101
|
Mizojiri R, Asano M, Tomita D, Banno H, Nii N, Sasaki M, Sumi H, Satoh Y, Yamamoto Y, Moriya T, Satomi Y, Maezaki H. Discovery of Novel Selective Acetyl-CoA Carboxylase (ACC) 1 Inhibitors. J Med Chem 2018; 61:1098-1117. [DOI: 10.1021/acs.jmedchem.7b01547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryo Mizojiri
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Moriteru Asano
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Daisuke Tomita
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Banno
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Noriyuki Nii
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyuki Sumi
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiko Satoh
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeo Moriya
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Maezaki
- Research, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
102
|
Min HY, Lee HY. Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:45-56. [PMID: 29212306 PMCID: PMC5746037 DOI: 10.4062/biomolther.2017.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.
Collapse
Affiliation(s)
- Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
103
|
Park JK, Coffey NJ, Limoges A, Le A. The Heterogeneity of Lipid Metabolism in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1063:33-55. [DOI: 10.1007/978-3-319-77736-8_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
104
|
Glatzel DK, Koeberle A, Pein H, Löser K, Stark A, Keksel N, Werz O, Müller R, Bischoff I, Fürst R. Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition. J Lipid Res 2017; 59:298-311. [PMID: 29208696 DOI: 10.1194/jlr.m080101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
Collapse
Affiliation(s)
- Daniel K Glatzel
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Konstantin Löser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Anna Stark
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Nelli Keksel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| |
Collapse
|
105
|
Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of Citrus limon-derived nanovesicles. J Proteomics 2017; 173:1-11. [PMID: 29197582 DOI: 10.1016/j.jprot.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022]
Abstract
We have previously isolated exosome-like nanoparticles from Citrus-limon juice, able to inhibit in vitro and in vivo tumor cell growth. In order to deeply understand the mechanism underlying nanovesicle effects, we performed a proteomic profile of treated colorectal cancer cells. Among the proteins differentially expressed after nanovesicle treatment, we found a significant downregulation of the Acetyl-CoA Carboxylase 1 (ACACA) and we demonstrated that silencing ACACA in cancer cells leads to a reduction of cell growth. Our study proved that the anti-tumor effects of Citrus-limon nanovesicles is partly mediated by lipid metabolism inhibition, in particular via ACACA downregulation. SIGNIFICANCE This study represents the attempt to achieve, by a proteomic approach, a better understanding of the role of lemon nanovesicles in affecting colorectal cancer cell growth.
Collapse
|
106
|
Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Br J Cancer 2017; 118:43-51. [PMID: 29112683 PMCID: PMC5765225 DOI: 10.1038/bjc.2017.374] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Although altered membrane physiology has been discussed within the context of cancer, targeting membrane characteristics by drugs being an attractive therapeutic strategy has received little attention so far. Methods: Various acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) inhibitors (like Soraphen A and Cerulenin) as well as genetic knockdown approaches were employed to study the effects of disturbed phospholipid composition on membrane properties and its functional impact on cancer progression. By using state-of-the-art methodologies such as LC-MS/MS, optical tweezers measurements of giant plasma membrane vesicles and fluorescence recovery after photobleaching analysis, membrane characteristics were examined. Confocal laser scanning microscopy, proximity ligation assays, immunoblotting as well as migration, invasion and proliferation experiments unravelled the functional relevance of membrane properties in vitro and in vivo. Results: By disturbing the deformability and lateral fluidity of cellular membranes, the dimerisation, localisation and recycling of cancer-relevant transmembrane receptors is compromised. Consequently, impaired activation of growth factor receptor signalling cascades results in abrogated tumour growth and metastasis in different in vitro and in vivo models. Conclusions: This study highlights the field of membrane properties as a promising druggable cellular target representing an innovative strategy for development of anti-cancer agents.
Collapse
|
107
|
Li L, Eid JE, Paz AC, Trent JC. Metabolic Enzymes in Sarcomagenesis: Progress Toward Biology and Therapy. BioDrugs 2017; 31:379-392. [DOI: 10.1007/s40259-017-0237-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
108
|
Chen T, Li H. Fatty acid metabolism and prospects for targeted therapy of cancer. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tingting Chen
- West China College of Basic and Forensic MedicineSichuan UniversityChengduP. R. China
| | - Hua Li
- West China College of Basic and Forensic MedicineSichuan UniversityChengduP. R. China
| |
Collapse
|
109
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
110
|
Yang KK, Sui Y, Zhou HR, Zhao HL. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats. Tumour Biol 2017; 39:1010428317699116. [PMID: 28459365 DOI: 10.1177/1010428317699116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and carcinogenesis in tubular epithelial cells, which may be largely attenuated by renin-angiotensin system blockade, implying the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.
Collapse
Affiliation(s)
- Ke-Ke Yang
- 1 Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,2 Department of Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Sui
- 1 Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,3 Department of Endocrinology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hui-Rong Zhou
- 4 Department of Surgical Pathology, Shenzhen People,s Hospital, Shenzhen, China
| | - Hai-Lu Zhao
- 1 Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| |
Collapse
|
111
|
Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun 2017; 8:15580. [PMID: 28561042 PMCID: PMC5460027 DOI: 10.1038/ncomms15580] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023] Open
Abstract
Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers. There are no robust methods for systematically identifying mutation-specific synthetic lethal (SL) partners in cancer. Here, the authors develop a computational algorithm that uses pan-cancer data to detect mutation-andcancer-specific SL partners and they validate a novel SL interaction between mutant IDH and loss of ACACA in leukaemia.
Collapse
|
112
|
Singh KB, Singh SV. Fatty Acid Synthesis Intermediates Represent Novel Noninvasive Biomarkers of Prostate Cancer Chemoprevention by Phenethyl Isothiocyanate. Cancer Prev Res (Phila) 2017; 10:279-289. [PMID: 28292742 DOI: 10.1158/1940-6207.capr-17-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/10/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
Abstract
Increased de novo synthesis of fatty acids is a distinctive feature of prostate cancer, which continues to be a leading cause of cancer-related deaths among American men. Therefore, inhibition of de novo fatty acid synthesis represents an attractive strategy for chemoprevention of prostate cancer. We have shown previously that dietary feeding of phenethyl isothiocyanate (PEITC), a phytochemical derived from edible cruciferous vegetables such as watercress, inhibits incidence and burden of poorly differentiated prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) model. The current study was designed to test the hypothesis of whether fatty acid intermediate(s) can serve as noninvasive biomarker(s) of prostate cancer chemoprevention by PEITC using archived plasma and tumor specimens from the TRAMP study as well as cellular models of prostate cancer. Exposure of prostate cancer cells (LNCaP and 22Rv1) to pharmacologic concentrations of PEITC resulted in downregulation of key fatty acid metabolism proteins, including acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A). The mRNA expression of FASN and CPT1A as well as acetyl-CoA levels were decreased by PEITC treatment in both cell lines. PEITC administration to TRAMP mice also resulted in a significant decrease in tumor expression of FASN protein. Consistent with these findings, the levels of total free fatty acids, total phospholipids, triglyceride, and ATP were significantly lower in the plasma and/or prostate tumors of PEITC-treated TRAMP mice compared with controls. The current study is the first to implicate inhibition of fatty acid synthesis in prostate cancer chemoprevention by PEITC. Cancer Prev Res; 10(5); 279-89. ©2017 AACR.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
113
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
114
|
Jones JEC, Esler WP, Patel R, Lanba A, Vera NB, Pfefferkorn JA, Vernochet C. Inhibition of Acetyl-CoA Carboxylase 1 (ACC1) and 2 (ACC2) Reduces Proliferation and De Novo Lipogenesis of EGFRvIII Human Glioblastoma Cells. PLoS One 2017; 12:e0169566. [PMID: 28081256 PMCID: PMC5231342 DOI: 10.1371/journal.pone.0169566] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Tumor cell proliferation and migration processes are regulated by multiple metabolic pathways including glycolysis and de novo lipogenesis. Since acetyl-CoA carboxylase (ACC) is at the junction of lipids synthesis and oxidative metabolic pathways, we investigated whether use of a dual ACC inhibitor would provide a potential therapy against certain lipogenic cancers. The impact of dual ACC1/ACC2 inhibition was investigated using a dual ACC1/ACC2 inhibitor as well as dual siRNA knock down on the cellular viability and metabolism of two glioblastoma multiform cancer cell lines, U87 and a more aggressive form, U87 EGFRvIII. We first demonstrated that while ACCi inhibited DNL in both cell lines, ACCi preferentially blunted the U87 EGFRvIII cellular proliferation capacity. Metabolically, chronic treatment with ACCi significantly upregulated U87 EGFRvIII cellular respiration and extracellular acidification rate, a marker of glycolytic activity, but impaired mitochondrial health by reducing maximal respiration and decreasing mitochondrial ATP production efficiency. Moreover, ACCi treatment altered the cellular lipids content and increased apoptotic caspase activity in U87 EGFRvIII cells. Collectively these data indicate that ACC inhibition, by reducing DNL and increasing cellular metabolic rate, may have therapeutic utility for the suppression of lipogenic tumor growth and warrants further investigation.
Collapse
Affiliation(s)
- Jessica E. C. Jones
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - William P. Esler
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
- * E-mail: (CV); (WPE)
| | - Rushi Patel
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Adhiraj Lanba
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Nicholas B. Vera
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Pfefferkorn
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Cecile Vernochet
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
- * E-mail: (CV); (WPE)
| |
Collapse
|
115
|
Svensson RU, Shaw RJ. Lipid Synthesis Is a Metabolic Liability of Non-Small Cell Lung Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:93-103. [PMID: 28062532 DOI: 10.1101/sqb.2016.81.030874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renaissance in the study of cancer metabolism has refocused efforts to identify and target metabolic dependencies of tumors as an approach for cancer therapy. One of the unique metabolic requirements that cancer cells possess to sustain their biosynthetic growth demands is altered fatty acid metabolism, in particular the synthesis of de novo fatty acids that are required as cellular building blocks to support cell division. Enhanced fatty acid synthesis that is observed in many tumor types has been postulated to open a therapeutic window for cancer therapy and, correspondingly, efforts to pharmacologically inhibit key enzymes of fatty acid synthesis are being pursued. However, despite these efforts, whether inhibition of fatty acid synthesis stunts tumor growth in vivo has been poorly understood. In this review, we focus on the recent evidence that pharmacologic inhibition of acetyl-CoA carboxylase, the enzyme that regulates the rate-limiting step of de novo fatty acid synthesis, exposes a metabolic liability of non-small cell lung cancer and represses tumor growth in preclinical models.
Collapse
Affiliation(s)
- Robert U Svensson
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
116
|
Cha JY, Lee HJ. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics. J Cancer Prev 2016; 21:209-215. [PMID: 28053954 PMCID: PMC5207604 DOI: 10.15430/jcp.2016.21.4.209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells can affect numerous cellular processes, including cell growth, proliferation, differentiation, and survival. The potential dependence of cancer cells on the deregulated lipid metabolism suggests that enzymes and regulating factors involved in this process are promising targets for cancer treatment. In this review, we focus on the features associated with the lipid metabolic pathways in cancer, and highlight recent advances on the therapeutic targets of specific lipid metabolic enzymes or regulating factors and target-directed small molecules that can be potentially used as anticancer drugs.
Collapse
Affiliation(s)
- Ji-Young Cha
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Ho-Jae Lee
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
117
|
Affiliation(s)
- Silke C. Wenzel
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
118
|
Abstract
Lipid metabolism, in particular the synthesis of fatty acids (FAs), is an essential cellular process that converts nutrients into metabolic intermediates for membrane biosynthesis, energy storage and the generation of signalling molecules. This Review explores how different aspects of FA synthesis promote tumorigenesis and tumour progression. FA synthesis has received substantial attention as a potential target for cancer therapy, but strategies to target this process have not yet translated into clinical practice. Furthermore, efforts to target this pathway must consider the influence of the tumour microenvironment.
Collapse
Affiliation(s)
- Florian Röhrig
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Josef-Schneider-Strasse 6, 97080 Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Josef-Schneider-Strasse 6, 97080 Würzburg, Germany
| |
Collapse
|
119
|
|
120
|
Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, Gerken L, Greenwood J, Bhat S, Harriman G, Westlin WF, Harwood HJ, Saghatelian A, Kapeller R, Metallo CM, Shaw RJ. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 2016; 22:1108-1119. [PMID: 27643638 PMCID: PMC5053891 DOI: 10.1038/nm.4181] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022]
Abstract
Continuous de novo fatty acid synthesis is a common feature of cancer that is required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC), an attractive but traditionally intractable drug target. Here we provide genetic and pharmacological evidence that in preclinical models ACC is required to maintain the de novo fatty acid synthesis needed for growth and viability of non-small-cell lung cancer (NSCLC) cells. We describe the ability of ND-646-an allosteric inhibitor of the ACC enzymes ACC1 and ACC2 that prevents ACC subunit dimerization-to suppress fatty acid synthesis in vitro and in vivo. Chronic ND-646 treatment of xenograft and genetically engineered mouse models of NSCLC inhibited tumor growth. When administered as a single agent or in combination with the standard-of-care drug carboplatin, ND-646 markedly suppressed lung tumor growth in the Kras;Trp53-/- (also known as KRAS p53) and Kras;Stk11-/- (also known as KRAS Lkb1) mouse models of NSCLC. These findings demonstrate that ACC mediates a metabolic liability of NSCLC and that ACC inhibition by ND-646 is detrimental to NSCLC growth, supporting further examination of the use of ACC inhibitors in oncology.
Collapse
Affiliation(s)
- Robert U. Svensson
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Seth J. Parker
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lillian J. Eichner
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Matthew J. Kolar
- Clayton Foundation Laboratories of Peptide Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Martina Wallace
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sonja N. Brun
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Portia S. Lombardo
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Jeanine L. Van Nostrand
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Amanda Hutchins
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Lilliana Vera
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Laurie Gerken
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Alan Saghatelian
- Clayton Foundation Laboratories of Peptide Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | | | - Christian M. Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben J. Shaw
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| |
Collapse
|
121
|
Igal RA. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1865-1880. [PMID: 27639967 DOI: 10.1016/j.bbalip.2016.09.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
The processes of cell proliferation, cell death and differentiation involve an intricate array of biochemical and morphological changes that require a finely tuned modulation of metabolic pathways, chiefly among them is fatty acid metabolism. The critical participation of stearoyl CoA desaturase-1 (SCD1), the fatty acyl Δ9-desaturing enzyme that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), in the mechanisms of replication and survival of mammalian cells, as well as their implication in the biological alterations of cancer have been actively investigated in recent years. This review examines the growing body of evidence that argues for a role of SCD1 as a central regulator of the complex synchronization of metabolic and signaling events that control cellular metabolism, cell cycle progression, survival, differentiation and transformation to cancer.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Medical Center, New York City, NY, United States.
| |
Collapse
|
122
|
Guerram M, Jiang ZZ, Yousef BA, Hamdi AM, Hassan HM, Yuan ZQ, Luo HW, Zhu X, Zhang LY. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget 2016; 6:21865-77. [PMID: 26068969 PMCID: PMC4673132 DOI: 10.18632/oncotarget.4156] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023] Open
Abstract
Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Bashir Alsiddig Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Aida Mejda Hamdi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hozeifa Mohamed Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Qiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hou-Wei Luo
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiong Zhu
- Medical and Chemical Institute, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
123
|
van der Mijn JC, Panka DJ, Geissler AK, Verheul HM, Mier JW. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab 2016; 4:14. [PMID: 27418963 PMCID: PMC4944519 DOI: 10.1186/s40170-016-0154-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Molecular profiling studies of tumor tissue from patients with clear cell renal cell cancer (ccRCC) have revealed extensive metabolic reprogramming in this disease. Associations were found between metabolic reprogramming, histopathologic Fuhrman grade, and overall survival of patients. Large-scale genomics, proteomics, and metabolomic analyses have been performed to identify the molecular players in this process. Genes involved in glycolysis, the pentose phosphate pathway, glutamine metabolism, and lipogenesis were found to be upregulated in renal cell cancer (RCC) specimens as compared to normal tissue. Preclinical research indicates that mutations in VHL, FBP1, and the PI3K-AKT-mTOR pathway drives aerobic glycolysis through transcriptional activation of the hypoxia-inducible factors (HIF). Mechanistic studies revealed glutamine as an important source for de novo fatty acid synthesis through reductive carboxylation. Amplification of MYC drives reductive carboxylation. In this review, we present a detailed overview of the metabolic changes in RCC in conjunction with potential novel therapeutics. We discuss preclinical studies that have investigated targeted agents that interfere with various aspects of tumor cell metabolism and emphasize their impact specifically on glycolysis, lipogenesis, and tumor growth. Furthermore, we describe a number of phase 1 and 2 clinical trials that have been conducted with these agents.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA ; Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ; Department of Internal Medicine, OLVG; Jan van Tooropstraat 164, 1061 AE Amsterdam, The Netherlands
| | - David J Panka
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Andrew K Geissler
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - James W Mier
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
124
|
Shah S, Carriveau WJ, Li J, Campbell SL, Kopinski PK, Lim HW, Daurio N, Trefely S, Won KJ, Wallace DC, Koumenis C, Mancuso A, Wellen KE. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 2016; 7:43713-43730. [PMID: 27248322 PMCID: PMC5190055 DOI: 10.18632/oncotarget.9666] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/08/2016] [Indexed: 01/18/2023] Open
Abstract
The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased β-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.
Collapse
Affiliation(s)
- Supriya Shah
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Whitney J Carriveau
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney L Campbell
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Piotr K Kopinski
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie Daurio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony Mancuso
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
125
|
Pinweha P, Rattanapornsompong K, Charoensawan V, Jitrapakdee S. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput Struct Biotechnol J 2016; 14:223-33. [PMID: 27358718 PMCID: PMC4915959 DOI: 10.1016/j.csbj.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in cancers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is frequently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By combining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers. The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory organization that cannot be observed by investigating individual miRs, TFs, and target genes.
Collapse
Key Words
- 2-HG, 2-hydroxyglutarate
- ACC, acetyl-CoA carboxylase
- ACL, ATP-citrate lyase
- BRCA1, breast cancer type 1 susceptibility protein
- Cancer
- FAS, fatty acid synthase
- FH, fumarate hydratase
- G6PD, glucose-6-phosphate dehydrogenase
- GDH, glutamate dehydrogenase
- GLS, glutaminase
- GLUT, glucose transporter
- HIF1α, hypoxia inducible factor 1α
- HK, hexokinase
- IDH, isocitrate dehydrogenase
- MCT, monocarboxylic acid transporter
- ME, malic enzyme
- Metabolism
- MicroRNA
- Oncogene
- PC, pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PDK, pyruvate dehydrogenase kinase
- PEP, phosphoenolpyruvate
- PEPCK, phosphoenolpyruvate carboxykinase
- PFK, phosphofructokinase
- PGK, phosphoglycerate kinase (PGK)
- PHGDH, phosphoglycerate dehydrogenase
- PKM, muscle-pyruvate kinase
- PPP, pentose phosphate pathway
- PSAT, phosphoserine aminotransferase
- PSPH, phosphoserine phosphatase
- SDH, succinate dehydrogenase
- SHMT, serine hydroxymethyl transferase
- SREBP1, sterol regulatory element binding protein 1
- TCA, tricarboxylic acid
- TFs, transcription factors
- Transcriptional regulation network
- c-MYC, V-myc avian myelocytomatosis viral oncogene homolog
- miR/miRNA, LDH, lactate dehydrogenase micro RNA
- p53, tumor protein p53
Collapse
Affiliation(s)
- Pannapa Pinweha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
126
|
De Angelis L, Rinaldi T, Cirigliano A, Bello C, Reverberi M, Amaretti A, Montanari A, Santomartino R, Raimondi S, Gonzalez A, Bianchi MM. Functional roles of the fatty acid desaturases encoded by KlOLE1, FAD2 and FAD3 in the yeast Kluyveromyces lactis. MICROBIOLOGY-SGM 2016; 162:1435-1445. [PMID: 27233577 DOI: 10.1099/mic.0.000315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional properties of cell membranes depend on their composition, particularly on the relative amount of saturated, unsaturated and polyunsaturated fatty acids present in the phospholipids. The aim of this study was to investigate the effect of cell membrane composition on cell fitness, adaptation and stress response in Kluyveromyces lactis. To this purpose, we have deleted the genes FAD2 and FAD3 encoding Δ12 and ω3 desaturases in Kluyveromyces lactis, thus generating mutant strains with altered fatty acid composition of membranes. These strains were viable and able to grow in stressing conditions like hypoxia and low temperature. Deletion of the Δ9 desaturase-encoding gene KlOLE1 resulted in lethality, suggesting that this enzyme has an essential role in this yeast. Transcription of the desaturase genes KlOLE1, FAD2 and FAD3 and cellular localization of the corresponding enzymes, have been studied under hypoxia and cold stress. Our findings indicate that expression of these desaturase genes and membrane composition were modulated by hypoxia and temperature stress, although the changes induced by these and other assayed conditions did not dramatically affect the general cellular fitness.
Collapse
Affiliation(s)
- Lorenzo De Angelis
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy.,Pasteur Institute Cenci-Bolognetti Foundation, Viale Regina Elena 291, 00161 Roma, Italy
| | - Angela Cirigliano
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Cristiano Bello
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Alberto Amaretti
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Stefano Raimondi
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Alicia Gonzalez
- Department of Biochemistry and Structural Biology, Universidad Nacional Autónoma de México, Mexico
| | - Michele M Bianchi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
127
|
|
128
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
129
|
Guma M, Tiziani S, Firestein GS. Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nat Rev Rheumatol 2016; 12:269-81. [PMID: 26935283 PMCID: PMC4963238 DOI: 10.1038/nrrheum.2016.1] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping our understanding of cell biology, physiology and medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Monica Guma
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0656, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0656, USA
| |
Collapse
|
130
|
A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer. PLoS One 2016; 11:e0153727. [PMID: 27100877 PMCID: PMC4839647 DOI: 10.1371/journal.pone.0153727] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022] Open
Abstract
Molecular analysis of patient tissue samples is essential to characterize the in vivo variability in human cancers which are not accessible in cell-lines or animal models. This applies particularly to studies of tumor metabolism. The challenge is, however, the complex mixture of various tissue types within each sample, such as benign epithelium, stroma and cancer tissue, which can introduce systematic biases when cancers are compared to normal samples. In this study we apply a simple strategy to remove such biases using sample selections where the average content of stroma tissue is balanced between the sample groups. The strategy is applied to a prostate cancer patient cohort where data from MR spectroscopy and gene expression have been collected from and integrated on the exact same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways which are otherwise hidden in the data due to tissue confounding. In particular, lowered levels of putrescine are connected to increased expression of SRM, reduced levels of citrate are attributed to upregulation of genes promoting fatty acid synthesis, and increased succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the strategy also highlights important metabolic differences between the stroma, epithelium and prostate cancer. These results show that important in vivo metabolic features of cancer can be revealed from patient data only if the heterogeneous tissue composition is properly accounted for in the analysis.
Collapse
|
131
|
Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, Dong LW, Qin CJ, Huang S, Zhao LH, Zeng M, Wu MC, Yan HX, Wang HY. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology 2016; 63:1272-86. [PMID: 26698170 DOI: 10.1002/hep.28415] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Solid tumors often suffer from suboptimal oxygen and nutrient supplies. This stress underlies the requirement for metabolic adaptation. Aberrantly activated de novo lipogenesis is critical for development and progression of human hepatocellular carcinoma (HCC). However, whether de novo lipogenesis influences biological behaviors of HCCs under conditions of metabolic stress are still poorly understood. Here, we show that HCCs display distinct levels of glucose-derived de novo lipogenesis, which are positively correlated with their survival responses to glucose limitation. The enhanced lipogenesis in HCCs is characterized by an increased expression of rate-limiting enzyme acetyl-coenzyme A carboxylase alpha (ACCα). ACCα-mediated fatty acid (FA) synthesis determines the intracellular lipid content that is required to maintain energy hemostasis and inhibit cell death by means of FA oxidation (FAO) during metabolic stress. In accord, overexpression of ACCα facilitates tumor growth. ACCα forms a complex with carnitine palmitoyltransferase 1A (CPT1A) and prevents its mitochondria distribution under nutrient-sufficient conditions. During metabolic stress, phosphorylation of ACCα leads to dissociation of the complex and mitochondria localization of CPT1A, thus promoting FAO-mediated cell survival. Therefore, ACCα could provide both the substrate and enzyme storage for FAO during glucose deficiency. Up-regulation of ACCα is also significantly correlated with poorer overall survival and disease recurrence postsurgery. Multivariate Cox's regression analysis identified ACCα as an effective predictor of poor prognosis. CONCLUSION These results present novel mechanistic insight into a pivotal role of ACCα in maintaining HCC survival under metabolic stress. It could be exploited as a novel diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Ming-Da Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Gong-Bo Fu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui-Lu Zhang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xu Zhou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Li-Wei Dong
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Chen-Jie Qin
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Huang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ling-Hao Zhao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Min Zeng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - He-Xin Yan
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
132
|
Cordonier EL, Jarecke SK, Hollinger FE, Zempleni J. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Eur J Pharmacol 2016; 780:202-8. [PMID: 27041646 DOI: 10.1016/j.ejphar.2016.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation.
Collapse
Affiliation(s)
- Elizabeth L Cordonier
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Sarah K Jarecke
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Frances E Hollinger
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA.
| |
Collapse
|
133
|
Kinlaw WB, Baures PW, Lupien LE, Davis WL, Kuemmerle NB. Fatty Acids and Breast Cancer: Make Them on Site or Have Them Delivered. J Cell Physiol 2016; 231:2128-41. [PMID: 26844415 DOI: 10.1002/jcp.25332] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/11/2022]
Abstract
Brisk fatty acid (FA) production by cancer cells is accommodated by the Warburg effect. Most breast and other cancer cell types are addicted to fatty acids (FA), which they require for membrane phospholipid synthesis, signaling purposes, and energy production. Expression of the enzymes required for FA synthesis is closely linked to each of the major classes of signaling molecules that stimulate BC cell proliferation. This review focuses on the regulation of FA synthesis in BC cells, and the impact of FA, or the lack thereof, on the tumor cell phenotype. Given growing awareness of the impact of dietary fat and obesity on BC biology, we will also examine the less-frequently considered notion that, in addition to de novo FA synthesis, the lipolytic uptake of preformed FA may also be an important mechanism of lipid acquisition. Indeed, it appears that cancer cells may exist at different points along a "lipogenic-lipolytic axis," and FA uptake could thwart attempts to exploit the strict requirement for FA focused solely on inhibition of de novo FA synthesis. Strategies for clinically targeting FA metabolism will be discussed, and the current status of the medicinal chemistry in this area will be assessed. J. Cell. Physiol. 231: 2128-2141, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William B Kinlaw
- Division of Endocrinology and Metabolism, Department of Medicine, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Paul W Baures
- Department of Chemistry, Keene State University, Keene, New Hampshire
| | - Leslie E Lupien
- The Geisel School of Medicine at Dartmouth, Program in Experimental and Molecular Medicine, Lebanon, New Hampshire.,Division of Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Wilson L Davis
- Division of Endocrinology and Metabolism, Department of Medicine, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Nancy B Kuemmerle
- The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire.,Division of Hematology/Oncology, Department of Medicine, White River Junction VAMC, White River Junction, Vermont
| |
Collapse
|
134
|
Kudryashova TV, Goncharov DA, Pena A, Ihida-Stansbury K, DeLisser H, Kawut SM, Goncharova EA. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension. Pulm Circ 2015; 5:667-80. [PMID: 26697174 DOI: 10.1086/683810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography-based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate-competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites-components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars-intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation.
Collapse
Affiliation(s)
- Tatiana V Kudryashova
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dmitry A Goncharov
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andressa Pena
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kaori Ihida-Stansbury
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Horace DeLisser
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven M Kawut
- Pulmonary Vascular Disease Program and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena A Goncharova
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
135
|
Kang JI, Hong JY, Lee HJ, Bae SY, Jung C, Park HJ, Lee SK. Anti-Tumor Activity of Yuanhuacine by Regulating AMPK/mTOR Signaling Pathway and Actin Cytoskeleton Organization in Non-Small Cell Lung Cancer Cells. PLoS One 2015; 10:e0144368. [PMID: 26656173 PMCID: PMC4676678 DOI: 10.1371/journal.pone.0144368] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022] Open
Abstract
Yuanhuacine (YC), a daphnane diterpenoid from the flowers of Daphne genkwa, exhibited a potential growth inhibitory activity against human non-small cell lung cancer (NSCLC) cells. YC also suppressed the invasion and migration of lung cancer cells. However, the precise molecular mechanisms remain to be elucidated. In the present study, we report that YC significantly activated AMP-activated protein kinase (AMPK) signaling pathway and suppressed mTORC2-mediated downstream signaling pathway in H1993 human NSCLC cells. AMPK plays an important role in energy metabolism and cancer biology. Therefore, activators of AMPK signaling pathways can be applicable to the treatment of cancer. YC enhanced the expression of p-AMPKα. The co-treatment of YC and compound C (an AMPK inhibitor) or metformin (an AMPK activator) also confirmed that YC increases p-AMPKα. YC also suppressed the activation of the mammalian target of rapamycin (mTOR) expression, a downstream target of AMPK. Further study revealed that YC modulates mTORC2-associated downstream signaling pathways with a decreased expressions of p-Akt, p-protein kinase C alpha (PKCα), p-ras-related C3 botulinum toxin substrate 1 (Rac1) and filamentous actin (F-actin) that are known to activate cell growth and organize actin cytoskeleton. In addition, YC inhibited the tumor growth in H1993 cell-implanted xenograft nude mouse model. These data suggest the YC could be a potential candidate for cancer chemotherapeutic agents derived from natural products by regulating AMPK/mTORC2 signaling pathway and actin cytoskeleton organization.
Collapse
Affiliation(s)
- Ji In Kang
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
| | - Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
| | - Hye-Jung Lee
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
| | - Song Yi Bae
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
| | - Cholomi Jung
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul, 151–742, Republic of Korea
- * E-mail:
| |
Collapse
|
136
|
Gómez de Cedrón M, Ramírez de Molina A. Microtargeting cancer metabolism: opening new therapeutic windows based on lipid metabolism. J Lipid Res 2015; 57:193-206. [PMID: 26630911 DOI: 10.1194/jlr.r061812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 01/04/2023] Open
Abstract
Metabolic reprogramming has emerged as a hallmark of cancer. MicroRNAs are noncoding RNAs that posttranscriptionally repress the expression of target mRNAs implicated in multiple physiological processes, including apoptosis, differentiation, and cancer. MicroRNAs can affect entire biological pathways, making them good candidates for therapeutic intervention compared with classical single target approaches. Moreover, microRNAs may become more relevant in the fine-tuning adaptation to stress situations, such as oncogenic events, hypoxia, nutrient deprivation, and oxidative stress. Furthermore, artificial microRNAs can be designed to modulate the expression of multiple targets of a specific pathway. In this review, we describe the metabolic reprogramming associated to cancer, with a special interest in the altered lipid metabolism. Next, we describe specific features of microRNAs that make them relevant to target cancer cell metabolism. Finally, in an attempt to open new therapeutic windows, we emphasize two exciting scenarios for microRNA-mediated intervention that need to be further explored: 1) the cooperation between FA biosynthesis (lipogenesis) and FA oxidation as complementary partners for the survival of cancer cells; and 2) the regulation of the intracellular lipid content modulating both lipid storage into lipid droplets, and lipid mobilization through lipolysis and/or lipophagy.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA (Madrid Institute of Advanced Studies)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA (Madrid Institute of Advanced Studies)-Food, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
137
|
Douglas DN, Pu CH, Lewis JT, Bhat R, Anwar-Mohamed A, Logan M, Lund G, Addison WR, Lehner R, Kneteman NM. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus. J Biol Chem 2015; 291:1974-1990. [PMID: 26627833 DOI: 10.1074/jbc.m115.674861] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 12/11/2022] Open
Abstract
Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis.
Collapse
Affiliation(s)
- Donna N Douglas
- From the Departments of Surgery,; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| | - Christopher Hao Pu
- From the Departments of Surgery,; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jamie T Lewis
- From the Departments of Surgery,; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | | - Michael Logan
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Medical Microbiology and Immunology
| | | | - William R Addison
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Medical Microbiology and Immunology
| | | | - Norman M Kneteman
- From the Departments of Surgery,; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
138
|
Castro C, Freitag J, Berod L, Lochner M, Sparwasser T. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol Immunol 2015; 68:575-84. [DOI: 10.1016/j.molimm.2015.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023]
|
139
|
Li W, Zhang C, Du H, Huang V, Sun B, Harris JP, Richardson Q, Shen X, Jin R, Li G, Kevil CG, Gu X, Shi R, Zhao Y. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol Carcinog 2015; 55:1739-1746. [PMID: 26472150 DOI: 10.1002/mc.22423] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
Withaferin A (WA), a natural product derived from Withania somnifera, has been used in traditional oriental medicines to treat neurological disorders. Recent studies have demonstrated that this compound may have a potential for cancer treatment and a clinical trial has been launched to test WA in treating melanoma. Herein, WA's chemopreventive potential was tested in a chemically-induced skin carcinogenesis mouse model. Pathological examinations revealed that WA significantly suppressed skin tumor formation. Morphological observations of the skin tissues suggest that WA suppressed cell proliferation rather than inducing apoptosis during skin carcinogenesis. Antibody Micro array analysis demonstrated that WA blocked carcinogen-induced up-regulation of acetyl-CoA carboxylase 1 (ACC1), which was further confirmed in a skin cell transformation model. Overexpression of ACC1 promoted whereas knockdown of ACC1 suppressed anchorage-independent growth and oncogene activation of transformable skin cells. Further studies demonstrated that WA inhibited tumor promotor-induced ACC1 gene transcription by suppressing the activation of activator protein 1. In melanoma cells, WA was also able to suppress the expression levels of ACC1. Finally, results using human skin cancer tissues confirmed the up-regulation of ACC1 in tumors than adjacent normal tissues. In summary, our results suggest that withaferin A may have a potential in chemoprevention and ACC1 may serve as a critical target of WA. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.,Department of Basic Medicine, Heibei University, Baoding, China
| | - Chunjing Zhang
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.,Department of Basic Medicine, Qiqihar Medical University, Qiqihar, China
| | - Hongyan Du
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.,College of Biotechnology, Southern Medical University, Guangzhou, China
| | - Vincent Huang
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Brandi Sun
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - John P Harris
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Quitin Richardson
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Rong Jin
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Guohong Li
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Xin Gu
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Runhua Shi
- Feist-Weiller Cancer Center, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.
| |
Collapse
|
140
|
von Roemeling CA, Copland JA. Targeting lipid metabolism for the treatment of anaplastic thyroid carcinoma. Expert Opin Ther Targets 2015; 20:159-66. [PMID: 26414044 DOI: 10.1517/14728222.2016.1086341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Anaplastic thyroid carcinoma (ATC) is the rarest subtype of thyroid cancer; however, it disproportionately accounts for a large percentage of all thyroid cancer-related deaths and is considered one of the most lethal solid tumors in humans, having a median survival of only a few months upon diagnosis. Although a variety of treatment options are available including surgery, radiation and targeted therapies, response rates are low, due in part to the drug-resistant nature of this disease; therefore, new avenues for therapeutic intervention are surely needed. Recent investigation into the metabolic profile of ATC has revealed a tumor-specific dependency for increased de novo lipogenesis, offering new insight into the molecular mechanisms that govern disease initiation and progression. AREAS COVERED Herein we summarize known oncogenic signaling pathways and current therapeutic strategies for the treatment of ATC. We further discuss the unique expression pattern of lipid metabolism constituents in this disease. Additionally, the current literature correlating aberrant lipogenesis with carcinogenesis is reviewed, and the implications of targeting this pathway as an innovative approach for treating ATC and other malignancies are discussed. As stearoyl-CoA desaturase (SCD) is the most differentially expressed constituent of lipid metabolism in ATC, an additional focus on this enzyme as a novel therapeutic target is applied. EXPERT OPINION This section is used to summarize the current research efforts underway in defining the role of lipid metabolism specifically in thyroid carcinoma. Included is a brief summary of lipid metabolism factors for which inhibitors have been generated and are under current investigation as anti-cancer agents. Finally, research limitations regarding the use of these inhibitors against components of this pathway are discussed.
Collapse
Affiliation(s)
| | - John A Copland
- b 2 Mayo Clinic Jacksonville, The Department of Cancer Biology , Jacksonville, FL 32224, USA ;
| |
Collapse
|
141
|
Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol 2015; 43:11-21. [PMID: 26277543 DOI: 10.1016/j.semcdb.2015.08.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022]
Abstract
The MYC proto-oncogene is frequently deregulated in human cancers, activating genetic programs that orchestrate biological processes to promote growth and proliferation. Altered metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis and elevated fatty acid and nucleotide synthesis is the hallmark of MYC-driven cancer. Recent evidence strongly suggests that Myc-dependent metabolic reprogramming is critical for tumorigenesis, which could be attenuated by targeting specific metabolic pathways using small drug-like molecules. Understanding the complexity of MYC-mediated metabolic re-wiring in cancers as well as how MYC cooperates with other metabolic drivers such as mammalian target of rapamycin (mTOR) will provide translational opportunities for cancer therapy.
Collapse
Affiliation(s)
- Annie L Hsieh
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zandra E Walton
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary E Stine
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
142
|
Nambiar DK, Deep G, Singh RP, Agarwal C, Agarwal R. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1. Oncotarget 2015; 5:10017-33. [PMID: 25294820 PMCID: PMC4259402 DOI: 10.18632/oncotarget.2488] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.
Collapse
Affiliation(s)
- Dhanya K Nambiar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. School of Life Sciences, Jawaharlal Nehru University, India
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. University of Colorado Cancer Center, Aurora, CO, USA
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, India
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. University of Colorado Cancer Center, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
143
|
Ung T, Mason JL, Robinson RG, Spais CM, Ator MA, Angeles TS. A Cellular Assay for Inhibitors of the Fatty Acid Biosynthetic Pathway Using Scintillating Microplates. Assay Drug Dev Technol 2015; 13:285-92. [PMID: 26125659 DOI: 10.1089/adt.2015.644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A simplified method for monitoring the incorporation of radiolabeled acetate into lipids in a cellular system is described. The assay eliminates the commonly employed labor-intensive organic extraction step by plating the cells in 96-well tissue culture-treated ScintiPlates(®) that enable direct measurement of radiolabeled cell membrane-embedded lipids. Since the scintillant is entrenched in the plates, radioactivity in close proximity to the scintillant is measured without the need for liquid scintillation cocktail. The utility of this method for evaluating inhibitors of the de novo fatty acid synthetic pathway is demonstrated here with fatty acid synthase (FASN). Due to the upregulation of FASN activity in many tumor types, development of inhibitors to block the FASN activity in cells shows promise as an attractive and tractable approach for therapeutic intervention.
Collapse
Affiliation(s)
- Thao Ung
- 1 Lead Discovery and Profiling, Teva Branded Pharmaceutical Products R&D, Inc. , West Chester, Pennsylvania
| | - Jennifer L Mason
- 1 Lead Discovery and Profiling, Teva Branded Pharmaceutical Products R&D, Inc. , West Chester, Pennsylvania
| | - Ron G Robinson
- 1 Lead Discovery and Profiling, Teva Branded Pharmaceutical Products R&D, Inc. , West Chester, Pennsylvania
| | - Chrysanthe M Spais
- 2 Global Bioassay and Technology, Teva Branded Pharmaceutical Products R&D, Inc. , West Chester, Pennsylvania
| | - Mark A Ator
- 1 Lead Discovery and Profiling, Teva Branded Pharmaceutical Products R&D, Inc. , West Chester, Pennsylvania
| | - Thelma S Angeles
- 1 Lead Discovery and Profiling, Teva Branded Pharmaceutical Products R&D, Inc. , West Chester, Pennsylvania
| |
Collapse
|
144
|
Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, Menendez JA. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 2015; 5:8306-16. [PMID: 25246709 PMCID: PMC4226684 DOI: 10.18632/oncotarget.2059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSC) may take advantage of the Warburg effect-induced siphoning of metabolic intermediates into de novo fatty acid biosynthesis to increase self-renewal growth. We examined the anti-CSC effects of the antifungal polyketide soraphen A, a specific inhibitor of the first committed step of lipid biosynthesis catalyzed by acetyl-CoA carboxylase (ACACA). The mammosphere formation capability of MCF-7 cells was reduced following treatment with soraphen A in a dose-dependent manner. MCF-7 cells engineered to overexpress the oncogene HER2 (MCF-7/HER2 cells) were 5-fold more sensitive than MCF-7 parental cells to soraphen A-induced reductions in mammosphere-forming efficiency. Soraphen A treatment notably decreased aldehyde dehydrogenase (ALDH)-positive CSC-like cells and impeded the HER2's ability to increase the ALDH+-stem cell population. The following results confirmed that soraphen A-induced suppression of CSC populations occurred through ACACA-driven lipogenesis: a.) exogenous supplementation with supraphysiological concentrations of oleic acid fully rescued mammosphere formation in the presence of soraphen A and b.) mammosphere cultures of MCF-7 cells with stably silenced expression of the cytosolic isoform ACACA1, which specifically participates in de novo lipogenesis, were mostly refractory to soraphen A treatment. Our findings reveal for the first time that ACACA may constitute a previously unrecognized target for novel anti-breast CSC therapies.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Juan Gumuzio
- Fundación Inbiomed, San Sebastián, Gipuzkoa Spain
| | | | - Olatz Leis
- StemTek Therapeutics, Bilbao, Biscay Spain
| | | | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| |
Collapse
|
145
|
DNA Methylation-Guided Prediction of Clinical Failure in High-Risk Prostate Cancer. PLoS One 2015; 10:e0130651. [PMID: 26086362 PMCID: PMC4472347 DOI: 10.1371/journal.pone.0130651] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a very heterogeneous disease with respect to clinical outcome. This study explored differential DNA methylation in a priori selected genes to diagnose PCa and predict clinical failure (CF) in high-risk patients. METHODS A quantitative multiplex, methylation-specific PCR assay was developed to assess promoter methylation of the APC, CCND2, GSTP1, PTGS2 and RARB genes in formalin-fixed, paraffin-embedded tissue samples from 42 patients with benign prostatic hyperplasia and radical prostatectomy specimens of patients with high-risk PCa, encompassing training and validation cohorts of 147 and 71 patients, respectively. Log-rank tests, univariate and multivariate Cox models were used to investigate the prognostic value of the DNA methylation. RESULTS Hypermethylation of APC, CCND2, GSTP1, PTGS2 and RARB was highly cancer-specific. However, only GSTP1 methylation was significantly associated with CF in both independent high-risk PCa cohorts. Importantly, trichotomization into low, moderate and high GSTP1 methylation level subgroups was highly predictive for CF. Patients with either a low or high GSTP1 methylation level, as compared to the moderate methylation groups, were at a higher risk for CF in both the training (Hazard ratio [HR], 3.65; 95% CI, 1.65 to 8.07) and validation sets (HR, 4.27; 95% CI, 1.03 to 17.72) as well as in the combined cohort (HR, 2.74; 95% CI, 1.42 to 5.27) in multivariate analysis. CONCLUSIONS Classification of primary high-risk tumors into three subtypes based on DNA methylation can be combined with clinico-pathological parameters for a more informative risk-stratification of these PCa patients.
Collapse
|
146
|
Wang C, Ma J, Zhang N, Yang Q, Jin Y, Wang Y. The acetyl-CoA carboxylase enzyme: a target for cancer therapy? Expert Rev Anticancer Ther 2015; 15:667-76. [PMID: 25979092 DOI: 10.1586/14737140.2015.1038246] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a rate-limiting enzyme, the acetyl-CoA carboxylase (ACC) is essential for fatty acid synthesis. Traditionally, the ACC has been a target of metabolic syndrome and obesity. Recent research has demonstrated that malignant tumors have a high energy flow, thus having a great ability to synthesize fatty acids. ACCs are occasionally found to be overexpressed in cancer cells, and using chemical or RNA interference to inhibit ACC can lead to cancer cell cycle arrest and apoptosis. This suggests that ACC and relative fatty acids may be critical for the survival of cancer cells. In this review, we summarize the role of ACC in tumor development. We also discuss the signaling pathways possibly affected by ACC, which may give insight into future research for cancer therapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of OB&GYN, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | | | | | | | | | | |
Collapse
|
147
|
Southam AD, Khanim FL, Hayden RE, Constantinou JK, Koczula KM, Michell RH, Viant MR, Drayson MT, Bunce CM. Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Res 2015; 75:2530-40. [PMID: 25943877 DOI: 10.1158/0008-5472.can-15-0202] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/07/2015] [Indexed: 11/16/2022]
Abstract
The redeployed drug combination of bezafibrate and medroxyprogesterone acetate (designated BaP) has potent in vivo anticancer activity in acute myelogenous leukemia (AML) and endemic Burkitt lymphoma (eBL) patients; however, its mechanism-of-action is unclear. Given that elevated fatty acid biosynthesis is a hallmark of many cancers and that these drugs can affect lipid metabolism, we hypothesized that BaP exerts anticancer effects by disrupting lipogenesis. We applied mass spectrometry-based lipidomics and gene and protein expression measurements of key lipogenic enzymes [acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and stearoyl CoA desaturase 1 (SCD1)] to AML and eBL cell lines treated with BaP. BaP treatment decreased fatty acid and phospholipid biosynthesis from (13)C D-glucose. The proportion of phospholipid species with saturated and monounsaturated acyl chains was also decreased after treatment, whereas those with polyunsaturated chains increased. BaP decreased SCD1 protein levels in each cell line (0.46- to 0.62-fold; P < 0.023) and decreased FASN protein levels across all cell lines (0.87-fold decrease; P = 1.7 × 10(-4)). Changes to ACC1 protein levels were mostly insignificant. Supplementation with the SCD1 enzymatic product, oleate, rescued AML and e-BL cells from BaP cell killing and decreased levels of BaP-induced reactive oxygen species, whereas supplementation with the SCD1 substrate (and FASN product), palmitate, did not rescue cells. In conclusion, these data suggest that the critical anticancer actions of BaP are decreases in SCD1 levels and monounsaturated fatty acid synthesis. To our knowledge, this is the first time that clinically available antileukemic and antilymphoma drugs targeting SCD1 have been reported.
Collapse
Affiliation(s)
- Andrew D Southam
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| | - Farhat L Khanim
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel E Hayden
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Katarzyna M Koczula
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert H Michell
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark T Drayson
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Chris M Bunce
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
148
|
Guo D, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol 2015; 2:289-99. [PMID: 24159371 DOI: 10.2217/cns.13.20] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas are one of the most treatment-refractory cancers. Development of resistance to chemo- and radio-therapies contributes to these tumors' aggressive phenotypes. Elevated lipid levels in gliomas have been reported for the last 50 years. However, the molecular mechanisms of how tumor tissues obtain lipids and utilize them are not well understood. Recently, the oncogenic signaling EGFR/PI3K/Akt pathway has been shown to enhance lipid synthesis and uptake by upregulating SREBP-1, a master transcriptional factor, to control lipid metabolism. This article discusses the analytical chemistry results of lipid components in glioma tissues from different research groups. The molecular mechanisms that link oncogenes with lipid programming, and identification of the key molecular targets and development of effective drugs to inhibit lipid metabolism in malignant gliomas will be discussed.
Collapse
|
149
|
Liu X, Sadhukhan S, Sun S, Wagner GR, Hirschey MD, Qi L, Lin H, Locasale JW. High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet. Mol Cell Proteomics 2015; 14:1489-500. [PMID: 25795660 DOI: 10.1074/mcp.m114.044859] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 01/09/2023] Open
Abstract
The availability of acyl-Coenzyme A (acyl-CoA) thioester compounds affects numerous cellular functions including autophagy, lipid oxidation and synthesis, and post-translational modifications. Consequently, the acyl-CoA level changes tend to be associated with other metabolic alterations that regulate these critical cellular functions. Despite their biological importance, this class of metabolites remains difficult to detect and quantify using current analytical methods. Here we show a universal method for metabolomics that allows for the detection of an expansive set of acyl-CoA compounds and hundreds of other cellular metabolites. We apply this method to profile the dynamics of acyl-CoA compounds and corresponding alterations in metabolism across the metabolic network in response to high fat feeding in mice. We identified targeted metabolites (>50) and untargeted features (>1000) with significant changes (FDR < 0.05) in response to diet. A substantial extent of this metabolic remodeling exhibited correlated changes in acyl-CoA metabolism with acyl-carnitine metabolism and other features of the metabolic network that together can lead to the discovery of biomarkers of acyl-CoA metabolism. These findings show a robust acyl-CoA profiling method and identify coordinated changes of acyl-CoA metabolism in response to nutritional stress.
Collapse
Affiliation(s)
- Xiaojing Liu
- From the ‡Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Sushabhan Sadhukhan
- §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Shengyi Sun
- ¶Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Gregory R Wagner
- ‖Duke Molecular Physiology Institute, Duke University, Medical Center, Durham, North Carolina 27710; **Department of Medicine and Department of Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Matthew D Hirschey
- ‖Duke Molecular Physiology Institute, Duke University, Medical Center, Durham, North Carolina 27710; **Department of Medicine and Department of Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Ling Qi
- From the ‡Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853; ¶Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Hening Lin
- §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Jason W Locasale
- From the ‡Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853; ¶Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
150
|
Obesity and cancer progression: is there a role of fatty acid metabolism? BIOMED RESEARCH INTERNATIONAL 2015; 2015:274585. [PMID: 25866768 PMCID: PMC4383231 DOI: 10.1155/2015/274585] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.
Collapse
|