101
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
102
|
Neamatallah T, El-Shitany NA, Abbas AT, Ali SS, Eid BG. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway. Food Funct 2018; 9:3743-3754. [PMID: 29897076 DOI: 10.1039/c8fo00653a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protective effects of both manuka and talh honeys were assessed using a rat model of cisplatin (CISP)-induced hepatotoxicity and nephrotoxicity. The results revealed that both honeys exerted a protective effect against CISP-induced hepatotoxicity and nephrotoxicity as demonstrated by decreasing liver and kidney function. Manuka honey also prevented CISP-induced histopathological changes observed in the liver and decreased the changes seen in the kidneys. Talh honey decreased CISP-induced liver histopathological changes but had no effect on CISP-induced kidney histopathological changes. Both honeys reduced the oxidative stress in the liver. Conversely, they have no effect on kidney oxidative stress, except that manuka honey increased CAT activity. GC-MS analysis showed the presence of the antioxidant octadecanoic acid in talh honey while heneicosane and hydrocinnamic acid were present at a higher content in manuka honey. The molecular mechanism was to limit the expression of inflammatory signals, including COX-2 and NF-κB, and the expression of the apoptotic signal, BAX and caspase-3 while inducing Bcl-2 expression.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | |
Collapse
|
103
|
Trendowski MR, El Charif O, Dinh PC, Travis LB, Dolan ME. Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clin Cancer Res 2018; 25:1147-1155. [PMID: 30305294 DOI: 10.1158/1078-0432.ccr-18-2244] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
Abstract
Effective administration of traditional cytotoxic chemotherapy is often limited by off-target toxicities. This clinical dilemma is epitomized by cisplatin, a platinating agent, which has potent antineoplastic activity due to its affinity for DNA and other intracellular nucleophiles. Despite its efficacy against many adult-onset and pediatric malignancies, cisplatin elicits multiple off-target toxicities that can not only severely impact a patient's quality of life but also lead to dose reductions or the selection of alternative therapies that can ultimately affect outcomes. Without an effective therapeutic measure by which to successfully mitigate many of these symptoms, there have been attempts to identify a priori those individuals who are more susceptible to developing these sequelae through studies of genetic and nongenetic risk factors. Older age is associated with cisplatin-induced ototoxicity, neurotoxicity, and nephrotoxicity. Traditional genome-wide association studies have identified single-nucleotide polymorphisms in ACYP2 and WFS1 associated with cisplatin-induced hearing loss. However, validating associations between specific genotypes and cisplatin-induced toxicities with enough stringency to warrant clinical application remains challenging. This review summarizes the current state of knowledge with regard to specific adverse sequelae following cisplatin-based therapy, with a focus on ototoxicity, neurotoxicity, nephrotoxicity, myelosuppression, and nausea/emesis. We discuss variables (genetic and nongenetic) contributing to these detrimental toxicities and currently available means to prevent or treat their occurrence.
Collapse
Affiliation(s)
- Matthew R Trendowski
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Omar El Charif
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Paul C Dinh
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Lois B Travis
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
104
|
de Oliveira EJT, Pessatto LR, de Freitas RON, Pelizaro BI, Rabacow APM, Vani JM, Monreal ACD, Mantovani MS, de Azevedo RB, Antoniolli-Silva ACMB, da Silva Gomes R, Oliveira RJ. New Bis copper complex ((Z) -4 - ((4-chlorophenyl) amino) -4-oxobut-2-enoyl) oxy): Cytotoxicity in 4T1 cells and their toxicogenic potential in Swiss mice. Toxicol Appl Pharmacol 2018; 356:127-138. [DOI: 10.1016/j.taap.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022]
|
105
|
Yoon SP, Kim J. Exogenous spermidine ameliorates tubular necrosis during cisplatin nephrotoxicity. Anat Cell Biol 2018; 51:189-199. [PMID: 30310711 PMCID: PMC6172597 DOI: 10.5115/acb.2018.51.3.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022] Open
Abstract
The hallmark of cisplatin-induced acute kidney injury is the necrotic cell death in the kidney proximal tubules. However, an effective approach to limit cisplatin nephrotoxicity remains unknown. Spermidine is a polyamine that protects against oxidative stress and necrosis in aged yeasts, and the present study found that exogenous spermidine markedly attenuated tubular necrosis and kidney dysfunction, but not apoptosis, during cisplatin nephrotoxicity. In addition, exogenous spermidine potently inhibited oxidative/nitrative DNA damage, poly(ADP-ribose) polymerase 1 (PARP1) activation and ATP depletion after cisplatin injection. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly increased DNA damage, PARP1 activation and ATP depletion, resulting in acceleration of tubular necrosis and kidney dysfunction. Finally, exogenous spermidine removed severe cisplatin injury induced by ODC inhibition. In conclusion, these data suggest that spermidine protects kidneys against cisplatin injury through DNA damage and tubular necrosis, and this finding provides a novel target to prevent acute kidney injury including nephrotoxicity.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
106
|
Cisplatin-Induced Rodent Model of Kidney Injury: Characteristics and Challenges. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1462802. [PMID: 30276200 PMCID: PMC6157122 DOI: 10.1155/2018/1462802] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Cisplatin is an antitumor drug used in the treatment of a wide variety of malignancies. However, its primary dose-limiting side effect is kidney injury, which is a major clinical concern. To help understand mechanisms involved in the development of kidney injury, cisplatin rodent model has been developed. Given the complex pathogenesis of kidney injury, which involves both local events in the kidney and interconnected and interdependent systemic effects in the body, cisplatin rodent model is indispensable in the investigation of underlying mechanisms and potential treatment strategies of both acute and chronic kidney injury. Cisplatin rodent model is well appreciated and widely used model due to its simplicity. It has many similarities to human cisplatin nephrotoxicity, which are mentioned in the paper. In spite of its simplicity and wide applicability, there are also traps that need to be taken into account when using cisplatin model. The present paper is aimed at giving a concise insight into the complex characteristics of cisplatin rodent model and heterogeneity of cisplatin dosage regimens as well as outlining factors that can severely influence the outcome of the model and the study. Challenges for future research are also mentioned.
Collapse
|
107
|
Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu Y, Wood ME, Whiteman M, Moore PK, Bian JS. Renal Protective Effect of Hydrogen Sulfide in Cisplatin-Induced Nephrotoxicity. Antioxid Redox Signal 2018; 29:455-470. [PMID: 29316804 DOI: 10.1089/ars.2017.7157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Cisplatin is a major therapeutic drug for solid tumors, but can cause severe nephrotoxicity. However, the role and therapeutic potential of hydrogen sulfide (H2S), an endogenous gasotransmitter, in cisplatin-induced nephrotoxicity remain to be defined. RESULTS Cisplatin led to the impairment of H2S production in vitro and in vivo by downregulating the expression level of cystathionine γ-lyase (CSE), which may contribute to the subsequent renal proximal tubule (RPT) cell death and thereby renal toxicity. H2S donors NaHS and GYY4137, but not AP39, mitigated cisplatin-induced RPT cell death and nephrotoxicity. The mechanisms underlying the protective effect of H2S donors included the suppression of intracellular reactive oxygen species generation and downstream mitogen-activated protein kinases by inhibiting NADPH oxidase activity, which may be possibly through persulfidating the subunit p47phox. Importantly, GYY4137 not only ameliorated cisplatin-caused renal injury but also added on more anticancer effect to cisplatin in cancer cell lines. Innovation and Conclusion: Our study provides a comprehensive understanding of the role and therapeutic potential of H2S in cisplatin-induced nephrotoxicity. Our results indicate that H2S may be a novel and promising therapeutic target to prevent cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 29, 455-470.
Collapse
Affiliation(s)
- Xu Cao
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Siping Xiong
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yebo Zhou
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Zhiyuan Wu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| | - Lei Ding
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yike Zhu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Mark E Wood
- 3 Department of Biosciences, University of Exeter , Exeter, United Kingdom
| | - Matthew Whiteman
- 4 School of Biosciences, College of Life and Environmental Science, University of Exeter , Exeter, United Kingdom
| | - Philip K Moore
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| | - Jin-Song Bian
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
108
|
Nakagawa T, Kakizoe Y, Iwata Y, Miyasato Y, Mizumoto T, Adachi M, Izumi Y, Kuwabara T, Suenaga N, Narita Y, Jono H, Saito H, Kitamura K, Mukoyama M. Doxycycline attenuates cisplatin-induced acute kidney injury through pleiotropic effects. Am J Physiol Renal Physiol 2018; 315:F1347-F1357. [PMID: 30043627 DOI: 10.1152/ajprenal.00648.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cisplatin (CDDP) is a widely-used chemotherapeutic drug for solid tumors, but its nephrotoxicity is a major dose-limiting factor. Doxycycline (Dox) is a tetracycline antibiotic that has been commonly used in a variety of infections. Dox has been shown to possess several other properties, including antitumor, anti-inflammatory, antioxidative, and matrix metalloproteinase (MMP)-inhibiting actions. We, therefore, investigated whether Dox exerts renoprotective effects in CDDP-induced acute kidney injury (AKI). Twelve-week-old male C57BL/6J mice were divided into the following groups: 1) control, 2) Dox (2 mg/ml in drinking water), 3) CDDP (25 mg/kg body weight, intraperitoneally), and 4) CDDP+Dox. After seven days of pretreatment with Dox, CDDP was administered and the animals were killed at day 1 or day 3. We evaluated renal function along with renal histological damage, inflammation, oxidative stress, and apoptosis. MMP and serine protease activities in the kidney tissues were assessed using zymography. Administration of CDDP exhibited renal dysfunction and caused histological damage predominantly in the proximal tubules. Dox did not affect either expression of CDDP transporters or the accumulation of CDDP in renal tissues; however, it significantly ameliorated renal dysfunction and histological changes together with reduced detrimental responses, such as oxidative stress and inflammation in the kidneys. Furthermore, Dox inhibited the activity of MMP-2 and MMP-9, as well as serine proteases in the kidney tissues. Finally, Dox markedly mitigated apoptosis in renal tubules. Thus, Dox ameliorated CDDP-induced AKI through its pleiotropic effects. Our results suggest that Dox may become a novel strategy for the prevention of CDDP-induced AKI in humans.
Collapse
Affiliation(s)
- Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| | - Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Kumamoto University Graduate School of Pharmaceutical Sciences , Kumamoto , Japan
| | - Yuki Narita
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacology, Kumamoto University , Kumamoto , Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Kumamoto University Graduate School of Pharmaceutical Sciences , Kumamoto , Japan.,Department of Pharmacy, Kumamoto University Hospital , Kumamoto , Japan
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Kumamoto University Graduate School of Pharmaceutical Sciences , Kumamoto , Japan.,Department of Pharmacy, Kumamoto University Hospital , Kumamoto , Japan
| | - Kenichiro Kitamura
- Faculty of Medicine, Third Department of Internal Medicine, University of Yamanashi , Yamanashi , Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences , Kumamoto , Japan
| |
Collapse
|
109
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
110
|
Boroja T, Katanić J, Rosić G, Selaković D, Joksimović J, Mišić D, Stanković V, Jovičić N, Mihailović V. Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity. Food Chem Toxicol 2018; 118:252-263. [PMID: 29746935 DOI: 10.1016/j.fct.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
The aim of our study was to examine the potential ameliorating effect of the methanolic extract of Satureja hortensis L. (summer savory) aerial parts against cisplatin-induced oxidative damage in renal, hepatic, and testicular tissues. S. hortensis methanol extract at the doses of 50, 100 and 200 mg/kg of body weight were orally administered to Wistar rats once daily for 10 days. Toxicity was induced by intraperitoneal injection of a single dose of cisplatin (7.5 mg/kg of body weight) on the 5th day of the experiment. Applied treatment with S. hortensis extract restored tissue morphology, ameliorated levels of serum parameters for liver, renal and testes function, tissue oxidative stress parameters, and increased Bcl-2/Bax ratio as an indicator of apoptosis in experimental animals caused by application of cisplatin. UHPLC/DAD/HESI-MS/MS analysis revealed that S. hortensis extract was rich in phenolic compounds with rosmarinic acid (24.9 mg/g) as the main compound, followed by caffeic acid (1.28 mg/g) and naringenin (1.06 mg/g). Our findings suggest that S. hortensis may be a valuable source of dietary and pharmacologically important phenolic compounds, especially rosmarinic acid, in pharmaceutical and functional food formulations in order to maintain normal health conditions or as a remedy in various diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Tatjana Boroja
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Katanić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Gvozden Rosić
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragica Selaković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jovana Joksimović
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Stanković
- Institute of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Nemanja Jovičić
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
111
|
Nieskens TTG, Peters JGP, Dabaghie D, Korte D, Jansen K, Van Asbeck AH, Tavraz NN, Friedrich T, Russel FGM, Masereeuw R, Wilmer MJ. Expression of Organic Anion Transporter 1 or 3 in Human Kidney Proximal Tubule Cells Reduces Cisplatin Sensitivity. Drug Metab Dispos 2018; 46:592-599. [PMID: 29514829 DOI: 10.1124/dmd.117.079384] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is a cytostatic drug used for treatment of solid organ tumors. The main adverse effect is organic cation transporter 2 (OCT2)-mediated nephrotoxicity, observed in 30% of patients. The contribution of other renal drug transporters is elusive. Here, cisplatin-induced toxicity was evaluated in human-derived conditionally immortalized proximal tubule epithelial cells (ciPTEC) expressing renal drug transporters, including OCT2 and organic anion transporters 1 (OAT1) or 3 (OAT3). Parent ciPTEC demonstrated OCT2-dependent cisplatin toxicity (TC50 34 ± 1 μM after 24-hour exposure), as determined by cell viability. Overexpression of OAT1 and OAT3 resulted in reduced sensitivity to cisplatin (TC50 45 ± 6 and 64 ± 11 μM after 24-hour exposure, respectively). This effect was independent of OAT-mediated transport, as the OAT substrates probenecid and diclofenac did not influence cytotoxicity. Decreased cisplatin sensitivity in OAT-expressing cells was associated directly with a trend toward reduced intracellular cisplatin accumulation, explained by reduced OCT2 gene expression and activity. This was evaluated by Vmax of the OCT2-model substrate ASP+ (23.5 ± 0.1, 13.1 ± 0.3, and 21.6 ± 0.6 minutes-1 in ciPTEC-parent, ciPTEC-OAT1, and ciPTEC-OAT3, respectively). Although gene expression of cisplatin efflux transporter multidrug and toxin extrusion 1 (MATE1) was 16.2 ± 0.3-fold upregulated in ciPTEC-OAT1 and 6.1 ± 0.7-fold in ciPTEC-OAT3, toxicity was unaffected by the MATE substrate pyrimethamine, suggesting that MATE1 does not play a role in the current experimental set-up. In conclusion, OAT expression results in reduced cisplatin sensitivity in renal proximal tubule cells, explained by reduced OCT2-mediated uptake capacity. In vitro drug-induced toxicity studies should consider models that express both OCT and OAT drug transporters.
Collapse
Affiliation(s)
- Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Janny G P Peters
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Dina Dabaghie
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Daphne Korte
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Katja Jansen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Alexander H Van Asbeck
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Neslihan N Tavraz
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Thomas Friedrich
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands (T.T.G.N., J.G.P.P., D.D., D.K., K.J., A.H.V.A., F.G.M.R., M.J.W.); Department of Physical Chemistry/Bioenergetics, Institute of Chemistry PC14, Technical University of Berlin, Berlin, Germany (N.N.T., T.F.); and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (K.J., R.M.)
| |
Collapse
|
112
|
Mitochondrial NADP +-dependent isocitrate dehydrogenase deficiency increases cisplatin-induced oxidative damage in the kidney tubule cells. Cell Death Dis 2018; 9:488. [PMID: 29695796 PMCID: PMC5916920 DOI: 10.1038/s41419-018-0537-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) plays an important role in the formation of NADPH, which is critical for the maintenance of mitochondrial redox balance. Cis-diamminedichloroplatinum II (cisplatin), an effective anticancer drug, induces oxidative stress-related nephrotoxicity, limiting its use. Therefore, we investigated whether IDH2, which is a critical enzyme in the NADPH-associated mitochondrial antioxidant system, is involved in cisplatin nephrotoxicity. Idh2 gene-deleted (Idh2−/−) mice and wild-type (Idh2+/+) littermates were treated with cisplatin, with or without 2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (Mito-T), a mitochondria-specific antioxidant. Cisplatin-induced renal functional and morphological impairments were greater in Idh2−/− mice than in Idh2+/+ mice. Mito-T mitigated those impairments in both Idh2−/− and Idh2+/+ mice and this mitigation was greater in Idh2−/− than in Idh2+/+ mice. Cisplatin impaired IDH2 function in the mitochondria, decreasing mitochondrial NADPH and GSH levels and increasing H2O2 generation; protein, lipid, and DNA oxidation; mitochondrial damage; and apoptosis. These cisplatin-induced changes were much more severe in Idh2−/− mice than in Idh2+/+ mice. Mito-T treatment attenuated cisplatin-induced alterations in both Idh2−/− and Idh2+/+ mice and this mitigation was greater in Idh2−/− than in Idh2+/+ mice. Altogether, these data demonstrate that cisplatin induces the impairment of the mitochondrial IDH2-NADPH-GSH antioxidant system and IDH2 deficiency aggravates cisplatin-induced mitochondrial oxidative damage, inducing more severe nephrotoxicity. This suggests that the mitochondrial IDH2-NADPH-GSH antioxidant system is a target for the prevention of cisplatin-induced kidney cell death.
Collapse
|
113
|
Liu Q, Song J, Li H, Dong L, Dai S. Schizandrin B inhibits the cis‑DDP‑induced apoptosis of HK‑2 cells by activating ERK/NF‑κB signaling to regulate the expression of survivin. Int J Mol Med 2018; 41:2108-2116. [PMID: 29393335 PMCID: PMC5810203 DOI: 10.3892/ijmm.2018.3409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
The nephrotoxicity of cisplatin limits its clinical application. Schizandrin B (SchB) has been demonstrated to have a variety of potential cytoprotective activities. The present study explored the molecular mechanisms by which SchB inhibits the dichlorodiammine platinum (DDP)‑induced apoptosis of HK‑2 proximal tubule epithelial cells. In vitro assays demonstrated that SchB increased the viability of HK‑2 cells, alleviated the cis‑DDP‑induced activation of caspase‑3, reduced apoptosis and improved the nuclear morphology of HK‑2 cells. Additionally, the mechanism underlying the cis‑DDP‑induced apoptosis was indicated to involve the activation of p53, c‑Jun‑N‑terminal kinase (JNK) and p38 signaling. Furthermore, SchB was demonstrated to activate extracellular signal‑regulated kinase (ERK) and nuclear factor κB (NF‑κB) signaling, and induce the expression of survivin. The inhibition of ERK and NF‑κB signaling using U0126 and pyrollidine dithiocarbamate, respectively, inhibited the expression of survivin, whereas blocking the expression of survivin using small interfering RNA inhibited the alleviating effect of SchB on cis‑DDP‑induced apoptosis as indicated by a reduction in cleaved caspase‑3 expression. In conclusion, SchB regulates ERK/NF‑κB signaling to induce the expression of survivin, thereby alleviating cis‑DDP‑induced renal injury.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004
| | - Jinxin Song
- Department of Ophthalmology, The First Hospital of Xi’an, Xi’an, Shaanxi 710002
| | - Hong Li
- Department of Ophthalmology, The First Hospital of Xi’an, Xi’an, Shaanxi 710002
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Shejiao Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| |
Collapse
|
114
|
The cytotoxicity of some phenanthroline-based antimicrobial copper(II) and ruthenium(II) complexes. J Inorg Biochem 2018; 180:61-68. [DOI: 10.1016/j.jinorgbio.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/02/2023]
|
115
|
Li Z, Xu K, Zhang N, Amador G, Wang Y, Zhao S, Li L, Qiu Y, Wang Z. Overexpressed SIRT6 attenuates cisplatin-induced acute kidney injury by inhibiting ERK1/2 signaling. Kidney Int 2018; 93:881-892. [PMID: 29373150 DOI: 10.1016/j.kint.2017.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
Sirtuin 6 (SIRT6) is a NAD+-dependent deacetylase associated with numerous aspects of health and physiology. Overexpression of SIRT6 has emerged as a protector in cardiac tissues against pathologic cardiac hypertrophy. However, the mechanism of this protective effect is not fully understood. Here, both in vivo and in vitro results demonstrated that SIRT6 overexpression can attenuate cisplatin-induced kidney injury in terms of renal dysfunction, inflammation and apoptosis. In addition, SIRT6 knockout aggravated kidney injury caused by cisplatin. We also found that SIRT6 bound to the promoters of ERK1 and ERK2 and deacetylated histone 3 at Lys9 (H3K9) thereby inhibiting ERK1/2 expression. Furthermore, inhibition of ERK1/2 activity eliminated aggravation of kidney injury caused by SIRT6 knock out. Thus, our findings uncover the protective effect of SIRT6 on the kidney and define a new mechanism by which SIRT6 regulates inflammation and apoptosis. This may provide a new therapeutic target for kidney injury under stress.
Collapse
Affiliation(s)
- Zhongchi Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Kang Xu
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Nannan Zhang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Gabriel Amador
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanying Wang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Sen Zhao
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Liyuan Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Ying Qiu
- School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China; School of Medicine, Tsinghua University, Beijing, People's Republic of China.
| |
Collapse
|
116
|
Höhn A, Krüger K, Skowron MA, Bormann S, Schumacher L, Schulz WA, Hoffmann MJ, Niegisch G, Fritz G. Distinct mechanisms contribute to acquired cisplatin resistance of urothelial carcinoma cells. Oncotarget 2018; 7:41320-41335. [PMID: 27191498 PMCID: PMC5173062 DOI: 10.18632/oncotarget.9321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CisPt) is frequently used in the therapy of urothelial carcinoma (UC). Its therapeutic efficacy is limited by inherent or acquired drug resistance. Here, we comparatively investigated the CisPt-induced response of two different parental urothelial carcinoma cell lines (RT-112, J-82) with that of respective drug resistant variants (RT-112R, J-82R) obtained upon month-long CisPt selection. Parental RT-112 cells were ~2.5 fold more resistant to CisPt than J-82 cells and showed a different expression pattern of CisPt-related resistance factors. CisPt resistant RT-112R and J-82R variants revealed a 2–3-fold increased CisPt resistance as compared to their corresponding parental counterparts. Acquired CisPt resistance was accompanied by morphological alterations resembling epithelial mesenchymal transition (EMT). RT-112R cells revealed lower apoptotic frequency and more pronounced G2/M arrest following CisPt exposure than RT-112 cells, whereas no differences in death induction were observed between J-82 and J-82R cells. CisPt resistant J-82R cells however were characterized by a reduced formation of CisPt-induced DNA damage and related DNA damage response (DDR) as compared to J-82 cells. Such difference was not observed between RT-112R and RT-112 cells. J-82R cells showed an enhanced sensitivity to pharmacological inhibition of checkpoint kinase 1 (Chk1) and, moreover, could be re-sensitized to CisPt upon Chk1 inhibition. Based on the data we suggest that mechanisms of acquired CisPt resistance of individual UC cells are substantially different, with apoptosis- and DDR-related mechanisms being of particular relevance. Moreover, the findings indicate that targeting of Chk1 might be useful to overcome acquired CisPt resistance of certain subtypes of UC.
Collapse
Affiliation(s)
- Annika Höhn
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Krüger
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Stefanie Bormann
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lena Schumacher
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
117
|
George B, Joy MS, Aleksunes LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp Biol Med (Maywood) 2017; 243:272-282. [PMID: 29231123 DOI: 10.1177/1535370217745302] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite recent progress in the development of novel approaches to treat cancer, traditional antineoplastic drugs, such as cisplatin, remain a mainstay of regimens targeting solid tumors. Use of cisplatin is limited by acute kidney injury, which occurs in approximately 30% of patients. Current clinical measures, such as serum creatinine and estimated glomerular filtration rate, are inadequate in their ability to detect acute kidney injury, particularly when there is only a moderate degree of injury. Thus, there is an urgent need for improved diagnostic biomarkers to predict nephrotoxicity. There is also interest by the U.S. Food and Drug Administration to validate and implement new biomarkers to identify clinical and subclinical acute kidney injury in patients during the drug approval process. This minireview provides an overview of the current literature regarding the utility of urinary proteins (albumin, beta-2-microglobulin, N-acetyl-D-glucosaminidase, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and cystatin C) as biomarkers for cisplatin-induced AKI. Many of the well-studied urinary proteins (KIM-1, NGAL, B2M, albumin) as well as emerging biomarkers (calbindin, monocyte chemotactic protein-1, and trefoil factor 3) display distinct patterns of time-dependent excretion after cisplatin administration. Implementation of these biomarker proteins in the oncology clinic has been hampered by a lack of validation studies. To address these issues, large head-to-head studies are needed to fully characterize time-dependent responses and establish accurate cutoff values and ranges, particularly in cancer patients. Impact statement There is growing interest in using urinary protein biomarkers to detect acute kidney injury in oncology patients prescribed the nephrotoxic anticancer drug cisplatin. We aim to synthesize and organize the existing literature on biomarkers examined clinically in patients receiving cisplatin-containing chemotherapy regimens. This minireview highlights several proteins (kidney injury molecule-1, beta-2-microglobulin, neutrophil gelatinase-associated lipocalin, calbindin, monocyte chemotactic protein-1, trefoil factor 3) with the greatest promise for detecting cisplatin-induced acute kidney injury in humans. A comprehensive review of the existing literature may aid in the design of larger studies needed to implement the clinical use of these urinary proteins as biomarkers of kidney injury.
Collapse
Affiliation(s)
- Blessy George
- 1 Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Melanie S Joy
- 2 Department of Pharmaceutical Sciences, 129263 University of Colorado at Denver - Anschutz Medical Campus , Skaggs School of Pharmacy and Pharmaceutical Sciences, 129263 University of Colorado at Denver - Anschutz Medical Campus , University of Colorado, Aurora, CO 80045, USA
| | - Lauren M Aleksunes
- 1 Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA.,3 Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.,4 Lipid Center, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
118
|
Chatterjee PK, Yeboah MM, Solanki MH, Kumar G, Xue X, Pavlov VA, Al-Abed Y, Metz CN. Activation of the cholinergic anti-inflammatory pathway by GTS-21 attenuates cisplatin-induced acute kidney injury in mice. PLoS One 2017; 12:e0188797. [PMID: 29190774 PMCID: PMC5708817 DOI: 10.1371/journal.pone.0188797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) is the most common side effect of cisplatin, a widely used chemotherapy drug. Although AKI occurs in up to one third of cancer patients receiving cisplatin, effective renal protective strategies are lacking. Cisplatin targets renal proximal tubular epithelial cells leading to inflammation, reactive oxygen species, tubular cell injury, and eventually cell death. The cholinergic anti-inflammatory pathway is a vagus nerve-mediated reflex that suppresses inflammation via α7 nicotinic acetylcholine receptors (α7nAChRs). Our previous studies demonstrated the renoprotective and anti-inflammatory effects of cholinergic agonists, including GTS-21. Therefore, we examined the effect of GTS-21 on cisplatin-induced AKI. Male C57BL/6 mice received either saline or GTS-21 (4mg/kg, i.p.) twice daily for 4 days before cisplatin and treatment continued through euthanasia; 3 days post-cisplatin mice were euthanized and analyzed for markers of renal injury. GTS-21 significantly reduced cisplatin-induced renal dysfunction and injury (p<0.05). GTS-21 significantly attenuated renal Ptgs2/COX-2 mRNA and IL-6, IL-1β, and CXCL1 protein expression, as well as neutrophil infiltration after cisplatin. GTS-21 blunted cisplatin-induced renal ERK1/2 activation, as well as renal ATP depletion and apoptosis (p<0.05). GTS-21 suppressed the expression of CTR1, a cisplatin influx transporter and enhanced the expression of cisplatin efflux transporters MRP2, MRP4, and MRP6 (p<0.05). Using breast, colon, and lung cancer cell lines we showed that GTS-21 did not inhibit cisplatin’s tumor cell killing activity. GTS-21 protects against cisplatin-AKI by attenuating renal inflammation, ATP depletion and apoptosis, as well as by decreasing renal cisplatin influx and increasing efflux, without impairing cisplatin-mediated tumor cell killing. Our results support further exploring the cholinergic anti-inflammatory pathway for preventing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Prodyot K Chatterjee
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Michael M Yeboah
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America
| | - Xiangying Xue
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Valentin A Pavlov
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Yousef Al-Abed
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America.,Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Christine N Metz
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| |
Collapse
|
119
|
Desiani E, Suharjono S, Yulistiani Y, Susilo DH. ANALYSIS OF NACL-MANNITOL HYDRATION ON RENAL FUNCTION OF HEAD AND NECK CANCER PATIENTS RECEIVING HIGH-DOSE CISPLATIN CHEMOTHERAPY COMBINATION. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v53i1.5492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is one of platinum cytostatic drug for the medication of solid cancers, one of which is head and neck cancer. Adverse event that resulted during drug treatment was acute or chronic nephrotoxicity. Cisplatin concentration in proximal tubular epithelial cells is about 5 times the serum concentration. Platinum exposure on renal tubular cells bonding covalent complex which stimulate production of inflammatory factors that lead to apoptosis and necrosis cell. Cisplatin nephrotoxicity can be prevented by aggressive hydration or alternate method of administration. The aim of this study was to analyze the effectiveness of NaCl-Mannitol hydration on renal function of head and neck cancer patients receiving cisplatin 100 mg/m2 chemotherapy combination with 5FU or paclitaxel. This was a cohort, prospective, and observational study to analyze renal function of head and neck cancer patients receiving cisplatin 100 mg/m2 chemotherapy combination with 5FU or paclitaxel. Inclusion criteria were BUN 7-18 mg/dl and serum creatinine < 2 mg/dl of any cycle. All patients received infuse NaCl-Mannitol hydration with term that provided in Surgeon Departement of Dr. Soetomo General Hospital. Data obtained were BUN, SCr, and eClCr Cockroft-Gault, each was measured pre- and post-hydration. In cisplatin and 5FU chemotherapy combination value BUN pre-hydration (11,99 + 4,62) mg/dl, value BUN post-hydration (12,14 + 4,74) mg/dl and value serum creatinine pre-hydration (0,97 + 0,34) mg/dl, value serum creatinine post-hydration (1,02 + 0,37) mg/dl. Meanwhile to the combination of cisplatin and paclitaxel chemotherapy, value BUN pre-hydration (10,19 + 2,58) mg/dl, value of BUN post-hydration (10,43 + 2,31) mg/dl and value of serum creatinine post- hydration (0,98 + 0,26) mg/dl. In conclusion, NaCl-Mannitol hydration administration is adequate which is shown by BUN and serum creatinine in pre- and post-hydration data within normal limits.
Collapse
|
120
|
Hucke A, Ciarimboli G. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations. J Clin Pharmacol 2017; 56 Suppl 7:S157-72. [PMID: 27385173 DOI: 10.1002/jcph.706] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory.
Collapse
Affiliation(s)
- Anna Hucke
- Experimental Nephrology, Medical Clinic D, Münster University Hospital, Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Medical Clinic D, Münster University Hospital, Münster, Germany
| |
Collapse
|
121
|
Cisplatin-Induced Nephrotoxicity and HIV Associated Nephropathy: Mimickers of Myeloma-Like Cast Nephropathy. Case Rep Nephrol 2017; 2017:6258430. [PMID: 28770116 PMCID: PMC5523540 DOI: 10.1155/2017/6258430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/03/2022] Open
Abstract
Myeloma cast nephropathy is an obstructing disorder of renal tubules, caused by precipitation of Bence Jones proteins. Myeloma-like cast nephropathy (MLCN) has been reported in the literature to occur in various primary renal and nonrenal diseases. We present a series of three rare cases of cast nephropathy, two of which are HIV patients, and the third patient is receiving cisplatin-based chemotherapy. However, in all three patients plasma cell dyscrasia has been ruled out. A 30-year-old male was admitted to the hospital with facial cellulitis. The second patient is a 31-year-old male who presented with Pneumocystis jiroveci pneumonia. The third patient was treated with cisplatin-based chemotherapy for carcinoma. First two cases revealed foci of diffuse tubular dilatation containing hyaline casts and interstitial inflammatory infiltrate, in addition to globally sclerotic glomeruli with ultrastructural foot process fusion and mesangium expansion. The third case showed acute tubular injury and cast formation of irregular casts composed of amorphous or granular material of low density admixed with scattered high electron-dense globules. Myeloma-like cast nephropathy and true myeloma cast nephropathy pose similar destructive effects on renal parenchyma. This new pattern of HIV-related nephropathy should be considered in HIV patients with MLCN, once monoclonal gammopathy is ruled out.
Collapse
|
122
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
123
|
Interactions of cisplatin and the copper transporter CTR1 in human colon cancer cells. J Biol Inorg Chem 2017; 22:765-774. [PMID: 28516214 DOI: 10.1007/s00775-017-1467-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
There is much interest in understanding the mechanisms by which platinum-based anticancer agents enter cells, and the copper transporter CTR1 has been the focus of many recent studies. While there is a clinical correlation between CTR1 levels and platinum efficacy, cellular studies have provided conflicting evidence relating to the relationship between cisplatin and CTR1. We report here our studies of the relationship between cisplatin and copper homeostasis in human colon cancer cells. While the accumulation of copper and platinum do not appear to compete with each other, we did observe that cisplatin perturbs CTR1 distribution within 10 min, a far shorter incubation time than commonly employed in cellular studies of cisplatin. Furthermore, on these short time-scales, cisplatin caused an increase in the cytoplasmic labile copper pool. While the predominant focus of studies to date has been on CTR1, these studies highlight the importance of investigating the interaction of cisplatin with other copper proteins.
Collapse
|
124
|
Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2017; 31:15-25. [DOI: 10.1007/s40620-017-0392-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/11/2017] [Indexed: 12/22/2022]
|
125
|
WITHDRAWN: Protective effect of Emblica officinalis fruit extract on cisplatin-induced nephrotoxicity in female rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
126
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
127
|
Oh CJ, Ha CM, Choi YK, Park S, Choe MS, Jeoung NH, Huh YH, Kim HJ, Kweon HS, Lee JM, Lee SJ, Jeon JH, Harris RA, Park KG, Lee IK. Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury. Kidney Int 2016; 91:880-895. [PMID: 28040265 DOI: 10.1016/j.kint.2016.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 02/01/2023]
Abstract
Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Chae-Myeong Ha
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Keun Choi
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Mi Sun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Yang Hoon Huh
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyo-Jeong Kim
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hee-Seok Kweon
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Joo Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Robert A Harris
- Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
128
|
DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol 2016; 313:104-108. [PMID: 27984128 DOI: 10.1016/j.taap.2016.10.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.
Collapse
|
129
|
Dugbartey GJ, Peppone LJ, de Graaf IAM. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology 2016; 371:58-66. [PMID: 27717837 DOI: 10.1016/j.tox.2016.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell's antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies including combination therapy with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Luke J Peppone
- Department of Surgery, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, United States
| | - Inge A M de Graaf
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
130
|
Malik S, Suchal K, Bhatia J, Khan SI, Vasisth S, Tomar A, Goyal S, Kumar R, Arya DS, Ojha SK. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in Countering Nephrotoxicity in Rats Induced by the Chemotherapeutic Agent Cisplatin. Front Pharmacol 2016; 7:350. [PMID: 27752245 PMCID: PMC5045924 DOI: 10.3389/fphar.2016.00350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
Abstract
Emblica officinalis Gaertn. belonging to family Euphorbiaceae is commonly known as Indian gooseberry or "Amla" in India. It is used as a 'rejuvenating herb' in traditional system of Indian medicine. It has been shown to possess antioxidant, anti-inflammatory and anti-apoptotic effects. Thus, on the basis of its biological effects, the present study was undertaken to evaluate the protective effect of the dried fruit extract of the E. Officinalis (EO) in cisplatin-induced nephrotoxicity in rats and also to evaluate the mechanism of its nephroprotection. The study was done on male albino Wistar rats. They were divided into six groups (n = 6) viz. control, cisplatin-control, cisplatin and EO (150, 300, and 600 mg/kg; p.o. respectively in different groups) and EO only (600 mg/kg; p.o. only). EO was administered orally to the rats for a period of 10 days and on the 7th day, a single injection of cisplatin (8 mg/kg; i.p.) was administered to the cisplatin-control and EO treatment groups. The rats were sacrificed on the 10th day. Cisplatin-control rats had deranged renal function parameters and the kidney histology confirmed the presence of acute tubular necrosis. Furthermore, there were increased oxidative stress, apoptosis and inflammation along with higher expression of MAPK pathway proteins in the rat kidney from the cisplatin-control group. Contrary to this, EO (600 mg/kg) significantly normalized renal function, bolstered antioxidant status and ameliorated histological alterations. The inflammation and apoptosis were markedly lower in comparison to cisplatin-control rats. Furthermore, EO (600 mg/kg) inhibited MAPK phosphorylation which was instrumental in preserving renal function and morphology. In conclusion, the results of our study demonstrated that EO attenuated cisplatin-induced nephrotoxicity in rats through suppression of MAPK induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Kapil Suchal
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Sana I Khan
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Swati Vasisth
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Ameesha Tomar
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Sameer Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, India
| | - Rajeev Kumar
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Dharamvir S Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| |
Collapse
|
131
|
In vivo effect of copper status on cisplatin-induced nephrotoxicity. Biometals 2016; 29:841-9. [DOI: 10.1007/s10534-016-9955-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
132
|
Dugbartey GJ, Bouma HR, Lobb I, Sener A. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity. Nitric Oxide 2016; 57:15-20. [PMID: 27095538 DOI: 10.1016/j.niox.2016.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ian Lobb
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON, Canada; Department of Microbiology and Immunology, London Health Sciences Center, Western University, London, ON, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON, Canada; Department of Microbiology and Immunology, London Health Sciences Center, Western University, London, ON, Canada; Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON, Canada; Department of Surgery, Division of Urology, University of Manitoba, Winnepeg, MB, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, ON, Canada
| |
Collapse
|
133
|
Galgamuwa R, Hardy K, Dahlstrom JE, Blackburn AC, Wium E, Rooke M, Cappello JY, Tummala P, Patel HR, Chuah A, Tian L, McMorrow L, Board PG, Theodoratos A. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties. J Am Soc Nephrol 2016; 27:3331-3344. [PMID: 26961349 DOI: 10.1681/asn.2015070827] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin.
Collapse
Affiliation(s)
| | - Kristine Hardy
- Faculty of Education, Science, Technology and Mathematics, University of Canberra, Australian Capital Territory, Australia
| | - Jane E Dahlstrom
- ACT Pathology and ANU Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | | | - Elize Wium
- Departments of Cancer Biology and Therapeutics and
| | | | | | | | | | - Aaron Chuah
- Genome Discovery Unit, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Luyang Tian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Linda McMorrow
- Archaeogeochemistry and Marine Biogeochemistry Groups, Research School of Earth Sciences, Australian National University, Australian Capital Territory, Australia
| | | | | |
Collapse
|
134
|
Ratzon E, Najajreh Y, Salem R, Khamaisie H, Ruthardt M, Mahajna J. Platinum (IV)-fatty acid conjugates overcome inherently and acquired Cisplatin resistant cancer cell lines: an in-vitro study. BMC Cancer 2016; 16:140. [PMID: 26906901 PMCID: PMC4763415 DOI: 10.1186/s12885-016-2182-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022] Open
Abstract
Background Platinum-based drugs are used as cancer chemotherapeutics for the last 40 years. However, drug resistance and nephrotoxicity are the major limitations of the use of platinum-based compounds in cancer therapy. Platinum (IV) complexes are believed to act as platinum prodrugs and are able to overcome some of platinum (II) limitations. Methods A number of previously sensitized platinum (IV) complexes were evaluated for their anti-cancer activity by monitoring ability to affect proliferation, clonigenicity and apoptosis induction of Cisplatin sensitive and resistant cancer cells. In addition, the uptake of Cisplatin and the platinum (IV) derivatives to Cisplatin sensitive and resistant cancer cells was monitored. Results The bis-octanoatoplatinum (IV) complex (RJY13), a Cisplatin derivative with octanoate as axial ligand, exhibited strong anti-proliferative effect on the Cisplatin resistant and sensitive ovarian cells, A2780cisR and A2780, respectively. Moreover, RJY13 exhibited good activity in inhibiting clonigenicity of both cells. Anti-proliferative activity of RJY13 was mediated by induction of apoptosis. Interestingly, a bis-lauratopaltinum (IV) complex (RJY6) was highly potent in inhibiting clonigenicity of both Cisplatin sensitive and Cisplatin resistant cells, however, exhibited reduced activity in assays that utilize cells growing in two dimensional (2D) conditions. The uptake of Cisplatin was reduced by 30 % in A2780 in which the copper transporter-1 (Ctr1) was silenced. Moreover, uptake of RJY6 was marginally dependent on Ctr1, while uptake of RJY13 was Ctr1-independent. Conclusions Our data demonstrated the potential of platinum (IV) prodrugs in overcoming acquired and inherited drug resistance in cancer cell lines. Moreover, our data demonstrated that the uptake of Cisplatin is partially dependent on Ctr1 transporter, while uptake of RJY6 is marginally dependent on Ctr1 and RJY13 is Ctr1-independent. In addition, our data illustrated the therapeutic potential of platinum (IV) prodrugs in cancer therapy.
Collapse
Affiliation(s)
- Einav Ratzon
- Cancer Drug Discovery Program, Migal, Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel.
| | - Yousef Najajreh
- Anticancer Drugs Research Lab, Faculty of Pharmacy, Al-Quds University, P.O. Box 20002, Jerusalem, Abu-Dies, Palestinian Authority.
| | - Rami Salem
- Anticancer Drugs Research Lab, Faculty of Pharmacy, Al-Quds University, P.O. Box 20002, Jerusalem, Abu-Dies, Palestinian Authority.
| | - Hazem Khamaisie
- Cancer Drug Discovery Program, Migal, Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel.
| | - Martin Ruthardt
- Medizinische Klinik II/Abtl. Hämatologie, Klinikum der Johann Wolfgang Goethe Universität, Theodor-Stern Kai 7, 60590, Frankfurt, Germany.
| | - Jamal Mahajna
- Cancer Drug Discovery Program, Migal, Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel. .,The Department of Nutritional Sciences, Tel Hai College, Kiryat Shmona, Israel.
| |
Collapse
|
135
|
Păunescu E, McArthur S, Soudani M, Scopelliti R, Dyson PJ. Nonsteroidal Anti-inflammatory—Organometallic Anticancer Compounds. Inorg Chem 2016; 55:1788-808. [PMID: 26824462 DOI: 10.1021/acs.inorgchem.5b02690] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sarah McArthur
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mylène Soudani
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
136
|
Gomathy Narayanan I, Saravanan R, Bharathselvi M, Biswas J, Sulochana KN. Localization of Human Copper Transporter 1 in the Eye and its Role in Eales Disease. Ocul Immunol Inflamm 2016; 24:678-683. [PMID: 26807780 DOI: 10.3109/09273948.2015.1071404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Copper (Cu) is an essential trace element; however excess is toxic due to the pro-oxidant activity. Increased intracellular Cu levels in vitreous and monocyte were reported in Eales disease (ED) previously. Copper transporter1 (CTR1) maintains copper homeostasis and hence, we studied the presence of CTR1 in ocular tissues and its role in ED. METHODS Real-time PCR, ELISA and Western blot experiments were performed in donor eyeballs tissues and PBMCs isolated from controls and ED. Immunostaining were performed for CTR1 from donor eyeballs and one ED case. RESULTS CTR1 protein was expressed in all ocular tissues. PBMCs showed a three-fold increase in CTR1 protein in ED when compared with controls. Retinal sections from ED patients also revealed increased CTR1 protein expression in retinal tissues, compared with control. CONCLUSIONS CTR1 was significantly increased in ED when compared with controls, indicating its considerable role in the ED pathology.
Collapse
Affiliation(s)
- Iyer Gomathy Narayanan
- a RS Mehta Jain Department of Biochemistry and Cell Biology , Vision Research Foundation, Sankara Nethralaya , Chennai , India.,b Birla Institute of Technology and Science , Pilani , India
| | - R Saravanan
- c Tamil Nadu Dr. MGR Medical University , Chennai , India
| | - M Bharathselvi
- a RS Mehta Jain Department of Biochemistry and Cell Biology , Vision Research Foundation, Sankara Nethralaya , Chennai , India.,b Birla Institute of Technology and Science , Pilani , India
| | - Jyotirmay Biswas
- a RS Mehta Jain Department of Biochemistry and Cell Biology , Vision Research Foundation, Sankara Nethralaya , Chennai , India.,d Uveitis Clinic , Medical Research Foundation , Chennai , India
| | - K N Sulochana
- a RS Mehta Jain Department of Biochemistry and Cell Biology , Vision Research Foundation, Sankara Nethralaya , Chennai , India
| |
Collapse
|
137
|
New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4048390. [PMID: 26881219 PMCID: PMC4736397 DOI: 10.1155/2016/4048390] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways.
Collapse
|
138
|
Santabarbara G, Maione P, Rossi A, Gridelli C. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin Pharmacother 2015; 17:561-70. [DOI: 10.1517/14656566.2016.1122757] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
139
|
Wen J, Zeng M, Shu Y, Guo D, Sun Y, Guo Z, Wang Y, Liu Z, Zhou H, Zhang W. Aging increases the susceptibility of cisplatin-induced nephrotoxicity. AGE (DORDRECHT, NETHERLANDS) 2015; 37:112. [PMID: 26534724 PMCID: PMC5005850 DOI: 10.1007/s11357-015-9844-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 05/12/2023]
Abstract
Cisplatin (CDDP) nephrotoxicity is one of the most common side effects in cancer treatment, causing the disruption of chemotherapy. In this study, we analyzed the influence of nongenetic factors on CDDP-induced nephrotoxiciy using the data from 182 CDDP-treated and 52 carboplatin (CBP)-treated patients. The mean change of eGFR (100% to baseline) in CDDP-treated patients was -9.2%, which was significantly lower than that in the population with CBP therapy. By using the chi-squared test and multivariate logistic regression analysis, age (≥50 years) is found associated with CDDP-induced nephrotoxicity, with odds ratio (OR) of 9.167 and 11.771, respectively. Three- and 18-month-old mice were employed to study the age-dependent susceptibility of CDDP-induced nephrotoxicity. Biochemical parameters, histopathogical examination, and mRNA biomarkers indicated that old mice were subjected to more severe kidney injury. In addition, old mice accumulated more CDDP in kidney than young mice, and the protein level of CDDP efflux transporter, MATE1, in aged mice kidney was 35% of that in young mice. Moreover, inflammatory receptor TLR4 was higher in the kidney of old mice, indicating the alteration of inflammatory signaling in old mice. After CDDP administration, the induced alterations of TNF-α, ICAM-1, and TLR4 were more extensive in old mice. To summarize, aging increased the susceptibility of CDDP-induced renal function decline or nephrotoxicity.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Meizi Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Dong Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China.
| |
Collapse
|
140
|
Ancient Chinese Formula Qiong-Yu-Gao Protects Against Cisplatin-Induced Nephrotoxicity Without Reducing Anti-tumor Activity. Sci Rep 2015; 5:15592. [PMID: 26510880 PMCID: PMC4625150 DOI: 10.1038/srep15592] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
Cisplatin is a highly effective anti-cancer chemotherapeutic agent; however, its clinical use is severely limited by serious side effects, of which nephrotoxicity is the most important. In this study, we investigated whether Qiong-Yu-Gao (QYG), a popular traditional Chinese medicinal formula described 840 years ago, exhibits protective effects against cisplatin-induced renal toxicity. Using a mouse model of cisplatin-induced renal dysfunction, we observed that pretreatment with QYG attenuated cisplatin-induced elevations in blood urea nitrogen and creatinine levels, ameliorated renal tubular lesions, reduced apoptosis, and accelerated tubular cell regeneration. Cisplatin-mediated elevations in tumor necrosis factor alpha (TNF-α) mRNA, interleukin-1 beta (IL-1β) mRNA, and cyclooxygenase-2 (COX-2) protein in the kidney were also significantly suppressed by QYG treatment. Furthermore, QYG reduced platinum accumulation in the kidney by decreasing the expression of copper transporter 1 and organic cation transporter 2. An in vivo study using implanted Lewis lung cancer cells revealed that concurrent administration of QYG and cisplatin did not alter the anti-tumor activity of cisplatin. Our findings suggest that the traditional Chinese medicinal formula QYG inhibits cisplatin toxicity by several mechanisms that act simultaneously, without compromising its therapeutic efficacy. Therefore, QYG may be useful in the clinic as a protective agent to prevent cisplatin-induced nephrotoxicity.
Collapse
|
141
|
Yan F, Duan J, Wang J. [Mechanism of Platinum Derivatives Induced Kidney Injury]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:580-6. [PMID: 26383983 PMCID: PMC6000109 DOI: 10.3779/j.issn.1009-3419.2015.09.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug's toxicity such as the cisplatin's nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.
Collapse
Affiliation(s)
- Feifei Yan
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital and Institute, Peking University, Beijing 100142, China
| | - Jianchun Duan
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital and Institute, Peking University, Beijing 100142, China
| | - Jie Wang
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital and Institute, Peking University, Beijing 100142, China
| |
Collapse
|
142
|
Boroushaki MT, Rajabian A, Farzadnia M, Hoseini A, Poorlashkari M, Taghavi A, Dolati K, Bazmandegan G. Protective effect of pomegranate seed oil against cisplatin-induced nephrotoxicity in rat. Ren Fail 2015; 37:1338-43. [PMID: 26288026 DOI: 10.3109/0886022x.2015.1073496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Clinical use of cisplatin is limited by its nephrotoxicity. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to kidney dysfunction. The aim of this study was to investigate the effect of pomegranate seed oil against nephrotoxicity induced by cisplatin in adult rats. METHODS Animals were divided into four groups. Group I received corn oil (1 mL/kg). Group II received cisplatin (8 mg/kg). Group III and IV received pomegranate seed oil (PSO) 0.4 mL/kg and 0.8 mL/kg one hour before cisplatin injection for 3 days, respectively. Blood samples were collected by cardiac puncture and used for measuring urea and creatinine concentration. Twenty-hour urine samples were collected to measure protein and glucose concentration. The right kidney fixed in formalin for histological examination and the left kidney was homogenized for measurement of malondialdehyde and total sulfhydryl groups. RESULTS A significant elevation of serum creatinine, urea, urinary glucose, protein concentrations, and non-significant decrease in total thiol content and increase in MDA level in kidney homogenates were observed in cisplatin-treated rats. Also cisplatin reduced animal's body weight. Mild-to-moderate tubular cell necrosis, hyaline casts, and vascular congestion were observed in group II. PSO pre-treatment significantly decreased urinary protein, glucose, and serum creatinine concentration. PSO also caused a decrease in serum urea, renal MDA, and increase in thiol content, but the level of these parameters were not significant. CONCLUSION The present results suggest that PSO is an effective agent for the prevention of cisplatin-induced renal dysfunction and oxidative damage in rat.
Collapse
Affiliation(s)
- Mohammad Taher Boroushaki
- a Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran .,b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arezoo Rajabian
- b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mehdi Farzadnia
- c Cancer Molecular Pathology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Azar Hoseini
- a Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mojdeh Poorlashkari
- d Department of Pathology, Faculty of Medicine , Rafsanjan University of Medical Sciences , Rafsanjan , Iran , and
| | - Amin Taghavi
- e Faculty of Medicine , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| | - Karim Dolati
- b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Gholamreza Bazmandegan
- b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
143
|
Takai N, Abe K, Tonomura M, Imamoto N, Fukumoto K, Ito M, Momosaki S, Fujisawa K, Morimoto K, Takasu N, Inoue O. Imaging of reactive oxygen species using [(3)H]hydromethidine in mice with cisplatin-induced nephrotoxicity. EJNMMI Res 2015; 5:116. [PMID: 26160497 PMCID: PMC4497996 DOI: 10.1186/s13550-015-0116-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
Abstract
Background Reactive oxygen species (ROS) have been implicated in cisplatin-induced nephrotoxicity. The aim of this study was to investigate the potential of using [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]hydromethidine) for ex vivo imaging of regional ROS overproduction in mouse kidney induced by cisplatin. Methods Male C57BL/6 J mice were intraperitoneally administered with a single dose of cisplatin (30 mg/kg). Renal function was assessed by measuring serum creatinine and blood urea nitrogen (BUN) levels and morphology by histological examination. Renal malondialdehyde levels were measured as a lipid peroxidation marker. Autoradiographic studies were performed with kidney sections from mice at 60 min after [3H]hydromethidine injection. Results Radioactivity accumulation after [3H]hydromethidine injection was observed in the renal corticomedullary area of cisplatin-treated mice and was attenuated by pretreatment with dimethylthiourea (DMTU), a hydroxyl radical scavenger. Cisplatin administration significantly elevated serum creatinine and BUN levels, caused renal tissue damage, and promoted renal lipid peroxidation. These changes were significantly suppressed by DMTU pretreatment. Conclusions The present study showed that [3H]hydromethidine was rapidly distributed to the kidney after its injection and trapped there in the presence of ROS such as hydroxyl radicals, suggesting that [3H]hydromethidine is useful for assessment of the renal ROS amount in cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Nozomi Takai
- Department of Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015; 237:219-27. [PMID: 26101797 DOI: 10.1016/j.toxlet.2015.06.012] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/06/2015] [Accepted: 06/14/2015] [Indexed: 12/20/2022]
Abstract
Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
145
|
Solanki MH, Chatterjee PK, Xue X, Gupta M, Rosales I, Yeboah MM, Kohn N, Metz CN. Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice. Am J Physiol Renal Physiol 2015; 309:F35-47. [PMID: 25947343 DOI: 10.1152/ajprenal.00096.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/02/2015] [Indexed: 02/05/2023] Open
Abstract
Cisplatin, a commonly used chemotherapeutic for ovarian and other cancers, leads to hypomagnesemia in most patients and causes acute kidney injury (AKI) in 25-30% of patients. Previously, we showed that magnesium deficiency worsens cisplatin-induced AKI and magnesium replacement during cisplatin treatment protects against cisplatin-mediated AKI in non-tumor-bearing mice (Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, Mintz R, Singhal PC, Metz CN. Am J Physiol Renal Physiol 307: F369-F384, 2014). This study investigates the role of magnesium in cisplatin-induced AKI using a human ovarian tumor (A2780) xenograft model in mice and the effect of magnesium status on tumor growth and the chemotherapeutic efficacy of cisplatin in vivo. Tumor progression was unaffected by magnesium status in saline-treated mice. Cisplatin treatment reduced tumor growth in all mice, irrespective of magnesium status. In fact, cisplatin-treated magnesium-supplemented mice had reduced tumor growth after 3 wk compared with cisplatin-treated controls. While magnesium status did not interfere with tumor killing by cisplatin, it significantly affected renal function following cisplatin. Cisplatin-induced AKI was enhanced by magnesium deficiency, as evidenced by increased blood urea nitrogen, creatinine, and other markers of renal damage. This was accompanied by reduced renal mRNA expression of the cisplatin efflux transporter Abcc6. These effects were significantly reversed by magnesium replacement. On the contrary, magnesium status did not affect the mRNA expression of cisplatin uptake or efflux transporters by the tumors in vivo. Finally, magnesium deficiency enhanced platinum accumulation in the kidneys and renal epithelial cells, but not in the A2780 tumor cells. These findings demonstrate the renoprotective role of magnesium during cisplatin AKI, without compromising the chemotherapeutic efficacy of cisplatin in an ovarian tumor-bearing mouse model.
Collapse
Affiliation(s)
- Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York
| | - Prodyot K Chatterjee
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York
| | - Xiangying Xue
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York
| | - Madhu Gupta
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael M Yeboah
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Nina Kohn
- Biostatistics Unit, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York
| | - Christine N Metz
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; Hofstra North Shore-LIJ School of Medicine, Manhasset, New York;
| |
Collapse
|
146
|
Hellberg V, Gahm C, Liu W, Ehrsson H, Rask-Andersen H, Laurell G. Immunohistochemical localization of OCT2 in the cochlea of various species. Laryngoscope 2015; 125:E320-5. [PMID: 25892279 PMCID: PMC5132114 DOI: 10.1002/lary.25304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
Abstract
Objective To locate the organic cation transporter 2 (OCT2) in the cochlea of three different species and to modulate the ototoxicity of cisplatin in the guinea pig by pretreatment with phenformin, having a known affinity for OCT2. Study Design Immunohistochemical and in vivo study. Methods Sections from the auditory end organs were subjected to immunohistochemical staining in order to identify OCT2 in cochlea from untreated rats, guinea pigs, and a pig. In the in vivo study, guinea pigs were given phenformin intravenously 30 minutes before cisplatin administration. Electrophysiological hearing thresholds were determined, and hair cells loss was assessed 96 hours later. The total amount of platinum in cochlear tissue was determined using mass spectrometry. Results Organic cation transporter 2 was found in the supporting cells and in type I spiral ganglion cells in the cochlea of all species studied. Pretreatment with phenformin did not reduce the ototoxic side effect of cisplatin. Furthermore, the concentration of platinum in the cochlea was not affected by phenformin. Conclusions The localization of OCT2 in the supporting cells and type I spiral ganglion cells suggests that this transport protein is not primarily involved in cisplatin uptake from the systemic circulation. We hypothesize that OCT2 transport intensifies cisplatin ototoxicity via transport mechanisms in alternate compartments of the cochlea. Level of Evidence N/A. Laryngoscope, 125:E320–E325, 2015
Collapse
Affiliation(s)
| | - Caroline Gahm
- Department of Clinical Science, Intervention and Technology
| | - Wei Liu
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Ehrsson
- Karolinska Pharmacy, Karolinska University Hospital, Stockholm
| | | | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
147
|
Park S, Yoon SP, Kim J. Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 2015; 48:66-74. [PMID: 25806124 PMCID: PMC4371183 DOI: 10.5115/acb.2015.48.1.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/30/2022] Open
Abstract
Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation.
Collapse
Affiliation(s)
- Seulgee Park
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea. ; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
148
|
Platinum-induced kidney damage: Unraveling the DNA damage response (DDR) of renal tubular epithelial and glomerular endothelial cells following platinum injury. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:685-98. [DOI: 10.1016/j.bbamcr.2014.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022]
|
149
|
EL-Arabey AA. Gender difference in Cisplatin-induced nephrotoxicity in a rat model. Nephrourol Mon 2015; 7:e23595. [PMID: 25883910 PMCID: PMC4393551 DOI: 10.5812/numonthly.23595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/04/2014] [Indexed: 11/16/2022] Open
Affiliation(s)
- Amr Ahmed EL-Arabey
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
- Corresponding author: Amr Ahmed EL-Arabey, Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt. Tel: +20-1006180922, E-mail:
| |
Collapse
|
150
|
Glutamine protects against cisplatin-induced nephrotoxicity by decreasing cisplatin accumulation. J Pharmacol Sci 2015; 127:117-26. [DOI: 10.1016/j.jphs.2014.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 01/07/2023] Open
|