101
|
Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2011; 68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Citation(s) in RCA: 831] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2010] [Indexed: 12/27/2022]
Abstract
We take for granted the ability to fall asleep or to snap out of sleep into wakefulness, but these changes in behavioral state require specific switching mechanisms in the brain that allow well-defined state transitions. In this review, we examine the basic circuitry underlying the regulation of sleep and wakefulness and discuss a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions. We also review how homeostatic, circadian, and allostatic drives help regulate sleep state switching and discuss how breakdown of the switching mechanism may contribute to sleep disorders such as narcolepsy.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
102
|
Myslobodsky M, Eldan A. Winning a won game: caffeine panacea for obesity syndemic. Curr Neuropharmacol 2010; 8:149-60. [PMID: 21119886 PMCID: PMC2923369 DOI: 10.2174/157015910791233213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, chronic sleep reduction and a concurrent development of obesity have been recognized as a common problem in the industrialized world. Among its numerous untoward effects, there is a possibility that insomnia is also a major contributor to obesity. This attribution poses a problem for caffeine, an inexpensive, “natural” agent that is purported to improve a number of conditions and is often indicated in a long-term pharmacotherapy in the context of weight management. The present study used the “common target” approach by exploring the tentative shared molecular networks of insomnia and adiposity. It discusses caffeine targets beyond those associated with adenosine signaling machinery, phosphodiesterases, and calcium release channels. Here, we provide a view suggesting that caffeine could exert some of its effects by acting on several signaling complexes composed of HIF-1α/VEGF/IL-8 along with NO, TNF-α, IL1, and GHRH, among others. Although the relevance of these targets to the reported therapeutic effects of caffeine has remained difficult to assess, the utilization of caffeine efficacies and potencies recommend its repurposing for development of novel therapeutic approaches. Among indications mentioned, are neuroprotective, nootropic, antioxidant, proliferative, anti-fibrotic, and anti-angiogenic that appear under a variety of dissimilar diagnostic labels comorbid with obesity. In the absence of safe and efficacious antiobesity agents, caffeine remains an attractive adjuvant.
Collapse
|
103
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
104
|
Bjorness TE, Greene RW. Adenosine and sleep. Curr Neuropharmacol 2010; 7:238-45. [PMID: 20190965 PMCID: PMC2769007 DOI: 10.2174/157015909789152182] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/22/2022] Open
Abstract
Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed.
Collapse
|
105
|
Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience 2010; 167:40-8. [PMID: 20109537 PMCID: PMC2842084 DOI: 10.1016/j.neuroscience.2010.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 11/18/2022]
Abstract
The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.
Collapse
Affiliation(s)
- Seema Rai
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
| | - Sunil Kumar
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
| | - Md. Aftab Alam
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
- Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | - Ronald Szymusiak
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
- Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
- Department of Neurobiology, School of Medicine, University of California, Los Angeles, California, USA
| | - Dennis McGinty
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Md. Noor Alam
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
106
|
Diniz Behn CG, Booth V. Simulating Microinjection Experiments in a Novel Model of the Rat Sleep-Wake Regulatory Network. J Neurophysiol 2010; 103:1937-53. [DOI: 10.1152/jn.00795.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study presents a novel mathematical modeling framework that is uniquely suited to investigating the structure and dynamics of the sleep-wake regulatory network in the brain stem and hypothalamus. It is based on a population firing rate model formalism that is modified to explicitly include concentration levels of neurotransmitters released to postsynaptic populations. Using this framework, interactions among primary brain stem and hypothalamic neuronal nuclei involved in rat sleep-wake regulation are modeled. The model network captures realistic rat polyphasic sleep-wake behavior consisting of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep states. Network dynamics include a cyclic pattern of NREM sleep, REM sleep, and wake states that is disrupted by simulated variability of neurotransmitter release and external noise to the network. Explicit modeling of neurotransmitter concentrations allows for simulations of microinjections of neurotransmitter agonists and antagonists into a key wake-promoting population, the locus coeruleus (LC). Effects of these simulated microinjections on sleep-wake states are tracked and compared with experimental observations. Agonist/antagonist pairs, which are presumed to have opposing effects on LC activity, do not generally induce opposing effects on sleep-wake patterning because of multiple mechanisms for LC activation in the network. Also, different agents, which are presumed to have parallel effects on LC activity, do not induce parallel effects on sleep-wake patterning because of differences in the state dependence or independence of agonist and antagonist action. These simulation results highlight the utility of formal mathematical modeling for constraining conceptual models of the sleep-wake regulatory network.
Collapse
Affiliation(s)
| | - Victoria Booth
- Departments of Mathematics and
- Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
107
|
Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 2010; 61:162-76. [PMID: 19549926 DOI: 10.1124/pr.109.001321] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have implicated the orexin system as a critical regulator of sleep/wake states as well as feeding behavior and reward processes. Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. In addition, orexin deficiency also cause abnormalities in energy homeostasis and reward systems. Orexin activates waking active monoaminergic and cholinergic neurons in the hypothalamus and brainstem regions to maintain a long, consolidated waking period. Orexin neurons receive abundant input from the limbic system. Orexin neurons also have reciprocal links with the hypothalamic arcuate nucleus, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues, such as leptin and glucose, suggest that these neurons have important role as a link between the energy homeostasis and vigilance states. Orexin neurons also have a link with the dopaminergic reward system in the ventral tegmental nucleus. These findings suggest that the orexin system interacts with systems that regulate emotion, reward, and energy homeostasis to maintain proper vigilance states. Therefore, this system may be a potentially important therapeutic target for treatment of sleep disorder, obesity, emotional stress, and addiction.
Collapse
Affiliation(s)
- Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa 920-8640, Japan
| | | |
Collapse
|
108
|
Abstract
In 1998, two groups independently identified the hypocretins, also known as orexins, as two hypothalamic peptides derived from the same precursor expressed in a few thousand neurones restricted to the perifornical area. A decade later, an amazing set of discoveries has demonstrated a key role for this neurotransmitter system in arousal and beyond. Here I review some of the experiments that led to these discoveries and the implications in the neurobiology of the hypothalamus and our understanding of brain arousal.
Collapse
Affiliation(s)
- L de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
109
|
Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010; 2:31. [PMID: 20126433 PMCID: PMC2814554 DOI: 10.3389/neuro.02.031.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/18/2009] [Indexed: 02/04/2023] Open
Abstract
How does the brain regulate the sleep–wake cycle? What are the temporal codes of sleep and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep–wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine Palo Alto, CA, USA
| | | | | |
Collapse
|
110
|
Ferré S. Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis 2010; 20 Suppl 1:S35-49. [PMID: 20182056 PMCID: PMC9361505 DOI: 10.3233/jad-2010-1400] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Caffeine is the most consumed psychoactive drug in the world. It is a non-selective adenosine receptor antagonist that in the brain targets mainly adenosine A1 and A2A receptors. The same as classical psychostimulants, caffeine produces motor-activating, reinforcing and arousing effects. This depends on the ability of caffeine to counteract multiple effects of adenosine in the central ascending neurotransmitter systems. Motor and reinforcing effects depend on the ability of caffeine to release pre- and postsynaptic brakes that adenosine imposes on the ascending dopaminergic system. By targeting A1-A2A receptor heteromers in striatal glutamatergic terminals and A1 receptors in striatal dopaminergic terminals (presynaptic brake), caffeine induces glutamate-dependent and glutamate-independent release of dopamine. These presynaptic effects of caffeine are potentiated by the release of the postsynaptic brake imposed by antagonistic interactions in the striatal A2A-D2 and A1-D1 receptor heteromers. Arousing effects of caffeine depend on the blockade of multiple inhibitory mechanisms that adenosine, as an endogenous sleep-promoting substance, exerts on the multiply interconnected ascending arousal systems. Those mechanisms include a direct A1-receptor mediated modulation of the corticopetal basal forebrain system and an indirect A2A-receptor mediated modulation of the hypothalamic histaminergic and orexinergic systems.
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.
| |
Collapse
|
111
|
Abstract
Parkinson's disease (PD) is most frequently associated with characteristic motor symptoms that are known to arise with degeneration of dopaminergic neurons. However, patients with this disease also experience a multitude of non-motor symptoms, such as sleep disturbances, fatigue, apathy, anxiety, depression, cognitive impairment, dementia, olfactory dysfunction, pain, sweating and constipation, some of which can be at least as debilitating as the movement disorders and have a major impact on patients' quality of life. Many of these non-motor symptoms may be evident prior to the onset of motor dysfunction. The neuropathology of PD has shown that complex, interconnected neuronal systems, regulated by a number of different neurotransmitters in addition to dopamine, are involved in the aetiology of motor and non-motor symptoms. This review focuses on the non-dopaminergic neurotransmission systems associated with PD with particular reference to the effect that their modulation and interaction with dopamine has on the non-motor symptoms of the disease. PD treatments that focus on the dopaminergic system alone are unable to alleviate both motor and non-motor symptoms, particularly those that develop at early stages of the disease. The development of agents that interact with several of the affected neurotransmission systems could prove invaluable for the treatment of this disease.
Collapse
Affiliation(s)
- P Barone
- Dipartimento di Scienze Neurologiche and IDC-Hermitage-Capodimonte, Naples, Italy.
| |
Collapse
|
112
|
Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res 2009; 1304:96-104. [PMID: 19781535 PMCID: PMC2783843 DOI: 10.1016/j.brainres.2009.09.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 11/16/2022]
Abstract
The perifornical-lateral hypothalamic area (PF-LHA) has been implicated in the regulation of arousal. The PF-LHA contains wake-active neurons that are quiescent during non-REM sleep and in the case of neurons expressing the peptide hypocretin (HCRT), quiescent during both non-REM and REM sleep. Adenosine is an endogenous sleep factor and recent evidence suggests that adenosine via A(1) receptors may act on PF-LHA neurons to promote sleep. We examined the effects of bilateral activation as well as blockade of A(1) receptors in the PF-LHA on sleep-wakefulness in freely behaving rats. The sleep-wake profiles of male Wistar rats were recorded during reverse microdialysis perfusion of artificial cerebrospinal fluid (aCSF) and two doses of adenosine A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX; 5 microM and 50 microM) or A(1) receptor agonist, N(6)-cyclopentyladenosine (CPA; 5 microM and 50 microM) into the PF-LHA for 2 h followed by 4 h of aCSF perfusion. CPDX perfused into the PF-LHA during lights-on phase produced arousal (F=7.035, p<0.001) and concomitantly decreased both non-REM (F=7.295, p<0.001) and REM sleep (F=3.456, p<0.004). In contrast, CPA perfused into the PF-LHA during lights-off phase significantly suppressed arousal (F=7.891, p<0.001) and increased non-REM (F=8.18, p <0.001) and REM sleep (F=30.036, p<0.001). These results suggest that PF-LHA is one of the sites where adenosine, acting via A(1) receptors, inhibits PF-LHA neurons to promote sleep.
Collapse
Affiliation(s)
- Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, CA 91343, USA.
| | | | | | | | | | | |
Collapse
|
113
|
Turan A, Kasuya Y, Govinda R, Obal D, Rauch S, Dalton JE, Akça O, Sessler DI. The effect of aminophylline on loss of consciousness, bispectral index, propofol requirement, and minimum alveolar concentration of desflurane in volunteers. Anesth Analg 2009; 110:449-54. [PMID: 19955506 DOI: 10.1213/ane.0b013e3181c6be7e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adenosine is a soporific neuromodulator; aminophylline, which is clinically used as a bronchodilator, antagonizes the action of adenosine in the central nervous system. Thus, we tested the hypothesis that aminophylline delays loss of consciousness (LOC) and speeds recovery of consciousness (ROC) with propofol anesthesia, and that aminophylline increases the minimum alveolar concentration (MAC) of desflurane. METHODS In this double-blind crossover study, volunteers were randomized to either aminophylline or saline on different days. Aminophylline 6 mg/kg was given IV, followed by 1.5 mg x kg(-1) x h(-1) throughout the study day. After 1 h of aminophylline or saline administration, propofol 200 mg was given at a rate of 20 mg/min. The bispectral index was continuously monitored, as were times to LOC and ROC. After recovery from propofol, general anesthesia was induced with sevoflurane and subsequently maintained with desflurane. The Dixon "up-and-down" method was used to determine MAC in each volunteer after repeated tetanic electrical stimulation. RESULTS Eight volunteers completed both study days. Time to LOC was prolonged by aminophylline compared with saline (mean +/- SD) (7.7 +/- 2.03 min vs 5.1 +/- 0.75 s, respectively, P = 0.011). The total propofol dose at LOC was larger with aminophylline (2.2 +/- 0.9 vs 1.4 +/- 0.4 mg/kg, P = 0.01), and the time to ROC was shorter (6.18 +/- 3.96 vs 12.2 +/- 4.73 min, P = 0.035). The minimum bispectral index was greater with aminophylline (51 +/- 15 vs 38 +/- 9, P = 0.034). There was no difference in MAC. CONCLUSION Aminophylline decreases the sedative effects of propofol but does not affect MAC of desflurane as determined by tetanic electrical stimulation.
Collapse
Affiliation(s)
- Alparslan Turan
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Good night and good luck: norepinephrine in sleep pharmacology. Biochem Pharmacol 2009; 79:801-9. [PMID: 19833104 DOI: 10.1016/j.bcp.2009.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 01/12/2023]
Abstract
Sleep is a crucial biological process that is regulated through complex interactions between multiple brain regions and neuromodulators. As sleep disorders can have deleterious impacts on health and quality of life, a wide variety of pharmacotherapies have been developed to treat conditions of excessive wakefulness and excessive sleepiness. The neurotransmitter norepinephrine (NE), through its involvement in the ascending arousal system, impacts the efficacy of many wake- and sleep-promoting medications. Wake-promoting drugs such as amphetamine and modafinil increase extracellular levels of NE, enhancing transmission along the wake-promoting pathway. GABAergic sleep-promoting medications like benzodiazepines and benzodiazepine-like drugs that act more specifically on benzodiazepine receptors increase the activity of GABA, which inhibits NE transmission and the wake-promoting pathway. Melatonin and related compounds increase sleep by suppressing the activity of the neurons in the brain's circadian clock, and NE influences the synthesis of melatonin. Antihistamines block the wake-promoting effects of histamine, which shares reciprocal signaling with NE. Many antidepressants that affect the signaling of NE are also used for treatment of insomnia. Finally, adrenergic receptor antagonists that are used to treat cardiovascular disorders have considerable sedative effects. Therefore, NE, long known for its role in maintaining general arousal, is also a crucial player in sleep pharmacology. The purpose of this review is to consider the role of NE in the actions of wake- and sleep-promoting drugs within the framework of the brain arousal systems.
Collapse
|
115
|
Adenosine-evoked hyperpolarization of retinal ganglion cells is mediated by G-protein-coupled inwardly rectifying K+ and small conductance Ca2+-activated K+ channel activation. J Neurosci 2009; 29:11237-45. [PMID: 19741130 DOI: 10.1523/jneurosci.2836-09.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adenosine is a neuromodulator that activates presynaptic receptors to regulate synaptic transmission and postsynaptic receptors to hyperpolarize neurons. Here, we report that adenosine-induced hyperpolarization of retinal ganglion cells is produced by the activation of A(1) receptors, which initiates a signaling cascade that activates G-protein-coupled inwardly rectifying K(+) (GIRK) channels and small conductance Ca(2+)-activated K(+) (SK) channels. Rat retinal ganglion cells were stimulated by focal ejection of the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) while cell activity was monitored with whole-cell patch recordings and Ca(2+) imaging. Focal ejections of NECA evoked outward currents in all cells tested and reduced light- and depolarization-induced spiking. The NECA-evoked current was abolished by the A(1) antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) but was unaffected by A(2a), A(2b), and A(3) antagonists, indicating that the response was mediated entirely by A(1) receptors. The GIRK channel blocker rTertiapin-Q diminished the NECA-evoked inhibitory current by 56 +/- 12%, whereas the SK channel blocker apamin decreased the NECA-induced current by 42 +/- 7%. The SK component of the NECA-evoked current coincided with an increase in intracellular Ca(2+) and was blocked by IP(3) receptor antagonists and depletion of internal Ca(2+) stores, suggesting that A(1) receptor activation leads to an increase in IP(3), which then elevates intracellular Ca(2+) and activates SK channels. This A(1)-mediated, prolonged SK channel activation has not been described previously. The coactivation of GIRK and SK channels represents a novel mechanism of adenosine-mediated neuromodulation that could contribute to the regulation of retinal ganglion cell activity.
Collapse
|
116
|
Silkis IG. Search for approaches to correction of daytime sleepiness induced by dopaminergic drugs during treatment of Parkinson’s disease: Neurochemical aspects. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409030118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
117
|
Xia J, Chen F, Ye J, Yan J, Wang H, Duan S, Hu Z. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience 2009; 162:980-8. [DOI: 10.1016/j.neuroscience.2009.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/26/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
|
118
|
Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 2009; 29:1741-53. [DOI: 10.1111/j.1460-9568.2009.06722.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
119
|
Kiss DS, Zsarnovszky A, Horvath K, Gyorffy A, Bartha T, Hazai D, Sotonyi P, Somogyi V, Frenyo LV, Diano S. Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications. Reprod Biol Endocrinol 2009; 7:31. [PMID: 19383175 PMCID: PMC2676295 DOI: 10.1186/1477-7827-7-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR) hypothalamic structures in the rat brain, here we investigated: 1.) The cellular and subcellular localization of NTPDase3; 2.) The effects of 17beta-estradiol on the expression level of hypothalamic NTPDase3; and 3.) The effects of NTPDase inhibition in hypothalamic synaptosomal preparations. METHODS Combined light- and electron microscopic analyses were carried out to characterize the cellular and subcellular localization of NTPDase3-immunoreactivity. The effects of estrogen on hypothalamic NTPDase3 expression was studied by western blot technique. Finally, the effects of NTPDase inhibition on mitochondrial respiration were investigated using a Clark-type oxygen electrode. RESULTS Combined light- and electron microscopic analysis of immunostained hypothalamic slices revealed that NTPDase3-IR is linked to ribosomes and mitochondria, is predominantly present in excitatory axon terminals and in distinct segments of the perikaryal plasma membrane. Immunohistochemical labeling of NTPDase3 and glutamic acid decarboxylase (GAD) indicated that gamma-amino-butyric-acid- (GABA) ergic hypothalamic neurons do not express NTPDase3, further suggesting that in the hypothalamus, NTPDase3 is predominantly present in excitatory neurons. We also investigated whether estrogen influences the expression level of NTPDase3 in the ventrobasal and lateral hypothalamus. A single subcutaneous injection of estrogen differentially increased NTPDase3 expression in the medial and lateral parts of the hypothalamus, indicating that this enzyme likely plays region-specific roles in estrogen-dependent hypothalamic regulatory mechanisms. Determination of mitochondrial respiration rates with and without the inhibition of NTPDases confirmed the presence of NTPDases, including NTPDase3 in neuronal mitochondria and showed that blockade of mitochondrial NTPDase functions decreases state 3 mitochondrial respiration rate and total mitochondrial respiratory capacity. CONCLUSION Altogether, these results suggest the possibility that NTPDases, among them NTPDase3, may play an estrogen-dependent modulatory role in the regulation of intracellular availability of ATP needed for excitatory neuronal functions including neurotransmission.
Collapse
Affiliation(s)
- David S Kiss
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Krisztina Horvath
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Andrea Gyorffy
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Diana Hazai
- Department of Anatomy & Histology, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Peter Sotonyi
- Department of Anatomy & Histology, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Virag Somogyi
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Laszlo V Frenyo
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Sabrina Diano
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
120
|
Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 2009; 29:3705-14. [PMID: 19321767 DOI: 10.1523/jneurosci.0431-09.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) has previously been shown to promote wakefulness and to induce arousal from hibernation. Expression of TRH-R1 (TRH receptor 1) is enriched in the tuberal and lateral hypothalamic area (LHA), brain regions in which the hypocretin/orexin (Hcrt) cells are located. Because the Hcrt system is implicated in sleep/wake control, we hypothesized that TRH provides modulatory input to the Hcrt cells. In vitro electrophysiological studies showed that bath application of TRH caused concentration-dependent membrane depolarization, decreased input resistance, and increased firing rate of identified Hcrt neurons. In the presence of tetrodotoxin, TRH induced inward currents that were associated with a decrease in frequency, but not amplitude, of miniature postsynaptic currents (PSCs). Ion substitution experiments suggested that the TRH-induced inward current was mediated in part by Ca(2+) influx. Although TRH did not significantly alter either the frequency or amplitude of spontaneous excitatory PSCs, TRH (100 nm) increased the frequency of spontaneous inhibitory PSCs by twofold without affecting the amplitude of these events, indicating increased presynaptic GABA release onto Hcrt neurons. In contrast, TRH significantly reduced the frequency, but not amplitude, of miniature excitatory PSCs without affecting miniature inhibitory PSC frequency or amplitude, indicating that TRH also reduces the probability of glutamate release onto Hcrt neurons. When injected into the LHA, TRH increased locomotor activity in wild-type mice but not in orexin/ataxin-3 mice in which the Hcrt neurons degenerate postnatally. Together, these results are consistent with the hypothesis that TRH modulates behavioral arousal, in part, through the Hcrt system.
Collapse
|
121
|
Abstract
The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
122
|
Abstract
Sleep disturbances are associated with hormonal imbalances and may result in metabolic disorders including obesity and diabetes. Therefore, circuits controlling both sleep and metabolism are likely to play a role in these physiopathological conditions. The hypocretin (Hcrt) system is a strong candidate for mediating both sleep and metabolic imbalances because Hcrt neurons are sensitive to metabolic hormones, including leptin and ghrelin, and modulate arousal and goal-orientated behaviours. This review discusses the role of Hcrt neurons as a sensors of energy balance and arousal and proposes new ways of probing local hypothalamic circuits regulating sleep and metabolism with unprecedented cellular specificity and temporal resolution.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5742, USA.
| | | |
Collapse
|
123
|
Adamantidis A, de Lecea L. Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 2008; 19:362-70. [PMID: 18938086 DOI: 10.1016/j.tem.2008.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 01/05/2023]
Abstract
Association between sleep disturbances and hormonal imbalances can result in metabolic disorders, including obesity and diabetes. The hypothalamus is likely to play a part in these pathophysiological conditions because it contains sleep-wake circuits that are sensitive to metabolic hormones, including leptin and ghrelin. Thus, shared hypothalamic circuits such as the hypocretin and melanin-concentrating hormone systems are strong candidates for mediating both sleep and metabolic imbalances. This review reveals new roles for these systems as sensors and effectors of sleep and wakefulness, and discusses their plasticity in regulating sleep and energy balance. New optical tools that remotely control neuronal circuit activity provide an effective means to understand the cooperativity of shared circuits in regulating hypothalamic functions such as sleep and metabolism.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA 94304-5742, USA.
| | | |
Collapse
|
124
|
Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci 2008; 28:9101-10. [PMID: 18784290 DOI: 10.1523/jneurosci.1766-08.2008] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lateral hypothalamus (LH) is a central hub that integrates inputs from, and sends outputs to, many other brain areas. Two groups of neurons in the LH, expressing hypocretin/orexin or melanin concentrating hormone (MCH), have been shown to participate in sleep regulation, energy homeostasis, drug addiction, motor regulation, stress response, and social behaviors. The elucidation of crosstalk between these two systems is essential to understand these behaviors and functions because there is evidence that there are reciprocal innervations between hypocretin/orexin and MCH neurons. In this study, we used MCH receptor-1 knock-out (MCHR1 KO) and wild-type (WT) mice expressing green fluorescent protein in hypocretin/orexin-containing neurons to examine the hypothesis that MCH modulates hypocretin/orexin-mediated effects on behavioral state and synaptic transmission in the LH. In MCHR1 KO mice, the efficacy of glutamatergic synapses on hypocretin/orexin neurons is potentiated and hypocretin-1-induced action potential firing is facilitated, potentially explaining an increased effect of modafinil observed in MCHR1 KO mice. In wild-type mice with intact MCHR1 signaling, MCH significantly attenuated the hypocretin-1-induced enhancement of spike frequency in hypocretin/orexin neurons. The MCH effect was dose dependent, pertussis toxin sensitive, and was abolished in MCHR1 KO mice. Consistent with this effect, MCH attenuated hypocretin-1-induced enhancement of the frequency of miniature EPSCs in hypocretin/orexin neurons. These data from MCHR1 KO and WT mice demonstrate a novel interaction between these two systems, implying that MCH may exert a unique inhibitory influence on hypocretin/orexin signaling as a way to fine-tune the output of the LH.
Collapse
|
125
|
|
126
|
Abstract
Normal waking is associated with neuronal activity in several chemically defined ascending arousal systems. These include monoaminergic neurons in the brainstem and posterior hypothalamus, cholinergic neurons in the brainstem and basal forebrain, and hypocretin (orexin) neurons in the lateral hypothalamus. Collectively, these systems impart tonic activation to their neuronal targets in the diencephalon and neocortex that is reflected in the low-voltage fast-frequency electroencephalogram patterns of wakefulness. Neuronal discharge in these arousal systems declines rapidly at sleep onset. Transitions from waking to sleep, therefore, involve coordinated inhibition of multiple arousal systems. An important source of sleep-related inhibition of arousal arises from neurons located in the preoptic hypothalamus. These preoptic neurons are strongly activated during sleep, exhibiting sleep/waking state-dependent discharge patterns that are the reciprocal of that observed in the arousal systems. The majority of preoptic sleep regulatory neurons synthesize the inhibitory neurotransmitter GABA. Anatomical and functional evidence supports the hypothesis that GABAergic neurons in the median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) exert inhibitory control over the monoaminergic systems and the hypocretin system during sleep. Recent findings indicate that MnPN and VLPO neurons integrate homeostatic aspects of sleep regulation and are important targets for endogenous sleep factors, such as adenosine and growth hormone releasing hormone.
Collapse
Affiliation(s)
- Ronald Szymusiak
- Research Service (151A3), Veterans Administration, Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91434, USA.
| | | |
Collapse
|
127
|
Swoap SJ. The pharmacology and molecular mechanisms underlying temperature regulation and torpor. Biochem Pharmacol 2008; 76:817-24. [PMID: 18644349 DOI: 10.1016/j.bcp.2008.06.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 01/08/2023]
Abstract
The ability to enter a hypometabolic state upon restriction of caloric intake is pivotal for animal survival: balancing the energy budget in endotherms can be a real struggle when food is not available and/or the demand for heat production to maintain homeothermy becomes excessive. Bouts of torpor, characterized by metabolic rates well below a basal metabolic rate and core body temperatures that may be just a few degrees above the ambient temperature, are utilized among many organisms across the animal kingdom, including those that could be described as typical laboratory animals, like the mouse or hamster. Daily heterotherms, which are the focus of this commentary, enter shallow torpor bouts and do so usually under acute food shortage conditions and a relatively cool environment. Due to their small size, the body temperature of these animals is very responsive to food deprivation, pharmacological inhibition of metabolic rate, and cardiovascular depressants. This commentary examines recent developments concerning the neuroendocrine mechanisms in place that may mediate fasting-induced torpor in daily heterotherms. Further this commentary highlights pharmacological induction of hypothermia in small mammals.
Collapse
Affiliation(s)
- Steven J Swoap
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
128
|
Emerging anti-insomnia drugs: tackling sleeplessness and the quality of wake time. Nat Rev Drug Discov 2008; 7:530-40. [PMID: 18511929 DOI: 10.1038/nrd2464] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sleep is essential for our physical and mental well being. However, when novel hypnotic drugs are developed, the focus tends to be on the marginal and statistically significant increase in minutes slept during the night instead of the effects on the quality of wakefulness. Recent research on the mechanisms underlying sleep and the control of the sleep-wake cycle has the potential to aid the development of novel hypnotic drugs; however, this potential has not yet been realized. Here, we review the current understanding of how hypnotic drugs act, and discuss how new, more effective drugs and treatment strategies for insomnia might be achieved by taking into consideration the daytime consequences of disrupted sleep.
Collapse
|
129
|
Alam MA, Mallick BN. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep. Neurosci Lett 2008; 439:281-6. [PMID: 18534750 DOI: 10.1016/j.neulet.2008.05.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/23/2008] [Accepted: 05/14/2008] [Indexed: 12/12/2022]
Abstract
The orexinergic neurons, localized in the perifornical hypothalamic area (PeF), are active during waking and quiet during non-rapid eye movement (non-REM) and REM sleep. Orexins promote arousal and suppress non-REM and REM sleep. Although in vitro studies suggest that PeF-orexinergic neurons are under glutamatergic influence, the sleep-wake behavioral consequences of glutamatergic activation of those neurons are not known. We examined the effects of bilateral glutamatergic activation of neurons in and around the PeF on sleep-wake parameters in freely behaving rats. Nine male Wistar rats were surgically prepared for electrophysiological sleep-wake recording and with bilateral guide cannulae targeting the PeF for microinjection. The sleep-wake profiles of each rat were recorded for 8h under baseline (without injection), and after bilateral microinjections of 200nl saline and 200nl saline containing 20 or 40ng of l-glutamic acid (GLUT) using a remote-controlled pump and without disturbing the animals. The injection of 40ng GLUT into the PeF (n=6) significantly increased mean time spent in waking (F=85.11, p<0.001) and concomitantly decreased mean time spent in non-REM (F=19.67, p<0.001) and REM sleep (F=38.72, p<0.001). The increase in waking and decreases in non-REM and REM sleep were due to significantly increased durations of waking episodes (F=24.64; p<0.001) and decreased durations of non-REM (F=12.96; p=0.002) and REM sleep events (F=13.82; p=0.001), respectively. These results suggest that the activation of neurons in and around the PeF including those of orexin neurons contribute to the promotion of arousal and suppression of non-REM and REM sleep.
Collapse
Affiliation(s)
- Md Aftab Alam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
130
|
Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 2008; 117:4022-33. [PMID: 18060037 DOI: 10.1172/jci32829] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022] Open
Abstract
Sleep is a natural process that preserves energy, facilitates development, and restores the nervous system in higher animals. Sleep loss resulting from physiological and pathological conditions exerts tremendous pressure on neuronal circuitry responsible for sleep-wake regulation. It is not yet clear how acute and chronic sleep loss modify neuronal activities and lead to adaptive changes in animals. Here, we show that acute and chronic prolonged wakefulness in mice induced by modafinil treatment produced long-term potentiation (LTP) of glutamatergic synapses on hypocretin/orexin neurons in the lateral hypothalamus, a well-established arousal/wake-promoting center. A similar potentiation of synaptic strength at glutamatergic synapses on hypocretin/orexin neurons was also seen when mice were sleep deprived for 4 hours by gentle handling. Blockade of dopamine D1 receptors attenuated prolonged wakefulness and synaptic plasticity in these neurons, suggesting that modafinil functions through activation of the dopamine system. Also, activation of the cAMP pathway was not able to further induce LTP at glutamatergic synapses in brain slices from mice treated with modafinil. These results indicate that synaptic plasticity due to prolonged wakefulness occurs in circuits responsible for arousal and may contribute to changes in the brain and body of animals experiencing sleep loss.
Collapse
Affiliation(s)
- Yan Rao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis. J Neurosci 2008; 28:228-38. [PMID: 18171940 DOI: 10.1523/jneurosci.3490-07.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water homeostasis is a critical challenge to survival for land mammals. Mice display increased locomotor activity when dehydrated, a behavior that improves the likelihood of locating new sources of water and simultaneously places additional demands on compromised hydration levels. The neurophysiology underlying this well known behavior has not been previously elucidated. We report that the anti-diuretic hormone arginine-vasopressin (AVP) is involved in this response. AVP and oxytocin directly induced depolarization and an inward current in orexin/hypocretin neurons. AVP-induced activation of orexin neurons was inhibited by a V1a receptor (V1aR)-selective antagonist and was not observed in V1aR knock-out mice, suggesting an involvement of V1aR. Subsequently activation of phospholipase Cbeta triggers an increase in intracellular calcium by both calcium influx through nonselective cation channels and calcium release from calcium stores in orexin neurons. Intracerebroventricular injection of AVP or water deprivation increased locomotor activity in wild-type mice, but not in transgenic mice lacking orexin neurons. V1aR knock-out mice were less active than wild-type mice. These results suggest that the activation of orexin neurons by AVP or oxytocin has an important role in the regulation of spontaneous locomotor activity in mice. This system appears to play a key role in water deprivation-induced hyperlocomotor activity, a response to dehydration that increases the chance of locating water in nature.
Collapse
|
132
|
Ohno K, Sakurai T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 2008; 29:70-87. [PMID: 17910982 DOI: 10.1016/j.yfrne.2007.08.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 11/26/2022]
Abstract
Orexin A and orexin B were initially identified as endogenous ligands for two orphan G protein-coupled receptors [104]. They were initially recognized as regulators of feeding behavior in view of their exclusive production in the lateral hypothalamic area (LHA), a region known as the feeding center, and their pharmacological activity [104,30,49,107]. Subsequently, the finding that orexin deficiency causes narcolepsy in humans and animals suggested that these hypothalamic neuropeptides play a critical role in regulating sleep/wake cycle [22,46,71,95,117]. These peptides activate waking-active monoaminergic and cholinergic neurons in the hypothalamus/brain stem regions to maintain a long, consolidated awake period. Recent studies on efferent and afferent systems of orexin neurons, and phenotypic characterization of genetically modified mice in the orexin system further suggested roles of orexin in the coordination of emotion, energy homeostasis, reward system, and arousal [3,80,106,137]. A link between the limbic system and orexin neurons might be important for increasing vigilance during emotional stimuli. Orexin neurons are also regulated by peripheral metabolic cues, including ghrelin, leptin, and glucose, suggesting that they might have important roles as a link between energy homeostasis and vigilance states [137]. Recent research has also implicated orexins in reward systems and the mechanisms of drug addiction [13,48,91]. These observations suggest that orexin neurons sense the outer and inner environment of the body, and maintain proper wakefulness of animals for survival. This review discusses the mechanism by which orexins maintain sleep/wakefulness states, and how this mechanism relates to other systems that regulate emotion, reward, and energy homeostasis.
Collapse
Affiliation(s)
- Kousaku Ohno
- Department of Pharmacology, Institute of Basic Medical Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | |
Collapse
|
133
|
Scharf MT, Mackiewicz M, Naidoo N, O'Callaghan JP, Pack AI. AMP-activated protein kinase phosphorylation in brain is dependent on method of killing and tissue preparation. J Neurochem 2007; 105:833-41. [PMID: 18088373 DOI: 10.1111/j.1471-4159.2007.05182.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AMP-activated protein kinase (AMPK) is activated when the catalytic alpha subunit is phosphorylated on Thr172 and therefore, phosphorylation of the alpha subunit is used as a measure of activation. However, measurement of alpha subunit of AMPK (alpha-AMPK) phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring alpha-AMPK phosphorylation in the mouse brain, we compared different methods of killing and tissue preparation. We found that freeze/thawing samples after homogenization on ice dramatically increased alpha-AMPK phosphorylation in mice killed by cervical dislocation. Killing of mice by focused microwave irradiation, which rapidly heats the brain and causes enzymatic inactivation, prevented the freeze/thaw-induced increase in alpha-AMPK phosphorylation and similar levels of phosphorylation were observed compared with mice killed with cervical dislocation without freeze/thawing of samples. Sonication of samples in hot 1% sodium dodecyl sulfate blocked the freeze/thaw-induced increase in alpha-AMPK phosphorylation, but phosphorylation was higher in mice killed by cervical dislocation compared with mice killed by focused microwave irradiation. These results demonstrate that alpha-AMPK phosphorylation is dependent on method of killing and tissue preparation and that alpha-AMPK phosphorylation can increase in a manner that does not reflect biological alterations.
Collapse
Affiliation(s)
- Matthew T Scharf
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-3403, USA
| | | | | | | | | |
Collapse
|
134
|
Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 2007; 102:1713-1726. [PMID: 17555547 PMCID: PMC3600610 DOI: 10.1111/j.1471-4159.2007.04675.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.
Collapse
Affiliation(s)
- Kelly L. Drew
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - C. Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Brian M. Barnes
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Sherri L. Christian
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Brian T. Rasley
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Michael B. Harris
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
135
|
Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007; 31:775-824. [PMID: 17445891 PMCID: PMC1955686 DOI: 10.1016/j.neubiorev.2007.02.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/17/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the cellular-molecular-network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research.
Collapse
Affiliation(s)
- Subimal Datta
- Sleep and Cognitive Neuroscience Laboratory, Department of Psychiatry and Behavioral Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
136
|
Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007; 8:171-81. [PMID: 17299454 DOI: 10.1038/nrn2092] [Citation(s) in RCA: 871] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sleep and wakefulness are regulated to occur at appropriate times that are in accordance with our internal and external environments. Avoiding danger and finding food, which are life-essential activities that are regulated by emotion, reward and energy balance, require vigilance and therefore, by definition, wakefulness. The orexin (hypocretin) system regulates sleep and wakefulness through interactions with systems that regulate emotion, reward and energy homeostasis.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Department of Pharmacology, Institute of Basic Medical Science, University of Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|