101
|
Romero DG, Plonczynski M, Vergara GR, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II early regulated genes in H295R human adrenocortical cells. Physiol Genomics 2004; 19:106-16. [PMID: 15375197 DOI: 10.1152/physiolgenomics.00097.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence for the dysregulation of aldosterone synthesis in cardiovascular pathophysiology has renewed interest in the control of its production. Cellular mechanisms by which angiotensin II (ANG II) stimulates aldosterone synthesis in the adrenal zona glomerulosa are incompletely understood. To elucidate the mechanism of intracellular signaling by ANG II stimulation in the adrenal, we have studied immediate-early regulated genes in human adrenal H295R cells using cDNA microarrays. H295R cells were stimulated with ANG II for 3 h. Gene expression was analyzed by microarray technology and validated by real-time RT-PCR. Eleven genes were found to be upregulated by ANG II. These encode the proteins for ferredoxin, Nor1, Nurr1, c6orf37, CAT-1, A20, MBLL, M-Ras, RhoB, GADD45α, and a novel protein designated FLJ45273 . Maximum expression levels for all genes occurred 3–6 h after ANG II stimulation. This increase was dose dependent and preceded maximal aldosterone production. Other aldosterone secretagogues, K+and endothelin-1 (ET-1), also induced the expression of these genes with variable efficiency depending on the gene and with lower potency than ANG II. ACTH had negligible effect on gene expression except for the CAT-1 and Nurr1 genes. These ANG II-stimulated genes are involved in several cellular functions and are good candidate effectors and regulators of ANG II-mediated effects in adrenal zona glomerulosa.
Collapse
Affiliation(s)
- Damian G Romero
- Endocrine Section and Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
102
|
Filipeanu CM, Zhou F, Claycomb WC, Wu G. Regulation of the Cell Surface Expression and Function of Angiotensin II Type 1 Receptor by Rab1-mediated Endoplasmic Reticulum-to-Golgi Transport in Cardiac Myocytes. J Biol Chem 2004; 279:41077-84. [PMID: 15252015 DOI: 10.1074/jbc.m405988200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab1 GTPase coordinates vesicle-mediated protein transport specifically from the endoplasmic reticulum (ER) to the Golgi apparatus. We recently demonstrated that Rab1 is involved in the export of angiotensin II (Ang II) type 1 receptor (AT1R) to the cell surface in HEK293 cells and that transgenic mice overexpressing Rab1 in the myocardium develop cardiac hypertrophy. To expand these studies, we determined in this report whether the modification of Rab1-mediated ER-to-Golgi transport can alter the cell surface expression and function of endogenous AT1R and AT1R-mediated hypertrophic growth in primary cultures of neonatal rat ventricular myocytes. Adenovirus-mediated gene transfer of wild-type Rab1 (Rab1WT) significantly increased cell surface expression of endogenous AT1R in neonatal cardiomyocytes, whereas the dominant-negative mutant Rab1N124I had the opposite effect. Brefeldin A treatment blocked the Rab1WT-induced increase in AT1R cell surface expression. Fluorescence analysis of the subcellular localization of AT1R revealed that Rab1 regulated AT1R transport specifically from the ER to the Golgi in HL-1 cardiomyocytes. Consistent with their effects on AT1R export, Rab1WT and Rab1N124I differentially modified the AT1R-mediated activation of ERK1/2 and its upstream kinase MEK1. More importantly, adenovirus-mediated expression of Rab1N124I markedly attenuated the Ang II-stimulated hypertrophic growth as measured by protein synthesis, cell size, and sarcomeric organization in neonatal cardiomyocytes. In contrast, Rab1WT expression augmented the Ang II-mediated hypertrophic response. These data strongly indicate that AT1R function in cardiomyocytes can be modulated through manipulating AT1R traffic from the ER to the Golgi and provide the first evidence implicating the ER-to-Golgi transport as a regulatory site for control of cardiomyocyte growth.
Collapse
Affiliation(s)
- Catalin M Filipeanu
- Department of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
103
|
Jia N, Okamoto H, Shimizu T, Chiba S, Matsui Y, Sugawara T, Akino M, Kitabatake A. A newly developed angiotensin II type 1 receptor antagonist, CS866, promotes regression of cardiac hypertrophy by reducing integrin beta1 expression. Hypertens Res 2004; 26:737-42. [PMID: 14620930 DOI: 10.1291/hypres.26.737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies have demonstrated that integrins link the extracellular matrix to the hypertrophic response pathway of cardiac myocytes in vitro. To examine the direct relation between integrin beta1 and cardiac hypertrophy in vivo, we studied the effects of a newly developed angiotensin II type 1 (AT1) blocker, CS866 (ARB; 10 mg/kg/day), an angiotensin-converting enzyme inhibitor, temocapril (ACEI, 10 mg/kg/day), or both on modulation of integrin beta1 in the hypertrophied hearts of stroke-prone spontaneously hypertensive rats (SHRSP) 6 to 12 weeks of age. Treatments with ARB, ACEI, and combination therapy significantly reduced systolic blood pressure. However, the reduction in cardiac hypertrophy was greater in SHRSP treated with ARB or combination therapy than in those treated with ACEI. Multiplex reverse transcription-polymerase chain reaction revealed significantly higher mRNA expression of atrial natriuretic factor, AT1 receptor, and integrin beta1 in untreated SHRSP than in normotensive Wistar-Kyoto rats (WKY). The mRNA levels of ANP, AT1 receptor, and integrin B1 in SHRSP were significantly decreased by treatment with ARB, ACEI, or combination therapy. Decreased mRNA expression of ANP, AT1 receptor, and integrin beta1 in the treated SHRSP was associated with reductions in blood pressure; ARB and combination therapy produced greater decreases in expression than did ACEI. These observations suggest that CS866 has a beneficial effect on myocyte hypertrophy and that down-regulation of AT1 receptor and suppression of integrin beta1 participate in the regression of pressure-induced cardiac hypertrophy in vivo. The correlation between the expression of integrin beta1 and AT1 receptor was significant. Our results also suggest that integrin expression by myocytes might be modulated by angiotensin II via AT1 receptor.
Collapse
Affiliation(s)
- Nan Jia
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Wei L, Taffet GE, Khoury DS, Bo J, Li Y, Yatani A, Delaughter MC, Klevitsky R, Hewett TE, Robbins J, Michael LH, Schneider MD, Entman ML, Schwartz RJ. Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB J 2004; 18:857-9. [PMID: 15033930 DOI: 10.1096/fj.03-0664fje] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies suggest that RhoA and Rac1 mediate hypertrophic signals in cardiac myocyte hypertrophy. However, effects on cardiac function caused by inhibition of their activity in the heart have yet to be evaluated. Cardiac-specific inhibition of Rho family protein activities was achieved by expressing Rho GDIalpha, an endogenous specific GDP dissociation inhibitor for Rho family proteins, using the alpha-myosin heavy-chain promoter. Increased expression of Rho GDIalpha led to atrial arrhythmias and mild ventricular hypertrophy in adult mice (4-7 months). However, left ventricular systolic and diastolic function was largely preserved before and after the development of cardiac hypertrophy, indicating that Rho GTPases are not required to maintain ventricular contractile function under basal physiological condition. Electrocardiography and intracardiac electrophysiological studies revealed first-degree atrioventricular (AV) block in the transgenic heart at 1 week of age, which further progressed into second-degree AV block at 4 weeks of age before the development of cardiac hypertrophy. Expression of connexin 40 dramatically decreased from 1 week to 4 weeks of age in the transgenic heart, which may contribute in part to the conduction defects in the transgenic mice. This study provides novel evidence for an important role of Rho GTPases in regulating AV conduction.
Collapse
Affiliation(s)
- Lei Wei
- Cardiovascular Sciences Section, Department of Medicine, Baylor College of Medicine and The Methodist Hospital, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Curtis C, Hemmeryckx B, Haataja L, Senadheera D, Groffen J, Heisterkamp N. Scambio, a novel guanine nucleotide exchange factor for Rho. Mol Cancer 2004; 3:10. [PMID: 15107133 PMCID: PMC420252 DOI: 10.1186/1476-4598-3-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 04/23/2004] [Indexed: 12/17/2022] Open
Abstract
Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho.
Collapse
Affiliation(s)
- Christina Curtis
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
- Current address: Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Bianca Hemmeryckx
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| | - Leena Haataja
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
- Current address: Larry Hillblom Islet Research Center, UCLA Division of Endocrinology, Los Angeles, CA 90095-7073, USA
| | - Dinithi Senadheera
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| | - John Groffen
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| | - Nora Heisterkamp
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| |
Collapse
|
106
|
Heidkamp MC, Bayer AL, Scully BT, Eble DM, Samarel AM. Activation of focal adhesion kinase by protein kinase C epsilon in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2003; 285:H1684-96. [PMID: 12829427 DOI: 10.1152/ajpheart.00016.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase critical for both cardiomyocyte survival and sarcomeric assembly during endothelin (ET)-induced cardiomyocyte hypertrophy. ET-induced FAK activation requires upstream activation of one or more isoenzymes of protein kinase C (PKC). Therefore, with the use of replication-defective adenoviruses (Adv) to overexpress constitutively active (ca) and dominant negative (dn) mutants of PKCs, we examined which PKC isoenzymes are necessary for FAK activation and which downstream signaling components are involved. FAK activation was assessed by Western blot analysis with an antibody specific for FAK autophosphorylated at Y397 (Y397pFAK). ET (10 nmol/l; 2-30 min) resulted in the time-dependent activation of FAK which was inhibited by chelerythrine (5 micromol/l; 1 h pretreatment). Adv-caPKC epsilon, but not Adv-caPKC delta, activated FAK compared with a control Adv encoding beta-galactosidase. Conversely, Adv-dnPKC epsilon inhibited ET-induced FAK activation. Y-27632 (10 micromol/l; 1 h pretreatment), an inhibitor of Rho-associated coiled-coil-containing protein kinases (ROCK), prevented ET- and caPKC epsilon-induced FAK activation as well as cofilin phosphorylation. Pretreatment with cytochalasin D (1 micromol/l, 1 h pretreatment) also inhibited ET-induced Y397pFAK and cofilin phosphorylation and caPKC epsilon-induced Y397pFAK. Neither inhibitor, however, interfered with ET-induced ERK1/2 activation. Finally, PP2 (50 micromol/l; 1 h pretreatment), a highly selective Src inhibitor, did not alter basal or ET-induced Y397pFAK. PP2 did, however, reduce basal and ET-induced phosphorylation of other sites on FAK, namely, Y576, Y577, Y861, and Y925. We conclude that the ET-induced signal transduction pathway resulting in downstream Y397pFAK is partially dependent on PKC epsilon, ROCK, cofilin, and assembled actin filaments, but not ERK1/2 or Src.
Collapse
Affiliation(s)
- Maria C Heidkamp
- The Cardiovascular Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
107
|
Saito T, Fukuzawa J, Osaki J, Sakuragi H, Yao N, Haneda T, Fujino T, Wakamiya N, Kikuchi K, Hasebe N. Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol 2003; 35:1153-60. [PMID: 12967638 DOI: 10.1016/s0022-2828(03)00234-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calcineurin and calcium/calmodulin-dependent protein kinase (CaMK) II have been suggested to be the signaling molecules in cardiac hypertrophy. It was not known, however, whether these mechanisms are involved in cardiac hypertrophy induced by pressure overload without the influences of blood-derived humoral factors, such as angiotensin II. To elucidate the roles of calcineurin and CaMK II in this situation, we examined the effects of calcineurin and CaMK II inhibitors on pressure overload-induced expression of c-fos, an immediate-early gene, and protein synthesis using heart perfusion model. The hearts isolated from Sprague-Dawley rats were perfused according to the Langendorff technique, and then subjected to the acute pressure overload by raising the perfusion pressure. The activation of calcineurin was evaluated by its complex formation with calmodulin and by its R-II phosphopeptide dephosphorylation. CaMK II activation was evaluated by its autophosphorylation. Expression of c-fos mRNA and rates of protein synthesis were measured by northern blot analysis and by 14C-phenylalanine incorporation, respectively. Acute pressure overload significantly increased calcineurin activity, CaMK II activity, c-fos expression and protein synthesis. Cyclosporin A and FK506, the calcineurin inhibitors, significantly inhibited the increases in both c-fos expression and protein synthesis. KN62, a CaMK II inhibitor, also significantly prevented the increase in protein synthesis, whereas it failed to affect the expression of c-fos. These results suggest that both calcineurin and CaMK II pathways are critical in the pressure overload-induced acceleration of protein synthesis, and that transcription of c-fos gene is regulated by calcineurin pathway but not by CaMK II pathway.
Collapse
Affiliation(s)
- Tetsuya Saito
- First Department of Medicine, Asahikawa Medical College, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078 8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Nagai T, Tanaka-Ishikawa M, Aikawa R, Ishihara H, Zhu W, Yazaki Y, Nagai R, Komuro I. Cdc42 plays a critical role in assembly of sarcomere units in series of cardiac myocytes. Biochem Biophys Res Commun 2003; 305:806-10. [PMID: 12767901 DOI: 10.1016/s0006-291x(03)00838-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiomyocyte hypertrophy is observed in various cardiovascular diseases and causes heart failure. We here examined the role of small GTP-binding proteins of Rho family in phenylephrine (PE)-or leukocyte inhibitory factor (LIF)-induced hypertrophic morphogenesis of cultured neonatal rat cardiomyocytes. Both LIF and PE increased cell size of cardiomyocytes. LIF induced an increase in the length/width ratio of cardiomyocytes, while PE did not change the ratio. Adenoviral gene transfer of constitutively active mutants of Cdc42 increased the length/width ratio of cardiomyocytes and dominant negative mutants of Cdc42 conversely inhibited LIF-induced cell-elongation, while mutants of RhoA and Rac1 did not affect the length/width ratio of cardiomyocytes. These results suggest that Cdc42, but not RhoA and Rac1, is involved in LIF-induced sarcomere assembly in series in cardiomyocytes.
Collapse
Affiliation(s)
- Toshio Nagai
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Galle J, Mameghani A, Bolz SS, Gambaryan S, Görg M, Quaschning T, Raff U, Barth H, Seibold S, Wanner C, Pohl U. Oxidized LDL and its compound lysophosphatidylcholine potentiate AngII-induced vasoconstriction by stimulation of RhoA. J Am Soc Nephrol 2003; 14:1471-9. [PMID: 12761247 DOI: 10.1097/01.asn.0000067412.18899.9b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RhoA stimulates vascular tone by increasing smooth muscle Ca(2+) sensitivity, e.g., in atherosclerosis. This study was an investigation of the influence of oxidized LDL (OxLDL), which accumulates in atherosclerotic plaques, on vascular tone induced by angiotensin II (AngII), with particular emphasis on the RhoA pathway. OxLDL had no influence on unstimulated vascular tone of isolated rabbit aorta, but it potentiated contractile responses induced by AngII. The Ca(2+)-antagonist felodipin partially prevented potentiation of contractile responses, whereas the AT(1) receptor antagonist losartan blunted AngII responses in presence and in absence of OxLDL. Rho-kinase inhibition by Y27632 abolished potentiation of contractile responses, and RhoA inhibition by C3-like transferase partially prevented it, suggesting that OxLDL activated RhoA. Activation of RhoA was further analyzed by detection of its translocation to the cell membrane after stimulation with OxLDL. Western blot analysis of aorta homogenates, as well as direct visualization in cultured smooth muscle cells using confocal laser scan microscopy, revealed that OxLDL potently activated RhoA. The effect of OxLDL was mimicked by its compound lysophosphatidylcholine, and C3 inhibited both lysophosphatidylcholine and OxLDL-induced RhoA stimulation. In conclusion, OxLDL stimulates the RhoA pathway, resulting in potentiation of AngII-induced vasoconstriction. Lysophosphatidylcholine mimics the OxLDL effect, consistent with a causal role of this OxLDL compound. Stimulation of RhoA by OxLDL may contribute to vasospasm in atherosclerotic arteries.
Collapse
Affiliation(s)
- Jan Galle
- Department of Medicine, Julius-Maximilians Universität, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, Molina CA, Yatani A, Vatner DE, Vatner SF, Sadoshima J. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest 2003; 111:1463-74. [PMID: 12750396 PMCID: PMC155047 DOI: 10.1172/jci17459] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Activation of mammalian sterile 20-like kinase 1 (Mst1) by genotoxic compounds is known to stimulate apoptosis in some cell types. The importance of Mst1 in cell death caused by clinically relevant pathologic stimuli is unknown, however. In this study, we show that Mst1 is a prominent myelin basic protein kinase activated by proapoptotic stimuli in cardiac myocytes and that Mst1 causes cardiac myocyte apoptosis in vitro in a kinase activity-dependent manner. In vivo, cardiac-specific overexpression of Mst1 in transgenic mice results in activation of caspases, increased apoptosis, and dilated cardiomyopathy. Surprisingly, however, Mst1 prevents compensatory cardiac myocyte elongation or hypertrophy despite increased wall stress, thereby obscuring the use of the Frank-Starling mechanism, a fundamental mechanism by which the heart maintains cardiac output in response to increased mechanical load at the single myocyte level. Furthermore, Mst1 is activated by ischemia/reperfusion in the mouse heart in vivo. Suppression of endogenous Mst1 by cardiac-specific overexpression of dominant-negative Mst1 in transgenic mice prevents myocyte death by pathologic insults. These results show that Mst1 works as both an essential initiator of apoptosis and an inhibitor of hypertrophy in cardiac myocytes, resulting in a previously unrecognized form of cardiomyopathy.
Collapse
MESH Headings
- Alkaloids
- Animals
- Apoptosis/drug effects
- Benzophenanthridines
- Cardiomegaly/etiology
- Cardiomegaly/pathology
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Caspase 3
- Caspases/metabolism
- Cells, Cultured
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Genes, Dominant
- Heart Ventricles/pathology
- Marine Toxins
- Mice
- Mice, Transgenic
- Myocardial Ischemia/genetics
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/pathology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Specificity
- Oxazoles/pharmacology
- Phenanthridines/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Rats
- Rats, Wistar
- Transduction, Genetic
Collapse
Affiliation(s)
- Shimako Yamamoto
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, and Department of Gynecology, Obstetrics and Women's Health, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Putnam AJ, Cunningham JJ, Pillemer BBL, Mooney DJ. External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. Am J Physiol Cell Physiol 2003; 284:C627-39. [PMID: 12409284 DOI: 10.1152/ajpcell.00137.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transmission of externally applied mechanical forces to the interior of a cell requires coordination of biochemical signaling pathways with changes in cytoskeletal assembly and organization. In this study, we addressed one potential mechanism for this signal integration by applying uniform single external mechanical strains to aortic smooth muscle cells (SMCs) via their adhesion substrate. A tensile strain applied to the substrate for 15 min significantly increased microtubule (MT) assembly by 32 +/- 7%, with no apparent effect on the cells' focal adhesions as revealed by immunofluorescence and quantitative analysis of Triton X-100-insoluble vinculin levels. A compressive strain decreased MT mass by 24 +/- 9% but did not influence the level of vinculin in focal adhesions. To understand the decoupling of these two cell responses to mechanical strain, we examined a redistribution of the small GTPases RhoA and Rac. Tensile strain was found to decrease the amount of membrane-associated RhoA and Rac by 70 +/- 9% and 45 +/- 11%, respectively, compared with static controls. In contrast, compressive strain increased membrane-associated RhoA and Rac levels by 74 +/- 17% and 36 +/- 13%, respectively. Disruption of the MT network by prolonged treatments with low doses of either nocodazole or paclitaxel before the application of strain abolished the redistribution of RhoA and Rac in response to the applied forces. Combined, these results indicate that the effects of externally applied mechanical strain on the distribution and activation of the Rho family GTPases require changes in the state of MT polymerization.
Collapse
MESH Headings
- Animals
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cytoskeleton/drug effects
- Cytoskeleton/enzymology
- Focal Adhesions/drug effects
- Focal Adhesions/enzymology
- Lysophospholipids/pharmacology
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Microtubules/drug effects
- Microtubules/enzymology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Nocodazole/pharmacology
- Paclitaxel/pharmacology
- Rats
- Rats, Sprague-Dawley
- Stress, Mechanical
- rac GTP-Binding Proteins/drug effects
- rac GTP-Binding Proteins/metabolism
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/drug effects
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Andrew J Putnam
- Department of Chemical Engineering, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | |
Collapse
|
112
|
Duan J, Zhang HY, Adkins SD, Ren BH, Norby FL, Zhang X, Benoit JN, Epstein PN, Ren J. Impaired cardiac function and IGF-I response in myocytes from calmodulin-diabetic mice: role of Akt and RhoA. Am J Physiol Endocrinol Metab 2003; 284:E366-76. [PMID: 12531745 DOI: 10.1152/ajpendo.00254.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study characterized the cardiac contractile function and IGF-I response in a transgenic diabetic mouse model. Mechanical properties were evaluated in cardiac myocytes from OVE26 diabetic and FVB wild-type mice, including peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR(90)) and maximal velocity of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) was evaluated as Ca(2+)-induced Ca(2+) release [difference in fura 2 fluorescent intensity (Delta FFI)] and fluorescence decay rate (tau). Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a, phospholamban (PLB), Na(+)-Ca(2+) exchanger (NCX), GLUT4, and the serine-threonine kinase Akt were assessed by Western blot. RhoA and IGF-I/IGF-I receptor mRNA levels were determined by RT-PCR and Northern blot. OVE26 myocytes displayed decreased PS, +/-dL/dt, and Delta FFI associated with prolonged TPS, TR(90), and tau. SERCA2a, NCX, and Akt activation were reduced, whereas PLB and RhoA were enhanced in OVE26 hearts. GLUT4 was unchanged. IGF-I enhanced PS and Delta FFI in FVB but not OVE26 myocytes. IGF-I mRNA was increased, but IGF-I receptor mRNA was reduced in OVE26 hearts and livers. These results validate diabetic cardiomyopathy in OVE26 mice due to reduced SERCA2, NCX, IGF-I response, and Akt activation associated with enhanced RhoA level, suggesting a therapeutic potential for Akt and RhoA.
Collapse
Affiliation(s)
- Jinhong Duan
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep 2003; 5:73-9. [PMID: 12530939 DOI: 10.1007/s11906-003-0014-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Blockers of the renin-angiotensin system are used in the treatment of several cardiovascular and renal diseases, including hypertension, atherosclerosis, and cardiac failure. Angiotensin II plays an essential role in the pathogenesis of these diseases through the regulation of cell growth, inflammation, and fibrosis. There are two main angiotensin II receptors, AT(1) and AT(2). The AT(1) receptor is responsible for most of the pathophysiologic actions of angiotensin II, including cell proliferation, production of growth factors and cytokines, and fibrosis. AT(2) causes antiproliferation and counteracts the cell growth induced by AT(1) activation. We review the mechanisms whereby AT(1) and AT(2) receptors elicit their respective actions. We discuss the current understanding of the signaling mechanisms involved in angiotensin II-induced vascular damage, describing the mediators (growth factors and cytokines) and intracellular signals (activation of protein kinases, transcription factors, and redox pathways) implicated in these processes, with special emphasis on novel information and open questions.
Collapse
Affiliation(s)
- Marta Ruiz-Ortega
- Vascular and Renal Research Laboratory, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
114
|
Satoh S, Ueda Y, Koyanagi M, Kadokami T, Sugano M, Yoshikawa Y, Makino N. Chronic inhibition of Rho kinase blunts the process of left ventricular hypertrophy leading to cardiac contractile dysfunction in hypertension-induced heart failure. J Mol Cell Cardiol 2003; 35:59-70. [PMID: 12623300 DOI: 10.1016/s0022-2828(02)00278-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Gq-RhoA-Rho kinase pathway, activated by neurohormonal factors such as angiotensin II (Ang II), has been proposed to be one of the important signaling pathways involved in the progression of left ventricular (LV) hypertrophy to heart failure. We tested the hypothesis that chronic inhibition of Rho kinase prevents this process. Heart failure was induced in Dahl salt-sensitive (DS) rats fed an 8% NaCl diet from 8 until 17 weeks of age. Y-27632 (5 mg/kg per day), a selective Rho kinase inhibitor, was applied orally to DS rats starting at 10 weeks of age for 7 weeks (DS/Y+). DS rats without Y-27632 (DS/Y-) and Dahl salt-resistant (DR) rats fed the 8% NaCl diet were regarded as non-therapeutic and normotensive controls, respectively. At 17 weeks of age, there was no significant difference in the blood pressure of DS/Y- and DS/Y+ rats. DS/Y- rats exhibited: (1) increases in LV mass, cross-sectional area (CSA) of cardiomyocytes, and interstitial fibrosis; (2) contractile dysfunction, i.e. decreases in LV ejection fraction and % fractional shortening, and prolongation of time to peak tension as well as to 50% relaxation in the twitch contraction of isolated papillary muscle; and (3) increases in the protein expression of Galphaq and Rho kinase in the myocardial membrane fraction. In DS/Y+ rats, the degree of myocardial hypertrophy was significantly inhibited in association with improved contractile function, without a decrease in the degree of interstitial fibrosis. Our results suggest the possibility that the Gq-Rho kinase pathway plays an important role in the process of hypertension-induced LV hypertrophy leading to contractile dysfunction.
Collapse
Affiliation(s)
- Shinji Satoh
- Department of Bioclimatology and Medicine, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, 874-0838, Beppu, Japan.
| | | | | | | | | | | | | |
Collapse
|
115
|
Yu J, Prado GN, Taylor L, Pal-Ghosh R, Polgar P. Hybrid formation between the intracellular faces of the bradykinin B2 and angiotensin II AT1 receptors and signal transduction. Int Immunopharmacol 2002; 2:1807-22. [PMID: 12489795 DOI: 10.1016/s1567-5769(02)00177-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most frequently, the physiologic functions of the angiotensin II (Ang II) type 1 receptor (AT1R) and bradykinin B2 receptor (BKB2R) are antagonistic, particularly with respect to the regulation of vascular tone. Despite major differences in their physiologic actions, the receptors share sequence similarities. Both link to Galpha(i) and Galpha(q) and transduce very similar signal paths, not only those relating to the traditional G-protein associated second messengers, but also those involved in transactivation mechanisms involving receptor tyrosine kinases. With respect to these paths, some differences in signaling may be accounted for by cell type specificity. However, alternative signal cascades for these two receptors are becoming increasingly evident. One such is the recruitment of signaling molecules upon receptor translocation and internalization. The AT1R translocates into clathrin-coated pits and internalizes upon recruitment of beta-arrestin 2 which then recruits ASK1 and JNK3. The BKB2R translocates and internalizes mainly via caveolae. Another signaling divergence may be due to the direct activation of small G-proteins by both receptors. AT1R activates the RhoA, Rac1, Cdc42 while BKB2R couples only with Rac1 and Cdc42. Both receptors may serve as docking stations for intracellular proteins. One such example is the YIPP motif within the C-terminus of the ATIR which associates with the JAK/STAT pathway. Another potential alternative is the activation of tyrosine/serine kinase phosphatases by BK. This mechanism may directly oppose some of the protein tyrosine/ serine kinase paths activated by AT1R. These alternative mechanisms in sum are potentially responsible for the diversion in signal transduction between these two receptors. Regardless of the route of action, our results suggest that in Rat-1 fibroblasts stably transfected with BKB2R, BK slightly decreases connective tissue growth factor (CTGF) mRNA level while in ATIR transfected cells Ang II increases CTGF mRNA markedly. To determine whether mutant hybrids can be formed between these two receptors which encompass some of the function of the donor receptor but bind the ligand of the recipient receptor, a series of hybrids were formed with BKB2R the recipient and AT1R the donor receptor. Some of these hybrids show resistance to exchanges with the AT1R and form receptors which either do not bind (IC1 exchanges) or demonstrate poor function but normal internalization (proximal C-terminus exchanges). However, other hybrids have proven very functional. For example, the IC2, IC3 and distal C-terminus of the BKB2R IC face can be replaced simultaneously with the AT1R resulting in an hybrid which binds BK, continues to signal, is internalized and resensitized. Formation of this and other less extensive hybrids is discussed. Some of these hybrids possess the capacity to function as the AT1R as exemplified by their ability to upregulate CTGF expression as wild-type (WT) AT1R.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cells, Cultured
- Humans
- Molecular Sequence Data
- Mutation
- Receptor, Angiotensin, Type 1
- Receptor, Bradykinin B2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- Receptors, Bradykinin/genetics
- Receptors, Bradykinin/metabolism
- Receptors, Bradykinin/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
116
|
Abstract
Endothelial permeability depends on the integrity of intercellular junctions as well as actomyosin-based cell contractility. Rho GTPases have been implicated in signalling by many vasoactive substances including thrombin, tumour necrosis factor alpha (TNF-alpha), bradykinin, histamine, lysophosphatidic acid (LPA), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF). Two Rho family GTPases, Rho and Rac, have emerged as key regulators acting antagonistically to regulate endothelial barrier function: Rho increases actomyosin contractility, which facilitates breakdown of intercellular junctions, whereas Rac stabilizes endothelial junctions and counteracts the effects of Rho. In this review, we present evidence for the opposing effects of these two regulatory proteins and discuss links between them and other key signalling molecules such as cyclic AMP (cAMP), cyclic GMP (cGMP), phosphatidylinositide 3-kinases (PI3Ks), mitogen-activated protein kinases (MAPKs), and protein kinases C (PKCs). We also discuss strategies for targeting Rho GTPase signalling in therapies for diseases involving altered endothelial permeability.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine Branch, 91 Riding House Street, London W1W 7BS, UK.
| | | |
Collapse
|
117
|
Nishikimi T, Tadokoro K, Wang X, Mori Y, Asakawa H, Akimoto K, Yoshihara F, Horio T, Minamino N, Matsuoka H. Cerivastatin, a hydroxymethylglutaryl coenzyme A reductase inhibitor, inhibits cardiac myocyte hypertrophy induced by endothelin. Eur J Pharmacol 2002; 453:175-81. [PMID: 12398901 DOI: 10.1016/s0014-2999(02)02453-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the direct effects of cerivastatin on hypertrophy of cultured rat neonatal myocytes induced by endothelin and the mechanism by which cerivastatin exerts its effects. Endothelin significantly increased [14C]phenylalanine ([14C]Phe) incorporation, atrial natriuretic peptide (ANP) release, ANP mRNA expression and cell size. Cerivastatin significantly reduced the increase in [14C]phenylalanine incorporation, ANP peptide release, ANP mRNA expression and cell size induced by endothelin, but pravastatin did not. Exogenous mevalonate completely prevented the inhibitory effect of cerivastatin on [14C]phenylalanine incorporation, ANP release and cell size. Cotreatment with geranylgeranyl pyrophosphate also attenuated the effect of cerivastatin on [14C]phenylalanine incorporation, but cotreatment with farnesyl pyrophosphate or squalene did not. Furthermore, both Rho inhibitor C3 exoenzyme and Rho-dependent kinase inhibitor, (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide.2HCl (Y27632) significantly decreased [14C]phenylalanine incorporation, ANP secretion, ANP mRNA expression and cell size. Cerivastatin decreased endothelin-induced Rho protein expression, and mevalonate and geranylgeranyl pyrophosphate reversed this effect. These results suggest that cerivastatin directly attenuates cardiac hypertrophy induced by endothelin in cultured rat myocytes partly by inhibition of the Rho pathway.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Fail Rev 2002; 7:317-25. [PMID: 12379817 DOI: 10.1023/a:1020706316429] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiac hypertrophy occurs in pathological conditions associated with chronic increases in hemodynamic load. Although hypertrophy can initially be viewed as a salutary response, ultimately, it often enters a phase of pathological remodeling that may lead to heart failure and premature death. A prevailing concept predicts that changes in gene expression in hypertrophied cardiac myocytes and cardiac myocyte loss by apoptosis contribute to the transition from hypertrophy to failure. In recent years, nitric oxide (NO) has emerged as an important regulator of cardiac remodeling. Specifically, NO has been recognized as a potent antihypertrophic and proapoptotic mediator in cultured cardiac myocytes. Studies in genetically engineered mice have extended these findings to the in vivo situation. It appears that low levels and transient release of NO by endothelial NO synthase exert beneficial effects on the remodeling process by reducing cardiac myocyte hypertrophy, cavity dilation and mortality. By contrast, high levels and sustained production of NO by inducible NO synthase seem to be maladaptive by reducing ventricular contractile function, and increasing cardiac myocyte apoptosis, and mortality. In the future, these novel insights into the role of NO in cardiac remodeling should allow the development of novel therapeutic strategies to treat cardiac remodeling and failure.
Collapse
Affiliation(s)
- Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
119
|
Rümenapp U, Freichel-Blomquist A, Wittinghofer B, Jakobs KH, Wieland T. A mammalian Rho-specific guanine-nucleotide exchange factor (p164-RhoGEF) without a pleckstrin homology domain. Biochem J 2002; 366:721-8. [PMID: 12071859 PMCID: PMC1222833 DOI: 10.1042/bj20020654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Revised: 06/07/2002] [Accepted: 06/19/2002] [Indexed: 11/17/2022]
Abstract
Rho GTPases, which are activated by specific guanine-nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a recently cloned human cDNA, namely KIAA0337, encoding a protein containing 1510 amino acids (p164). It contains a RhoGEF-specific Dbl homology (DH) domain but lacks their typical pleckstrin homology domain. The expression of the mRNA encoding p164 was found to be at least 4-fold higher in the heart than in other tissues. Recombinant p164 interacted with and induced GDP/GTP exchange at RhoA but not at Rac1 or Cdc42. p164-DeltaC and p164-DeltaN are p164 mutants that are truncated at the C- and N-termini respectively but contain the DH domain. In contrast with the full-length p164, expression of p164-DeltaC and p164-DeltaN strongly induced actin stress fibre formation and activated serum response factor-mediated and Rho-dependent gene transcription. Interestingly, p164-DeltaN2, a mutant containing the C-terminus but having a defective DH domain, bound to p164-DeltaC and suppressed the p164-DeltaC-induced gene transcription. Overexpression of the full-length p164 inhibited M(3) muscarinic receptor-induced gene transcription, whereas co-expression with Gbeta(1)gamma(2) dimers induced transcriptional activity. It is concluded that p164-RhoGEF is a Rho-specific GEF with novel structural and regulatory properties and predominant expression in the heart. Apparently, its N- and C-termini interact with each other, thereby inhibiting its GEF activity.
Collapse
Affiliation(s)
- Ulrich Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, Germany
| | | | | | | | | |
Collapse
|
120
|
Wolkowicz PE, Ku DD, Grenett HE, Urthaler F. Occupation of the prostaglandin E2-type 1 receptor increases rat atrial contractility via a Y-27632-sensitive pathway. Prostaglandins Other Lipid Mediat 2002; 70:91-105. [PMID: 12428681 DOI: 10.1016/s0090-6980(02)00014-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated whether rat left atria (LA) contain the prostaglandin E2 type 1 receptor (EP1) and whether EP1 occupation induces positive inotropic responses in superfused LA. Western analysis demonstrated that LA contain EP1 and the EP1 splice variant. Exposing isolated, superfused LA to 17-phenyl trinor PGE2, an EP1 agonist, increased isometric contractile force and its corresponding dF/dTs to approximately 70% of the isoproterenol maximum with an EC50 of approximately 80 nM. In contrast, agonists for EP2, EP3, and EP4 caused little change in LA function. While the EP1 antagonists SC-51089 and SC-19220 blocked 17-phenyl trinor PGE2-induced inotropy, neither prazosin, nadolol, atropine nor EI-283, a pan-specific protein kinase C inhibitor, affected 17-phenyl trinor PGE2-induced inotropy. However, Y-27632 and HA-1077, inhibitors of rho A-activated protein kinases, prevented and reversed the increase in LA contractility that occurred in the presence of 17-phenyl trinor PGE2. Thus, atria contain EP1 and EP1 occupation increases LA contractility via a pathway sensitive to inhibitors of rho A-activated protein kinases.
Collapse
Affiliation(s)
- Paul E Wolkowicz
- Department of Medicine, University of Alabama at Birmingham, 35294, USA.
| | | | | | | |
Collapse
|
121
|
Arai A, Spencer JA, Olson EN. STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J Biol Chem 2002; 277:24453-9. [PMID: 11983702 DOI: 10.1074/jbc.m202216200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in actin dynamics influence diverse cellular processes and couple the actin-based cytoskeleton to changes in gene transcription. Members of the Rho GTPase family regulate cytoskeletal organization by stimulating actin polymerization and stress fiber formation when activated by extracellular signaling. The transcriptional activity of serum response factor (SRF) is stimulated in response to changes in actin dynamics and Rho signaling, but the proteins that mediate this phenomenon have not been fully identified. We describe a novel, evolutionarily conserved actin-binding protein, called STARS (striated muscle activator of Rho signaling), that is expressed specifically in cardiac and skeletal muscle cells. STARS binds to the I-band of the sarcomere and to actin filaments in transfected cells, where it activates Rho-signaling events. STARS stimulates the transcriptional activity of SRF through a mechanism that requires actin binding and involves Rho GTPase activation. STARS provides a potential mechanism for specifically enhancing Rho-dependent transcription in muscle cells and for linking changes in actin dynamics to gene transcription.
Collapse
Affiliation(s)
- Akiko Arai
- Department of Molecular Biology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
122
|
Nagatoya K, Moriyama T, Kawada N, Takeji M, Oseto S, Murozono T, Ando A, Imai E, Hori M. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 2002; 61:1684-95. [PMID: 11967018 DOI: 10.1046/j.1523-1755.2002.00328.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The small GTPase Rho is involved in cell-to-substratum adhesion and cell contraction. These actions of Rho mediated by downstream Rho effectors such as Rho-associated coiled-coil forming protein kinase (ROCK) may be partly responsible for the progression of renal interstitial fibrosis. METHODS The anti-fibrosis effects of Y-27632, a specific ROCK inhibitor, were studied both in vivo (unilateral ureteral obstruction; UUO) and in vitro. To investigate the therapeutic efficacy of Y-27632 in UUO kidneys, smooth muscle alpha actin (SMalphaA) expression, macrophage infiltration and fibrosis in the obstructed kidneys were studied. SMalphaA, transforming growth factor beta (TGF-beta), alpha1 (I) collagen, osteopontin, macrophage chemoattractant peptide-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) gene expression were examined by Northern blotting. To elucidate the mechanism linking the Rho-ROCK pathway with renal fibrosis, the effects of Y-27632 on in vitro cell proliferation and cell migration were studied. RESULTS In vivo analysis showed that Y-27632 suppressed SMalphaA expression, macrophage infiltration and interstitial fibrosis, and that Y-27632 suppressed SMalphaA, TGF-beta and alpha1 (I) collagen mRNA expression. In vitro analysis showed that Y-27632 did not suppress proliferation of renal fibroblasts but suppressed migration of macrophages. CONCLUSIONS The Rho-ROCK system may play an important role in the development of tissue fibrosis, and the Rho-ROCK signaling pathway may be a new therapeutic target for preventing interstitial fibrosis in progressive renal disease.
Collapse
Affiliation(s)
- Katsuyuki Nagatoya
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, and School ofHealth and Sport Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Yanazume T, Hasegawa K, Wada H, Morimoto T, Abe M, Kawamura T, Sasayama S. Rho/ROCK pathway contributes to the activation of extracellular signal-regulated kinase/GATA-4 during myocardial cell hypertrophy. J Biol Chem 2002; 277:8618-25. [PMID: 11739382 DOI: 10.1074/jbc.m107924200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low molecular weight GTPase Rho mediates a variety of cytoskeleton-dependent cell functions and stretch- and G(q) protein-induced hypertrophic responses in cardiac myocytes. Although ROCK, one of Rho's effectors, has been suggested to mediate hypertrophic signals, the relationship of Rho/ROCK with downstream signals is unknown. A zinc finger transcription factor, GATA-4, is activated by extracellular signal-regulated kinase 1/2 and is required for the up-regulation of the endothelin-1 gene during myocardial cell hypertrophy. However, it is unknown whether Rho/ROCK signals are linked to downstream GATA-4. By transient transfection assays using a dominant-negative mutant and an activated derivative of ROCK-I, we showed that ROCK-I participates in GATA-4-dependent endothelin-1 transcription. Inhibition of the Rho/ROCK pathway by Y-27632, a selective inhibitor of ROCK, suppressed phenylephrine-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 and increased the DNA binding activity of cardiac GATA-4. Interestingly, latrunculin B, which inhibits actin polymerization, also prevents phenylephrine-induced responses. These findings demonstrate that the Rho/ROCK pathway is linked to downstream GATA-4 via the activation of extracellular signal-regulated kinases during myocardial cell hypertrophy. The results also suggest that changes in actin dynamics provide a convergence point for Rho/ROCK to the downstream signals during this process.
Collapse
Affiliation(s)
- Tetsuhiko Yanazume
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
124
|
Kuwahara M, Kuwahara M. Involvement of Rho and tyrosine kinase in angiotensin II-induced actin reorganization in mesothelial cells. Eur J Pharmacol 2002; 436:15-21. [PMID: 11834242 DOI: 10.1016/s0014-2999(01)01591-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the role of angiotensin II type 1 (AT(1)) receptors in angiotensin II-induced actin reorganization and the signaling pathways of the response in pleural mesothelial cells. The effects of angiotensin II on actin reorganization in pleural mesothelial cells were evaluated by dual fluorescence labeling of filamentous (F) and monomeric (G) actin with fluorescein isothiocyanate (FITC)-labeled phalloidin and Texas Red-labeled DNase I, respectively. Angiotensin II (10 microM) induced actin reorganization in the presence and the absence of extracellular Ca(2+). An angiotensin AT(1) receptor antagonist ([Sar(1),Ile(8)]angiotensin II) inhibited angiotensin II-induced actin reorganization. Pretreatment with C3 exoenzyme or tyrosine kinase inhibitors significantly reduced angiotensin II-induced actin reorganization. However, pertussis toxin, phosphatidylinositol-3-kinase and protein kinase C inhibitors had no effect on these responses. These results suggest that angiotensin II-induced actin reorganization in pleural mesothelial cells is extremely dependent on the angiotensin AT(1) receptor coupled with pertussis toxin-insensitive heterotrimeric G proteins, Rho GTPases and tyrosine phosphorylation pathways.
Collapse
Affiliation(s)
- Masayoshi Kuwahara
- Department of Comparative Pathophysiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan.
| | | |
Collapse
|
125
|
Souchet M, Portales-Casamar E, Mazurais D, Schmidt S, Léger I, Javré JL, Robert P, Berrebi-Bertrand I, Bril A, Gout B, Debant A, Calmels TPG. Human p63RhoGEF, a novel RhoA-specific guanine nucleotide exchange factor, is localized in cardiac sarcomere. J Cell Sci 2002; 115:629-40. [PMID: 11861769 DOI: 10.1242/jcs.115.3.629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The Rho small GTPases are crucial proteins involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. It has been reported that these GTPases are directly associated with cardiovascular disorders. In this context, we have searched for novel modulators of Rho GTPases, and here we describe p63RhoGEF a new Db1-like guanine nucleotide exchange factor (GEF). P63RhoGEF encodes a 63 kDa protein containing a Db1 homology domain in tandem with a pleckstrin homology domain and is most closely related to the second Rho GEF domain of Trio. Northern blot and in situ analysis have shown that p63RhoGEF is mainly expressed in heart and brain. In vitro guanine nucleotide exchange assays have shown that p63RhoGEF specifically acts on RhoA. Accordingly, p63RhoGEF expression induces RhoA-dependent stress fiber formation in fibroblasts and in H9C2 cardiac myoblasts. Moreover, we show that p63RhoGEF activation of RhoA in intact cells is dependent on the presence of the PH domain. Using a specific anti-p63RhoGEF antibody, we have detected the p63RhoGEF protein by immunocytochemistry in human heart and brain tissue sections. Confocal microscopy shows that p63RhoGEF is located in the sarcomeric I-band mainly constituted of cardiac sarcomeric actin. Together, these results show that p63RhoGEF is a RhoA-specific GEF that may play a key role in actin cytoskeleton reorganization in different tissues, especially in heart cellular morphology.
Collapse
Affiliation(s)
- Michel Souchet
- SmithKline Beecham Laboratoires Pharmaceutiques, Unité de Biologie Cardiovasculaire, 4 rue du Chesnay Beauregard, BP 96205, 35760 Saint-Grégoire, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ. Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 2002; 282:237-46. [PMID: 11814696 DOI: 10.1016/s0378-1119(01)00795-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the Dbl family of guanine nucleotide exchange factors (GEFs) have important roles in the organization of actin-based cytoskeletal structures of a wide variety of cell types. Through the activation of members of the Rho family of GTP signaling molecules, these exchange factors elicit cytoskeletal alterations that allow cellular remodeling. As important regulators of RhoGTPase activity, members of this family are candidates for mediating the RhoGTPase activation and cytoskeletal changes that occur during cardiac development and during the myocardial response to hypertrophic stimuli. In this study, we characterize a novel human gene that is expressed in skeletal and cardiac muscle and has putative functional domains similar to those found in members of both the Dbl family of GEFs and the titin family of myosin light chain kinases (MLCK). The cDNA sequence of this gene, which has been designated Obscurin-myosin light chain kinase (Obscurin-MLCK), would be predicted to encode for at least 68 immunoglobulin domains, two fibronectin domains, one calcium/calmodulin binding domain, a RhoGTP exchange factor domain, and two serine-threonine kinase domains. The combination of the putative Rho GEF and two kinase domains has not been noted in any other members of the titin or Dbl families. Alternative splicing allows the generation of a number of unique Obscurin-MLCK isoforms that contain various combinations of the functional domains. One group of isoforms is comparable to Unc-89, a Caenorhabditis elegans sarcomere-associated protein, in that they contain a putative RhoGEF domain and multiple immunoglobulin repeats. Other isoforms more closely resemble MLCK, containing one or both of the putative carboxy-terminal serine-threonine kinase domains. The modular nature of the Obscurin-MLCK isoforms indicates that it may have an array of functions important to cardiac and skeletal muscle physiology.
Collapse
Affiliation(s)
- Mark W Russell
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
127
|
Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M, Liao JK. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001; 108:1429-37. [PMID: 11714734 PMCID: PMC209420 DOI: 10.1172/jci13350] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. The hypertrophic process is mediated, in part, by small G proteins of the Rho family. We hypothesized that statins, inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, inhibit cardiac hypertrophy by blocking Rho isoprenylation. We treated neonatal rat cardiac myocytes with angiotensin II (AngII) with and without simvastatin (Sim) and found that Sim decreased AngII-induced protein content, [3H] leucine uptake, and atrial natriuretic factor (ANF) promoter activity. These effects were associated with decreases in cell size, membrane Rho activity, superoxide anion (O2*-) production, and intracellular oxidation, and were reversed with L-mevalonate or geranylgeranylpyrophosphate, but not with farnesylpyrophosphate or cholesterol. Treatments with the Rho inhibitor C3 exotoxin and with cell-permeable superoxide dismutase also decreased AngII-induced O2*- production and myocyte hypertrophy. Overexpression of the dominant-negative Rho mutant N17Rac1 completely inhibited AngII-induced intracellular oxidation and ANF promoter activity, while N19RhoA partially inhibited it, and N17Cdc42 had no effect. Indeed, Sim inhibited cardiac hypertrophy and decreased myocardial Rac1 activity and O2*- production in rats treated with AngII infusion or subjected to transaortic constriction. These findings suggest that statins prevent the development of cardiac hypertrophy through an antioxidant mechanism involving inhibition of Rac1.
Collapse
Affiliation(s)
- M Takemoto
- Vascular Medicine Unit, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Charron F, Tsimiklis G, Arcand M, Robitaille L, Liang Q, Molkentin JD, Meloche S, Nemer M. Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev 2001; 15:2702-19. [PMID: 11641276 PMCID: PMC312821 DOI: 10.1101/gad.915701] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rho-like GTPases play a pivotal role in the orchestration of changes in the actin cytoskeleton in response to receptor stimulation, and have been implicated in transcriptional activation, cell growth regulation, and oncogenic transformation. Recently, a role for RhoA in the regulation of cardiac contractility and hypertrophic cardiomyocyte growth has been suggested but the mechanisms underlying RhoA function in the heart remain undefined. We now report that transcription factor GATA-4, a key regulator of cardiac genes, is a nuclear mediator of RhoA signaling and is involved in the control of sarcomere assembly in cardiomyocytes. Both RhoA and GATA-4 are essential for sarcomeric reorganization in response to hypertrophic growth stimuli and overexpression of either protein is sufficient to induce sarcomeric reorganization. Consistent with convergence of RhoA and GATA signaling, RhoA potentiates the transcriptional activity of GATA-4 via a p38 MAPK-dependent pathway that phosphorylates GATA-4 activation domains and GATA binding sites mediate RhoA activation of target cardiac promoters. Moreover, a dominant-negative GATA-4 protein abolishes RhoA-induced sarcomere reorganization. The identification of transcription factor GATA-4 as a RhoA mediator in sarcomere reorganization and cardiac gene regulation provides a link between RhoA effects on transcription and cell remodeling.
Collapse
Affiliation(s)
- F Charron
- Laboratoire de développement et différenciation cardiaques, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Yamamoto S, Seta K, Morisco C, Vatner SF, Sadoshima J. Chelerythrine rapidly induces apoptosis through generation of reactive oxygen species in cardiac myocytes. J Mol Cell Cardiol 2001; 33:1829-48. [PMID: 11603925 DOI: 10.1006/jmcc.2001.1446] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of protein kinase C (PKC) inhibition in cardiac myocyte apoptosis has not been well understood. We investigated the mechanism, by which chelerythrine, a commonly used PKC inhibitor, induces potent myocyte death. Chelerythrine (6-30 microm) rapidly induced pyknosis, shrinkage and subsequent cell death in cardiac myocytes. Chelerythrine-induced myocyte death was accompanied by nuclear fragmentation and activation of caspase-3 and -9, while it was prevented by XIAP, suggesting that the cell death is due to apoptosis. Higher concentrations of chelerythrine caused necrotic cell death where neither cell shrinkage nor caspase activation was observed. Intravenous injection of chelerythrine (5 mg/kg) also increased apoptosis in adult rat hearts in vivo. Downregulation of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC failed to affect chelerythrine-induced apoptosis, while anti-oxidants, including N-acetyl-L-cysteine (NAC) and glutathione, inhibited it, suggesting that generation of reactive oxygen species (ROS) rather than inhibition of PMA-sensitive PKC mediates chelerythrine-induced cardiac myocyte apoptosis. Chelerythrine caused cytochrome c release from mitochondria, which was significantly inhibited in the presence of NAC, suggesting that ROS mediates chelerythrine-induced cytochrome c release. Partial inhibition of cytochrome c release by Bcl-X(L) significantly reduced chelerythrine-induced apoptosis. These results suggest that chelerythrine rapidly induces cardiac myocyte apoptosis and that production of ROS, possibly H(2)O(2), and subsequent cytochrome c release from mitochondria play an important role in mediating chelerythrine-induced rapid cardiac myocyte apoptosis.
Collapse
Affiliation(s)
- S Yamamoto
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | | | | | | | |
Collapse
|
130
|
Kovacic-Milivojević B, Roediger F, Almeida EA, Damsky CH, Gardner DG, Ilić D. Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol Biol Cell 2001; 12:2290-307. [PMID: 11514617 PMCID: PMC58595 DOI: 10.1091/mbc.12.8.2290] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hypertrophic terminally differentiated cardiac myocytes show increased sarcomeric organization and altered gene expression. Previously, we established a role for the nonreceptor tyrosine kinase Src in signaling cardiac myocyte hypertrophy. Here we report evidence that p130Cas (Cas) and focal adhesion kinase (FAK) regulate this process. In neonatal cardiac myocytes, tyrosine phosphorylation of Cas and FAK increased upon endothelin (ET) stimulation. FAK, Cas, and paxillin were localized in sarcomeric Z-lines, suggesting that the Z-line is an important signaling locus in these cells. Cas, alone or in cooperation with Src, modulated basal and ET-stimulated atrial natriuretic peptide (ANP) gene promoter activity, a marker of cardiac hypertrophy. Expression of the C-terminal focal adhesion-targeting domain of FAK interfered with localization of endogenous FAK to Z-lines. Expression of the Cas-binding proline-rich region 1 of FAK hindered association of Cas with FAK and impaired the structural stability of sarcomeres. Collectively, these results suggest that interaction of Cas with FAK, together with their localization to Z-lines, is critical to assembly of sarcomeric units in cardiac myocytes in culture. Moreover, expression of the focal adhesion-targeting and/or the Cas-binding proline-rich regions of FAK inhibited ANP promoter activity and suppressed ET-induced ANP and brain natriuretic peptide gene expression. In summary, assembly of signaling complexes that include the focal adhesion proteins Cas, FAK, and paxillin at Z-lines in the cardiac myocyte may regulate, either directly or indirectly, both cytoskeletal organization and gene expression associated with cardiac myocyte hypertrophy.
Collapse
Affiliation(s)
- B Kovacic-Milivojević
- Metabolic Research Unit, University of California San Francisco, San Francisco, California 94143-0540, USA
| | | | | | | | | | | |
Collapse
|
131
|
Suematsu N, Satoh S, Kinugawa S, Tsutsui H, Hayashidani S, Nakamura R, Egashira K, Makino N, Takeshita A. Alpha1-adrenoceptor-Gq-RhoA signaling is upregulated to increase myofibrillar Ca2+ sensitivity in failing hearts. Am J Physiol Heart Circ Physiol 2001; 281:H637-46. [PMID: 11454567 DOI: 10.1152/ajpheart.2001.281.2.h637] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha1-adrenergic stimulation, coupled to Gq, has been shown to promote heart failure. However, the role of alpha1-adrenergic signaling in the regulation of myocardial contractility in failing myocardium is still poorly understood. To investigate this, we observed 1) the effect of phenylephrine on myofibrillar Ca2+ sensitivity in alpha-toxin-skinned cardiomyocytes, and 2) protein expression of Gq, RhoA, and myosin light chain phosphorylation using tachypacing-induced canine failing hearts. Phenylephrine significantly increased myofibrillar Ca2+ sensitivity in failing but not in normal cardiomyocytes. Whereas Y-27632 (Rho kinase inhibitor) blocked the phenylephrine-induced Ca2+ sensitization in the failing myocytes, calphostin C (protein kinase C inhibitor) had no effect on Ca2+ sensitization. The protein expression of Galpha(q) and RhoA and the phosphorylation level of regulatory myosin light chain significantly increased in the failing myocardium. Our results suggest that alpha1-adrenoceptor-Gq signaling is upregulated in the failing myocardium to increase the myofibrillar Ca2+ sensitivity mainly through the RhoA-Rho kinase pathway rather than through the protein kinase C pathway.
Collapse
Affiliation(s)
- N Suematsu
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J. Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem 2001; 276:28586-97. [PMID: 11382772 DOI: 10.1074/jbc.m103166200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of glycogen synthase kinase 3beta (GSK3beta) is critical for transcription of atrial natriuretic factor (ANF) by beta-adrenergic receptors in cardiac myocytes. We examined the mechanism by which GSK3beta regulates ANF transcription. Stimulation of beta-adrenergic receptors induced nuclear accumulation of GATA4, whereas beta-adrenergic ANF transcription was suppressed by dominant negative GATA4, suggesting that GATA4 plays an important role in beta-adrenergic ANF transcription. Interestingly, GATA4-mediated transcription was markedly attenuated by GSK3beta. GSK3beta physically associates with GATA4 and phosphorylates GATA4 in vitro. Overexpression of GSK3beta suppressed both basal and beta-adrenergic increases in nuclear expression of GATA4, whereas inhibition of GSK3beta by LiCl caused nuclear accumulation of GATA4, suggesting that GSK3beta negatively regulates nuclear expression of GATA4. The nuclear exportin Crm1 reduced nuclear expression of GATA4, and the reduction was enhanced by GSK3beta but not by kinase-inactive GSK3beta. Leptomycin B, an inhibitor for Crm1, increased basal nuclear GATA4 and suppressed GSK3beta-induced decreases in nuclear GATA4. These results suggest that GSK3beta negatively regulates nuclear expression of GATA4 by stimulating Crm1-dependent nuclear export. Inhibition of GSK3beta by beta-adrenergic stimulation abrogates GSK3beta-induced nuclear export of GATA4, causing nuclear accumulation of GATA4, which may represent an important signaling mechanism mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- C Morisco
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic growth as an adaptive response. However, sustained cardiac hypertrophy is a leading predictor of future heart failure. A growing number of intracellular signaling pathways have been characterized as important transducers of the hypertrophic response, including specific G protein isoforms, low-molecular-weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinase cascades, protein kinase C, calcineurin, gp130-signal transducer and activator of transcription, insulin-like growth factor I receptor pathway, fibroblast growth factor and transforming growth factor beta receptor pathways, and many others. Each of these signaling pathways has been implicated as a hypertrophic transducer, which collectively suggests an emerging paradigm whereby multiple pathways operate in concert to orchestrate a hypertrophic response
Collapse
Affiliation(s)
- J D Molkentin
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
134
|
Morisco C, Zebrowski DC, Vatner DE, Vatner SF, Sadoshima J. Beta-adrenergic cardiac hypertrophy is mediated primarily by the beta(1)-subtype in the rat heart. J Mol Cell Cardiol 2001; 33:561-73. [PMID: 11181023 DOI: 10.1006/jmcc.2000.1332] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial beta-adrenergic receptors (beta -ARs) consist of beta(1)- and beta(2)-subtypes, which mediate distinct signaling mechanisms. We examined which beta-AR subtype mediates cardiac hypertrophy. The beta(2)-subtype is predominant in neonatal rat cardiac myocytes (beta(1), 36%vbeta(2), 64%), while the beta(1)-subtype predominates in the adult rat heart (59%v 41%). Stimulation of cultured cardiac myocytes in vitro with isoproterenol (ISO), an agonist for beta(1)- and beta(2)-ARs, caused hypertrophy of myocytes along with increases in transcription of atrial natriuretic factor (ANF) and actin reorganization. All of these ISO-mediated myocyte responses in vitro were inhibited by a beta(1)-AR antagonist, betaxolol, but not by a beta(2)-AR antagonist, ICI 118551. Pertussis toxin failed to affect ISO-induced increases in total protein/DNA content and ANF transcription in vitro. ISO increased LV weight/body weight and ANF transcription in the adult rat in vivo, which were also inhibited by betaxolol but not by ICI 118551. These results suggest that beta -AR stimulated hypertrophy is mediated by the beta(1)-subtype and by a pertussis toxin-insensitive mechanism
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Antagonists
- Adrenergic beta-2 Receptor Antagonists
- Adrenergic beta-Agonists/pharmacology
- Animals
- Animals, Newborn
- Atrial Natriuretic Factor/metabolism
- Cardiomegaly/metabolism
- Cell Size
- Cells, Cultured
- Heart
- Heart Ventricles/cytology
- Heart Ventricles/metabolism
- Isoproterenol/pharmacology
- Proteins/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- C Morisco
- Cardiovascular Research Institute and Department of Medicine, University of Medicine and Dentistry of New Jersey, Hackensack, NJ, USA
| | | | | | | | | |
Collapse
|
135
|
Wei L, Wang L, Carson JA, Agan JE, Imanaka-Yoshida K, Schwartz RJ. beta1 integrin and organized actin filaments facilitate cardiomyocyte-specific RhoA-dependent activation of the skeletal alpha-actin promoter. FASEB J 2001; 15:785-96. [PMID: 11259397 DOI: 10.1096/fj.00-026com] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of RhoA GTPase causes actin filament bundling into stress fibers, integrin clustering, and focal adhesion formation through its action on actin cytoskeleton organization. RhoA also regulates transcriptional activity of serum response factor (SRF). Recent studies in NIH 3T3 fibroblasts have shown that SRF activation by RhoA does not require an organized cytoskeleton and may be regulated by G-actin level. In cardiac myocytes, the organization of actin fibers into myofibrils is one of the primary characteristics of cardiac differentiation and hypertrophy. The primary purpose of this study was to examine if RhoA regulates SRF-dependent gene expression in neonatal cardiomyocytes in a manner different from that observed in fibroblasts. Our results show that RhoA-dependent skeletal alpha-actin promoter activation requires beta1 integrin and a functional cytoskeleton in cardiomyocytes but not in NIH 3T3 fibroblasts. Activation of the alpha-actin promoter by RhoA is greatly potentiated (up to 15-fold) by co-expression of the integrin beta1A or beta1D isoform but is significantly reduced by 70% with a co-expressed dominant negative mutant of beta1 integrin. Furthermore, clustering of beta1 integrin with anti-beta1 integrin antibodies potentiates synergistic RhoA and beta1 integrin activation of the alpha-actin promoter. Cytochalasin D and latrunculin B, inhibitors of actin polymerization, significantly reduced RhoA-induced activation of the alpha-actin promoter. Jasplakinolide, an actin polymerizing agent, mimics the synergistic effect of RhoA and beta1 integrin on the actin promoter. These observations support the concept that RhoA regulates SRF-dependent cardiac gene expression through cross-talk with beta1 integrin signal pathway via an organized actin cytoskeleton.
Collapse
Affiliation(s)
- L Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Congestive heart failure is a major issues for cardiologists and to fully understand heart failure, it is important to understand the mechanism of the development of cardiac hypertrophy. Hemodynamic overload, namely mechanical stress, is a major cause of cardiac hypertrophy and to dissect the signaling pathways from mechanical stress to cardiac hypertrophy, an in-vitro device by which mechanical stress can be imposed on cardiac myocytes of neonatal rats cultured in serum-free conditions has been developed. Passively stretching cardiac myocytes cultured on silicone membranes induced various hypertrophic responses, such as activation of the phosphorylation cascades of many protein kinases, expression of specific genes and an increase in protein synthesis. During this process, secretion and production of vasoactive peptides, such as angiotensin II and endothelin-1, were increased and they played critical roles in the induction of these hypertrophic responses. Candidates for the 'mechanoreceptor' that receives the mechanical stress and converts it into intracellular biochemical signals have been recently demonstrated. Gene therapy and cell transplantation are hopeful strategies for the treatment of heart failure and require an understanding of how normal cardiac myocytes are differentiated. A key gene that plays a critical role in cardiac development has been isolated. The cardiac homeobox-containing gene Csx is expressed in the heart and the heart progenitor cells from the very early developmental stage, and targeted disruption of the murine Csx results in embryonic lethality because of the abnormal looping morphogenesis of the primary heart tube. With a cardiac zinc finger protein GATA4, Csx induces cardiomyocyte differentiation of teratocarcinoma cells as well as upregulation of cardiac genes. Mutations of human CSX cause various congenital heart diseases including atrial septal defect, ventricular septal defect, tricuspid valve abnormalities and atrioventricular block.
Collapse
Affiliation(s)
- I Komuro
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Japan.
| |
Collapse
|
137
|
Sah VP, Seasholtz TM, Sagi SA, Brown JH. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 2000; 40:459-89. [PMID: 10836144 DOI: 10.1146/annurev.pharmtox.40.1.459] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low molecular weight G proteins of the Rho subfamily are regulators of actin cytoskeletal organization. In contrast to the heterotrimeric G proteins, the small GTPases are not directly activated through ligand binding to G protein-coupled receptors (GPCRs). However, a subset of GPCRs, including those for lysophosphatidic acid and thrombin, induce stress fibers, focal adhesions, and cell rounding through Rho-dependent pathways. C3 exoenzyme has been a useful tool for demonstrating Rho involvement in these and other responses, including Ca2+ sensitization of smooth muscle contraction, cell migration, transformation, and serum response element-mediated gene expression. Most of the GPCRs that induce Rho-dependent responses can activate Gq, but this is not a sufficient signal. Recent data demonstrate that G alpha 12/13 can induce Rho-dependent responses. Furthermore, G alpha 12/13 can bind and activate Rho-specific guanine nucleotide exchange factors, providing a mechanism by which GPCRs that couple to G alpha 12/13 could activate Rho and its downstream responses.
Collapse
Affiliation(s)
- V P Sah
- Department of Pharmacology, University of California, San Diego 92093-0636, USA.
| | | | | | | |
Collapse
|
138
|
Hunyady L, Catt KJ, Clark AJ, Gáborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. REGULATORY PEPTIDES 2000; 91:29-44. [PMID: 10967200 DOI: 10.1016/s0167-0115(00)00137-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dynamins
- Endocytosis
- GTP Phosphohydrolases/metabolism
- Humans
- Kinetics
- Ligands
- Microscopy, Confocal
- Models, Biological
- Mutation
- Phosphorylation
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- beta-Arrestins
Collapse
Affiliation(s)
- L Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, P.O. Box 259, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
139
|
Dostal DE. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. REGULATORY PEPTIDES 2000; 91:1-11. [PMID: 10967197 DOI: 10.1016/s0167-0115(99)00123-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Angiotensin II, the effector peptide of the renin-angiotensin system, has been demonstrated to be involved in the regulation of cellular growth of several tissues in response to developmental, physiological, and pathological processes. The recent identification of renin-angiotensin system components and localization of angiotensin II receptors in cardiac tissue suggests that locally synthesized Ang II can modulate functional and growth responses in cardiac tissue. In this review, regulation of the cardiac RAS is discussed, with an emphasis on growth-related Ang II signal transduction systems.
Collapse
Affiliation(s)
- D E Dostal
- Cardiovascular Research Institute, Division of Molecular Cardiology, Texas A&M University System Health Science Center, 1901 South 1st Street, Temple, TX 76504, USA.
| |
Collapse
|
140
|
Laufs U, Endres M, Stagliano N, Amin-Hanjani S, Chui DS, Yang SX, Simoncini T, Yamada M, Rabkin E, Allen PG, Huang PL, Böhm M, Schoen FJ, Moskowitz MA, Liao JK. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest 2000; 106:15-24. [PMID: 10880044 PMCID: PMC314365 DOI: 10.1172/jci9639] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral blood flow is regulated by endothelium-derived nitric oxide (NO), and endothelial NO synthase-deficient (eNOS-deficient; eNOS(-/-)) mice develop larger cerebral infarctions following middle cerebral artery (MCA) occlusion. We report that disruption of Rho-mediated endothelial actin cytoskeleton leads to the upregulation of eNOS expression and reduces the severity of cerebral ischemia following MCA occlusion. Mice treated with the Rho inhibitor Clostridium botulinum C3 transferase (10 microgram/d) or the actin cytoskeleton disrupter cytochalasin D (1 mg/kg) showed a two- to fourfold increase in vascular eNOS expression and activity. This increase in eNOS expression was not due to increases in eNOS gene transcription, but to prolongation of eNOS mRNA half-life from 10 +/- 3 hours to 24 +/- 4 hours. Indeed, endothelial cells overexpressing a dominant-negative Rho mutant (N19RhoA) exhibited decreased actin stress fiber formation and increased eNOS expression. Inhibition of vascular Rho guanosine-5'-triphosphate binding activity by the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor simvastatin increased cerebral blood flow to ischemic regions of the brain, and mice treated with simvastatin, C3 transferase, or cytochalasin D showed smaller cerebral infarctions following MCA occlusion. No neuroprotection was observed with these agents in eNOS(-/-) mice. These findings suggest that therapies which target the endothelial actin cytoskeleton may have beneficial effects in ischemic stroke.
Collapse
Affiliation(s)
- U Laufs
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Prologue: low-molecular-weight GTPases in the heart and circulation. Am J Physiol Heart Circ Physiol 2000; 278:H1733-5. [PMID: 10843866 DOI: 10.1152/ajpheart.2000.278.6.h1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
142
|
Morissette MR, Sah VP, Glembotski CC, Brown JH. The Rho effector, PKN, regulates ANF gene transcription in cardiomyocytes through a serum response element. Am J Physiol Heart Circ Physiol 2000; 278:H1769-74. [PMID: 10843871 DOI: 10.1152/ajpheart.2000.278.6.h1769] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The low-molecular-weight GTP-binding protein RhoA mediates hypertrophic growth and atrial natriuretic factor (ANF) gene expression in neonatal rat ventricular myocytes. Neither the effector nor the promoter elements through which Rho exerts its regulatory effects on ANF gene expression have been elucidated. When constitutively activated forms of Rho kinase and two protein kinase C-related kinases, PKN (PRK1) and PRK2, were compared, only PKN generated a robust stimulation of a luciferase reporter gene driven by a 638-bp fragment on the ANF promoter. This ANF promoter fragment contains a proximal serum response element (SRE) and an Sp-1-like element required for the transcriptional response to phenylephrine (PE). This response was inhibited by dominant negative Rho. The ability of dominant negative Rho to inhibit the response to PE and the ability of PKN to stimulate ANF reporter gene expression were both lost when the SRE was mutated. Mutation of the Sp-1-like element also attenuated the response to PKN. A minimal promoter driven by ANF SRE sequences was sufficient to confer Rho- and PKN-mediated gene expression. Interestingly, PKN preferentially stimulated the ANF versus the c-fos SRE reporter gene. Thus PKN and Rho are able to regulate transcriptional activation of the ANF SRE by a common element that could implicate PKN as a downstream effector of Rho in transcriptional responses associated with hypertrophy.
Collapse
Affiliation(s)
- M R Morissette
- Department of Pharmacology and Graduate Program in Biomedical Sciences, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
143
|
Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 2000; 275:14466-75. [PMID: 10799529 DOI: 10.1074/jbc.275.19.14466] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the mechanism of atrial natriuretic factor (ANF) transcription by isoproterenol (ISO), an agonist for the beta-adrenergic receptor (betaAR), in cardiac myocytes. ISO only modestly activated members of the mitogen-activated protein kinase family. ISO-induced ANF transcription was not affected by inhibition of mitogen-activated protein kinases, whereas it was significantly inhibited by KN93, an inhibitor of Ca(2+)/calmodulin-dependent kinase (CaM kinase II). Production of 3'-phosphorylated phosphatidylinositides (3 phosphoinositides) was also required for ISO-induced ANF transcription. ISO caused phosphorylation (Ser-473) and activation of Akt through CaM kinase II- and 3 phosphoinositides-dependent mechanisms. Constitutively active Akt increased myocyte surface area, total protein content, and ANF expression, whereas dominant negative Akt blocked ISO-stimulated ANF transcription. ISO caused Ser-9 phosphorylation and decreased activities of GSK3beta. Overexpression of GSK3beta inhibited ANF transcription, which was reversed by ISO. ISO failed to reverse the inhibitory effect of GSK3beta(S9A), an Akt-insensitive mutant. Kinase-inactive GSK3beta increased ANF transcription. Cyclosporin A partially inhibited ISO-stimulated ANF transcription, indicating that calcineurin only partially mediates ANF transcription. These results suggest that both CaM kinase II and 3 phosphoinositides mediate betaAR-induced Akt activation and ANF transcription in cardiac myocytes. Furthermore, betaAR-stimulated ANF transcription is predominantly mediated by activation of Akt and subsequent phosphorylation/inhibition of GSK3beta.
Collapse
Affiliation(s)
- C Morisco
- Weis Center for Research, Department of Molecular Cellular Physiology, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | |
Collapse
|
144
|
Hirabayashi T, Saffen D. M1 muscarinic acetylcholine receptors activate zif268 gene expression via small G-protein Rho-dependent and lambda-independent pathways in PC12D cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2525-32. [PMID: 10785371 DOI: 10.1046/j.1432-1327.2000.01258.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that stimulation of M1 muscarinic acetylcholine receptors (mAChRs) in neuronal PC12D cells rapidly induces the immediate-early gene zif 268 [Ebihara, T. & Saffen, D. (1997) J. Neurochem. 68, 1001-1010]. Here we show that stimulation of M1 mAChRs in these cells activates four distal serum response elements (SREs) in the zif 268 promoter, and that this activation is strongly inhibited by Clostridium botulinum C3 exoenzyme (C3), which specifically inactivates the small G-protein Rho. Even with high doses of C3, however, a portion of the activation remains intact, indicating that stimulation of M1 mAChRs activates zif 268 SREs via Rho-dependent and Rho-independent pathways. Moreover, the Rho-independent activation of zif 268 SREs is inhibited by the dominant-negative form of the small G-protein Ras, suggesting that Rho-independent activation of zif 268 SREs is mediated by Ras. To determine if muscarinic agonists activate RhoA, we also measured the translocation of RhoA from the cytosolic fraction to the particulate fraction. Translocation of RhoA to the particulate fraction was observed within 15 min following stimulation of M1 mAChRs, indicating that RhoA is activated with sufficient rapidity to participate in the induction of zif 268 mRNA. Together, these results suggest that RhoA is activated following stimulation of M1 mAChRs and functions in SRE-dependent induction of the zif 268 gene within a Ras-independent pathway.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Neurochemistry, Faculty of Medicine, The University of Tokyo, Japan.
| | | |
Collapse
|
145
|
Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL, Samarel AM. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol Heart Circ Physiol 2000; 278:H1695-707. [PMID: 10775151 DOI: 10.1152/ajpheart.2000.278.5.h1695] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-1 (ET) produces neonatal rat ventricular myocyte (NRVM) hypertrophy and activates focal adhesion kinase (FAK) in other cell types. In the present study, we examined whether ET activated FAK in NRVM and whether FAK was necessary and/or sufficient for ET-induced NRVM hypertrophy. Chronic ET-1 stimulation (100 nM, 48 h) increased protein-to-DNA and myosin heavy chain (MHC)-to-DNA ratios and stimulated the assembly of newly synthesized MHC into sarcomeres. ET-1 also induced the assembly of focal adhesions and costameres, as evidenced by increased phosphotyrosine, FAK, and paxillin immunostaining. Acutely, ET treatment rapidly increased tyrosine phosphorylation of FAK and paxillin. FAK was also activated by phorbol 12-myristate 13-acetate (2 microM, 5 min). Pretreatment with chelerythrine (5 microM) or rottlerin (10 microM) completely blocked ET-induced FAK phosphorylation, indicating that protein kinase C activation was upstream of ET-induced FAK activation. In contrast, ET-induced FAK activation was not affected by blocking calcium influx via L-type voltage-gated calcium channels. Adenoviruses (Adv) containing FAK and FAK-related nonkinase (FRNK) were used to specifically define the role of FAK in ET-induced hypertrophy. ET stimulation failed to increase total protein-to-DNA or MHC-to-DNA ratios or to stimulate sarcomeric assembly in myocytes infected with Adv-FRNK. However, Adv-FAK alone did not increase total protein-to-DNA or MHC-to-DNA ratios and failed to increase the number or size of myofibrils as evidenced by double immunofluorescence labeling for MHC and FAK. Thus, although FAK is necessary for ET-induced NRVM hypertrophy, other ET-generated signals are also required to elicit the hypertrophic phenotype.
Collapse
Affiliation(s)
- D M Eble
- Cardiovascular Institute and Departments of Medicine and Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Komuro I. Molecular mechanism of mechanical stress-induced cardiac hypertrophy. JAPANESE HEART JOURNAL 2000; 41:117-29. [PMID: 10850528 DOI: 10.1536/jhj.41.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanical stress is a major cause of cardiac hypertrophy. Although the mechanisms by which mechanical load induces cardiomyocyte hypertrophy have long been a subject of great interest for cardiologists, the lack of a good in vitro system has hampered the understanding of the biochemical mechanisms. For these past several years, however, an in vitro neonatal cardiocyte culture system has made it possible to examine the biochemical basis for the signal transduction of mechanical stress. Passive stretch of cardiac myocytes cultured on silicone membranes activates phosphorylation cascades of many protein kinases including protein kinase C, Raf-1 kinase and extracellular signal regulated kinases, and induces the expression of specific genes as well as an increase in protein synthesis. During that process, the secretion and production of vasoactive peptides such as angiotensin II and endothelin, are increased and they play critical roles in the induction of these hypertrophic responses. Although the involvement of vasoactive peptides in the development of cardiac hypertrophy is clinically important, the "mechanoreceptor" which receives the mechanical stress and converts it into intracellular biochemical signals remained unknown. We have recently obtained evidence suggesting that ion channels and integrins may be the "mechanoreceptor", the activation of which leads to cardiac hypertrophy.
Collapse
Affiliation(s)
- I Komuro
- Department of Cardiovascular Medicine, University of Tokyo, Graduate School of Medicine, Japan
| |
Collapse
|
147
|
Aoki H, Sadoshima J, Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med 2000; 6:183-8. [PMID: 10655107 DOI: 10.1038/72287] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the development of hypertrophy, cardiac myocytes increase organization of the sarcomere, a highly ordered contractile unit in striated muscle cells. Several hypertrophic agonists, such as angiotensin II, phenylephrine, and endothelin-1, have been shown to promote the sarcomere organization. However, the signaling pathway, which links extracellular stimuli to sarcomere organization, has not been clearly demonstrated. Here, we demonstrate that myosin light chain kinase specifically mediates agonist-induced sarcomere organization during early hypertrophic response. Acute administration of a hypertrophic agonist, phenylephrine, or angiotensin II, causes phosphorylation of myosin light chain 2v both in cultured cardiac myocytes and in the adult heart in vivo. We also show that both sarcomere organization and myosin light chain 2v phosphorylation are dependent on the activation of Ca2+/calmodulin pathway, a known activator of myosin light chain kinase. These results define a new and specific role of myosin light chain kinase in cardiac myocytes, which may provide a rapid adaptive mechanism in response to hypertrophic stimuli.
Collapse
Affiliation(s)
- H Aoki
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
148
|
Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA. NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2026-37. [PMID: 10564160 DOI: 10.1152/ajpheart.1999.277.5.h2026] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulins are a family of growth-promoting peptides known to be important in neural and mesenchymal tissue development. Targeted disruption of neuregulin (NRG)-1 or one of two of its cognate receptors, ErbB2 or ErbB4, results in embryonic lethality because of failure of the heart to develop. Although expression of NRGs and their receptors declines after midembryogenesis, both ErbB2 and ErbB4 are present in cardiac myocytes, and NRG-1 expression remains inducible in primary cultures of coronary microvascular endothelial cells from adult rat ventricular muscle. In neonatal rat ventricular myocytes, a soluble NRG-1, recombinant human glial growth factor-2, increased [(3)H]phenylalanine uptake and induced expression of atrial natriuretic factor (ANF) and sarcomeric F-actin polymerization. The effect of NRG-1 on [(3)H]phenylalanine uptake and sarcomeric F-actin polymerization was maximal at 20 ng/ml but declined at higher concentrations. NRG-1 activated p42/p44 mitogen-activated protein kinase (MAPK) [extracellular signal-regulated kinase (ERK)-2/ERK1] and ribosomal S6 kinase (RSK)-2 (90-kDa ribosomal S6 kinase), both of which could be inhibited by the MAPK/ERK kinase-1 antagonist PD-098059. NRG-1 also activated 70-kDa ribosomal S6 kinase, which was inhibited by either rapamycin or wortmannin. Activation of these pathways exhibited the same "biphasic" response to increasing NRG-1 concentrations. Wortmannin and LY-294002 blocked sarcomeric F-actin polymerization but not [(3)H]phenylalanine uptake or ANF expression, whereas PD-098059 consistently blocked both [(3)H]phenylalanine uptake and ANF expression but not actin polymerization. In contrast, rapamycin inhibited [(3)H]phenylalanine uptake and F-actin polymerization but not ANF expression. Thus NRG-ErbB signaling triggers multiple nonredundant pathways in postnatal ventricular myocytes.
Collapse
Affiliation(s)
- R R Baliga
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston 02115, Massachusetts.
| | | | | | | | | | | | | |
Collapse
|
149
|
Shimoni Y. Hormonal control of cardiac ion channels and transporters. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:67-108. [PMID: 10446502 DOI: 10.1016/s0079-6107(99)00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alta., Canada.
| |
Collapse
|
150
|
Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW, Ross J, Chien KR, Brown JH. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 1999; 103:1627-34. [PMID: 10377168 PMCID: PMC408391 DOI: 10.1172/jci6842] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RhoA is a low-molecular-weight GTPase that has been implicated in the regulation of hypertrophic cardiac muscle cell growth. To study the role of RhoA in control of cardiac function in vivo, transgenic mice expressing wild-type and constitutively activated forms of RhoA under the control of the cardiac-specific alpha-myosin heavy chain promoter were generated. Transgene-positive mice expressing high levels of either wild-type or activated RhoA showed pronounced atrial enlargement and manifested a lethal phenotype, often preceded by generalized edema, with most animals dying over the course of a few weeks. Echocardiographic analysis of visibly healthy wild-type RhoA transgenic mice revealed no significant change in left ventricular function. As their condition deteriorated, significant dilation of the left ventricular chamber and associated decreases in left ventricular contractility were detected. Heart rate was grossly depressed in both wild-type and activated RhoA-expressing mice, even prior to the onset of ventricular failure. Electrocardiography showed evidence of atrial fibrillation and atrioventricular block. Interestingly, muscarinic receptor blockade with atropine did not elicit a positive chronotropic response in the transgenic mice. We suggest that RhoA regulates cardiac sinus and atrioventricular nodal function and that its overexpression results in bradycardia and development of ventricular failure.
Collapse
Affiliation(s)
- V P Sah
- Department of Pharmacology, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|