhanced mitochondrial biogenesis with Mn-SOD dysfunction in the kidney of db/db mice, through improvement of oxidative stress via normalization of Mn-SOD function and glucose-lipid metabolism. RSV has antioxidative activities via AMPK/SIRT1-independent pathway.
Collapse
Affiliation(s)
- Munehiro Kitada
- Division of Diabetes and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Noriko Imaizumi
- Division of Diabetes and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa, Japan
| | - Daisuke Koya
- Division of Diabetes and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa, Japan
- Corresponding author: Daisuke Koya,
| |
Collapse
|
126
|
Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1351-9. [PMID: 21256163 DOI: 10.1016/j.bbamcr.2011.01.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease is common in patients with diabetes and is a significant contributor to the high mortality rates associated with diabetes. Heart failure is common in diabetic patients, even in the absence of coronary artery disease or hypertension, an entity known as diabetic cardiomyopathy. Evidence indicates that myocardial metabolism is altered in diabetes, which likely contributes to contractile dysfunction and ventricular failure. The mitochondria are the center of metabolism, and recent data suggests that mitochondrial dysfunction may play a critical role in the pathogenesis of diabetic cardiomyopathy. This review summarizes many of the potential mechanisms that lead to mitochondrial dysfunction in the diabetic heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jennifer G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
127
|
Boengler K, Heusch G, Schulz R. Nuclear-encoded mitochondrial proteins and their role in cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1286-94. [PMID: 21255616 DOI: 10.1016/j.bbamcr.2011.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 01/09/2011] [Indexed: 11/29/2022]
Abstract
During myocardial ischemia/reperfusion, mitochondria are both a source and a target of injury. In cardioprotective maneuvers such as ischemic and pharmacological pre- and postconditioning mitochondria have a decisive role. Since about 99% of the mitochondrial proteins are encoded in the nucleus, deleterious and protective mitochondrial effects most likely comprise the import of cytosolic proteins. The present review therefore discusses the role of mitochondria in myocardial ischemia/reperfusion injury and protection from it, focusing on some cytosolic proteins, which are translocated into mitochondria before, during, or following ischemia/reperfusion. Both morphological and functional alterations are discussed at the level of the heart, the cardiomyocyte and/or the mitochondrion itself. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
128
|
Lumini-Oliveira J, Magalhães J, Pereira CV, Moreira AC, Oliveira PJ, Ascensão A. Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion 2011; 11:54-63. [DOI: 10.1016/j.mito.2010.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 06/20/2010] [Accepted: 07/09/2010] [Indexed: 01/12/2023]
|
129
|
Wang Q, Frolova AI, Purcell S, Adastra K, Schoeller E, Chi MM, Schedl T, Moley KH. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice. PLoS One 2010; 5:e15901. [PMID: 21209947 PMCID: PMC3011018 DOI: 10.1371/journal.pone.0015901] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/30/2010] [Indexed: 12/23/2022] Open
Abstract
Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Antonina I. Frolova
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott Purcell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katie Adastra
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erica Schoeller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maggie M. Chi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
130
|
Davidson SM. A needle in a haystack: focus on "Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart". Am J Physiol Regul Integr Comp Physiol 2010; 300:R183-5. [PMID: 21123761 DOI: 10.1152/ajpregu.00751.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
131
|
Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell 2010; 22:256-65. [PMID: 21119009 PMCID: PMC3020920 DOI: 10.1091/mbc.e10-06-0551] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuronal cell death in a number of neurological disorders is associated with aberrant mitochondrial dynamics and mitochondrial degeneration. However, the triggers for this mitochondrial dysregulation are not known. Here we show excessive mitochondrial fission and mitochondrial structural disarray in brains of hypertensive rats with hypertension-induced brain injury (encephalopathy). We found that activation of protein kinase Cδ (PKCδ) induced aberrant mitochondrial fragmentation and impaired mitochondrial function in cultured SH-SY5Y neuronal cells and in this rat model of hypertension-induced encephalopathy. Immunoprecipitation studies indicate that PKCδ binds Drp1, a major mitochondrial fission protein, and phosphorylates Drp1 at Ser 579, thus increasing mitochondrial fragmentation. Further, we found that Drp1 Ser 579 phosphorylation by PKCδ is associated with Drp1 translocation to the mitochondria under oxidative stress. Importantly, inhibition of PKCδ, using a selective PKCδ peptide inhibitor (δV1-1), reduced mitochondrial fission and fragmentation and conferred neuronal protection in vivo and in culture. Our study suggests that PKCδ activation dysregulates the mitochondrial fission machinery and induces aberrant mitochondrial fission, thus contributing to neurological pathology.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
132
|
Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ, Razunguzwa TT, Hollander JM. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol 2010; 300:R186-200. [PMID: 21048079 DOI: 10.1152/ajpregu.00423.2010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diabetic cardiomyopathy is associated with increased risk of heart failure in type 1 diabetic patients. Mitochondrial dysfunction is suggested as an underlying contributor to diabetic cardiomyopathy. Cardiac mitochondria are characterized by subcellular spatial locale, including mitochondria located beneath the sarcolemma, subsarcolemmal mitochondria (SSM), and mitochondria situated between the myofibrils, interfibrillar mitochondria (IFM). The goal of this study was to determine whether type 1 diabetic insult in the heart influences proteomic make-up of spatially distinct mitochondrial subpopulations and to evaluate the role of nuclear encoded mitochondrial protein import. Utilizing multiple proteomic approaches (iTRAQ and two-dimensional-differential in-gel electrophoresis), IFM proteomic make-up was impacted by type 1 diabetes mellitus to a greater extent than SSM, as evidenced by decreased abundance of fatty acid oxidation and electron transport chain proteins. Mitochondrial phosphate carrier and adenine nucleotide translocator, as well as inner membrane translocases, were decreased in the diabetic IFM (P < 0.05 for both). Mitofilin, a protein involved in cristae morphology, was diminished in the diabetic IFM (P < 0.05). Posttranslational modifications, including oxidations and deamidations, were most prevalent in the diabetic IFM. Mitochondrial heat shock protein 70 (mtHsp70) was significantly decreased in diabetic IFM (P < 0.05). Mitochondrial protein import was decreased in the diabetic IFM with no change in the diabetic SSM (P < 0.05). Taken together, these results indicate that mitochondrial proteomic alterations in the type 1 diabetic heart are more pronounced in the IFM. Further, proteomic alterations are associated with nuclear encoded mitochondrial protein import dysfunction and loss of an essential mitochondrial protein import constituent, mtHsp70, implicating this process in the pathogenesis of the diabetic heart.
Collapse
Affiliation(s)
- Walter A Baseler
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S, Shulman GI, Abel ED, Goldberg IJ. PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. J Clin Invest 2010; 120:3443-54. [PMID: 20852389 DOI: 10.1172/jci40905] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/21/2010] [Indexed: 01/13/2023] Open
Abstract
Excess lipid accumulation in the heart is associated with decreased cardiac function in humans and in animal models. The reasons are unclear, but this is generally believed to result from either toxic effects of intracellular lipids or excessive fatty acid oxidation (FAO). PPARγ expression is increased in the hearts of humans with metabolic syndrome, and use of PPARγ agonists is associated with heart failure. Here, mice with dilated cardiomyopathy due to cardiomyocyte PPARγ overexpression were crossed with PPARα-deficient mice. Surprisingly, this cross led to enhanced expression of several PPAR-regulated genes that mediate fatty acid (FA) uptake/oxidation and triacylglycerol (TAG) synthesis. Although FA oxidation and TAG droplet size were increased, heart function was preserved and survival improved. There was no marked decrease in cardiac levels of triglyceride or the potentially toxic lipids diacylglycerol (DAG) and ceramide. However, long-chain FA coenzyme A (LCCoA) levels were increased, and acylcarnitine content was decreased. Activation of PKCα and PKCδ, apoptosis, ROS levels, and evidence of endoplasmic reticulum stress were also reduced. Thus, partitioning of lipid to storage and oxidation can reverse cardiolipotoxicity despite increased DAG and ceramide levels, suggesting a role for other toxic intermediates such as acylcarnitines in the toxic effects of lipid accumulation in the heart.
Collapse
Affiliation(s)
- Ni-Huiping Son
- Division of Preventive Medicine and Nutrition, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Dabkowski ER, Baseler WA, Williamson CL, Powell M, Razunguzwa TT, Frisbee JC, Hollander JM. Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol 2010; 299:H529-40. [PMID: 20543078 PMCID: PMC2930393 DOI: 10.1152/ajpheart.00267.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/10/2010] [Indexed: 11/22/2022]
Abstract
Cardiac complications and heart failure are the leading cause of death in type 2 diabetic patients. Mitochondrial dysfunction is central in the pathogenesis of the type 2 diabetic heart. However, it is unclear whether this dysfunction is specific for a particular subcellular region. The purpose of this study was to determine whether mitochondrial dysfunction in the type 2 diabetic heart is specific to a spatially distinct subset of mitochondria. We investigated mitochondrial morphology, function, and proteomic composition of subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) in 18-wk-old db/db mice. Oxidative damage was assessed in subpopulations through the measurement of lipid peroxidation byproducts and nitrotyrosine residues. Proteomic profiles and posttranslational modifications were assessed in mitochondrial subpopulations using iTRAQ and multi-dimensional protein identification technologies, respectively. SSM from db/db hearts had altered morphology, including a decrease in size and internal complexity, whereas db/db IFM were increased in internal complexity. Db/db SSM displayed decreased state 3 respiration rates, electron transport chain activities, ATP synthase activities, and mitochondrial membrane potential and increased oxidative damage, with no change in IFM. Proteomic assessment revealed a greater impact on db/db SSM compared with db/db IFM. Inner mitochondrial membrane proteins, including electron transport chain, ATP synthesis, and mitochondrial protein import machinery, were predominantly decreased. We provide evidence that mitochondrial dysfunction in the type 2 diabetic heart is associated with a specific subcellular locale. Furthermore, mitochondrial morphological and functional indexes are impacted differently during type 2 diabetic insult and may result from the modulation of spatially distinct mitochondrial proteomes.
Collapse
Affiliation(s)
- Erinne R Dabkowski
- West Virginia Univ. School of Medicine, Div. of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Ballal K, Wilson CR, Harmancey R, Taegtmeyer H. Obesogenic high fat western diet induces oxidative stress and apoptosis in rat heart. Mol Cell Biochem 2010; 344:221-30. [PMID: 20676734 DOI: 10.1007/s11010-010-0546-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/15/2010] [Indexed: 01/23/2023]
Abstract
Feeding Wistar rats a high calorie "Western" diet (45% fat) for up to 48 weeks induces obesity and cardiac dysfunction, while a high fat diet (60% fat) induces obesity only. Here we investigated the molecular "footprints" of the two forms of diet-induced obesity in the heart. In rats fed Western diet for a long term, cardiac mRNA transcript levels of malic enzyme were decreased (-72%, P < 0.05), suggesting impaired anaplerotic flux of the Krebs cycle (KC) and mitochondrial dysfunction. In addition, there was a marked decrease in the expression of the transcription factor MEF2C (myocyte enhancer factor 2C) and its target gene SERCA2a (sarco-endo-plasmic reticulum Ca(2+)-ATPase). Oxidative stress was reflected in reduced transcript levels of manganese superoxide dismutase, glutathione peroxidase 1, and increased protein levels of mitochondrial transcription factor A, suggesting compensatory mitochondrial biogenesis in the face of increased mitochondrial damage. Oxidant injury was accompanied by increased protein glycosylation, increased transcript levels of glutamine fructose 6-phosphate amidotransferase 2, and decreased protein levels of acetyl Co-A carboxylase. Lastly, apoptosis was evident by TUNEL positivity and elevated mRNA transcript levels and activity of caspase 3. Consistent with these results, protein levels of Bcl2 were markedly reduced. We conclude that inadequate supplementation of KC intermediates due to reduced levels of malic enzyme, downregulation of MEF2C and its target gene SERCA2a, oxidative stress, and programmed cell death are all potential contributors to contractile dysfunction of the heart.
Collapse
Affiliation(s)
- Kalpana Ballal
- Division of Cardiology, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
136
|
Abstract
Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the development of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Heiko Bugger
- Department of Cardiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
137
|
Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010; 114:344-61. [PMID: 20477933 PMCID: PMC2910139 DOI: 10.1111/j.1471-4159.2010.06803.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Collapse
Affiliation(s)
- Romina M. Uranga
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | - Christopher D. Morrison
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
138
|
Dobrin JS, Lebeche D. Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 2010; 8:373-91. [PMID: 20222816 DOI: 10.1586/erc.10.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is the world's fastest growing disease with high morbidity and mortality rates, predominantly as a result of heart failure. A significant number of diabetic patients exhibit diabetic cardiomyopathy; that is, left ventricular dysfunction independent of coronary artery disease or hypertension. The pathogenesis of diabetic cardiomyopathy is complex, and is characterized by dysregulated lipid metabolism, insulin resistance, mitochondrial dysfunction and disturbances in adipokine secretion and signaling. These abnormalities lead to impaired calcium homeostasis, ultimately resulting in lusitropic and inotropic defects. This article discusses the impact of these hallmark factors in diabetic cardiomyopathy, and concludes with a survey of available and emerging therapeutic modalities.
Collapse
Affiliation(s)
- Joseph S Dobrin
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
139
|
Brindley DN, Kok BPC, Kienesberger PC, Lehner R, Dyck JRB. Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. Am J Physiol Endocrinol Metab 2010; 298:E897-908. [PMID: 20103741 DOI: 10.1152/ajpendo.00509.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid (FA) uptake by cardiac myocytes is often associated with adverse changes in cardiac function. This is especially evident in diabetic individuals, where increased intramyocardial triacylglycerol (TG) resulting from the exposure to high levels of circulating FA has been proposed to be a major contributor to diabetic cardiomyopathy. At present, our knowledge of how the heart regulates FA storage in TG and the hydrolysis of this TG is limited. This review concentrates on what is known about TG turnover within the heart and how this is likely to be regulated by extrapolating results from other tissues. We also assess the evidence as to whether increased TG accumulation protects against FA-induced lipotoxicity through limiting the accumulations of ceramides and diacylglycerols versus whether it is a maladaptive response that contributes to cardiac dysfunction.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
140
|
Chugh S, Suen C, Gramolini A. Proteomics and mass spectrometry: what have we learned about the heart? Curr Cardiol Rev 2010; 6:124-33. [PMID: 21532779 PMCID: PMC2892078 DOI: 10.2174/157340310791162631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 01/31/2023] Open
Abstract
The emergence of new platforms for the discovery of innovative therapeutics has provided a means for diagnosing cardiac disease in its early stages. Taking into consideration the global health burden of cardiac disease, clinicians require innovations in medical diagnostics that can be used for risk stratification. Proteomic based studies offer an avenue for the discovery of proteins that are differentially regulated during disease; such proteins could serve as novel biomarkers of the disease state. For instance, in clinical practice, the abundance of such biomarkers in blood could be correlated with the severity of the disease state. As such, early detection of biomarkers would enable an improvement in patient prognosis. In this review, we outline advancements in various proteomic platforms used to study the disease proteome and their applications to the field of clinical medicine. Specifically, we highlight the contributions of proteomic-based profiling experiments to the analysis of cardiovascular diseases.
Collapse
Affiliation(s)
- Shaan Chugh
- Department of Physiology, University of Toronto
| | - Colin Suen
- Department of Physiology, University of Toronto
| | - Anthony Gramolini
- Department of Physiology, University of Toronto
- Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence
| |
Collapse
|
141
|
Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 2010; 299:C203-10. [PMID: 20357180 DOI: 10.1152/ajpcell.00097.2010] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of autophagy has expanded greatly in recent years, largely due to the identification of the many genes involved in the process and to the development of better methods to monitor the process, such as green fluorescent protein-LC3 to visualize autophagosomes in vivo. A number of groups have demonstrated a tight connection between autophagy and mitochondrial turnover. Mitochondrial quality control is the process whereby mitochondria undergo successive rounds of fusion and fission with a dynamic exchange of components to segregate functional and damaged elements. Removal of the mitochondrion that contains damaged components is accomplished via autophagy (mitophagy). Mitophagy also serves to eliminate the subset of mitochondria producing the most reactive oxygen species, and episodic removal of mitochondria will reduce the oxidative burden, thus linking the mitochondrial free radical theory of aging with longevity achieved through caloric restriction. Mitophagy must be balanced by biogenesis to meet tissue energy needs, but the system is tunable and highly dynamic. This process is of greatest importance in long-lived cells such as cardiomyocytes, neurons, and memory T cells. Autophagy is known to decrease with age, and the failure to maintain mitochondrial quality control through mitophagy may explain why the heart, brain, and components of the immune system are most vulnerable to dysfunction as organisms age.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- BioScience Center, San Diego State University, San Diego, California 92182-4650, USA.
| | | |
Collapse
|
142
|
Zhang L, Yu C, Vasquez FE, Galeva N, Onyango I, Swerdlow RH, Dobrowsky RT. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J Proteome Res 2010; 9:458-71. [PMID: 19905032 DOI: 10.1021/pr900818g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyperglycemia-induced mitochondrial dysfunction contributes to sensory neuron pathology in diabetic neuropathy. Although Schwann cells (SCs) also undergo substantial degeneration in diabetic neuropathy, the effect of hyperglycemia on the SC mitochondrial proteome and mitochondrial function has not been examined. Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantify the temporal effect of hyperglycemia on the mitochondrial proteome of primary SCs isolated from neonatal rats. Of 317 mitochondrial proteins identified, about 78% were quantified and detected at multiple time points. Pathway analysis indicated that proteins associated with mitochondrial dysfunction, oxidative phosphorylation, the TCA cycle, and detoxification were significantly increased in expression and over-represented. Assessing mitochondrial respiration in intact SCs indicated that hyperglycemia increased the overall rate of oxygen consumption but decreased the efficiency of coupled respiration. Although a glucose-dependent increase in superoxide production occurs in embryonic sensory neurons, hyperglycemia did not induce a substantial change in superoxide levels in SCs. This correlated with a 1.9-fold increase in Mn superoxide dismutase expression, which was confirmed by immunoblot and enzymatic activity assays. These data support that hyperglycemia alters mitochondrial respiration and can cause remodeling of the SC mitochondrial proteome independent of significant contributions from glucose-induced superoxide production.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology and Toxicology and Analytic Proteomics Laboratory, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1534] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
144
|
Abstract
Diabetic cardiomyopathy increases the risk of heart failure in individuals with diabetes, independently of co-existing coronary artery disease and hypertension. The underlying mechanisms for this cardiac complication are incompletely understood. Research on rodent models of type 1 and type 2 diabetes, and the use of genetic engineering techniques in mice, have greatly advanced our understanding of the molecular mechanisms responsible for human diabetic cardiomyopathy. The adaptation of experimental techniques for the investigation of cardiac physiology in mice now allows comprehensive characterization of these models. The focus of the present review will be to discuss selected rodent models that have proven to be useful in studying the underlying mechanisms of human diabetic cardiomyopathy, and to provide an overview of the characteristics of these models for the growing number of investigators who seek to understand the pathology of diabetes-related heart disease.
Collapse
Affiliation(s)
- Heiko Bugger
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
145
|
Fernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 2010; 5:39-49. [PMID: 20729997 PMCID: PMC2924887 DOI: 10.1586/eem.09.55] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that affects the sensory and autonomic nervous systems and leads to significant morbidity and impact on quality of life of patients. Mitochondrial stress has been proposed as a major mediator of neurodegeneration in diabetes. This review briefly summarizes the nature of sensory and autonomic nerve dysfunction and presents these findings in the context of diabetes-induced nerve degeneration mediated by alterations in mitochondrial ultrastructure, physiology and trafficking. Diabetes-induced dysfunction in calcium homeostasis is discussed at length and causative associations with sub-optimal mitochondrial physiology are developed. It is clear that across a range of complications of diabetes that mitochondrial physiology is impaired, in general a reduction in electron transport chain capability is apparent. This abnormal activity may predispose mitochondria to generate elevated reactive oxygen species (ROS), although experimental proof remains lacking, but more importantly will deleteriously alter the bioenergetic status of neurons. It is proposed that the next five years of research should focus on identifying changes in mitochondrial phenotype and associated cellular impact, identifying sources of ROS in neurons and analyzing mitochondrial trafficking under diabetic conditions.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046 - 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada and Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada, Tel: (204) 235 3692
| | | | | |
Collapse
|
146
|
Wang PW, Lin TK, Weng SW, Liou CW. Mitochondrial DNA variants in the pathogenesis of type 2 diabetes - relevance of asian population studies. Rev Diabet Stud 2009; 6:237-46. [PMID: 20043036 DOI: 10.1900/rds.2009.6.237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction involves defective insulin secretion by pancreatic beta-cells, and insulin resistance in insulin-sensitive tissues such as muscle and adipose tissue. Mitochondria are recognized as the most important cellular source of energy, and the major generator of intracellular reactive oxygen species (ROS). Intracellular antioxidative systems have been developed to cope with increased oxidative damage. In case of minor oxidative stress, the cells may increase the number of mitochondria to produce more energy. A mechanism called mitochondrial biogenesis, involving several transcription factors and regulators, controls the quantity of mitochondria. When oxidative damage is advanced beyond the repair capacity of antioxidative systems, then oxidative stress can lead to cell death. Therefore, this organelle is central to cell life or death. Available evidence increasingly shows genetic linkage between mitochondrial DNA (mtDNA) alterations and type 2 diabetes (T2D). Based on previous studies, the mtDNA 16189 variant is associated with metabolic syndrome, higher fasting insulin concentration, insulin resistance index and lacunar cerebral infarction. These data support the involvement of mitochondrial genetic variation in the pathogenesis of T2D. Importantly, phylogeographic studies of the human mtDNAs have revealed that the human mtDNA tree is rooted in Africa and radiates into different geographic regions and can be grouped as haplogroups. The Asian populations carry very different mtDNA haplogroups as compared to European populations. Therefore, it is critically important to determine the role of mtDNA polymorphisms in T2D.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Internal Medicine, Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung, Taiwan 83305
| | | | | | | |
Collapse
|
147
|
Synergistic effect of cAMP and palmitate in promoting altered mitochondrial function and cell death in HepG2 cells. Exp Cell Res 2009; 316:716-27. [PMID: 20026039 DOI: 10.1016/j.yexcr.2009.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 01/19/2023]
Abstract
Saturated free fatty acids (FFAs), e.g. palmitate, have long been shown to induce toxicity and cell death in various types of cells. In this study, we demonstrate that cAMP synergistically amplifies the effect of palmitate on the induction of cell death in human hepatocellular carcinoma cell line, HepG2 cells. Elevation of cAMP level in palmitate-treated cells led to enhanced mitochondrial fragmentation, mitochondrial reactive oxygen species (ROS) generation and mitochondrial biogenesis. Mitochondrial fragmentation precedes mitochondrial ROS generation and mitochondrial biogenesis, and may contribute to mitochondrial ROS overproduction and subsequent mitochondrial biogenesis. Fragmentation of mitochondria also facilitated the release of cytotoxic mitochondrial proteins, such as Smac, from the mitochondria and subsequent activation of caspases. However, cell death induced by palmitate and cAMP was caspase-independent and mainly necrotic.
Collapse
|
148
|
Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J Mol Cell Cardiol 2009; 48:582-90. [PMID: 19913546 DOI: 10.1016/j.yjmcc.2009.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022]
Abstract
The metabolic phenotype of the failing heart includes a decrease in phosphocreatine and total creatine concentration [Cr], potentially contributing to contractile dysfunction. Surprisingly, in 32- week-old mice over-expressing the myocardial creatine transporter (CrT-OE), we previously demonstrated that elevated [Cr] correlates with left ventricular (LV) hypertrophy and failure. The aim of this study was to determine the temporal relationship between elevated [Cr] and the onset of cardiac dysfunction and to screen for potential molecular mechanisms. CrT-OE mice were compared with wild-type (WT) littermate controls longitudinally using cine-MRI to measure cardiac function and single-voxel (1)H-MRS to measure [Cr] in vivo at 6, 16, 32, and 52 weeks of age. CrT-OE mice had elevated [Cr] at 6 weeks (mean 1.9-fold), which remained constant throughout life. Despite this increased [Cr], LV dysfunction was not apparent until 16 weeks and became more pronounced with age. Additionally, LV tissue from 12 to 14 week old CrT-OE mice was compared to WT using 2D difference in-gel electrophoresis (DIGE). These analyses detected a majority of the heart's metabolic enzymes and identified seven proteins that were differentially expressed between groups. The most pronounced protein changes were related to energy metabolism: alpha- and beta-enolase were selectively decreased (p<0.05), while the remaining enzymes of glycolysis were unchanged. Consistent with a decrease in enolase content, its activity was significantly lower in CrT-OE hearts (in WT, 0.59+/-0.02 micromol ATP produced/microg protein/min; CrT-OE, 0.31+/-0.06; p<0.01). Additionally, anaerobic lactate production was decreased in CrT-OE mice (in WT, 102+/-3 micromol/g wet myocardium; CrT-OE, 78+/-13; p=0.02), consistent with decreased glycolytic capacity. Finally, we found that enolase may be regulated by increased expression of the beta-enolase repressor transcription factor, which was significantly increased in CrT-OE hearts. This study demonstrates that chronically increased myocardial [Cr] in the CrT-OE model leads to the development of progressive hypertrophy and heart failure, which may be mediated by a compromise in glycolytic capacity at the level of enolase.
Collapse
|
149
|
Liu L, Shi X, Choi CS, Shulman GI, Klaus K, Nair KS, Schwartz GJ, Zhang Y, Goldberg IJ, Yu YH. Paradoxical coupling of triglyceride synthesis and fatty acid oxidation in skeletal muscle overexpressing DGAT1. Diabetes 2009; 58:2516-24. [PMID: 19675136 PMCID: PMC2768165 DOI: 10.2337/db08-1096] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Transgenic expression of diacylglycerol acyltransferase-1 (DGAT1) in skeletal muscle leads to protection against fat-induced insulin resistance despite accumulation of intramuscular triglyceride, a phenomenon similar to what is known as the "athlete paradox." The primary objective of this study is to determine how DGAT1 affects muscle fatty acid oxidation in relation to whole-body energy metabolism and insulin sensitivity. RESEARCH DESIGN AND METHODS We first quantified insulin sensitivity and the relative tissue contributions to the improved whole-body insulin sensitivity in muscle creatine kisase (MCK)-DGAT1 transgenic mice by hyperinsulinemic-euglycemic clamps. Metabolic consequences of DGAT1 overexpression in skeletal muscles were determined by quantifying triglyceride synthesis/storage (anabolic) and fatty acid oxidation (catabolic), in conjunction with gene expression levels of representative marker genes in fatty acid metabolism. Whole-body energy metabolism including food consumption, body weights, oxygen consumption, locomotor activity, and respiration exchange ratios were determined at steady states. RESULTS MCK-DGAT1 mice were protected against muscle lipoptoxicity, although they remain susceptible to hepatic lipotoxicity. While augmenting triglyceride synthesis, DGAT1 overexpression also led to increased muscle mitochondrial fatty acid oxidation efficiency, as compared with wild-type muscles. On a high-fat diet, MCK-DGAT1 mice displayed higher basal metabolic rates and 5-10% lower body weights compared with wild-type littermates, whereas food consumption was not different. CONCLUSIONS DGAT1 overexpression in skeletal muscle led to parallel increases in triglyceride synthesis and fatty acid oxidation. Seemingly paradoxical, this phenomenon is characteristic of insulin-sensitive myofibers and suggests that DGAT1 plays an active role in metabolic "remodeling" of skeletal muscle coupled with insulin sensitization.
Collapse
Affiliation(s)
- Li Liu
- Department of Medicine, Preventive Medicine and Nutrition, Columbia University, New York, New York
| | - Xiaojing Shi
- Department of Medicine, Preventive Medicine and Nutrition, Columbia University, New York, New York
| | - Cheol Soo Choi
- Departments of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Gerald I. Shulman
- Departments of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Katherine Klaus
- Endocrine Research Unit and Department of Laboratory Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - K. Sreekumaran Nair
- Endocrine Research Unit and Department of Laboratory Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gary J. Schwartz
- Department of Medicine & Neuroscience, Diabetes Research and Training Center, Albert Einstein College of Medicine, New York, New York
| | - Yiying Zhang
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Ira J. Goldberg
- Department of Medicine, Preventive Medicine and Nutrition, Columbia University, New York, New York
| | - Yi-Hao Yu
- Department of Medicine, Preventive Medicine and Nutrition, Columbia University, New York, New York
- Corresponding author: Yi-Hao Yu,
| |
Collapse
|
150
|
Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, Ganesan B, Weimer BC, Abel ED. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes 2009; 58:1986-97. [PMID: 19542201 PMCID: PMC2731527 DOI: 10.2337/db09-0259] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology was evaluated by electron microscopy. Expression of genes that regulate mitochondrial biogenesis, substrate utilization, and oxidative phosphorylation (OXPHOS) were determined. RESULTS In diabetic mice, fatty acid oxidation (FAO) proteins were less abundant in liver mitochondria, whereas FAO protein content was induced in mitochondria from all other tissues. Kidney mitochondria showed coordinate induction of tricarboxylic acid (TCA) cycle enzymes, whereas TCA cycle proteins were repressed in cardiac mitochondria. Levels of OXPHOS subunits were coordinately increased in liver mitochondria, whereas mitochondria of other tissues were unaffected. Mitochondrial respiration, ATP synthesis, and morphology were unaffected in liver and kidney mitochondria. In contrast, state 3 respirations, ATP synthesis, and mitochondrial cristae density were decreased in cardiac mitochondria and were accompanied by coordinate repression of OXPHOS and peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1alpha transcripts. CONCLUSIONS Type 1 diabetes causes tissue-specific remodeling of the mitochondrial proteome. Preservation of mitochondrial function in kidney, brain, and liver, versus mitochondrial dysfunction in the heart, supports a central role for mitochondrial dysfunction in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Heiko Bugger
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dong Chen
- Department of Nutrition and Food Sciences, Utah State University, Logan, Utah
- Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Christian Riehle
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jamie Soto
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Heather A. Theobald
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Xiao X. Hu
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Balasubramanian Ganesan
- Department of Nutrition and Food Sciences, Utah State University, Logan, Utah
- Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Bart C. Weimer
- Department of Nutrition and Food Sciences, Utah State University, Logan, Utah
- Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - E. Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Corresponding author: E. Dale Abel,
| |
Collapse
|