101
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
102
|
Almoraie NM, Shatwan IM. The Potential Effects of Dietary Antioxidants in Obesity: A Comprehensive Review of the Literature. Healthcare (Basel) 2024; 12:416. [PMID: 38391792 PMCID: PMC10887832 DOI: 10.3390/healthcare12040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Obesity has become a global health concern, with its prevalence steadily increasing in recent decades. It is associated with numerous health complications, including cardiovascular diseases, diabetes, and certain types of cancer. The aetiology of obesity is multifactorial, involving genetic, environmental, and lifestyle factors. In recent years, oxidative stress has emerged as a potential contributor to obesity and its related metabolic disorders. Dietary antioxidants, which can counteract oxidative stress, have gained significant attention for their potential role in preventing and managing obesity. This comprehensive review aims to explore the impact of dietary antioxidants on obesity and its associated metabolic dysregulations, discussing the underlying mechanisms and highlighting the potential therapeutic implications.
Collapse
Affiliation(s)
- Noha M Almoraie
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| | - Israa M Shatwan
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| |
Collapse
|
103
|
Liao Z, Huang L, Chen J, Chen T, Kong D, Wei Q, Chen Q, Deng B, Li Y, Zhong S, Huang Z. Liraglutide Improves Nonalcoholic Fatty Liver Disease in Diabetic Mice by Activating Autophagy Through AMPK/mTOR Signaling Pathway. Diabetes Metab Syndr Obes 2024; 17:575-584. [PMID: 38343582 PMCID: PMC10854402 DOI: 10.2147/dmso.s447182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Type 2 diabetes (T2DM) combined nonalcoholic fatty liver disease (NAFLD) are characterized by metabolic disruptions. Liraglutide has been proved to be effective in T2DM. If LRG could regulate NAFLD combined T2DM has not been reported. METHODS Intraperitoneal injection of 1% streptozotocin (STZ) plus high-sugar and high-fat diet was used to induce NAFLD combined T2DM animal model. Palmitic acid (200 µmol/L) and glucose (25 mmol/L) incubation were used to induce cell model. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and Western blotting, respectively. RESULTS Liraglutide significantly improved the liver injury of NAFLD combined T2DM rats, but Com-C reversed the effect of liraglutide. The decreased AMPK/mTOR signaling pathway in the NAFLD combined T2DM animals was greatly activated by liraglutide. Com-C reversed the protection effects of liraglutide on palmitic acid+glucose induced cell damage. CONCLUSION Liraglutide could greatly alleviate the damage caused by NAFLD+T2DM and palmitic acid+glucose. The protection effects of liraglutide were greatly inhibited by suppressing AMPK/mTOR signaling pathway. This research might provide a novel therapeutic strategy for the prevention and treatment of NAFLD combined T2DM disease.
Collapse
Affiliation(s)
- Zhanlin Liao
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Liangzhi Huang
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Jun Chen
- Department of Ophthalmology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Ting Chen
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Dezhi Kong
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Qifeng Wei
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Qiao Chen
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Bin Deng
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Yanyan Li
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Shuai Zhong
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| | - Zugui Huang
- Department of Endocrine, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, 353006, People’s Republic of China
| |
Collapse
|
104
|
Nguyen VD, Hughes TR, Zhou Y. From complement to complosome in non-alcoholic fatty liver disease: When location matters. Liver Int 2024; 44:316-329. [PMID: 38010880 DOI: 10.1111/liv.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing public health threat and becoming the leading cause of liver transplantation. Nevertheless, no approved specific treatment is currently available for NAFLD. The pathogenesis of NAFLD is multifaceted and not yet fully understood. Accumulating evidence suggests a significant role of the complement system in the development and progression of NAFLD. Here, we provide an overview of the complement system, incorporating the novel concept of complosome, and summarise the up-to-date evidence elucidating the association between complement dysregulation and the pathogenesis of NAFLD. In this process, the extracellular complement system is activated through various pathways, thereby directly contributing to, or working together with other immune cells in the disease development and progression. We also introduce the complosome and assess the evidence that implicates its potential influence in NAFLD through its direct impact on hepatocytes or non-parenchymal liver cells. Additionally, we expound upon how complement system and the complosome may exert their effects in relation with hepatic zonation in NAFLD. Furthermore, we discuss the potential therapeutic implications of targeting the complement system, extracellularly and intracellularly, for NAFLD treatment. Finally, we present future perspectives towards a better understanding of the complement system's contribution to NAFLD.
Collapse
Affiliation(s)
- Van-Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
105
|
Chen Y, Yan D, You N, Gu B, Wang Q, Zhang J. Effect of Helicobacter pylori infection on body fat percentage in middle-aged and elderly populations. Prev Med Rep 2024; 38:102601. [PMID: 38283954 PMCID: PMC10821582 DOI: 10.1016/j.pmedr.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Obesity, which is associated with excessive accumulation of body fat, is emerging as a new public health problem. Bioelectrical impedance analysis (BIA) is a non-invasive and straightforward method to analyze body composition, providing a more accurate estimate of obesity than the commonly used body mass index. The primary objective of this study was to examine the potential impact of Helicobacter pylori (H. pylori) infection on body fat percentage in a population using cross-sectional and cohort studies. METHODS A population of people who underwent physical examinations at Taizhou Hospital between 2017 and 2022 was included. The participants underwent various tests, including urea breath test, hematological examination, and anthropometric measurement, in addition, their body fat percentage was determined through the use of BIA. Univariate and multifactorial regression analyses were conducted to identify factors associated with excess body fat. RESULTS There was a difference in body fat percentage between H. pylori positive and negative populations. The population was divided into young and middle-aged and elderly according to age, and H. pylori infection was found to differ only in the middle-aged and elderly population. Multifactorial logistic regression showed that H. pylori infection remained associated with excess body fat in the middle-aged and elderly population. A subsequent cohort study confirmed the association of persistent H. pylori infection with excess body fat in the population. CONCLUSION H. pylori was negatively associated with excess body fat in middle-aged and elderly populations, and long-term H. pylori infection has a negative effect on body fat in people.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Dan Yan
- Department of Pulmonary and Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ningning You
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Binbin Gu
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Qinya Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
106
|
Li X, Zhang W, Bi Y, Chen J, Fu L, Zhang Z, Chen Q, Zhang X, Zhu Z, Zhang B. Non-alcoholic fatty liver disease is associated with brain function disruption in type 2 diabetes patients without cognitive impairment. Diabetes Obes Metab 2024; 26:650-662. [PMID: 37961040 DOI: 10.1111/dom.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
AIMS To investigate the neural static and dynamic intrinsic activity of intra-/inter-network topology among patients with type 2 diabetes (T2D) with non-alcoholic fatty liver disease (NAFLD) and those without NAFLD (T2NAFLD group and T2noNAFLD group, respectively) and to assess the relationship with metabolism. METHODS Fifty-six patients with T2NAFLD, 78 with T2noNAFLD, and 55 healthy controls (HCs) were recruited to the study. Participants had normal cognition and underwent functional magnetic resonance imaging scans, clinical measurements, and global cognition evaluation. Independent component analysis was used to identify frequency spectrum parameters, static functional network connectivity, and temporal properties of dynamic functional network connectivity (P < 0.05, false discovery rate-corrected). Statistical analysis involved one-way analysis of covariance with post hoc, partial correlation and canonical correlation analyses. RESULTS Our findings showed that: (i) T2NAFLD patients had more disordered glucose and lipid metabolism, had more severe insulin resistance, and were more obese than T2noNAFLD patients; (ii) T2D patients exhibited disrupted brain function, as evidenced by alterations in intra-/inter-network topology, even without clinically measurable cognitive impairment; (iii) T2NAFLD patients had more significant reductions in the frequency spectrum parameters of cognitive executive and visual networks than those with T2noNAFLD; and (iv) altered brain function in T2D patients was correlated with postprandial glucose, high-density lipoprotein cholesterol, and waist-hip ratio. CONCLUSION This study may provide novel insights into neuroimaging correlates for underlying pathophysiological processes inducing brain damage in T2NAFLD. Thus, controlling blood glucose levels, lipid levels and abdominal obesity may reduce brain damage risk in such patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
107
|
Yao Y, Chen Y, Chen H, Pan X, Li X, Liu W, Bahetjan Y, Lu B, Pang K, Yang X, Pang Z. Black mulberry extract inhibits hepatic adipogenesis through AMPK/mTOR signaling pathway in T2DM mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117216. [PMID: 37741475 DOI: 10.1016/j.jep.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Black mulberry (Morus nigra L.) is an ancient dual-use plant resource for medicine and food. It is widely used in Uyghur folklore for hypoglycemic treatment and is a folkloric plant medicine with regional characteristics. However, the mechanism of Morus nigra L. treatment in diabetes mellitus has not been fully understood, especially from the perspective of hepatic lipid accumulation is less reported. OBJECTIVE OF THIS STUDY This study was to explore the potential of Morus nigra L. fruit ethyl acetate extract (MNF-EA) to reduce blood sugar levels by preventing the production of hepatic lipogenesis and to provide more evidence for the use of MNF-EA as an adjuvant therapy for type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In this study, the chemical composition of MNF-EA was first analyzed and characterized using UPLC-Q-TOF-MS technique. A series of in vitro studies were performed with HepG2-IR cells and oleic acid (OA)-induced HepG2 cells, including MTT assay, glucose uptake assay, oil red O staining and Western blot analysis. The STZ-HFD co-induced T2DM mice were employed for in vivo research, including physical indices, biochemical analysis, histopathological examination, and Western blot analysis. RESULTS The 19 compounds in MNF-EA were identified by UPLC-Q-TOF-MS technique. Insulin resistance (IR) and lipid droplet accumulation in HepG2 cells were greatly improved by MNF-EA treatment, which had no appreciable side effects at the dosage used. In T2DM mice, MNF-EA decreased fasting blood glucose (FBG), saved body weight, and significantly improved oral glucose tolerance (OGTT) and IR status. In addition, MNF-EA treatment also improved lipid metabolism disorders and liver function in T2DM mice. Histopathological sections showed that MNF-EA treatment reduced hepatic steatosis. Mechanistic studies suggest that MNF-EA acted through the AMPK/mTOR pathway. CONCLUSIONS These results suggest that MNF-EA has great potential to reverse the metabolic abnormalities associated with T2DM by regulating the AMPK/mTOR signaling pathway. Therefore, we believe that MNF is a promising medicinal and food-homologous agent to improve T2DM.
Collapse
Affiliation(s)
- Yudi Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yang Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huijian Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yerlan Bahetjan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Kejian Pang
- College of Biological and Geographical Sciences, Yili Normal University, Yining, 835000, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
108
|
Krznaric J, Papic N, Vrsaljko N, Gjurasin B, Kutlesa M, Vince A. Steatotic Liver Disease and Sepsis Outcomes-A Prospective Cohort Study (SepsisFAT). J Clin Med 2024; 13:798. [PMID: 38337491 PMCID: PMC10856507 DOI: 10.3390/jcm13030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Background: While it has been shown that steatotic liver disease (SLD) is associated with systemic changes in immune response, the impact of SLD on sepsis outcomes has not yet been established. The aim of this study was to investigate the association between SLD and sepsis severity and outcomes. Methods: A prospective observational study included consecutively hospitalized adult patients with community-acquired sepsis during a 16-month period. Results: Of the 378 included patients (49.5% male, median age of 69, IQR 57-78 years), 174 (46%) were diagnosed with SLD. Patients with SLD were older and more frequently fulfilled the criteria for metabolic syndrome. There were no differences in the source and etiology of sepsis between the groups. Patients with SLD exhibited a higher incidence of acute kidney injury (29.3% vs. 17.6%), the need for renal replacement therapy (16.1% vs. 8.8%), and more frequent use of invasive mechanical ventilation (29.3% vs. 18.1%). In-hospital mortality was significantly higher in the SLD group (18.39% vs. 9.8%). The multivariable analysis indicated that SLD was associated with mortality (HR 2.82, 95% CI 1.40-5.71) irrespective of the other elements within metabolic syndrome. Conclusions: SLD might be associated with higher sepsis in-hospital mortality, and more frequent development of acute kidney and respiratory insufficiency requiring more critical care support.
Collapse
Affiliation(s)
- Juraj Krznaric
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Neven Papic
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Nina Vrsaljko
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Branimir Gjurasin
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Marko Kutlesa
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Adriana Vince
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
109
|
Liu G, Yang L, Tang Y, Lin J, Wang F, Shen J, Chang B, Kong X. Study on the action mechanism of the Polygonum perfoliatum L. on non-alcoholic fatty liver disease, based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117330. [PMID: 37863399 DOI: 10.1016/j.jep.2023.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) holds that non-alcoholic fatty liver disease (NAFLD) belong to the category of "thoracic fullness". Polygonum perfoliatum L. (PPL), a Chinese medicinal herb with the effect of treating thoracic fullness, was recorded in the ancient Chinese medicine book "Supplements to Compendium of Materia Medica". It has been used since ancient times to treat NAFLD. However, the underlying mechanism and active components of PPL against NAFLD remains unclear. AIM OF STUDY To identify the main active components and the anti-NAFLD mechanism of PPL. MATERIALS AND METHODS Network pharmacology, UPLC/QE-HFX analysis, and molecular docking were employed to determine the main bioactive compounds and key targets of PPL for the NAFLD treatment. This effect was further validated with administration of PPL (200 mg/kg and 400 mg/kg) to NAFLD model mice for 5 weeks. Systemic signs of obesity, biochemical parameters, and histological changes were characterized. Immunohistochemistry, western blot, and PCR analysis were conducted to elucidate the mechanistic pathways through which PPL exerts its effects. RESULTS Network pharmacology revealed 77 crossover genes between the PPL and NAFLD. The kyoto encyclopedia of genes and genomes (KEGG) analysis show that PPL treat NAFLD mainly regulating glucose-lipid metabolism mediated by PI3K/AKT signal pathway. The Gene Ontology (GO) enrichment analysis show that PPL treat NAFLD mainly regulating inflammation mediated by cytokine-mediated signaling pathway. In accordance with the anticipated outcomes, administration of PPL in a dose-dependent manner effectively mitigated insulin resistance induced by a high-fat diet (HFD) by activating the PI3K/AKT signaling pathway. Histopathological evaluation corroborated the hepatoprotective effects of PPL against HFD-induced hepatic steatosis, as evidenced by the inhibition of de novo fatty acid synthesis and promotion of fatty acid β-oxidation (FAO). Further research showed that PPL blocked cytokine production by inhibiting the NF-κB pathway, thereby reducing immune cell infiltration. Furthermore, five flavonoids from PPL, including quercetin, baicalein, galangin, apigenin, and genistein were identified as key compounds based on ingredient-target-pathway network analysis. Molecular docking show that these active compounds have favorable binding interactions with AKT1, PIK3R1, and MAPK1, further confirming the impact of PPL on the PI3K/AKT pathway. CONCLUSIONS Through the combination of network pharmacology prediction and experimental validation, this work determined that therapeutic effect of PPL on NAFLD, and such protective effect is mediated by activating PI3K/AKT-mediated glucolipid metabolism pathway and hepatic NF-κB-mediated cytokine signaling pathway.
Collapse
Affiliation(s)
- Guanjie Liu
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Liu Yang
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yifei Tang
- Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jie Shen
- Department of pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Chang
- Department of Pathology, Shuguang Hospital, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| |
Collapse
|
110
|
Baek S, Kim J, Nam MH, Park SM, Lee TS, Kang SY, Kim JY, Yoon HJ, Kwon SH, Park J, Lee SJ, Oh SJ, Lim K, Kim BS, Lee KP, Moon BS. Saengmaeksan, a traditional polyherbal formulation containing Panax ginseng, improves energy metabolism during exercise. PLoS One 2024; 19:e0296487. [PMID: 38285695 PMCID: PMC10824426 DOI: 10.1371/journal.pone.0296487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Saengmaeksan (SMS), a representative oriental medicine that contains Panax ginseng Meyer, Liriope muscari, and Schisandra chinensis (1:2:1), is used to improve body vitality and enhance physical activity. However, there is limited scientific evidence to validate the benefits of SMS. Here, we investigated the in vitro and in vivo regulatory effects of SMS and its constituents on energy metabolism and the underlying molecular mechanisms. For this, quantitative real-time polymerase chain reaction, 3D holotomographic microscopy, western blotting, and glucose uptake experiments using 18F-fluoro-2-deoxy-D-glucose (18F-FDG) were performed using L6 cells to investigate in vitro energy metabolism changes. In addition, 18F-fluorocholine (18F-FCH) and 18F-FDG positron emission tomography/computed tomography (PET/CT) analyses, immunohistochemistry, and respiratory gas analysis were performed in mice post-endurance exercise on a treadmill. In the energy metabolism of L6 cells, a significant reversal in glucose uptake was observed in the SMS-treated group, as opposed to an increase in uptake over time compared to the untreated control group. Furthermore, P. ginseng alone and SMS significantly decreased the volume of lipid droplets. SMS also regulated the phosphorylation of extracellular signal-regulated kinase (ERK), phosphorylation of p38, mitochondrial morphology, and the expression of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) in H2O2-stimulated L6 cells. In addition, SMS treatment was found to regulate whole body and muscle energy metabolism in rats subjected to high-intensity exercise, as well as glucose and lipid metabolism in skeletal muscle. Therefore, SMS containing P. ginseng ameliorated imbalanced energy metabolism through oxidative stress-induced APE/Ref-1 expression. SMS may be a promising supplemental option for metabolic performance.
Collapse
Affiliation(s)
- Suji Baek
- Research & Development Center, UMUST R&D Corporation, Seoul, Korea
| | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Tae Sup Lee
- Division of RI Applications, Korea Institute Radiological and Medical Sciences, Seoul, Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kang Pa Lee
- Research & Development Center, UMUST R&D Corporation, Seoul, Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
111
|
Lubenia PVN, Mendoza ER, Lao AR. Comparative analysis of kinetic realizations of insulin signaling. J Theor Biol 2024; 577:111672. [PMID: 37984585 DOI: 10.1016/j.jtbi.2023.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Several studies have developed dynamical models to understand the underlying mechanisms of insulin signaling, a signaling cascade that leads to the translocation of glucose, the human body's main source of energy. Fortunately, reaction network analysis allows us to extract properties of dynamical systems without depending on their model parameter values. This study focuses on the comparison of insulin signaling in healthy state (INSMS or INSulin Metabolic Signaling) and in type 2 diabetes (INRES or INsulin RESistance) using reaction network analysis. The analysis uses network decomposition to identify the different subsystems involved in insulin signaling (e.g., insulin receptor binding and recycling, GLUT4 translocation, and ERK signaling pathway, among others). Furthermore, results show that INSMS and INRES are similar with respect to some network, structo-kinetic, and kinetic properties. Their differences, however, provide insights into what happens when insulin resistance occurs. First, the variation in the number of species involved in INSMS and INRES suggests that when irregularities occur in the insulin signaling pathway, other complexes (and, hence, other processes) get involved, characterizing insulin resistance. Second, the loss of concordance exhibited by INRES suggests less restrictive interplay between the species involved in insulin signaling, leading to unusual activities in the signaling cascade. Lastly, GLUT4 losing its absolute concentration robustness in INRES may signify that the transporter has lost its reliability in shuttling glucose to the cell, inhibiting efficient cellular energy production. This study also suggests possible applications of the equilibria parametrization and network decomposition, resulting from the analysis, to potentially establish absolute concentration robustness in a species.
Collapse
Affiliation(s)
- Patrick Vincent N Lubenia
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines.
| | - Eduardo R Mendoza
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Department of Mathematics and Statistics, De La Salle University, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Munich, Germany.
| | - Angelyn R Lao
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Department of Mathematics and Statistics, De La Salle University, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Center for Complexity and Emerging Technologies, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines.
| |
Collapse
|
112
|
Mai Y, Meng L, Deng G, Qin Y. The Role of Type 2 Diabetes Mellitus-Related Risk Factors and Drugs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:159-171. [PMID: 38268569 PMCID: PMC10806369 DOI: 10.2147/jhc.s441672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
With changes in modern lifestyles, type 2 diabetes mellitus (T2DM) has become a global epidemic metabolic disease, and hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. T2DM is a complex metabolic disorder and has been considered an independent risk factor for HCC. Growing evidence supports that T2DM-related risk factors facilitate hepatocarcinogenesis via abundant mechanisms. With the wide implementation of microbiomics, transcriptomics, and immunotherapy, the understanding of the complex mechanisms of intestinal flora and immune cell subsets have advanced tremendously in T2DM-related HCC, uncovering new findings in T2DM-related HCC patients. In addition, reports have indicated the different effects of anti-DM drugs on the progression of HCC. In this review, we summarize the effects of major T2DM-related risk factors (including hyperglycemia, hyperinsulinemia, insulin, chronic inflammation, obesity, nonalcoholic fatty liver disease, gut microbiota and immunomodulation), and anti-DM drugs on the carcinogensis and progression of HCC, as well as their potential molecular mechanisms. In addition, other factors (miRNAs, genes, and lifestyle) related to T2DM-related HCC are discussed. We propose a refined concept by which T2DM-related risk factors and anti-DM drugs contribute to HCC and discuss research directions prompted by such evidence worth pursuing in the coming years. Finally, we put forward novel therapeutic approaches to improve the prognosis of T2DM-related HCC, including exploiting novel diagnostic biomarkers, combination therapy with immunocheckpoint inhibitors, and enhancement of the standardized management of T2DM patients.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ganlu Deng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
113
|
Moon ME, Jung DH, Heo SJ, Park B, Lee YJ. Oxidative Balance Score and New-Onset Type 2 Diabetes Mellitus in Korean Adults without Non-Alcoholic Fatty Liver Disease: Korean Genome and Epidemiology Study-Health Examinees (KoGES-HEXA) Cohort. Antioxidants (Basel) 2024; 13:107. [PMID: 38247531 PMCID: PMC10812514 DOI: 10.3390/antiox13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The oxidative balance score (OBS) is a novel composite of pro- and anti-oxidative markers for assessing the risk of cardiometabolic diseases and non-alcoholic fatty liver disease (NAFLD). However, it has not yet been established whether the OBS is related to type 2 diabetes mellitus (T2DM), especially in a population without NALFD. Therefore, we aimed to investigate the longitudinal effect of the OBS on T2DM in a large cohort of Korean adults without NALFD. Data were assessed from 9798 participants without NALFD from the Korean Genome and Epidemiology Study-Health Examinees (KoGES-HEXA) cohort. The participants were divided into three groups according to OBS tertiles, identified as T1-T3. We prospectively assessed the hazard ratios (HRs) with 95% confidence intervals (CIs) for new-onset T2DM using multivariable Cox proportional hazard regression models over 6 years following the baseline survey. During the mean 3.5 years of follow-up, 145 individuals (1.48%; 56 men and 89 women) developed T2DM. The HRs of T2DM for the OBS tertiles were 0.79 (95% CI, 0.53-1.18) and 0.60 (95% CI, 0.39-0.93) in the T2 and T3 groups after adjusting for metabolic parameters in subjects without NALFD, respectively; however, the T2 group did not show statistical significance toward a decrease in incident T2DM. A low OBS may be a useful predictive marker in new-onset T2DM for middle-aged and older subjects without NALFD. This implies that the OBS could be an additional valuable tool for assessing the incidence of T2DM among individuals without NAFLD.
Collapse
Affiliation(s)
- Mid-Eum Moon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.-E.M.); (D.H.J.); (B.P.)
- Department of Family Medicine, Gangnam Severance Hospital, Seoul 06273, Republic of Korea
| | - Dong Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.-E.M.); (D.H.J.); (B.P.)
- Department of Family Medicine, Yongin Severance Hospital, Yongin 16995, Republic of Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.-E.M.); (D.H.J.); (B.P.)
- Department of Family Medicine, Yongin Severance Hospital, Yongin 16995, Republic of Korea
| | - Yong Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.-E.M.); (D.H.J.); (B.P.)
- Department of Family Medicine, Gangnam Severance Hospital, Seoul 06273, Republic of Korea
| |
Collapse
|
114
|
Zhang X, Yang F, Zhang Y, Song X, Xue S, Chang Y, Zhong Y, Dou Y, Wang Y. Modified Buyang Huanwu Decoction alleviates diabetic liver injury via inhibiting oxidative stress in db/db mice. Am J Transl Res 2024; 16:39-50. [PMID: 38322549 PMCID: PMC10839391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES In diabetes, chronic hyperglycemia increases the overactivation of oxidative phosphorylation of mitochondria in the liver, resulting in oxidative stress (OS) damage. The Nrf2 signaling pathway plays a key role in preventing hepatic oxidative injury and inflammation. This study aims to investigate the therapeutic effect and mechanism of Modified Buyang Huanwu Decoction (mBYHWD) on diabetic liver injury (DLI) by regulating oxidative stress mediated by Nrf2 signaling pathway. METHODS The experiment was divided into three groups: a control group (db/m mice, Con), a diabetes model group (db/db mice, Mod), and a traditional Chinese medicine group (db/m mice, mBYHWD). Post-treatment, serum from each group was analyzed to assess changes of blood glucose, blood lipid, and liver function. These results were combined with data mining to explore the possible pathogenesis of DLI. Liver tissues were collected to observe the pathological morphology and detect related proteins. RESULTS The results demonstrated that mBYHWD significantly reduced blood lipids and improved liver function following diabetic liver injury. The histopathological results demonstrated that mBYHWD could significantly ameliorate damage of diabetic hepatocytes. Protein analysis revealed that mBYHWD treatment significantly increased the expression of antioxidant proteins in diabetic liver tissue and inhibited inflammation. CONCLUSIONS The therapeutic mechanism of mBYHWD on DLI may involve activating the Nrf2 signaling pathway to improve oxidative stress, inhibit inflammation, and reduce liver tissue fibrosis.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Fan Yang
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Xiaodan Song
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Sisi Xue
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Yi Chang
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Yan Zhong
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Yongqing Dou
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| | - Yuehua Wang
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
| |
Collapse
|
115
|
Li J, He J, He H, Wang X, Zhang S, He Y, Zhang J, Yuan C, Wang H, Xu D, Pan C, Yu H, Zou K. Sweet triterpenoid glycoside from Cyclocarya paliurus ameliorates obesity-induced insulin resistance through inhibiting the TLR4/NF-κB/NLRP3 inflammatory pathway. Curr Res Food Sci 2024; 8:100677. [PMID: 38303998 PMCID: PMC10831159 DOI: 10.1016/j.crfs.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Our prophase studies have manifested that the sweet triterpenoid glycoside from the leaves of Cyclocarya paliurus (CPST) effectively improved the disorders of glucolipid metabolism in vitro and in patients. The current purpose was to further detect its mechanisms involved. The results demonstrated that CPST could ameliorate high-fat diet (HFD)-induced insulin resistance (IR), which was linked to reducing HFD-induced mice's body weight, serum glucose (GLUO), triglyceride (TG), total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C), lowering the area under the oral glucose tolerance curve and insulin tolerance, elevating the percentage of brown adipose, high-density lipoprotein cholesterol (HDL-C), reducing fat droplets of adipocytes in interscapular brown adipose tissue (iBAT) and cross-sectional area of adipocytes. Further studies manifested that CPST obviously downregulated TLR4, MyD88, NLRP3, ASC, caspase-1, cleased-caspase-1, IL-18, IL-1β, TXNIP, and GSDMD protein expressions and p-NF-кB/NF-кB ratio in iBAT. These aforementioned findings demonstrated that CPST ameliorated HFD induced IR by regulating TLR4/NF-κB/NLRP3 signaling pathway, which in turn enhancing insulin sensitivity and glucose metabolism.
Collapse
Affiliation(s)
- Jie Li
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Junyu He
- Basic Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiao Wang
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Shuran Zhang
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yumin He
- Basic Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jihong Zhang
- Traditional Chinese Medicine Hospital of China Three Gorges University & Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, Yichang, Hubei, 443001, China
| | - Chengfu Yuan
- Basic Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - HongWu Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China
| | - Daoxiang Xu
- Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang, 325005, China
| | - Chaowang Pan
- Medical College of Ezhou Vocational University, Ezhou, Hubei, 436000, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
116
|
Kuo TC, Lu YB, Yang CL, Wang B, Chen LX, Su CP. Association of insulin resistance indicators with hepatic steatosis and fibrosis in patients with metabolic syndrome. BMC Gastroenterol 2024; 24:26. [PMID: 38195414 PMCID: PMC10775571 DOI: 10.1186/s12876-023-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND To investigate the association of four insulin resistance (IR) indicators with hepatic steatosis and fibrosis in patients with metabolic syndrome (MetS), as well as to compare the diagnostic value of these indicators in identifying hepatic steatosis and fibrosis in individuals with MetS. METHODS This cross-sectional study used the data from the National Health and Nutrition Examination Survey 2017-2018. IR indicators included homeostasis model assessment of IR (HOMA-IR), triglyceride/glucose (TyG) index, triglyceride glucose-waist-to-height ratio (TyG-WHtR), and metabolic score for IR (METS-IR). The main endpoints of this study were hepatic steatosis and hepatic fibrosis. Weighted univariate and multivariate logistic regression models were employed to evaluate the association between four IR indicators and both hepatic steatosis, hepatic fibrosis. The efficacy of various IR indicators in the detection of hepatic steatosis and hepatic fibrosis were assessed using receiver operating characteristics curve (ROC). RESULTS A total of 876 participants with MetS were enrolled. Among the participants, hepatic steatosis was observed in 587 MetS individuals, while hepatic fibrosis was identified in 151 MetS individuals. In multivariate logistic regression model, HOMA-IR, TyG, TyG-WHtR, and METS-IR were related to the increased odd of hepatic steatosis. Additionally, HOMA-IR, TyG-WHtR, and METS-IR were associated with increased odd of hepatic fibrosis. According to the ROC analysis, the area under the curve (AUC) of the TyG-WHtR (AUC = 0.705, 95%CI: 0.668-0.743) was higher than HOMA-IR (AUC = 0.693, 95%CI: 0.656-0.730), TyG (AUC = 0.627, 95%CI: 0.587-0.666), and METS-IR (AUC = 0.685, 95%CI: 0.648-0.722) for identifying hepatic steatosis of MetS patients. Likewise, TyG-WHtR was also higher than HOMA-IR, TyG, and METS-IR for identifying hepatic fibrosis of MetS patients. CONCLUSION HOMA-IR, TyG-WHtR, and METS-IR may be associated with the risk of hepatic steatosis and fibrosis among the U.S. adult population with MetS. In addition, TyG-WHtR may have a good predictive value for hepatic steatosis and hepatic fibrosis.
Collapse
Affiliation(s)
- Tzu-Chia Kuo
- Department of Chinese Medicine, Xiamen Chang Gung Hospital, No.123 Xiafei Road, Haicang District, Xiamen, 361022, Fujian, China.
| | - Yang-Bor Lu
- Department of Digestive Diseases, Xiamen Chang Gung Hospital, Xiamen, 361022, Fujian, China
| | - Chieh-Lun Yang
- Department of Nephrology, Xiamen Chang Gung Hospital, Xiamen, 361022, Fujian, China
| | - Bin Wang
- Department of Chinese Medicine, Xiamen Chang Gung Hospital, No.123 Xiafei Road, Haicang District, Xiamen, 361022, Fujian, China
| | - Lin-Xin Chen
- Department of Chinese Medicine, Xiamen Chang Gung Hospital, No.123 Xiafei Road, Haicang District, Xiamen, 361022, Fujian, China
| | - Ching-Ping Su
- Department of Chinese Medicine, Xiamen Chang Gung Hospital, No.123 Xiafei Road, Haicang District, Xiamen, 361022, Fujian, China
| |
Collapse
|
117
|
Mamedov M, Druk I, Arabidze G, Akhundova K. Continuum of type 2 diabetes mellitus and its comorbidity with other somatic diseases. RUSSIAN JOURNAL OF PREVENTIVE MEDICINE 2024; 27:123. [DOI: 10.17116/profmed202427091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
118
|
Kim WJ, Kil BJ, Lee C, Kim TY, Han G, Choi Y, Kim K, Shin CH, Park SY, Kim H, Kim M, Huh CS. B. longum CKD1 enhances the efficacy of anti-diabetic medicines through upregulation of IL- 22 response in type 2 diabetic mice. Gut Microbes 2024; 16:2319889. [PMID: 38391178 PMCID: PMC10896159 DOI: 10.1080/19490976.2024.2319889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
The gut microbiota plays a pivotal role in metabolic disorders, notably type 2 diabetes mellitus (T2DM). In this study, we investigated the synergistic potential of combining the effects of Bifidobacterium longum NBM7-1 (CKD1) with anti-diabetic medicines, LobeglitazoneⓇ (LO), SitagliptinⓇ (SI), and MetforminⓇ (Met), to alleviate hyperglycemia in a diabetic mouse model. CKD1 effectively mitigated insulin resistance, hepatic steatosis, and enhanced pancreatic β-cell function, as well as fortifying gut-tight junction integrity. In the same way, SI-CKD1 and Met- CKD1 synergistically improved insulin sensitivity and prevented hepatic steatosis, as evidenced by the modulation of key genes associated with insulin signaling, β-oxidation, gluconeogenesis, adipogenesis, and inflammation by qRT-PCR. The comprehensive impact on modulating gut microbiota composition was observed, particularly when combined with MetforminⓇ. This combination induced an increase in the abundance of Rikenellaceae and Alistipes related negatively to the T2DM incidence while reducing the causative species of Cryptosporangium, Staphylococcaceae, and Muribaculaceae. These alterations intervene in gut microbiota metabolites to modulate the level of butyrate, indole-3-acetic acid, propionate, and inflammatory cytokines and to activate the IL-22 pathway. However, it is meaningful that the combination of B. longum NBM7-1(CKD1) reduced the medicines' dose to the level of the maximal inhibitory concentrations (IC50). This study advances our understanding of the intricate relationship between gut microbiota and metabolic disorders. We expect this study to contribute to developing a prospective therapeutic strategy modulating the gut microbiota.
Collapse
Affiliation(s)
- Won Jun Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Bum Ju Kil
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Chaewon Lee
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Tae Young Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea
| | - Goeun Han
- Department of Animal Science, Pusan National University, Miryang, South Korea
| | - Yukyung Choi
- Research Institute, Chong Kun Dang Bio Co Ltd, Ansan, South Korea
| | - Kyunghwan Kim
- Research Institute, Chong Kun Dang Bio Co Ltd, Ansan, South Korea
| | - Chang Hun Shin
- Research Institute, Chong Kun Dang Bio Co Ltd, Ansan, South Korea
| | - Seung-Young Park
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
- Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea
| | - Chul Sung Huh
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Graduate School of International Agricultural Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
119
|
Wang D, Yang L, Ding W, Chen Z, Yang X, Jiang Y, Liu Y. Licochalcone A alleviates abnormal glucolipid metabolism and restores energy homeostasis in diet-induced diabetic mice. Phytother Res 2024; 38:196-213. [PMID: 37850242 DOI: 10.1002/ptr.8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Licochalcone A (LCA) is a bioactive chalcone compound identified in licorice. This study aimed to investigate the effects of LCA on glucolipid metabolism and energy homeostasis, as well as the underlying mechanisms. Blood glucose levels, oral glucose tolerance, serum parameters, and histopathology were examined in high-fat-high-glucose diet (HFD)-induced diabetic mice, with metformin as a positive control. Additionally, changes in key markers related to glucolipid metabolism and mitochondrial function were analyzed to comprehensively assess LCA's effects on metabolism. The results showed that LCA alleviated metabolic abnormalities in HFD-induced diabetic mice, which were manifested by suppression of lipogenesis, promotion of lipolysis, reduction of hepatic steatosis, increase in hepatic glycogenesis, and decrease in gluconeogenesis. In addition, LCA restored energy homeostasis by promoting mitochondrial biogenesis, enhancing mitophagy, and reducing adenosine triphosphate production. Mechanistically, the metabolic benefits of LCA were associated with the downregulation of mammalian target of rapamycin complex 1 and activation of adenosine monophosphate-activated protein kinase, the two central regulators of metabolism. This study demonstrates that LCA can alleviate abnormal glucolipid metabolism and restore energy balance in diet-induced diabetic mice, highlighting its therapeutical potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
120
|
Huynh DJ, Renelus BD, Jamorabo DS. Reduced mortality and morbidity associated with metformin and SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and cirrhosis. BMC Gastroenterol 2023; 23:450. [PMID: 38114915 PMCID: PMC10731715 DOI: 10.1186/s12876-023-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Evidence for dual antidiabetic therapy in type 2 diabetes mellitus patients with cirrhosis is limited. This study compared 5-year mortality, composite hepatic decompensation risk, and hepatocellular carcinoma occurrence in patients with diabetes and cirrhosis who were either on metformin monotherapy or on dual metformin and sodium-glucose co-transporter-2 inhibitor (SGLT2-I) therapy. METHODS This retrospective study used the TriNetX Research Network to identify propensity score-matched patients treated with either metformin or dual metformin and SGLT2-I therapy. Our outcomes were all-cause mortality, a composite of hepatic decompensation events, and hepatocellular carcinoma (HCC) occurrence over 5 years. We estimated hazard ratios within each cohort with 95% confidence intervals (CI) and Kaplan-Meier estimates for time-to-event distributions with Log-rank tests. We were able to stratify our cohorts by age, sex, race, and ethnicity. We further investigated a subset of diabetic patients with cirrhosis due to MASH. RESULTS In our propensity score-matched cohorts of type 2 diabetes patients with cirrhosis, those on dual metformin and SGLT2-I therapy had decreased risk for mortality (HR 0.57, 95%CI 0.41-0.81), reduced composite risk of becoming decompensated (HR 0.63, 95%CI 0.43-0.93) and less than half the risk for developing HCC (HR 0.43, 95%CI 0.21-0.88) compared to those on mono metformin therapy. We did not find a difference between mono or dual therapy treatment for mortality, decompensation, or HCC risks in the subset of patients with MASH cirrhosis. CONCLUSION Dual metformin and SGLT2-I treatment in type 2 diabetes patients with cirrhosis are associated with improved mortality and hepatic complications.
Collapse
Affiliation(s)
- Daniel J Huynh
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Benjamin D Renelus
- Division of Gastroenterology and Hepatology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel S Jamorabo
- Division of Gastroenterology and Hepatology, Stony Brook Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY, 11794-8167, USA.
| |
Collapse
|
121
|
Cai J, Zhu Y, Li X, Deng G, Han Y, Yuan F, Yi G, Xia X. Liposomal Silybin Improves Glucose and Lipid Metabolisms in Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease via AMPK/TGF-β1/Smad Signaling. TOHOKU J EXP MED 2023; 261:257-265. [PMID: 37344419 DOI: 10.1620/tjem.2023.j050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Improving hepatic glucose and lipid metabolisms is an important strategy to treat type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease (T2DM-NAFLD). Silybin (SLB) has the potential hepatoprotection, while its oral bioavailability is poor. This study aims to investigate the functional role and mechanism of liposomal SLB in modulating glucose/lipid metabolism in T2DM-NAFLD. SLB was prepared by thin film dispersion method and characterized using dynamic light scattering, scanning electron microscope, high performance liquid chromatography and zeta potential analyzer. A rat model of T2DM-NAFLD was used to determine the role of liposomal SLB in regulating glycolipid metabolism and hepatic damage. Rat primary hepatocytes were used to demonstrate the hepatoprotection mechanism of liposomal SLB. The encapsulation efficiency was more than 80%, which showed the average particle size of 119.76 nm. Also, the average Zeta potential was -4.76 mV. These liposomes were spherical. In rats with T2DM-NAFLD, liposomal SLB alleviated insulin resistance and lipid metabolism, thereby improving hepatic lipid accumulation, inflammation and fibrosis. Besides, liposomal SLB elevated AMPK phosphorylation, and decreased collagen I/III, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and the phosphorylation of Smad2/3. In hepatocyte model, compound C partially reversed the effects of liposomal SLB on cell viability, glycolipid metabolism and AMPK/TGF-β1/Smad pathway activation. Liposomal SLB ameliorates hepatic glucose and lipid metabolisms in T2DM-NAFLD via activating AMPK/TGF-β1/Smad pathway, providing an efficient strategy for treating T2DM-NAFLD.
Collapse
Affiliation(s)
- Jialuo Cai
- School of Pharmacy, Hunan University of Chinese Medicine
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine
| | - Yilin Zhu
- Graduate School, Hunan University of Chinese Medicine
| | - Xiaoping Li
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine
| | - Guiming Deng
- Scientific Research Section, The First Hospital of Hunan University of Chinese Medicine
| | - Yuanshan Han
- Scientific Research Section, The First Hospital of Hunan University of Chinese Medicine
| | - Feiyun Yuan
- Library, Hunan University of Chinese Medicine
| | - Gangqiang Yi
- Party Committee, Hunan University of Chinese Medicine
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine
| |
Collapse
|
122
|
Sahu P, Chhabra P, Mehendale AM. A Comprehensive Review on Non-Alcoholic Fatty Liver Disease. Cureus 2023; 15:e50159. [PMID: 38186528 PMCID: PMC10771633 DOI: 10.7759/cureus.50159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated liver disease (MASLD), is a spectrum of liver disease. It can be identified by the fact that considerable amount of hepatocytes with minimal or no alcohol use have steatosis. Because of its rising incidence along with increasing rates of obesity, metabolic syndromes, and diabetes mellitus type 2, NAFLD is expected to overtake all other causes of cirrhosis over the next decade, necessitating liver transplantation. Nevertheless, heart disease persists as the most prevalent manifestation of mortality, with only a small percentage experiencing fibrosis and complications associated with the liver. Pathologically, NAFLD is linked to lipid toxicity, oxidative stress, lipid deposits, and endoplasmic reticulum stress. A healthy diet, physical exercise, and a decrease in weight are advised by current international guidelines for the treatment of NAFLD, along with a limited number of medicinal therapies, including vitamin E and pioglitazone. Various natural substances have also been identified as NAFLD in vivo and in vitro regulators. The frequency, complexity of the pathophysiology, lack of authorised medications, and difficulty in interpretation of NAFLD have made it a major problem. This article assesses MASLD's pathophysiology, diagnosis, treatment, and epidemiology. This study also reviews a few natural substances that have been shown to have therapeutic advantages for NAFLD.
Collapse
Affiliation(s)
- Prerna Sahu
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Science, Wardha, IND
| | - Pratyaksh Chhabra
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Ashok M Mehendale
- Preventive Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
123
|
Niu YN, Guo C, Guo XZ, Wei Q, Zhou X, Li M, Xia JN, Chen LP. High-resolution magnetic resonance imaging investigation of the connection between the triglyceride-glucose index and intracranial arterial remodeling: a retrospective cross-sectional study. Quant Imaging Med Surg 2023; 13:8504-8516. [PMID: 38106280 PMCID: PMC10722004 DOI: 10.21037/qims-23-752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Background Insulin resistance (IR) is associated with atherosclerotic plaque progression and the occurrence of stroke, with the triglyceride-glucose (TyG) index serving as a surrogate indicator. The present study aimed to investigate the association between TyG index levels and intracranial arterial remodeling in patients with acute ischemic stroke (AIS). Methods Patients with AIS who visited the Neurology Department of the Second Hospital of Hebei Medical University and underwent high-resolution magnetic resonance imaging (HR-MRI) between September 2018 and October 2021 were enrolled. A total of 123 patients were finally included in the study, with 81 excluded. The TyG index levels were measured, and the characteristics of intracranial atherosclerotic stenosis (ICAS) plaques were evaluated using HR-MRI. A logistic regression model was employed to analyze the relationship between TyG index levels and remodeling mode. Patients were divided into two groups, positive remodeling (PR) and non-positive remodeling (non-PR), based on the remodeling index (RI). Results Patients in the PR group had a higher TyG index than those in the non-PR group {median [interquartile range (IQR)]: 9.11 (8.82-9.51) vs. 8.72 (8.30-9.23), P<0.001}. After adjusting factors such as age and gender, the TyG index was found to be significantly correlated with intracranial arterial PR [odds ratio (OR): 3.169, 95% confidence interval (CI): 1.327-7.569, P=0.009]. In non-diabetes mellitus (DM) patients, the TyG index level in the PR group was significantly higher than that in the non-PR group (8.95±0.42 vs. 8.50±0.45, P<0.001), whereas there was no such difference in patients with DM. Conclusions TyG index was correlated with intracranial vessel PR, indicating that the TyG index level may be a useful marker for predicting intracranial vessel PR.
Collapse
Affiliation(s)
- Ya-Nan Niu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan-Zhu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiao Wei
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Ning Xia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Ping Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
124
|
Arias-de la Rosa I, Ruiz-Ponce M, Cuesta-López L, Pérez-Sánchez C, Leiva-Cepas F, Gahete MD, Navarro P, Ortega R, Cordoba J, Pérez-Pampin E, González A, Lucendo AJ, Collantes-Estévez E, López-Pedrera C, Escudero-Contreras A, Barbarroja N. Clinical features and immune mechanisms directly linked to the altered liver function in patients with rheumatoid arthritis. Eur J Intern Med 2023; 118:49-58. [PMID: 37544847 DOI: 10.1016/j.ejim.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The aim of this study was to explore the impact of arthritis on liver function using different approaches in vivo and in vitro. METHODS A cross-sectional study was performed on 330 non-obese/non-T2DM subjects: 180 RA patients, 50 NAFLD non-RA patients, and 100 healthy donors (HDs). A longitudinal study was conducted on 50 RA patients treated with methotrexate for six months. Clinical and laboratory parameters and markers of liver disease were collected. Mechanistic studies were carried out in both the CIA mouse model and hepatocytes treated with anti-citrullinated protein antibodies (ACPAs). RESULTS RA patients have an increased risk of suffering from liver disease independent of obesity or T2DM. This risk was associated with factors such as insulin resistance, autoantibodies, inflammation, and component C3. Methotrexate treatment for six months was associated with liver abnormalities in those newly-diagnosed patients having CV risk factors. ACPAs induced a defective hepatocyte function, promoting IR and inflammation. The induction of arthritis in mice caused the infiltration of immune cells in the liver and increased inflammatory, apoptotic, and fibrotic processes. CONCLUSION RA patients may experience mild to moderate liver inflammation due to the infiltration of T, B cells, and macrophages, and the action of ACPAs. This is independent of obesity or diabetes and linked to systemic inflammation, and disease activity levels. The negative effects of methotrexate on liver function could be restricted to the concomitant presence of cardiovascular risk factors.
Collapse
Affiliation(s)
- I Arias-de la Rosa
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain.
| | - M Ruiz-Ponce
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - L Cuesta-López
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - C Pérez-Sánchez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - F Leiva-Cepas
- Deparment of Pathology, Reina Sofia University Hospital, Cordoba, Spain; Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Cordoba, Spain
| | - M D Gahete
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, CIBERobn, Cordoba, Spain
| | - P Navarro
- Department of Gastroenterology. Hospital General de Tomelloso, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - R Ortega
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - J Cordoba
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - E Pérez-Pampin
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto de Investigación Sanitaria - Hospital Clínico Universitario de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
| | - A González
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto de Investigación Sanitaria - Hospital Clínico Universitario de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
| | - A J Lucendo
- Department of Gastroenterology. Hospital General de Tomelloso, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - E Collantes-Estévez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - Ch López-Pedrera
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - A Escudero-Contreras
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - N Barbarroja
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain.
| |
Collapse
|
125
|
Albeshry AM, Abdulrahman Alasmari M, Alshahrani JA, Alshahrani AM, Saad Almusma A, Alfaya MA, Alfaifi AJ, Alshahrani MA, Alharbi HKD, Ali Etwdi AS, Aldawsari E, Zakir Hiyat Moazam SM, Alshaiban M, Al-Harthi SN. Prevalence of Non-alcoholic Fatty Liver Disease (NAFLD) Among Diabetic Mellitus Patients in Saudi Arabia: Systematic Review and Meta-Analysis. Cureus 2023; 15:e51092. [PMID: 38283461 PMCID: PMC10810724 DOI: 10.7759/cureus.51092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a burgeoning global health concern, closely associated with the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity. This systematic review and meta-analysis aim to comprehensively evaluate the prevalence of NAFLD in DM patients in Saudi Arabia, a country undergoing rapid socioeconomic changes. Our multifaceted search strategy identified four high-quality studies conducted between 2003 and 2022, covering hospital and community settings. The aggregate prevalence rate of NAFLD in DM patients was notably high, ranging from 47.8% to 72.8%. However, substantial heterogeneity (I² = 90.6%) was observed, indicating variability attributed to diverse study characteristics. The uniform application of ultrasound for diagnosis was noteworthy but raised concerns regarding sensitivity. This analysis underscores the urgency of public health measures for early detection and management of NAFLD in DM-prone populations in Saudi Arabia.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed A Alfaya
- Family Medicine, Armed Forces Hospital Southern Region, Khamis Mushit, SAU
| | - Ali J Alfaifi
- Family and Community Medicine, King Khalid University, Abha, SAU
| | - Mastoor A Alshahrani
- Family Medicine, Primary Health Care Corporation (PHCC) Khamis Mushait Sector, Ministry of Health, Khamis Mushit, SAU
| | | | - Ali S Ali Etwdi
- Laboratory, Armed Forces Hospital Southern Region, Khamis Mushit, SAU
| | - Eyad Aldawsari
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | | | | | | |
Collapse
|
126
|
Song K, Kim HS, Chae HW. Nonalcoholic fatty liver disease and insulin resistance in children. Clin Exp Pediatr 2023; 66:512-519. [PMID: 36634667 PMCID: PMC10694550 DOI: 10.3345/cep.2022.01312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a spectrum of liver diseases characterized by excessive fat accumulation, is the leading cause of chronic liver disease. The global prevalence of NAFLD is increasing in both adults and children. In Korea, the prevalence of pediatric NAFLD increased from 8.2% in 2009 to 12.1% in 2018 according to a national surveillance study. For early screening of pediatric NAFLD, laboratory tests including aspartate aminotransferase and alanine aminotransferase; biomarkers including hepatic steatosis index, triglyceride glucose index, and fibrosis-4 index; and imaging studies including ultrasonography and magnetic resonance imaging are required. Insulin resistance plays a major role in the pathogenesis of NAFLD, which promotes insulin resistance. Thus, the association between NAFLD and insulin resistance, diabetes mellitus, and metabolic syndrome has been reported in many studies. This review addresses issues related to the epidemiology and investigation of NAFLD as well as the association between NAFLD and insulin resistance and metabolic syndrome with focus on pediatric NAFLD.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
127
|
Guarino G, Strollo F, Della Corte T, Satta E, Gentile S. Effect of Policaptil Gel Retard on Liver Fat Content and Fibrosis in Adults with Metabolic Syndrome and Type 2 Diabetes: A Non-invasive Approach to MAFLD. Diabetes Ther 2023; 14:2089-2108. [PMID: 37789214 PMCID: PMC10597984 DOI: 10.1007/s13300-023-01478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is part of a disease spectrum ranging from steatosis to steatohepatitis (NASH), fibrosis, and cirrhosis, and when associated with metabolic syndrome (MS), and overt diabetes is defined as metabolic NAFLD (MAFLD). Some easily available, inexpensive biomarkers have been validated based on common anthropometric and laboratory parameters, including the Fatty Liver Index (FLI), the Fibrosis (FIB)-4 Score (FIB-4), and the NAFLD Fibrosis Score (NFS). In people with overweight/obesity, MS, and diabetes, the pathogenesis of fatty liver involves parameters known to be positively affected by Policaptil Gel Retard (PGR), a phytocomplex already successfully used in adolescents and adults with MS and type 2 diabetes mellitus (T2DM). This study's primary outcome was to assess PGR's ability to improve indirect validated signs of liver steatosis and fibrosis, i.e., FLI, FIB-4, and NFS Scores; as the secondary outcome, we aimed to confirm PGR's positive effects on anthropometric parameters and lipid levels and to assess any eventually occurring cytolysis liver marker changes in patients with MS/T2DM and MAFLD/NASH. METHODS In this spontaneous, longitudinal, single-blind, randomized clinical study, 245 outpatients with MS/T2DM were enrolled and randomized to PGR or placebo for 24 weeks. All underwent a low-calorie diet (20-25% less than the calories required to maintain current weight) and were encouraged to intensify physical activity. Fat distribution, liver fat content/fibrosis, and biochemical parameters were evaluated at baseline and after 24 weeks. RESULTS Our data show for the first time in adults with MAFLD that, when added to lifestyle changes including a hypocaloric diet and intensified physical activity, PGR improves lipid and glucose metabolism-related parameters, including insulin-resistance, and significantly reduces not only visceral fat but also liver fat content and related liver fibrosis severity. The prevalence of subjects with severe steatosis (FLI > 60) significantly decreased from 95.08 to 47.53% (p < 0.001) only in the treatment group, which also displayed a significantly decreased prevalence of medium-severe cases (F3-F4) from 83.62% to 52.35% (p < 0.001) and a markedly increased prevalence of low degree cases (F0-F1) from 9.01 to 42.15% (p < 0.001). CONCLUSIONS The effect of PGR is related to a reduction in the post-meal blood glucose and insulin peaks. As glucose absorption (GA) directly regulates pancreatic insulin release, the attenuated insulin response is likely due to delayed GA with decreased body weight, visceral fat, and cardiovascular risk. Also, an effect on the intestinal microbiota, already documented in the animal model, cannot be excluded, especially considering the reported PGR-related shift from the Firmicutes, notoriously responsible for increased lipid gut absorption, to the Bacteroides phylum.
Collapse
Affiliation(s)
- Giuseppina Guarino
- Campania University "Luigi Vanvitelli", Naples, Italy
- Nefrocenter Research Network & Nyx Research Start-Up, Naples, Italy
| | | | | | - Ersilia Satta
- Nefrocenter Research Network & Nyx Research Start-Up, Naples, Italy
| | - Sandro Gentile
- Campania University "Luigi Vanvitelli", Naples, Italy.
- Nefrocenter Research Network & Nyx Research Start-Up, Naples, Italy.
| |
Collapse
|
128
|
Koutentakis M, Kuciński J, Świeczkowski D, Surma S, Filipiak KJ, Gąsecka A. The Ketogenic Effect of SGLT-2 Inhibitors-Beneficial or Harmful? J Cardiovasc Dev Dis 2023; 10:465. [PMID: 37998523 PMCID: PMC10672595 DOI: 10.3390/jcdd10110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, also called gliflozins or flozins, are a class of drugs that have been increasingly used in the management of type 2 diabetes mellitus (T2DM) due to their glucose-lowering, cardiovascular (CV), and renal positive effects. However, recent studies suggest that SGLT-2 inhibitors might also have a ketogenic effect, increasing ketone body production. While this can be beneficial for some patients, it may also result in several potential unfavorable effects, such as decreased bone mineral density, infections, and ketoacidosis, among others. Due to the intricate and multifaceted impact caused by SGLT-2 inhibitors, this initially anti-diabetic class of medications has been effectively used to treat both patients with chronic kidney disease (CKD) and those with heart failure (HF). Additionally, their therapeutic potential appears to extend beyond the currently investigated conditions. The objective of this review article is to present a thorough summary of the latest research on the mechanism of action of SGLT-2 inhibitors, their ketogenesis, and their potential synergy with the ketogenic diet for managing diabetes. The article particularly discusses the benefits and risks of combining SGLT-2 inhibitors with the ketogenic diet and their clinical applications and compares them with other anti-diabetic agents in terms of ketogenic effects. It also explores future directions regarding the ketogenic effects of SGLT-2 inhibitors.
Collapse
Affiliation(s)
- Michail Koutentakis
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jakub Kuciński
- Central Clinical Hospital, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Damian Świeczkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland;
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland;
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznań, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| |
Collapse
|
129
|
Deng M, Wen Y, Yan J, Fan Y, Wang Z, Zhang R, Ren L, Ba Y, Wang H, Lu Q, Fan H. Comparative effectiveness of multiple different treatment regimens for nonalcoholic fatty liver disease with type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMC Med 2023; 21:447. [PMID: 37974258 PMCID: PMC10655371 DOI: 10.1186/s12916-023-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are closely related and mutually contribute to the disease's development. There are many treatment options available to patients. We provide a comprehensive overview of the evidence on the treatment effects of several potential interventions for NAFLD with T2DM. METHODS This systematic review and network meta-analysis included searches of PubMed, Embase, Cochrane Library, and Web of Science from inception to June 30, 2023, for randomised controlled trials of treatment of NAFLD with T2DM. We performed Bayesian network meta-analyses to summarise effect estimates of comparisons between interventions. We applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) frameworks to rate all comparative outcomes' certainty in effect estimates, categorise interventions, and present the findings. This study was registered with PROSPERO, CRD42022342373. RESULTS Four thousand three hundred and sixty-nine records were retrieved from the database and other methods, of which 24 records were eligible for studies enrolling 1589 participants. Eight clinical indicators and 14 interventions were finally in focus. Referring to the lower surface under the cumulative ranking curves (SUCRA) and the league matrix table, exenatide and liraglutide, which are also glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed excellent potential to reduce liver fat content, control glycemia, reduce body weight, and improve liver function and insulin resistance. Exenatide was more effective in reducing glycated haemoglobin (HbA1c) (mean difference (MD) 0.32, 95%CI 0.12 to 0.52), lowering BMI (MD 0.81, 95%CI 0.18 to 1.45), and lowering alanine transaminase (ALT) (MD 10.96, 95%CI 5.27 to 16.66) compared to liraglutide. However, this evidence was assessed as low certainty. Omega-3 was the only intervention that did not have a tendency to lower HbA1c, with standard-treatment (STA-TRE) as reference (MD - 0.17, 95%CI - 0.42 to 0.07). Glimepiride is the only intervention that causes an increase in ALT levels, with standard-treatment (STA-TRE) as reference (MD - 11.72, 95%CI - 17.82 to - 5.57). Based on the available evidence, the treatment effects of pioglitazone, dapagliflozin, and liraglutide have a high degree of confidence. CONCLUSIONS The high confidence mandates the confident application of these findings as guides for clinical practice. Dapagliflozin and pioglitazone are used for glycaemic control in patients with NAFLD combined with T2DM, and liraglutide is used for weight loss therapy in patients with abdominal obesity. The available evidence does not demonstrate the credibility of the effectiveness of other interventions in reducing liver fat content, visceral fat area, ALT, and insulin resistance. Future studies should focus on the clinical application of GLP-1Ras and the long-term prognosis of patients.
Collapse
Affiliation(s)
- Manjun Deng
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yonghao Wen
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - JingXin Yan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Department of Interventional Therapy, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Yichen Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Ruixia Zhang
- Department of Endocrinology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yinggui Ba
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Qian Lu
- Department of Hepatopancreatobiliary Surgery, Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China.
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China.
| |
Collapse
|
130
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
131
|
Li M, Zeng A, Tang X, Xu H, Xiong W, Guo Y. Circ_0004535/miR-1827/CASP8 network involved in type 2 diabetes mellitus with nonalcoholic fatty liver disease. Sci Rep 2023; 13:19807. [PMID: 37957232 PMCID: PMC10643362 DOI: 10.1038/s41598-023-47189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic delay in type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD) patients often leads to a serious public health problem. Understanding the pathophysiological mechanisms of disease will help develop more effective treatments. High-throughput sequencing was used to determine the expression levels of circRNAs, and mRNAs in health controls, T2DM patients, and T2DM with NAFLD patients. Differentially expressed genes (DEcircRs, DEmRs) in T2DM with NAFLD were identified by differential analysis. The miRNAs with targeted relationship with the DEcircRs and DEmRs were respectively predicted to construct a ceRNA regulatory network. In addition, enrichment analysis of DEmRs in the ceRNA network was performed. The expression of important DEcircRs was further validated by quantitative real-time PCR (qRT-PCR). The steatosis was detected in glucose treated LO2 cells by overexpressing circ_0004535, and CASP8. There were 586 DEmRs, and 10 DEcircRs in both T2DM and T2DM with NAFLD patients. Combined with predicted results and differential analysis, the ceRNA networks were constructed. The DEmRs in the ceRNA networks were mainly enriched in Toll-like receptor signaling pathway, and apoptosis. Importantly, dual luciferase experiments validated the targeted binding of hsa_circ_0004535 and hsa-miR-1827 or hsa-miR-1827 and CASP8. qRT-PCR experiments validated that hsa_circ_0004535, and CASP8 was downregulated and hsa-miR-1827 was upregulated expression in peripheral blood of T2DM with NAFLD patients. Abnormal cell morphology, and increased lipid droplet fusion were observed in the glucose treated LO2 cells, overexpression of circ_0004535 and CASP8 ameliorated these changes. Our work provides a deeper understanding of ceRNA mediated pathogenesis of T2DM with NAFLD and provides a novel strategy for treatment.
Collapse
Affiliation(s)
- Min Li
- Graduate School of Xinjiang Medical University, Xinshi District, Ürümqi, 830054, China
| | - Ai Zeng
- B Chao Room, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Xinle Tang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Hui Xu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Wei Xiong
- Department of Endocrinology, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Yanying Guo
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes Mellitus, Tianshan District, Ürümqi, 830011, China.
| |
Collapse
|
132
|
Liu B, Zhong Y, Huang D, Yang L, Wang P, Yang L, Zhang F, Li X, Liang M, Huang K, Du M. LncRNA Nron deficiency protects mice from diet-induced adiposity and hepatic steatosis. Metabolism 2023; 148:155609. [PMID: 37277059 DOI: 10.1016/j.metabol.2023.155609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Obesity, as a worldwide healthcare problem, has attracted more and more attention. Here we identify a long non-coding RNA NRON, which is highly conserved across species, as an important regulator of glucose/lipid metabolism and whole-body energy expenditure. Depletion of Nron leads to metabolic benefits in DIO (diet-induced obesity) mice, including reduced body weight and fat mass, improved insulin sensitivity and serum lipid parameters, attenuated hepatic steatosis and enhanced adipose function. Mechanistically, Nron deletion improves hepatic lipid homeostasis via PER2/Rev-Erbα/FGF21 axis coupled with AMPK activation, and enhances adipose function via activating the process of triacylglycerol hydrolysis and fatty acid re-esterification (TAG/FA cycling) and coupled metabolic network. These interactive and integrative effects cooperatively account for a healthier metabolic phenotype in NKO (Nron knockout) mice. Genetic or pharmacological inhibition of Nron may have potential for future therapy of obesity.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liuye Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
| | - Meng Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
133
|
Abdurehman D, Guoruoluo Y, Lu X, Li J, Abudulla R, Liu G, Xin X, Aisa HA. Optimization of preparation method of hepatoprotective active components from Coreopsis tinctoria Nutt. and its action mechanism in vivo. Biomed Pharmacother 2023; 167:115590. [PMID: 37776638 DOI: 10.1016/j.biopha.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Capitula of Coreopsis tinctoria are widely used as a flower tea with great health benefits due to rich content of flavonoids and phenolic acids. The hepatoprotective effect of C. tinctoria and its bioactive basis have seldom been investigated until now. In the present study, capitula of C. tinctoria were extracted with a method optimized by response surface methodology (RSM) and BoxBehnken design (BBD) and further purified by macroporous resin HPD-300 to obtain a fraction (CE) enriched with flavonoids and phenolic acids. The contents of the four most abundant compounds, isookanin-7-O-β-d-glucoside (1), quercetigetin-7-O-β-d-glucoside (2), okanin (3), and marein (4), were determined by HPLC as 9.98, 5.21, 41.78 and 1.85 mg/g, respectively. Seventy-four compounds including fifity-five flavonoids, fifteen organic acids (twelve of them were phenolic compounds), and three coumarins were tentatively identified in CE by LC-HRMS/MS. In vivo hepatoprotective effect and potential mechanism of CE were studied with a high-fat diet-induced NASH mouse model. CE administration decreased the amount of weight gain, hepatic lipid, and sequentially improved dyslipidemia, inflammation, oxidative stress, and IR in HFD-fed mice. Molecular data revealed that CE inhibited hepatic inflammation by reducing NFκB/iNOS/COX-2/NLRP3/MAPK in the liver tissues and ameliorated oxidative stress by activating the Nrf2/HO-1 pathway. Modulation of inflammation and oxidative stress with CE may represent a promising target for the treatment of NAFLD and provide insight into the mechanism by which CE protects against obesity.
Collapse
Affiliation(s)
- Dilinare Abdurehman
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yindengzhi Guoruoluo
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xueying Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rahima Abudulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
134
|
Piao C, Arteaga EJ, Chen S, Guo A, Macdonald ST, Sarkar S. Improved Detection of Fibrotic Nonalcoholic Fatty Liver Disease in Community-Based Referrals. Metab Syndr Relat Disord 2023; 21:475-478. [PMID: 37756226 DOI: 10.1089/met.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease with increasing rates globally. Patients with type 2 diabetes mellitus have higher risk of developing NAFLD. Patients with a higher degree of liver fibrosis in NAFLD are at an increased risk for liver-related mortality, but get missed easily during the referral process. This project aims to improve early detection and linkage-to-care of fibrotic NAFLD patients. Methods: We utilized a combination of automated electronic health record (EHR)-based fibrosis (FIB)-4 score and directed provider education. A health-system wide FIB-4 score calculator that providers can easily add to their workflow for NAFLD patient triaging. Data were analyzed at 6 and 12 months after implementation. Results: Postimplementation, there was an increase in patients referred to hepatology with higher degree of liver fibrosis and decreased referral to hepatology with low risk of liver fibrosis, measured by FIB-4 score. At baseline, ∼55% of referred patient to hepatology had FIB-4 score <1.3 compared to 38% at 12 months postimplementation. There was an increase in referral of patients with FIB-4 scores >1.3 when compared to preinterventions, 62% versus 45%. This is most pronounced in patients with severe fibrotic disease with FIB-4 score >2.67, 30% versus 12%. Conclusions: Automated FIB-4 score in EHR can improve appropriate linkage-to-care for at-risk fibrotic NAFLD, especially when coupled with targeted provider education. The durability of such improvement is essential to study along with the need to increase broad acceptance across health systems.
Collapse
Affiliation(s)
- Cindy Piao
- Department of Internal Medicine, University of California, Davis, California, USA
- Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Elvis J Arteaga
- Department of Internal Medicine, University of California, Davis, California, USA
| | - Shuai Chen
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Aili Guo
- Department of Internal Medicine, University of California, Davis, California, USA
- Division of Endocrinology, Diabetes and Metabolism, University of California, Davis, California, USA
| | - Scott T Macdonald
- Department of Internal Medicine, University of California, Davis, California, USA
- Clinical Informatics, University of California, Davis, California, USA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California, Davis, California, USA
- Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| |
Collapse
|
135
|
Yu P, Wang W, Guo W, Cheng L, Wan Z, Cheng Y, Shen Y, Xu F. Pioglitazone-Enhanced Brown Fat Whitening Contributes to Weight Gain in Diet-Induced Obese Mice. Exp Clin Endocrinol Diabetes 2023; 131:595-604. [PMID: 37729949 DOI: 10.1055/a-2178-9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Pioglitazone is an insulin sensitizer used for the treatment of type 2 diabetes mellitus (T2DM) by activating peroxisome proliferator-activated receptor gamma. This study aimed to investigate the effects of pioglitazone on white adipose tissue (WAT) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice. METHODS C57BL/6 mice were treated with pioglitazone (30 mg/kg/day) for 4 weeks after a 16-week high-fat diet (HFD) challenge. Body weight gain, body fat mass, energy intake, and glucose homeostasis were measured during or after the treatment. Histopathology was observed by hematoxylin and eosin, oil red O, immunohistochemistry, and immunofluorescence staining. Expression of thermogenic and mitochondrial biogenesis-related genes was detected by quantitative real-time PCR and western blotting. RESULTS After 4-week pioglitazone treatment, the fasting blood glucose levels, glucose tolerance, and insulin sensitivity were significantly improved, but the body weight gain and fat mass were increased in DIO mice. Compared with the HFD group, pioglitazone did not significantly affect the weights of liver and WAT in both subcutaneous and epididymal regions. Unexpectedly, the weight of BAT was increased after pioglitazone treatment. Histological staining revealed that pioglitazone ameliorated hepatic steatosis, reduced the adipocyte size in WAT, but increased the adipocyte size in BAT. CONCLUSION Though pioglitazone can promote lipolysis, thermogenesis, and mitochondrial function in WAT, it leads to impaired thermogenesis, and mitochondrial dysfunction in BAT. In conclusion, pioglitazone could promote the browning of WAT but led to the whitening of BAT; the latter might be a new potential mechanism of pioglitazone-induced weight gain during T2DM treatment.
Collapse
Affiliation(s)
- Piaojian Yu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
| | - Lidan Cheng
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiping Wan
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
136
|
Balogun O, Wang JY, Shaikh ES, Liu K, Stoyanova S, Memel ZN, Schultz H, Mun L, Bertman J, Rogen CA, Ibrahim MK, Berschback M, Uche-Anya E, Wilechansky R, Simon TG, Corey KE. Effect of combined tobacco use and type 2 diabetes mellitus on prevalent fibrosis in patients with MASLD. Hepatol Commun 2023; 7:e0300. [PMID: 37889558 PMCID: PMC10615418 DOI: 10.1097/hc9.0000000000000300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Several studies have investigated the independent effect of cigarette smoking or type 2 diabetes mellitus (T2DM) on MASLD. However, the interaction effect between tobacco consumption and T2DM on MASLD severity remains underexplored. In this study, we assessed the combined effect of tobacco use and T2DM on hepatic fibrosis in MASLD. METHODS We conducted a single-center retrospective cross-sectional analysis of eligible participants from the Mass General Brigham Fibroscan© database. The participants were divided into 3 groups: those with T2DM and a history of tobacco use (primary exposure group), those with T2DM but no history of tobacco use (secondary exposure group), and those without T2DM and no history of tobacco use (reference group). An additional model was developed, which included a fourth group, participants with a history of tobacco use but no T2DM. The likelihood of fibrosis was determined using a defined fibrosis-4 index cutoff value of 1.3. In addition, we computed the estimated marginal means for liver stiffness measurement and compared the values among the exposure groups. Bivariable and multivariable logistic regression models were used to explore the associations between the exposure groups and the risk for hepatic fibrosis. RESULTS Overall, 598 individuals were enrolled in the study. The bivariable logistic regression model revealed a significant independent association between T2DM, combined smoking and T2DM, and the outcome of interest, fibrosis. Age, sex, metabolic syndrome, aspirin use, statin use, hemoglobin A1C (A1C), and total bilirubin level were also significantly associated with fibrosis. In the adjusted fibrosis-4 multivariable model (comparing exposure groups to controls), cigarette smoking and T2DM interaction had higher odds of prevalent fibrosis (aOR, 3.04; 95% CI, 1.62-5.76), compared to those with T2DM alone (aOR 2.28; 95% CI, 1.37-3.85). The continuous liver stiffness measurement comparison across the exposure group showed an estimated marginal means of 6.26 (95% CL: 5.58-6.94), 7.54 (95% CL: 6.78-8.30), and 7.88 (6.78-8.99) for the reference group, T2DM only group, and tobacco-T2DM group, respectively. The diabetes-only group and the combined tobacco-T2DM group had statistically significant associations with liver stiffness measurement (p values: 0.013 and 0.014, respectively). CONCLUSION Although diabetes is independently associated with hepatic fibrosis in patients with MASLD, the combination of tobacco consumption and diabetes is associated with a higher prevalence of fibrosis. Therefore, lifestyle change through tobacco use cessation in patients with diabetes could be beneficial in reducing the incidence of liver fibrosis among individuals with MASLD.
Collapse
Affiliation(s)
- Oluwafemi Balogun
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Jeffrey Y. Wang
- George Washington University School of Medicine, Washington D.C., 2001
| | - Emad S. Shaikh
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Karine Liu
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Stefania Stoyanova
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Zoe N. Memel
- University of California San Francisco Medical Center, San Francisco, California, USA
| | - Hayley Schultz
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Lisa Mun
- Central Michigan University College of Medicine, Mt Pleasant, Michigan
| | - Jack Bertman
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Cheryl A. Rogen
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Maryam K. Ibrahim
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Madeline Berschback
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Eugenia Uche-Anya
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Robert Wilechansky
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Tracey G. Simon
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
- Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston Massachusetts, USA
| | - Kathleen E. Corey
- Department of Medicine, Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston Massachusetts, USA
- Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston Massachusetts, USA
| |
Collapse
|
137
|
Guo N, Shi H, Zhang H, Wang H. Comparison of the efficacy and safety of hypoglycemic treatments in patients with non-alcoholic fatty liver disease and type-2 diabetes: a systematic review and Bayesian network analysis. Eur J Clin Pharmacol 2023; 79:1465-1474. [PMID: 37682287 DOI: 10.1007/s00228-023-03561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE The association between non-alcoholic fatty liver disease (NAFLD) and metabolic disorders, especially type-2 diabetes (T2DM), has been proven to be bidirectional. Hypoglycemic agents may be promising treatments for those disorders. However, there is currently no approved hypoglycemic therapy for NAFLD. In this review, we aimed to compare the efficacy and safety of twelve different hypoglycemic treatments in patients with NAFLD and T2DM. METHODS We systematically screened randomized controlled trials (RCTs) published from March 2013 to March 2023 by searching PubMed, Embase, Medline, and Web of Science without any language restriction. We registered this project on the PROSPERO website: https://www.crd.york.ac.uk/PROSPERO/ (ID: CRD42023429701). All subsequent analyses were performed under the registered protocol. The mean difference (MD) and 95% confidence interval (95% CI) were adapted to evaluate the effect size of the treatment. The surface under the cumulative sorting curve (SUCRA) was used to rank the efficacy of the included treatments. RESULTS We included 19 trials involving 1212 patients in total. Insulin plus glucagon-like peptide-1 receptor agonist (GLP1RA) combination therapy was probably the most effective treatment for reducing weight and body mass index (BMI) (SUCRA: 0.93 and 1.00). Thiazolidinediones (TZD) were probably the most effective treatment for reducing glycosylated hemoglobin (HbA1c) and γ-glutamyltranspeptidase (γ-GGT) levels (SUCRA: 0.78 and 0.97). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) had the highest probability of presenting good therapeutic efficacy in reducing triglyceride (TG) levels (SUCRA: 0.72). The most common adverse reactions were gastrointestinal disorders, mainly after the administration of GLP1RA, and mild hypoglycemia, which was closely related to the use of insulin. CONCLUSION GLP1RA plus insulin combination therapy, GLP1RA, SGLT2i, and TZD may be the most effective therapeutic methods for patients with NAFLD and T2DM.
Collapse
Affiliation(s)
- Nuojin Guo
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Hekai Shi
- Department of Bariatric and Metabolic Surgery, Fudan University Affiliated Huadong Hospital, Shanghai, 200040, China
| | - Hao Zhang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Hua Wang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China.
| |
Collapse
|
138
|
Ramírez-Mejía MM, Méndez-Sánchez N. What Is in a Name: from NAFLD to MAFLD and MASLD—Unraveling the Complexities and Implications. CURRENT HEPATOLOGY REPORTS 2023; 22:221-227. [DOI: 10.1007/s11901-023-00620-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 01/03/2025]
|
139
|
Ding Y, Deng Q, Yang M, Niu H, Wang Z, Xia S. Clinical Classification of Obesity and Implications for Metabolic Dysfunction-Associated Fatty Liver Disease and Treatment. Diabetes Metab Syndr Obes 2023; 16:3303-3329. [PMID: 37905232 PMCID: PMC10613411 DOI: 10.2147/dmso.s431251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Obesity,and metabolic dysfunction-associated fatty liver disease (MAFLD) have reached epidemic proportions globally. Obesity and MAFLD frequently coexist and act synergistically to increase the risk of adverse clinical outcomes (both hepatic and extrahepatic). Type 2 diabetes mellitus (T2DM) is the most important risk factor for rapid progression of steatohepatitis and advanced fibrosis. Conversely, the later stages of MAFLD are associated with an increased risk of T2DM incident. According to the proposed criteria, MAFLD is diagnosed in patients with liver steatosis and in at least one in three: overweight or obese, T2DM, or signs of metabolic dysregulation if they are of normal weight. However, the clinical classification and correlation between obesity and MAFLD is more complex than expected. In addition, treatment for obesity and MAFLD are associated with a reduced risk of T2DM, suggesting that liver-based treatments could reduce the risk of developing T2DM. This review describes the clinical classification of obesity and MAFLD, discusses the clinical features of various types of obesity and MAFLD, emphasizes the role of visceral obesity and insulin resistance (IR) in the development of MAFLD,and summarizes the existing treatments for obesity and MAFLD that reduce the risk of developing T2DM.
Collapse
Affiliation(s)
- Yuping Ding
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Quanjun Deng
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Mei Yang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Haiyan Niu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Zuoyu Wang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Shihai Xia
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| |
Collapse
|
140
|
Wiszpolska M, Lepiarczyk E, Maździarz MA, Paukszto Ł, Makowczenko KG, Lipka A, Łopieńska-Biernat E, Makowska K, Gonkowski S, Correia-de-Sá P, Majewska M. The Carcinogenic Potential of Bisphenol A in the Liver Based on Transcriptomic Studies. Cancers (Basel) 2023; 15:5014. [PMID: 37894381 PMCID: PMC10605469 DOI: 10.3390/cancers15205014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Bisphenol A (BPA) is an environmental toxin widely used in the production of polycarbonate plastics. A correlation exists between BPA tissue contamination and the occurrence of pathological conditions, including cancer. First-passage detoxification of high BPA amounts in the liver promotes hepatotoxicity and morphological alterations of this organ, but there is a lack of knowledge about the molecular mechanisms underlying these phenomena. This prompted us to investigate changes in the liver transcriptomics of 3-month-old female mice exposed to BPA (50 mg/kg) in drinking water for 3 months. Five female mice served as controls. The animals were euthanized, the livers were collected, and RNA was extracted to perform RNA-seq analysis. The multistep transcriptomic bioinformatics revealed 120 differentially expressed genes (DEGs) in the BPA-exposed samples. Gene Ontology (GO) annotations indicated that DEGs have been assigned to many biological processes, including "macromolecule modification" and "protein metabolic process". Several of the revealed DEGs have been linked to the pathogenesis of severe metabolic liver disorders and malignant tumors, in particular hepatocellular carcinoma. Data from this study suggest that BPA has a significant impact on gene expression in the liver, which is predictive of the carcinogenic potential of this compound in this organ.
Collapse
Affiliation(s)
- Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Mateusz A Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957 Olsztyn, Poland
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957 Olsztyn, Poland
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
141
|
Sun LJ, Lu JX, Li XY, Zheng TS, Zhan XR. Effects of vitamin D supplementation on glucose and lipid metabolism in patients with type 2 diabetes mellitus and risk factors for insulin resistance. World J Diabetes 2023; 14:1514-1523. [PMID: 37970127 PMCID: PMC10642416 DOI: 10.4239/wjd.v14.i10.1514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease featured by insulin resistance (IR) and decreased insulin secretion. Currently, vitamin D deficiency is found in most patients with T2DM, but the relationship between vitamin D and IR in T2DM patients requires further investigation. AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM. METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed. Based on the diagnostic criteria of IR, the patients were divided into a resistance group (n = 100) and a non-resistance group (n = 62). Subsequently, patients in the resistance group were subdivided to a conventional group (n = 44) or a joint group (n = 56) according to the treatment regimens. Logistic regression was carried out to analyze the risk factors of IR in T2DM patients. The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment. RESULTS Notable differences were observed in age and body mass index (BMI) between the resistance group and the non-resistance group (both P < 0.05). The resistance group exhibited a lower 25-hydroxyvitamin D3 (25(OH)D3) level, as well as notably higher levels of 2-h postprandial blood glucose (2hPG), fasting blood glucose (FBG), and glycosylated hemoglobin (HbA1c) than the non-resistance group (all P < 0.0001). Additionally, the resistance group demonstrated a higher triglyceride (TG) level but a lower high-density lipoprotein-cholesterol (HDL-C) level than the non-resistance group (all P < 0.0001). The BMI, TG, HDL-C, 25(OH)D3, 2hPG, and HbA1c were found to be risk factors of IR. Moreover, the post-treatment changes in levels of 25(OH)D3, 2hPG, FBG and HbA1c, as well as TG, total cholesterol, and HDL-C in the joint group were more significant than those in the conventional group (all P < 0.05). CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the non-insulin resistant group. Logistic regression analysis revealed that 25(OH)D3 is an independent risk factor influencing IR. Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.
Collapse
Affiliation(s)
- Li-Jie Sun
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Xuan Lu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xin-Yu Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Tian-Sheng Zheng
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen 518071, Guangdong Province, China
| | - Xiao-Rong Zhan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen 518071, Guangdong Province, China
| |
Collapse
|
142
|
Lin A, He W. LINC01705 derived from adipocyte exosomes regulates hepatocyte lipid accumulation via an miR-552-3p/LXR axis. J Diabetes Investig 2023; 14:1160-1171. [PMID: 37415301 PMCID: PMC10512913 DOI: 10.1111/jdi.14050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023] Open
Abstract
AIMS/INTRODUCTION High glucose increases the accumulation of lipid droplets in hepatocytes, which eventually results in nonalcoholic fatty liver disease in patients with diabetes. However, the specific mechanism or communication between adipocyte and hepatocyte lipid metabolism is still ambiguous. MATERIALS AND METHODS In this study, exosomes released from human adipocytes were isolated and identified by their morphology, size, and marker proteins by using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting (WB). Gene expression was detected by qRT-PCR and WB. Lipid accumulation was determined by oil red O staining and analyses of total cholesterol (TC) and triglyceride (TG) content. RESULTS Our results showed that co-culture of HepG2 cells with adipocytes under high glucose conditions stimulated lipid deposition and LINC01705 expression in the HepG2 cells. Exosomes extracted from adipocytes cultured under high glucose conditions had higher levels of LINC01705 than exosomes extracted from adipocytes cultured under normal glucose conditions. Moreover, LINC01705 expression was also elevated in exosomes extracted from diabetes patients when compared with exosomes isolated from normal volunteers, and exosomes from patients who had diabetes complicated with fatty liver (DCFL) had the highest levels of LINC01705 expression. Treatment of HepG2 cells with exosomes extracted from high glucose-stimulated adipocytes promoted lipid deposition and LINC01705 expression in HepG2 cells. Further experiments showed that overexpression of LINC01705 promoted HepG2 lipid metabolism, while inhibition of LINC01705 had the opposite effect. Mechanistically, LINC01705 competitively bound to miR-552-3p, and treatment with miR-552-3p inhibitor reversed the effects induced by LINC01705 knockdown. Moreover, miR-552-3p was found to regulate the transcription activity of LXRα and thereby modulate lipid metabolism-related gene expression. CONCLUSIONS When taken together, our findings showed that high glucose increased the LINC01705 levels in adipocyte exosomes, and thereby improved HepG2 lipid accumulation via an miR-552-3p/LXR axis.
Collapse
Affiliation(s)
- Anhua Lin
- Department of Endocrinology, Jiangxi Provincial People's HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxi ProvinceChina
| | - Wenjing He
- Department of Endocrinology, Jiangxi Provincial People's HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxi ProvinceChina
| |
Collapse
|
143
|
Sun R, Yuan L, Shen Y, Shen Z, Ding B, Ma J. Impact of Fixed Combination of Metformin and Pioglitazone on Insulin Resistance of Patients with Type 2 Diabetes: Results of a Randomized Open-Label Study. Diabetes Metab Syndr Obes 2023; 16:2911-2919. [PMID: 37753480 PMCID: PMC10518260 DOI: 10.2147/dmso.s423322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Aim To compare the effect of metformin, a fixed combination of metformin and pioglitazone, or dapagliflozin on insulin resistance in patients with newly diagnosed type 2 diabetes. Methods In this 6-week randomized open-label trial, 58 patients were randomly assigned to insulin with metformin, a fixed combination of metformin and pioglitazone, or dapagliflozin for 4 weeks. Hyperinsulinemic euglycemic clamp tests and FreeStyle Libre Pro Sensor were used to evaluate the insulin sensitivity represented by glucose-infusion rate (M value) and glycemic control, respectively. The main outcome was changes in insulin resistance compared with baseline. Results The baseline characteristics were well matched among the three groups. When compared to baseline, insulin sensitivity after treatment was significantly improved. Further study revealed that the fixed combination of metformin and pioglitazone provided superior M-value improvement compared with metformin, but not different from dapagliflozin. Moreover, a greater reduction in insulin dose was observed in the fixed combination of metformin and pioglitazone group than the metformin or dapagliflozin group. However, there were no significant differences in the parameters of glycemic control within the groups. Conclusion In patients with newly diagnosed type 2 diabetes, a fixed combination of metformin and pioglitazone provided greater improvement in insulin resistance than metformin alone and similar changes in insulin resistance to dapagliflozin.
Collapse
Affiliation(s)
- Rui Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lu Yuan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yun Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
144
|
Huang L, Bai Q, Wang Z, Zhang X, Liu K, Cui J, Du L, Liu S, Fu Y, Wang H, Li D, Sun H. Carbon Dots as Potential Therapeutic Agents for Treating Non-Alcoholic Fatty Liver Disease and Associated Inflammatory Bone Loss. Bioconjug Chem 2023; 34:1704-1715. [PMID: 37639623 DOI: 10.1021/acs.bioconjchem.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as one of the most significant metabolic diseases worldwide and is associated with heightened systemic inflammation, which has been shown to foster the development of extrahepatic complications. So far, there is no definitive, effective, and safe treatment for NAFLD. Although antidiabetic agents show potential for treating NAFLD, their efficacy is significantly limited by inadequate liver accumulation at safe doses and unwanted side effects. Herein, we demonstrate that pharmacologically active carbon dots (MCDs) derived from metformin can selectively accumulate in the liver and ameliorate NAFLD by activating hepatic PPARα expression while maintaining an excellent biosafety. Interestingly, MCDs can also improve the function of extrahepatic organs and tissues, such as alleviating alveolar inflammatory bone loss, in the process of treating NAFLD. This study proposes a feasible and safe strategy for designing pharmacologically active MCDs to target the liver, which regulates lipid metabolism and systemic inflammation, thereby treating NAFLD and its related extrahepatic complications.
Collapse
Affiliation(s)
- Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Qinzhu Bai
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Liuyi Du
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
145
|
Volpe S, Lisco G, Fanelli M, Racaniello D, Colaianni V, Lavarra V, Triggiani D, Crudele L, Triggiani V, Sabbà C, De Pergola G, Piazzolla G. Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: a 26-week prospective real-life study. Front Endocrinol (Lausanne) 2023; 14:1240263. [PMID: 37780624 PMCID: PMC10534984 DOI: 10.3389/fendo.2023.1240263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral semaglutide is the first glucagon-like peptide-1 receptor agonist (GLP-1RA) designed for oral administration; it offers a promising opportunity to facilitate an early approach to Type 2 Diabetes (T2D). The study aimed to evaluate, in a real-life setting, the effects of oral semaglutide on the body composition of patients with T2D after 26 weeks of therapy. Methods Thirty-two patients with T2D were evaluated at baseline (T0) and after three (T3) and six (T6) months of therapy with oral semaglutide. At each time point, body composition was assessed using a phase sensitive bioimpedance analyzer. Clinical, anthropometric and laboratory parameters, and the main biometric surrogates of liver steatosis and fibrosis, were also analyzed and compared. Results A significant and early reduction in anthropometric and glucometabolic parameters, alanine aminotransferase, Fatty Liver Index, and Fat Mass was observed. Visceral Adipose Tissue (VAT) decreased, while Fat Free Mass and Skeletal Muscle Mass (SMM) were preserved during therapy, resulting in a beneficial increase in the SMM/VAT ratio. Finally, an overall improvement in body fluid distribution was observed. Conclusion Our real-world data confirm the clinical efficacy of oral semaglutide and highlight its ability to improve the nutritional status of patients with T2D.
Collapse
Affiliation(s)
- Sara Volpe
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Margherita Fanelli
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Davide Racaniello
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Valentina Colaianni
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Valentina Lavarra
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Domenico Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Lucilla Crudele
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Bari, Italy
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
146
|
Kang DE, Oh SN. Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019-2021. Nutrients 2023; 15:3901. [PMID: 37764685 PMCID: PMC10535860 DOI: 10.3390/nu15183901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is distinguished by the buildup of excessive liver fat unrelated to alcohol consumption. However, the role of alcohol consumption on disease progression is debatable. Recently, alcohol flushing syndrome in Asian populations has gained interest, and its role in the risk of developing MASLD is unknown. Therefore, in this cross-sectional study, we investigated the association between alcohol consumption and MASLD in Korean men, considering their alcohol flushing response and utilizing the lipid accumulation product (LAP) score. Data from the Korean National Health and Nutrition Examination Survey (2019-2021) were analyzed. Participants were categorized into non-or-infrequent drinkers and light-to-heavy drinkers and further sub-classified based on alcohol flushing response as non-flushers and flushers. Multivariate logistic regression analysis showed a significant association between alcohol consumption and MASLD risk in both non-flushers (aHR 1.90, 95% CI 1.51-2.40, p < 0.001) and flushers (aHR 2.35, 95% CI 1.94-2.84, p < 0.001) after adjusting for potential confounding factors such as age, exercise, smoking, body mass index, systolic blood pressure, total cholesterol, and fasting plasma glucose. There was a significant interaction between alcohol consumption and alcohol flushing response for MASLD risk (p for interaction < 0.001). These findings emphasize the importance of alcohol flushing as a potential indicator of MASLD risk in Korean men and highlight the need for further research to understand the underlying mechanisms and develop targeted preventive strategies.
Collapse
Affiliation(s)
- Dae Eon Kang
- Department of Family Medicine, Severance Hospital, Seoul 03722, Republic of Korea;
| | - Si Nae Oh
- Department of Family Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
- Department of Medicine, Yonsei University Graduate School, Seoul 03722, Republic of Korea
| |
Collapse
|
147
|
Kosmalski M, Szymczak-Pajor I, Drzewoski J, Śliwińska A. Non-Alcoholic Fatty Liver Disease Is Associated with a Decreased Catalase (CAT) Level, CT Genotypes and the T Allele of the -262 C/T CAT Polymorphism. Cells 2023; 12:2228. [PMID: 37759451 PMCID: PMC10527641 DOI: 10.3390/cells12182228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND It is well known that oxidative stress plays an important role in the development of non-alcoholic fatty liver disease (NAFLD). It has been suggested that an insufficient antioxidant defense system composed of antioxidant enzymes, including catalase (CAT) and nonenzymatic molecules, is a key factor triggering oxidative damage in the progression of liver disease. Therefore, the aim of our study was to assess whether the level of CAT and -262 C/T polymorphism in the promoter of CAT (rs1001179) are associated with NAFLD. METHODS In total, 281 adults (152/129 female/male, aged 65.61 ± 10.44 years) were included in the study. The patients were assigned to an NAFLD group (n = 139) or a group without NAFLD (n = 142) based on the results of an ultrasound, the Hepatic Steatosis Index, and the Fatty Liver Index (FLI). CAT levels were determined using an ELISA test, and genomic DNA was extracted via the standard phenol/chloroform-based method and genotyped via RFLP-PCR. RESULTS The CAT level was decreased in NAFLD patients (p < 0.001), and an ROC analysis revealed that a CAT level lower than 473.55 U/L significantly increases the risk of NAFLD. In turn, genotyping showed that the CT genotype and the T allele of -262 C/T CAT polymorphism elevate the risk of NAFLD. The diminished CAT level in the NAFLD group correlated with increased FLI, waist circumference and female gender. CONCLUSION The obtained results support observations that oxidative damage associated with NAFLD may be the result of a decreased CAT level as a part of the antioxidant defense system.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| | - Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| |
Collapse
|
148
|
Qiu J, Kuang M, Yang R, Yu C, He S, Sheng G, Zou Y. The newly proposed alanine aminotransferase to high-density lipoprotein cholesterol ratio has shown effectiveness in identifying non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1239398. [PMID: 37727457 PMCID: PMC10505795 DOI: 10.3389/fendo.2023.1239398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Objective Alanine aminotransferase (ALT) and high-density lipoprotein cholesterol (HDL-C) are important predictive factors for non-alcoholic fatty liver disease (NAFLD). The aim of this study was to analyze the association between the ALT/HDL-C ratio and NAFLD. Methods We conducted a retrospective analysis of data from 14,251 individuals participating in the NAGALA project's health screening program. The presence of NAFLD was diagnosed based on the participants' alcohol consumption status and liver ultrasonography images. Multivariable logistic regression models were used to assess the association between the ALT/HDL-C ratio and NAFLD. Receiver operating characteristic (ROC) analysis was performed to determine and compare the effectiveness of ALT, HDL-C, the aspartate aminotransferase to HDL-C (AST/HDL-C) ratio, the gamma-glutamyl transferase to HDL-C (GGT/HDL-C) ratio and the ALT/HDL-C ratio in identifying NAFLD. Results We observed a significant positive association between the ALT/HDL-C ratio and the prevalence of NAFLD. For each standard deviation (SD) increase in the ALT/HDL-C ratio, the adjusted odds ratio (OR) for NAFLD among the participants was 3.05 [95% confidence interval (CI): 2.63, 3.53], with the highest quartile of ALT/HDL-C ratio having a 9.96-fold increased risk compared to the lowest quartile. In further subgroup analyses stratified by gender, age, and waist circumference (WC), we observed a significantly higher risk of NAFLD associated with the ALT/HDL-C ratio among individuals aged ≥45 years, males, and those who were abdominal obesity. Furthermore, based on the results of ROC analysis, we found that the ALT/HDL-C ratio [area under the curves (AUC): 0.8553] was significantly superior to ALT, HDL-C, AST/HDL-C ratio and GGT/HDL-C ratio in identifying NAFLD (All Delong P<0.05); the threshold of suggested ALT/HDL-C ratio for identifying NAFLD was 15.97. Conclusion This population-based study demonstrates a positive association between the ALT/HDL-C ratio and NAFLD. The ALT/HDL-C ratio can effectively identify individuals with NAFLD.
Collapse
Affiliation(s)
- Jiajun Qiu
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Maobin Kuang
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Ruijuan Yang
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Changhui Yu
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shiming He
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
149
|
Yao Y, Shen Y. Cross-talk between gut microbiota and liver steatosis: Complications and therapeutic target. Open Life Sci 2023; 18:20220699. [PMID: 37671098 PMCID: PMC10476486 DOI: 10.1515/biol-2022-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver steatosis is the most widespread chronic liver condition. Its global incidence is rising swiftly and is currently estimated to be 24%. Liver steatosis is strongly related with numerous metabolic syndrome characteristics, like obesity, insulin resistance, hyperlipidemia, and hypertension. The gastrointestinal tract contains about 100 trillion commensal organisms and more than 7,000 distinct bacterial strains. Fat deposition in the liver without secondary causes is known as liver steatosis. Dysregulation of the gut flora is one of the factors connected to the onset of fatty liver disease. Dietary choices may alter constitution of the microbiome and cause gut microbiome dysbiosis, particularly due to the intake of food high in fructose sugars, animal products, and saturated fats. Various gut bacteria cause nutrient metabolism in multiple ways, setting off different inflammatory cascades that encourage liver disease and pathways that help fat build up in the liver. Due to their relatively stable nature, genetic factors may not be responsible for the constant increase in liver steatosis incidence. Genetic factors set the stage for liver steatosis pathogenesis. This review will offer an overview of our present knowledge of the roles played by gut microbiota in regulating the development of liver steatosis, potential side effects, and potential treatment targets.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| |
Collapse
|
150
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|