101
|
Je HD, Park SY, Barber AL, Sohn UD. The inhibitory effect of rosiglitazone on agonist-induced or spontaneous regulation of contractility. Arch Pharm Res 2007; 30:461-8. [PMID: 17489362 DOI: 10.1007/bf02980220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was undertaken to determine whether rosiglitazone treatment influences on the agonist-induced or spontaneous regulation of vascular smooth muscle contraction and, if so, to investigate the related mechanism. Stimulants were directly added without any preanesthetic stress or spontaneous vasoconstriction was induced by preanesthetic physical stress where rat aortic ring preparations isolated from rat exposed to preanesthetic stress such as pinch or prick for 30 min were mounted in organ baths and then exposed to contractile agents. Previously and subchronically ingested rosiglitazone decreased Rho-kinase activating agonist-induced contraction but not depolarization- or alpha adrenergic agonist-induced contraction. Moreover, preanesthetic stress induced the stress-induced spontaneous contraction and previously and subchronically ingested rosiglitazone abolished the stress-induced spontaneous contraction. In conclusion, this study provides the evidence and possible related mechanism concerning the vasorelaxing effect of an antidiabetic rosiglitazone as an antihypertensive on the agonist-induced contraction or stress-induced spontaneous vasoconstriction in rat aortic rings regardless of endothelial function.
Collapse
Affiliation(s)
- Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea.
| | | | | | | |
Collapse
|
102
|
Barman SA. Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho-kinase and protein kinase C. Am J Physiol Lung Cell Mol Physiol 2007; 293:L472-9. [PMID: 17468135 DOI: 10.1152/ajplung.00101.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although one of the common characteristics of pulmonary hypertension is abnormal sustained vasoconstriction, the signaling pathways that mediate this heightened pulmonary vascular response are still not well defined. Protein kinase C (PKC) and Rho-kinase are regulators of smooth muscle contraction induced by G protein-coupled receptor agonists including endothelin-1 (ET-1), which has been implicated as a signaling pathway in pulmonary hypertension. Toward this end, it was hypothesized that both Rho-kinase and PKC mediate the pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle, and therefore, the purpose of this study was to determine the role of PKC and Rho-kinase signaling in ET-1-induced vasoconstriction in both normotensive (Sprague-Dawley) and hypertensive (Fawn-Hooded) rat pulmonary arterial smooth muscle. Results indicate that ET-1 caused greater vasoconstriction in hypertensive pulmonary arteries compared with the normal vessels, and treatment with the PKC antagonists chelerythrine, rottlerin, and Gö 6983 inhibited the vasoconstrictor response to ET-1 in the hypertensive vessels. In addition, the specific Rho-kinase inhibitor Y-27632 significantly attenuated the effect of ET-1 in both normotensive and hypertensive phenotypes, with greater inhibition occurring in the hypertensive arteries. Furthermore, Western blot analysis revealed that ET-1 increased RhoA expression in both normotensive and hypertensive pulmonary arteries, with expression being greater in the hypertensive state. These results suggest that both PKC and Rho/Rho-kinase mediate the heightened pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- Blotting, Western
- Carbazoles/pharmacology
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Enzyme Inhibitors/pharmacology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Indoles
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Maleimides
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Potassium Chloride/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Species Specificity
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- rho-Associated Kinases
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
103
|
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007; 112:417-28. [PMID: 17346243 DOI: 10.1042/cs20060342] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intracellular signal transduction of AngII (angiotensin II) has been implicated in cardiovascular diseases, such as hypertension, atherosclerosis and restenosis after injury. AT(1) receptor (AngII type-1 receptor), a G-protein-coupled receptor, mediates most of the physiological and pathophysiological actions of AngII, and this receptor is predominantly expressed in cardiovascular cells, such as VSMCs (vascular smooth muscle cells). AngII activates various signalling molecules, including G-protein-derived second messengers, protein kinases and small G-proteins (Ras, Rho, Rac etc), through the AT(1) receptor leading to vascular remodelling. Growth factor receptors, such as EGFR (epidermal growth factor receptor), have been demonstrated to be 'trans'-activated by the AT(1) receptor in VSMCs to mediate growth and migration. Rho and its effector Rho-kinase/ROCK are also implicated in the pathological cellular actions of AngII in VSMCs. Less is known about the endothelial AngII signalling; however, recent studies suggest the endothelial AngII signalling positively, as well as negatively, regulates the NO (nitric oxide) signalling pathway and, thereby, modulates endothelial dysfunction. Moreover, selective AT(1)-receptor-interacting proteins have recently been identified that potentially regulate AngII signal transduction and their pathogenic functions in the target organs. In this review, we focus our discussion on the recent findings and concepts that suggest the existence of the above-mentioned novel signalling mechanisms whereby AngII mediates the formation of cardiovascular diseases.
Collapse
Affiliation(s)
- Sadaharu Higuchi
- Cardiovascular Research Center, Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
104
|
Dimitrova DZ, Mihov DN, Wang R, Hristov KL, Rizov LI, Bolton TB, Duridanova DB. Contractile effect of ghrelin on isolated guinea-pig renal arteries. Vascul Pharmacol 2007; 47:31-40. [PMID: 17481960 DOI: 10.1016/j.vph.2007.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 03/10/2007] [Accepted: 03/29/2007] [Indexed: 10/24/2022]
Abstract
Ghrelin, a 28-amino acid peptide, known to exist in both acylated and des-acylated varieties, was identified as the first endogenous ligand of growth hormone secretagogue receptor in 1999. Various arteries are known to express ghrelin receptors, but the direct action of ghrelin on blood vessels has been unclear. In the present study we show that ghrelin concentration-dependently potentiates endothelin-1 (ET-1) induced tension development of guinea-pig renal artery, as measured using a wire-type isometric myography of vascular segments. In vascular smooth muscle cells (SMC) ghrelin caused activation of potassium outward currents via phospholipase C (PLC)-->inositol-1,4,5-trisphosphate (IP3) and PLC-->protein kinase C (PKC) signalling cascade, resulting in hyperpolarizaton of the cell membrane. On a tissue level ghrelin by itself had no effect on isometric tone, but augmented ET-1 induced contraction by a mechanism, involving PLC, Rho-kinase and intracellular IP3 -sensitive Ca2+ release, and not nucleotide-sensitive protein kinases or PKC. Together with our previous findings the data in this study suggest that ghrelin exerts its contractile activity on guinea-pig renal artery by facilitation of ET-1 triggered intracellular signalling in SMC, and/or by stimulating the release of a yet unknown contractile mediator from endothelium.
Collapse
Affiliation(s)
- Daniela Z Dimitrova
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
105
|
Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM. The Angiotensin II AT1 Receptor Structure-Activity Correlations in the Light of Rhodopsin Structure. Physiol Rev 2007; 87:565-92. [PMID: 17429042 DOI: 10.1152/physrev.00040.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor. The models thus built and mutagenesis data indicate that physiological (agonist binding) or constitutive (mutated receptor) activation may involve different degrees of expansion of the receptor's central cavity. Residues in ANG II structure seem to control these conformational changes and to dictate the type of cytosolic event elicited during the activation. 1) Agonist aromatic residues (Phe8 and Tyr4) favor the coupling to G protein, and 2) absence of these residues can favor a mechanism leading directly to receptor internalization via phosphorylation by specific kinases of the receptor's COOH-terminal Ser and Thr residues, arrestin binding, and clathrin-dependent coated-pit vesicles. On the other hand, the NH2-terminal residues of the agonists ANG II and [Sar1]-ANG II were found to bind by two distinct modes to the AT1 receptor extracellular site flanked by the COOH-terminal segments of the EC-3 loop and the NH2-terminal domain. Since the [Sar1]-ligand is the most potent molecule to trigger tachyphylaxis in AT1 receptors, it was suggested that its corresponding binding mode might be associated with this special condition of receptors.
Collapse
Affiliation(s)
- Laerte Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
106
|
Takuwa Y. [Identification of PI3K-C2alpha as the mediator of Ca2+-induced Rho activation and MLC phosphatase inhibition]. Nihon Yakurigaku Zasshi 2007; 129:253-7. [PMID: 17435335 DOI: 10.1254/fpj.129.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
|
107
|
Atkins KB, Prezkop A, Park JL, Saha J, Duquaine D, Charron MJ, Olson AL, Brosius FC. Preserved expression of GLUT4 prevents enhanced agonist-induced vascular reactivity and MYPT1 phosphorylation in hypertensive mouse aorta. Am J Physiol Heart Circ Physiol 2007; 293:H402-8. [PMID: 17369465 DOI: 10.1152/ajpheart.00854.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously showed that GLUT4 expression is decreased in arterial smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats and that GLUT4-knockout mice have enhanced arterial reactivity. Therefore, we hypothesized that increased GLUT4 expression in vascular smooth muscle in vivo would prevent enhanced arterial reactivity and possibly reduce blood pressure in DOCA-salt hypertensive mice. Adult wild-type (WT) and GLUT4 transgenic (TG) mice were subjected to DOCA-salt hypertension with uninephrectomy or underwent uninephrectomy and remained normotensive. GLUT4 expression was increased more than twofold in the aortas of GLUT4 TG mice compared with WT aortas. Eight weeks after implantation of the DOCA pellets, GLUT4 expression decreased by 75% in aortas of WT hypertensive mice, but not in GLUT4 TG hypertensive aortas. Systolic blood pressure was significantly and similarly increased in WT and GLUT4 TG DOCA-salt mice compared with their respective sham-treated controls (159 vs. 111 mmHg). Responsiveness to the contractile agonist 5-HT was significantly increased in aortic rings from WT DOCA-salt mice but remained normal in GLUT4 TG DOCA mice. Phosphorylation of the myosin phosphatase targeting subunit MYPT1 was significantly enhanced in aortas of WT DOCA-salt mice, and this increase was prevented in GLUT4 TG mice. MYPT1 phosphorylation was also increased in nonhypertensive GLUT4-knockout mice. Myosin phosphatase, a major negative regulator of calcium sensitivity, is itself negatively regulated by phosphorylation of MYPT1. Therefore, our results show that preservation of GLUT4 expression prevents enhanced arterial reactivity in hypertension, possibly via effects on myosin phosphatase activity.
Collapse
Affiliation(s)
- Kevin B Atkins
- Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0676, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Hatae N, Aksentijevich N, Zemkova HW, Kretschmannova K, Tomic M, Stojilkovic SS. Cloning and functional identification of novel endothelin receptor type A isoforms in pituitary. Mol Endocrinol 2007; 21:1192-204. [PMID: 17312275 DOI: 10.1210/me.2006-0343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian endothelin (ET) receptors, termed ET(A)R and ET(B)R, are derived from two intron-containing genes and the functional splice variants of ET(B)R but not ET(A)R have been identified. Here, we report about the isolation of cDNAs of ET(A)R transcripts from rat anterior pituitary, which are generated by alternative RNA splicing. Deletion of exon 2 and insertion of fragments from intron 1 and 2 accounted for formation of three misplaced proteins, whereas the insertion of a fragment from intron 6 resulted in generation of a functional plasma membrane receptor, termed ET(A)R-C13. In this splice variant, the C-terminal 382S-426N sequence of ET(A)R was substituted with a shorter 382A-399L sequence, resulting in alteration of the putative domains responsible for coupling to G(q/11) and G(s) proteins and the endocytotic recycling, as well as in deletion of the predicted protein kinase C/casein kinase 2 phosphorylation sites. The mRNA transcripts for ET(A)R-C13 were identified in normal and immortalized pituitary cells and several other tissues. The pharmacological profiles of recombinant ET(A)R and ET(A)R-C13 were highly comparable, but the coupling of ET(A)R-C13 to the calcium-mobilizing signaling pathway was attenuated, causing a rightward shift in the potency for agonist. Furthermore, the efficacy of ET(A)R-C13 to stimulate adenylyl cyclase signaling pathway and to internalize was significantly reduced. These results indicate for the first time the presence of a novel ET(A) splice receptor, which could contribute to the functional heterogeneity among secretory pituitary cell types.
Collapse
Affiliation(s)
- Noriyuki Hatae
- Section on Cellular Signaling, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | |
Collapse
|
109
|
Song J, Martin DS. Rho kinase contributes to androgen amplification of renal vasoconstrictor responses in the spontaneously hypertensive rat. J Cardiovasc Pharmacol 2007; 48:103-9. [PMID: 17031263 DOI: 10.1097/01.fjc.0000245403.45406.d8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Androgens modulate vascular tone and hypertension development. Rho kinase contributes to norepinephrine- (NE) and vasopressin- (AVP) induced vasoconstriction. This study tested the hypothesis that Rho kinase contributes to androgen amplification of renal vasoconstrictor responses to NE or AVP in isolated perfused kidney of spontaneously hypertensive rats (SHRs).SHRs (5 weeks) underwent sham operation, castration, or castration with testosterone replacement. At 16-17 weeks, mean arterial pressure and heart rate were measured in conscious SHRs. Renal vascular reactivity to NE (10 to 10 mol) and to AVP (10 to 10 mol) was assessed in an isolated perfused kidney preparation before and after Rho kinase inhibitor treatment (fasudil; 15 microM). Castration reduced mean arterial pressure, whereas testosterone treatment of castrated SHRs increased mean arterial pressure significantly. The dose-response curves to NE and AVP obtained in isolated perfused kidneys from castrated SHRs were displaced to the right of those obtained in sham-operated and castrated + testosterone-treated SHRs. Fasudil treatment produced a rightward shift in the dose-response curves for each agonist in all of the groups and greatly attenuated the differences in renal vascular reactivity to NE and AVP among the 3 groups of SHRs.Collectively, these findings indicate that androgen modulation of hypertension development in the SHR involves a fasudil-sensitive pathway and suggest that further study is warranted in this area.
Collapse
Affiliation(s)
- Jin Song
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
110
|
Yoshioka K, Sugimoto N, Takuwa N, Takuwa Y. Essential Role for Class II Phosphoinositide 3-kinase α-Isoform in Ca2+-Induced, Rho- and Rho Kinase-Dependent Regulation of Myosin Phosphatase and Contraction in Isolated Vascular Smooth Muscle Cells. Mol Pharmacol 2006; 71:912-20. [PMID: 17179444 DOI: 10.1124/mol.106.032599] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The laser confocal fluorescent microscope-based observation of contractile responses in green fluorescent protein-expressing differentiated vascular smooth muscle cells, combined with the RNA interference-mediated gene-silencing technique, allowed us to determine the role of phosphoinositide 3-kinase (PI3K) class II alpha-isoform (PI3K-C2alpha) as a novel, Ca2+-dependent regulator of myosin light-chain phosphatase (MLCP) and contraction. The Ca2+-ionophore ionomycin induced a robust contractile response with an increase in the intracellular free Ca2+ concentration ([Ca2+]i). The PI3K-C2alpha-specific short interfering RNA (siRNA) induced a selective and marked reduction in PI3K-C2alpha protein expression. The siRNA-mediated knockdown of PI3K-C2alpha, but not class I PI3K p110alpha, suppressed ionomycin-induced contraction without altering Ca2+-mobilization. PI3K-C2alpha is uniquely less sensitive to the PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) than the other PI3K members, including p110alpha. Ionomycin-induced contraction was inhibited only by a relatively high concentration of LY294002. Consistent with our previous observations showing that ionomycin and membrane depolarization induced Rho activation in vascular smooth muscle tissues in a Ca2+-dependent manner, ionomycin-induced contraction was dependent on Rho and Rho-kinase. Ionomycin induced phosphorylation of the MLCP-regulatory subunit myosin targeting protein 1(MYPT1) at Thr850 and the 20-kDa myosin light chain (MLC) in a Rho kinase-dependent manner. Knockdown of PI3K-C2alpha suppressed phosphorylation of both MYPT1 and MLC. The receptor agonist noradrenaline, which induced a rapid increase in the [Ca2+]i and Ca2+-dependent contraction, stimulated phosphorylation of MYPT1 and MLC, which was also dependent on Ca2+, PI3K-C2alpha, and Rho-kinase. These observations indicate that PI3K-C2alpha is necessary for Ca2+-induced Rho- and Rho kinase-dependent negative regulation of MLCP and consequently MLC phosphorylation and contraction.
Collapse
Affiliation(s)
- Kazuaki Yoshioka
- Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | |
Collapse
|
111
|
Brothers RM, Haslund ML, Wray DW, Raven PB, Sander M. Exercise-induced inhibition of angiotensin II vasoconstriction in human thigh muscle. J Physiol 2006; 577:727-37. [PMID: 16973706 PMCID: PMC1890428 DOI: 10.1113/jphysiol.2006.113977] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is well established that metabolic inhibition of adrenergic vasoconstriction contributes to the maintenance of adequate perfusion to exercising skeletal muscle. However, little is known regarding nonadrenergic vasoconstriction during exercise. We tested the hypothesis that a non-adrenergic vasoconstrictor, angiotensin II (AngII), would be less sensitive to metabolic inhibition than an alpha1-agonist, phenylephrine (PE), in the exercising human thigh. In 11 healthy men, femoral blood flow (FBF, ultrasound Doppler and thermodilution) and blood pressure were evaluated during wide-ranging doses of intra-arterial (femoral) infusions of PE and AngII at rest and during two workloads of steady-state knee-extensor exercise (7 W and 27 W). At rest, the maximal decrease in femoral artery diameter (FAD) during AngII (9.0+/-0.2 to 8.4+/-0.4 mm) was markedly less than during PE (9.0+/-0.3 to 5.7+/-0.5 mm), whereas maximal reductions in FBF and femoral vascular conductance (FVC) were similar during AngII (FBF: -65+/-6 and FVC: -66+/-6%) and PE (-57+/-5 and -59+/-4%). During exercise, FAD was not changed by AngII, but moderately decreased by PE. The maximal reductions in FBF and FVC were blunted during exercise compared to rest for both AngII (7 W: -28+/-5 and -40+/-5%; 27 W: -15+/-4% and -29+/-5%) and PE (7 W: -30+/-4 and -37+/-6%; 27 W: -15+/-2 and -24+/-6%), with no significant differences between drugs. The major new findings are (1) an exercise-induced intensity-dependent metabolic attenuation of non-adrenergic vasoconstriction in the human leg; and (2) functional evidence that AngII-vasoconstriction is predominantly distal, whereas alpha1-vasoconstriction is proximal and distal within the muscle vascular bed of the human thigh.
Collapse
Affiliation(s)
- R Matthew Brothers
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA, and Copenhagen Muscle Research Centre, Department of Cardiology, National Hospital, Blegdamsvej 9, DK-2100 Copenhagen O, Denmark
| | | | | | | | | |
Collapse
|
112
|
Wörner R, Lukowski R, Hofmann F, Wegener JW. cGMP signals mainly through cAMP kinase in permeabilized murine aorta. Am J Physiol Heart Circ Physiol 2006; 292:H237-44. [PMID: 16920816 DOI: 10.1152/ajpheart.00079.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GMP affects vascular tone by multiple mechanisms, including inhibition of the Rho/Rho kinase-mediated Ca(2+) sensitization, a process identified as Ca(2+) desensitization. Ca(2+) desensitization is mediated probably by both cGMP- and cAMP-dependent protein kinases (cGKI and PKA). We investigate to which extent Ca(2+) desensitization is initiated by cGKI and PKA. cGMP/cAMP-induced relaxation was studied at constant [Ca(2+)] in permeabilized aortas from wild-type and cGKI-deficient mice. [Ca(2+)] increased aortic tone in the absence and presence of 50 microM GTPgammaS with EC(50) values of 160 and 30 nM, respectively. In the absence of GTPgammaS, the EC(50) for [Ca(2+)] was shifted rightward from 0.16 microM to 0.43 and 0.82 microM by 1 and 300 microM 8-bromo-cGMP (8-Br-cGMP), and to 8 microM by 10 microM Y-27632. Contractions induced by 300 nM [Ca(2+)] were relaxed by 8-Br-cGMP with an EC(50) of 2.6 microM. Surprisingly, [Ca(2+)]-induced contractions were also relaxed by 8-Br-cGMP in aortas from cGKI(-/-) mice (EC(50) of 19 microM). Western blot analysis of the vasodilator-stimulated phosphoprotein indicated "cross"-activation of PKA by 1 mM 8-Br-cGMP in aortic smooth muscle cells from cGKI(-/-) mice. Indeed, the PKA inhibitor peptide (PKI 5-24) completely abolished the relaxant effect of 8-Br-cGMP in muscles from cGKI(-/-) mice and to 65% in wild-type aortas. The thromboxane analogue U-46619 induced contraction at constant [Ca(2+)], which was only partially relaxed by 8-Br-cGMP but completely relaxed by Y-27632. The effect of 8-Br-cGMP on U-46619-induced contraction was attenuated by PKI 5-24. These results show that cGKI has only a small inhibitory effect on Ca(2+) sensitization in murine aortas.
Collapse
Affiliation(s)
- René Wörner
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany
| | | | | | | |
Collapse
|
113
|
Wang Y, Yoshioka K, Azam M, Takuwa N, Sakurada S, Kayaba Y, Sugimoto N, Inoki I, Kimura T, Kuwaki T, Takuwa Y. Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle. Biochem J 2006; 394:581-92. [PMID: 16336212 PMCID: PMC1383708 DOI: 10.1042/bj20051471] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We demonstrated previously that membrane depolarization and excitatory receptor agonists such as noradrenaline induce Ca2+-dependent Rho activation in VSM (vascular smooth muscle), resulting in MP (myosin phosphatase) inhibition through the mechanisms involving Rho kinase-mediated phosphorylation of its regulatory subunit MYPT1. In the present study, we show in de-endothelialized VSM strips that the PI3K (phosphoinositide 3-kinase) inhibitors LY294002 and wortmannin inhibited KCl membrane depolarization- and noradrenaline-induced Rho activation and MYPT1 phosphorylation, with concomitant inhibition of MLC (20-kDa myosin light chain) phosphorylation and contraction. LY294002 also augmented de-phosphorylation of MLC and resultantly relaxation in KCl-contracted VSM, whereas LY294002 was much less effective or ineffective under the conditions in which MP was inhibited by either a phosphatase inhibitor or a phorbol ester in Rho-independent manners. VSM express at least four PI3K isoforms, including the class I enzymes p110alpha and p110beta and the class II enzymes PI3K-C2alpha and -C2beta. The dose-response relationships of PI3K-inhibitor-induced inhibition of Rho, MLC phosphorylation and contraction were similar to that of PI3K-C2alpha inhibition, but not to that of the class I PI3K inhibition. Moreover, KCl and noradrenaline induced stimulation of PI3K-C2alpha in a Ca2+-dependent manner, but not of p110alpha or p110beta. Down-regulation of PI3K-C2alpha expression by siRNA (small interfering RNA) inhibited contraction and phosphorylation of MYPT1 and MLC in VSM cells. Finally, intravenous wortmannin infusion induced sustained hypotension in rats, with inhibition of PI3K-C2alpha activity, GTP-loading of Rho and MYPT1 phosphorylation in the artery. These results indicate the novel role of PI3K-C2alpha in Ca2+-dependent Rho-mediated negative control of MP and thus VSM contraction.
Collapse
Affiliation(s)
- Yu Wang
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Kazuaki Yoshioka
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Mohammed Ali Azam
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Noriko Takuwa
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Sotaro Sakurada
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Yuji Kayaba
- †Department of Physiology, Chiba University Graduate School of Medical Sciences, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Naotoshi Sugimoto
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Isao Inoki
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Takaharu Kimura
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Tomoyuki Kuwaki
- †Department of Physiology, Chiba University Graduate School of Medical Sciences, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Yoh Takuwa
- *Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
114
|
Deshpande DA, Penn RB. Targeting G protein-coupled receptor signaling in asthma. Cell Signal 2006; 18:2105-20. [PMID: 16828259 DOI: 10.1016/j.cellsig.2006.04.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/28/2006] [Indexed: 01/23/2023]
Abstract
The complex disease asthma, an obstructive lung disease in which excessive airway smooth muscle (ASM) contraction as well as increased ASM mass reduces airway lumen size and limits airflow, can be viewed as a consequence of aberrant airway G protein-coupled receptor (GPCR) function. The central role of GPCRs in determining airway resistance is underscored by the fact that almost every drug used in the treatment of asthma directly or indirectly targets either GPCR-ligand interaction, GPCR signaling, or processes that produce GPCR agonists. Although many airway cells contribute to the regulation of airway resistance and architecture, ASM properties and functions have the greatest impact on airway homeostasis. The theme of this review is that GPCR-mediated regulation of ASM tone and ASM growth is a major determinant of the acute and chronic features of asthma, and multiple strategies targeting GPCR signaling may be employed to prevent or manage these features.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | | |
Collapse
|
115
|
Honma S, Saika M, Ohkubo S, Kurose H, Nakahata N. Thromboxane A2 receptor-mediated G12/13-dependent glial morphological change. Eur J Pharmacol 2006; 545:100-8. [PMID: 16876780 DOI: 10.1016/j.ejphar.2006.06.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 11/30/2022]
Abstract
Glial cells express thromboxane A(2) receptor, but its physiological role remains unknown. The present study was performed to examine thromboxane A(2) receptor-mediated morphological change in 1321N1 human astrocytoma cells. Thromboxane A(2) receptor agonists U46619 and STA(2) caused a rapid morphological change to spindle shape from stellate form of the cells pretreated with dibutyryl cyclic AMP, but neither carbachol nor histamine caused the change, suggesting that G(q) pathway may not mainly contribute to the change. Rho kinase inhibitor Y-27632 inhibited U46619-induced morphological change, and U46619 increased the GTP-bound form of RhoA accompanied with actin stress fiber formation. These responses were reduced by expression of p115-RGS that inhibits G(12)/(13) signaling pathway. U46619 also caused the phosphorylation of extracellular signal-regulated kinase (ERK) and [(3)H]thymidine incorporation mainly through G(12)/(13)-Rho pathway. These results suggest that stimulation of thromboxane A(2) receptor causes the morphological change with proliferation mainly through G(12)/(13) activation in glial cells.
Collapse
Affiliation(s)
- Shigeyoshi Honma
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
116
|
Nishimura J, Bi D, Kanaide H. Dependence of Proliferating Dedifferentiated Vascular Smooth Muscle Contraction on Rho–Rho Kinase System. Trends Cardiovasc Med 2006; 16:124-8. [PMID: 16713535 DOI: 10.1016/j.tcm.2006.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 11/24/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are not terminally differentiated and, owing to their remarkable plasticity, can change to a dedifferentiated state in response to vascular injury. Our understanding of the contractility of VSMCs is mainly based on the data obtained from normal adult animals. However, to obtain a better understanding of the abnormal contractility seen in the vascular diseases such as hypertension and vasospasm superimposed on atherosclerosis, it is important to also know the contractility of proliferating dedifferentiated VSMCs. To this end, we studied the contractility of cultured VSMCs that undergo dedifferentiation similar to that induced by vascular injury. There are only a few reports in which the contractility of cultured VSMCs has been extensively studied. We established a method to investigate the contractility of the cultured VSMCs and determined that their contraction is dramatically changed to be more dependent on the Rho-Rho kinase system but less dependent on the PKC-CPI-17 (protein kinase C-potentiated protein phosphatase 1 inhibitory protein)-mediated pathway. In this review, we focus on the contractility of the cultured VSMCs as a model of the proliferating dedifferentiated VSMCs.
Collapse
Affiliation(s)
- Junji Nishimura
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
117
|
Jeon SB, Jin F, Kim JI, Kim SH, Suk K, Chae SC, Jun JE, Park WH, Kim IK. A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem Biophys Res Commun 2006; 343:27-33. [PMID: 16527249 DOI: 10.1016/j.bbrc.2006.02.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 02/21/2006] [Indexed: 11/22/2022]
Abstract
Agonist and depolarization-induced vascular smooth muscle contractions involve the activation of Rho-kinase pathway. However, there are no reports addressing the question whether this pathway is involved in NaF-induced vascular contractions. We hypothesized that Rho-kinase plays a role in vascular contraction evoked by sodium fluoride in rat aortae. In both physiological salt solution and calcium-free solution with 2 mM EGTA, cumulative addition of NaF increased vascular tension in concentration-dependent manners. Effects of Rho-kinase inhibitor (Y27632) on phosphorylation of myosin light chain (MLC20) and myosin targeting subunit (MYPT1(Thr696)) of myosin light chain phosphatase as well as NaF-induced contractions were determined using isolated tissue and the Western blot experiments. Y27632 inhibited NaF-induced contractions in a concentration-dependent manner. NaF increased phosphorylation of MLC20 and MYPT1(Thr696), which were also inhibited by Y27632. However, MLCK inhibitor (ML-7) or PKC inhibitor (Ro31-8220) did not inhibit the NaF-induced contraction. These results indicate that activation of Rho-kinase and the subsequent phosphorylation of MYPT1(Thr696) play important roles in NaF-induced contraction of rat aortae.
Collapse
Affiliation(s)
- Su Bun Jeon
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Jin L, Ying Z, Hilgers RHP, Yin J, Zhao X, Imig JD, Webb RC. Increased RhoA/Rho-kinase signaling mediates spontaneous tone in aorta from angiotensin II-induced hypertensive rats. J Pharmacol Exp Ther 2006; 318:288-95. [PMID: 16569756 DOI: 10.1124/jpet.105.100735] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Spontaneous tone in large arteries may contribute to the pathogenesis of hypertension. Reactive oxygen species and Ca2+ influx have been shown to stimulate the development of spontaneous tone in isolated aortic rings in several models of hypertensive rats. The aim of this study was to investigate the role of the RhoA/Rho-kinase signaling pathway in the development of spontaneous tone in angiotensin II-induced hypertension and to explore the underlying mechanisms of RhoA/Rho-kinase activation. Our results showed that spontaneous tone was greatly enhanced in endothelium-denuded aortic rings from angiotensin II-induced hypertensive rats compared with their normotensive counterparts (73+/-5 versus 7+/-3% of phenylephrine-induced maximal contraction, respectively). The Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) (0.1-10 microM) concentration dependently inhibited spontaneous tone in aortic rings from angiotensin II-treated rats. NADPH oxidase inhibitors diphenylene iodonium and apocynin also significantly reduced spontaneous tone. Chronic angiotensin II treatment markedly increased RhoA protein expression (57%) but had no effect on Rho guanine nucleotide exchange factor mRNA or Rho-kinase protein expression levels. In endothelium-denuded rings from normotensive rats, angiotensin II (100 nM) increased RhoA membrane translocation and phosphorylation of the myosin light chain phosphatase target subunit, which were both blocked by the NADPH oxidase inhibitor diphenylene iodonium (10 microM). In conclusion, these data suggest that chronic treatment with angiotensin II leads to up-regulation of the RhoA/Rho-kinase pathway, contributing to spontaneous tone development in rat aorta. Increased NADPH oxidase-dependent reactive oxygen species may be one of the mechanisms mediating the RhoA/Rho-kinase activation.
Collapse
Affiliation(s)
- Liming Jin
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
119
|
Seok Y, Kim JI, Ito M, Kureishi Y, Nakano T, Kim SO, Lim DG, Park WH, Kim I. HEAT SHOCK-INDUCED AUGMENTATION OF VASCULAR CONTRACTILITY IS INDEPENDENT OF RHO-KINASE. Clin Exp Pharmacol Physiol 2006; 33:264-8. [PMID: 16487272 DOI: 10.1111/j.1440-1681.2006.04356.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a previous study, we demonstrated that heat shock augments the contractility of vascular smooth muscle through the stress response. 2. In the present study, we investigated whether Rho-kinases play a role in heat shock-induced augmentation of vascular contractility in rat isolated aorta. 3. Rat aortic strips were mounted in organ baths, exposed to 42 C for 45 min and subjected to contractile or relaxant agents 5 h later. 4. The level of expression of Rho-kinases in heat shock-exposed tissues was no different to that of control tissues, whereas heat shock induced heat shock protein (Hsp) 72 at 3 and 5 h. Heat shock resulted in an increase in vascular contractility in response to phenylephrine 5 h later. 5. The Rho-kinase inhibitors Y27632 (30 nmol/L-10 mmol/L) or HA 1077 (10 nmol/L-10 mmol/L) relaxed 1.0 mmol/L phenylephrine-precontracted vascular strips in a concentration-dependent manner; these effects were attenuated in heat shock-exposed strips. Pretreatment with Y27632 resulted in greater inhibition of the maximum contraction in control strips compared with those in heat shock-exposed strips. 6. The results of the present study suggest that Rho-kinases are unlikely to be involved in heat shock-induced augmentation of vascular contractility.
Collapse
Affiliation(s)
- YoungMi Seok
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Hagerty L, Haystead TAJ. Delineating signal transduction pathways in smooth muscle through focused proteomics. Expert Rev Proteomics 2006; 3:75-85. [PMID: 16445352 DOI: 10.1586/14789450.3.1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review will outline examples of the authors' focused proteomics approaches to studying signal transduction pathways in smooth muscle. By focusing the use of traditional proteomics techniques with hypothesis-driven selection methods, this approach efficiently addresses the identification of novel elements in a signal transduction pathway of interest. However, focused proteomics serves only as a starting point in the investigation of novel signaling proteins. While focused proteomics studies can suggest the involvement and general biochemical function of a protein in a signaling pathway, these findings must be further investigated and validated. Through the integrated use of focused proteomics with complementary approaches such as genetics, biochemistry and cell physiology, a complete and detailed mechanism of signal transduction can be determined.
Collapse
Affiliation(s)
- Laura Hagerty
- Department of Pharmacology & Cancer Biology, Duke University, C118 LSRC, Durham, NC 27710, USA
| | | |
Collapse
|
121
|
Teixeira CE, Jin L, Ying Z, Palmer T, Priviero FBM, Webb RC. Expression and functional role of the RhoA/Rho-kinase pathway in rat coeliac artery. Clin Exp Pharmacol Physiol 2006; 32:817-24. [PMID: 16173942 DOI: 10.1111/j.1440-1681.2005.04271.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Rho-kinase (ROK) stimulation represents a key step in the maintenance of agonist-induced contraction, an effect counteracted by nitric oxide (NO) released from the endothelium. The aim of the present study was to characterize the involvement of ROK in smooth muscle contraction of the rat coeliac artery using functional and expression studies. 2. Rings of rat coeliac artery were mounted in 5 mL myographs containing warmed and oxygenated Krebs' solution. Rings were connected to isometric transducers and data were recorded in a PowerLab system (ADInstruments, Colorado Springs, CO, USA). After a 60 min equilibration period, preparations were precontracted with phenylephrine (1 micromol/L). Endothelial integrity was assessed by treating the vessels with acetylcholine (1 micromol/L). Expression of ROKalpha, ROKbeta and RhoA was analysed using western blot, whereas Rho guanine nucleotide exchange factors (RhoGEF) were measured at the mRNA level. 3. The addition of Y-27632 (0.01-30 micromol/L) caused sustained relaxation of rings contracted with phenylephrine (PE; 1 micromol/L), with intact or denuded endothelium (pEC50 = 6.38 +/- 0.03 and 5.65 +/- 0.02, respectively). NG-Nitro-L-arginine methyl ester (100 micromol/L) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 micromol/L), but not indomethacin (10 micromol/L), caused marked rightward shifts of the concentration-response curves to Y-27632. The contractile response to KCl (80 mmol/L) was significantly reduced by Y-27632, with a maximal inhibition of 57 +/- 6%. Nifedipine (0.1-100 nmol/L) fully blocked KCl-evoked contractions, but only marginally affected those in response to PE (27 +/- 2% maximal inhibition). At 1 micromol/L, Y-27632 also significantly enhanced relaxations to sodium nitroprusside (SNP; 0.0001-1 micromol/L). 4. At 1 micromol/L, SNP (but not 1 micromol/L Y-27632) significantly elevated the cGMP content above basal levels. Coincubation with SNP and Y-27632 increased cGMP levels, but the results were not significantly different from those in the presence of SNP alone. 5. Western blot analysis revealed the protein expression of RhoA, ROKalpha and ROKbeta. The PDZ-RhoGEF, p115RhoGEF and leukaemia-associated RhoGEF (LARG) mRNA expression in coeliac artery was visualized by electrophoresis on agarose gels. 6. The results clearly demonstrate a role for the RhoA/ROK signalling pathway in the regulation of rat coeliac artery smooth muscle contraction. The findings of the present study suggest that endogenous nitric oxide-induced relaxation is mediated, in part, by inhibition of RhoA/ROK signalling in this tissue.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912-3000, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Katakam PVG, Snipes JA, Tulbert CD, Mayanagi K, Miller AW, Busija DW. Impaired endothelin-induced vasoconstriction in coronary arteries of Zucker obese rats is associated with uncoupling of [Ca2+]i signaling. Am J Physiol Regul Integr Comp Physiol 2005; 290:R145-53. [PMID: 16322351 DOI: 10.1152/ajpregu.00405.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Deptartment of Physiology and Pharmacology, Wake Forest University Health Sciences, Hanes 1050, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
123
|
Chen Y, Wang Y, Yu H, Wang F, Xu W. The cross talk between protein kinase A- and RhoA-mediated signaling in cancer cells. Exp Biol Med (Maywood) 2005; 230:731-41. [PMID: 16246900 DOI: 10.1177/153537020523001006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The cross talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and RhoA-mediated signal transductions and the effect of this cross talk on biologic features of human prostate and gastric cancer cells were investigated. In the human gastric cancer cell line, SGC-7901, lysophosphatidic acid (LPA) increased RhoA activity in a dose-dependent manner. The cellular permeable cAMP analog, 8-chlorophenylthio-cAMP (CPT-cAMP), inhibited the LPA-induced RhoA activation and caused phosphorylation of RhoA at serine(188). Immunofluorescence microscopy, Western blotting, and green fluorescent protein (GFP)-tagged RhoA location assay in live cells revealed that RhoA was distributed in both the cytoplasm and nucleus of SGC-7901 cells. Treatment with LPA and/or CPT-cAMP did not induce obvious translocation of RhoA in the cells. The LPA treatment caused formation of F-actin in SGC-7901 cells, and CPT-cAMP inhibited the formation. In a modified Boyden chamber assay, LPA stimulated the migration of SGC-7901 cells, and CPT-cAMP dose-dependently inhibited the stimulating effect of LPA. In soft agar assay, LPA stimulated early proliferation of SGC-7901 cells, and CPT-cAMP significantly inhibited the growth of LPA-stimulated cells. In the prostate cancer cell line, PC-3, LPA caused morphologic changes from polygonal to round, and transfection with plasmid DNA encoding constitutively active RhoA(63L) caused a similar change. Treatment with CPT-cAMP inhibited the changes in both cases. However, in PC-3 cells transfected with a plasmid encoding mutant RhoA188A, LPA induced rounding, but CPT-cAMP could not prevent the change. Results of this experiment indicated that cAMP/PKA inhibited RhoA activation, and serine188 phosphorylation on RhoA was necessary for PKA to exert its inhibitory effect on RhoA activation. The cross talk between cAMP/PKA and RhoA-mediated signal transductions had significant affect on biologic features of gastric and prostate cancer cells, such as morphologic and cytoskeletal change, migration, and anchorage-independent growth. The results may be helpful in implementing novel therapeutic strategies for invasive and metastatic prostate and gastric cancers.
Collapse
Affiliation(s)
- Yongchang Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, Jiangsu 212001, China.
| | | | | | | | | |
Collapse
|
124
|
Orth JHC, Lang S, Taniguchi M, Aktories K. Pasteurella multocida Toxin-induced Activation of RhoA Is Mediated via Two Families of Gα Proteins, Gαq and Gα12/13. J Biol Chem 2005; 280:36701-7. [PMID: 16141214 DOI: 10.1074/jbc.m507203200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pasteurella multocida toxin (PMT) is a potent mitogen, which is known to activate phospholipase Cbeta by stimulating the alpha-subunit of the heterotrimeric G protein G(q). PMT also activates RhoA and RhoA-dependent pathways. Using YM-254890, a specific inhibitor of G(q/11), we studied whether activation of RhoA involves G proteins other than G(q/11). YM-254890 inhibited PMT or muscarinic M3-receptor-mediated stimulation of phospholipase Cbeta at similar concentrations in HEK293m3 cells. In these cells, PMT-induced RhoA activation and enhancement of RhoA-dependent luciferase activity were partially inhibited by YM-254890. In Galpha(q/11)-deficient fibroblasts, PMT induced activation of RhoA, increase in RhoA-dependent luciferase activity, and increase in ERK phosphorylation. None of these effects were influenced by YM-254890. However, RhoA activation by PMT was inhibited by RGS2, RGS16, lscRGS, and dominant negative G(13)(GA), indicating involvement of Galpha(12/13) in the PMT effect on RhoA. In Galpha(12/13) gene-deficient cells, PMT-induced stimulation of RhoA, luciferase activity, and ERK phosphorylation were blocked by YM-254890, indicating the involvement of G(q). Infection with a virus harboring the gene of Galpha(13) reconstituted the increase in RhoA-dependent luciferase activity by PMT even in the presence of YM-254890. The data show that YM-254890 is able to block PMT activation of Galpha(q) and indicate that, in addition to Galpha(q), the Galpha(12/13) G proteins are targets of PMT.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
125
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
126
|
Rosenthal R, Choritz L, Schlott S, Bechrakis NE, Jaroszewski J, Wiederholt M, Thieme H. Effects of ML-7 and Y-27632 on carbachol- and endothelin-1-induced contraction of bovine trabecular meshwork. Exp Eye Res 2005; 80:837-45. [PMID: 15939040 DOI: 10.1016/j.exer.2004.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 12/20/2004] [Accepted: 12/28/2004] [Indexed: 11/18/2022]
Abstract
The trabecular meshwork is considered a smooth muscle like tissue contributing to aqueous outflow regulation and thus to regulation of intraocular pressure. An elevation in intraocular pressure is one of the greatest risk factors for most forms of glaucoma. We assume that contraction of trabecular meshwork reduces aqueous humor outflow and thus enhances intraocular pressure, whereas relaxation exerts the opposite effect. The present paper supports the hypothesis of the trabecular meshwork being a smooth muscle-like tissue. We perform measurements of isometric force in isolated bovine trabecular meshwork strips. Contractility of this tissue is induced by carbachol or endothelin-1. The contractile force is successfully inhibited by ML-7, a highly specific inhibitor of myosin light chain kinase. The contraction is also reduced in the presence of the RhoA kinase inhibitor Y-27632. We further describe the protein expression of smooth muscle myosin and its regulatory kinase, the myosin light chain kinase, in human and bovine trabecular meshwork cells. Additionally, the serine phosphorylation of myosin light chain kinase is shown. These data indicate that the trabecular meshwork expresses major contractility regulating proteins which are involved in tissue function. Inhibition of the signaling pathways which lead to myosin phosphorylation causes inhibition of contractile force in trabecular meshwork. According to our concept of aqueous humor outflow regulation, trabecular meshwork relaxing substances appear to be ideal antiglaucomatous drugs, leading to increased outflow facility.
Collapse
Affiliation(s)
- Rita Rosenthal
- Augenklinik und Augenpoliklinik, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
127
|
Mraiche F, Cena J, Das D, Vollrath B. Effects of statins on vascular function of endothelin-1. Br J Pharmacol 2005; 144:715-26. [PMID: 15678081 PMCID: PMC1576052 DOI: 10.1038/sj.bjp.0706114] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Although statins have been reported to inhibit the prepro-endothelin-1 (ET-1) gene transcription in endothelial cells, their effects on the vascular function of ET-1 have not been explored. We, therefore, examined the effects of statins on contraction and DNA synthesis mediated by ET-1 in vascular smooth muscle. The effects of statins on contraction induced by ET-1 were compared to those mediated by noradrenaline (NA) and KCl. 2. Simvastatin (SV) induced a concentration-dependent relaxation of tonic contraction mediated by ET-1 (10 nM) (IC50 value of 1.3 microM). The relaxation was also observed in rings precontracted with NA (0.1 microM) and KCl (60 mM). In contrast, pravastatin did not have any effect on the contractions. 3. Endothelial denudation or pretreatment with L-NAME did not prevent the relaxation, but did reduce the relaxant activity of SV. 4. SV prevented Rho activation caused by ET-1 and KCl in aortic homogenates, as assessed by a Rho pulldown assay. 5. The Rho kinase inhibitor HA-1077 mimicked the effects of SV on tonic contractions induced by ET-1, NA and KCl. 6. Pretreatment with the Kv channels inhibitor, 4-aminopyridine, attenuated the ability of SV to relax contractions mediated by ET-1 and NA. 7. In quiescent VSM cells, SV significantly inhibited DNA synthesis and Rho translocation stimulated by ET-1, as assessed by [3H]thymidine incorporation and Western blot, respectively. 8. Inhibition of Rho geranylgeranylation by GGTI-297, or treatment with HA-1077, mimicked the effects of SV on DNA synthesis stimulated by ET-1. 9. The results show that the statin potently inhibits both ET-1-mediated contraction and DNA synthesis via multiple mechanisms. Clinical benefits of statins may result, in part, from their effects on vascular function of ET-1.
Collapse
Affiliation(s)
- Fatima Mraiche
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jonathan Cena
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Debarsi Das
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Bozena Vollrath
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
128
|
Chiba Y, Sakai H, Misawa M. Endothelin-1-induced translocation of RhoA is mediated by endothelin ET(A) receptors in rat bronchial smooth muscle. Eur J Pharmacol 2005; 517:182-5. [PMID: 15990091 DOI: 10.1016/j.ejphar.2005.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/27/2022]
Abstract
To clarify the receptor subtype(s) contributing to the RhoA activation by endothelin-1 in bronchial smooth muscle, the effects of BQ-123 [cycro(D-Asp-Pro-D-Val-Leu-D-Trp)], an endothelin ET(A) receptor antagonist, and/or BQ-788 [2,6-dimethylpiperidinecarbonyl-g-methyl-Leu-Nin-(Methoxycarbonyl)-D-Trp-D-Nle], an endothelin ET(B) receptor antagonist, on the endothelin-1-induced translocation of RhoA to plasma membrane were examined. Incubation of rat bronchial smooth muscle with endothelin-1 induced a distinct translocation of RhoA to plasma membrane, indicating an activation of RhoA by endothelin-1. The endothelin-1-induced translocation of RhoA was completely blocked by treatment with BQ-123, whereas BQ-788 had no effect. Thus, endothelin ET(A) but not ET(B) receptors might be involved in the endothelin-1-induced translocation of RhoA in rat bronchial smooth muscle.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
129
|
Dettlaff-Swiercz DA, Wettschureck N, Moers A, Huber K, Offermanns S. Characteristic defects in neural crest cell-specific Galphaq/Galpha11- and Galpha12/Galpha13-deficient mice. Dev Biol 2005; 282:174-82. [PMID: 15936338 DOI: 10.1016/j.ydbio.2005.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 02/08/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
The endothelin/endothelin receptor system plays a critical role in the differentiation and terminal migration of particular neural crest cell subpopulations. Targeted deletion of the G-protein-coupled endothelin receptors ET(A) and ET(B) was shown to result in characteristic developmental defects of derivatives of cephalic and cardiac neural crest and of neural crest-derived melanocytes and enteric neurons, respectively. Since both endothelin receptors are coupled to G-proteins of the G(q)/G(11)- and G(12)/G(13)-families, we generated mouse lines lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13) in neural crest cells to study their roles in neural crest development. Mice lacking Galpha(q)/Galpha(11) in a neural crest cell-specific manner had craniofacial defects similar to those observed in mice lacking the ET(A) receptor or endothelin-1 (ET-1). However, in contrast to ET-1/ET(A) mutant animals, cardiac outflow tract morphology was intact. Surprisingly, neither Galpha(q)/Galpha(11)- nor Galpha(12)/Galpha(13)-deficient mice showed developmental defects seen in animals lacking either the ET(B) receptor or its ligand endothelin-3 (ET-3). Interestingly, Galpha(12)/Galpha(13) deficiency in neural crest cell-derived cardiac cells resulted in characteristic cardiac malformations. Our data show that G(q)/G(11)- but not G(12)/G(13)-mediated signaling processes mediate ET-1/ET(A)-dependent development of the cephalic neural crest. In contrast, ET-3/ET(B)-mediated development of neural crest-derived melanocytes and enteric neurons appears to involve G-proteins different from G(q)/G(11)/G(12)/G(13).
Collapse
|
130
|
Teixeira CE, Ying Z, Webb RC. Proerectile effects of the Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]homopiperazine (H-1152) in the rat penis. J Pharmacol Exp Ther 2005; 315:155-62. [PMID: 15976017 DOI: 10.1124/jpet.105.086041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Rho-kinase pathway mediates Ca2+ sensitization in the penile circulation, which maintains the penis in the flaccid state. We aimed to investigate the functional effect of a novel Rho-kinase inhibitor, H-1152 [(S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]homopiperazine], both in vitro and in vivo as well as to demonstrate the expression of Rho guanine nucleotide exchange factors (RhoGEFs) in the rat corpus cavernosum (CC), by using a semiquantitative reverse transcription-polymerase chain reaction assay to measure their mRNA expression. Cumulative addition of H-1152 (0.001-3 microM) or Y-27632 [0.01-30 microM; (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide] caused sustained relaxations of precontracted CC strips, which were not affected by inhibition of the nitric oxide signaling pathway. Addition of H-1152 (0.1 microM), Y-27632 (1 microM), or sodium nitroprusside (SNP; 0.1 microM) caused rightward shifts in the curves to phenylephrine (PE), but it had little effect on the contractions mediated by electrical field stimulation (EFS). It is noteworthy that when H-1152 or Y-27632 was combined with SNP, a marked synergistic inhibition was noted both on PE- and EFS-induced contractions. Intraperitoneal administration of H-1152 (100 nmol/kg) had a discrete effect on mean arterial pressure and significantly enhanced erectile responses evoked by stimulation of the cavernous nerve. The mRNA expression for PDZ-RhoGEF, p115RhoGEF, and leukemia-associated RhoGEF in cavernosal segments was visualized by electrophoresis on agarose gel. The results indicate that H-1152 is a powerful Rho-kinase inhibitor, giving rise to its therapeutic potential in the treatment of erectile dysfunction. The regulator of G-protein signaling-containing RhoGEFs may represent key components of the molecular mechanisms associated with the abnormal function of the cavernosal smooth muscle.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Physiology, Medical College of Georgia, 1120 15th St., CA-3101, Augusta, GA 30912-3000, USA.
| | | | | |
Collapse
|
131
|
Masuda Y, Edo T. Mechanisms involved in the contraction of intrahepatic portal vein branches by clomipramine and oxethazaine in isolated perfused rat livers. J Pharmacol Sci 2005; 98:181-4. [PMID: 15942124 DOI: 10.1254/jphs.scj05003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Clomipramine (CLM) and oxethazaine (OXZ) were previously reported to increase portal pressure by contracting portal vein branches (PVBs) in isolated perfused rat liver. In the present study, to characterize the contractile mechanisms, the effects of Y27632, HA1077, staurosporine, papaverine, SKF96365, and sulindac sulfide on the portal pressure increase induced by CLM and OXZ were examined comparatively with those induced by endothelin-1. The results suggest that 1) intrahepatic PVBs employ a Rho-kinase-dependent pathway for sustained contraction, 2) CLM contracts PVBs by activating a Rho-kinase pathway and Ca(2+)-channels, and 3) OXZ acts primarily by promoting Ca(2+) entry through its ionophore-like action.
Collapse
Affiliation(s)
- Yasusuke Masuda
- Division of Toxicology, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | | |
Collapse
|
132
|
Mifune M, Ohtsu H, Suzuki H, Nakashima H, Brailoiu E, Dun NJ, Frank GD, Inagami T, Higashiyama S, Thomas WG, Eckhart AD, Dempsey PJ, Eguchi S. G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor. J Biol Chem 2005; 280:26592-9. [PMID: 15905175 DOI: 10.1074/jbc.m502906200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.
Collapse
Affiliation(s)
- Mizuo Mifune
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Takagahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H. G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem 2005; 280:18434-41. [PMID: 15743761 DOI: 10.1074/jbc.m409710200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, we examined signal transduction mechanism of reactive oxygen species (ROS) production and the role of ROS in angiotensin II-induced activation of mitogen-activated protein kinases (MAPKs) in rat neonatal cardiomyocytes. Among three MAPKs, c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK required ROS production for activation, as an NADPH oxidase inhibitor, diphenyleneiodonium, inhibited the activation. The angiotensin II-induced activation of JNK and p38 MAPK was also inhibited by the expression of the Galpha(12/13)-specific regulator of G protein signaling (RGS) domain, a specific inhibitor of Galpha(12/13), but not by an RGS domain specific for Galpha(q). Constitutively active Galpha(12)- or Galpha(13)-induced activation of JNK and p38 MAPK, but not extracellular signal-regulated kinase (ERK), was inhibited by diphenyleneiodonium. Angiotensin II receptor stimulation rapidly activated Galpha(13), which was completely inhibited by the Galpha(12/13)-specific RGS domain. Furthermore, the Galpha(12/13)-specific but not the Galpha(q)-specific RGS domain inhibited angiotensin II-induced ROS production. Dominant negative Rac inhibited angiotensin II-stimulated ROS production, JNK activation, and p38 MAPK activation but did not affect ERK activation. Rac activation was mediated by Rho and Rho kinase, because Rac activation was inhibited by C3 toxin and a Rho kinase inhibitor, Y27632. Furthermore, angiotensin II-induced Rho activation was inhibited by Galpha(12/13)-specific RGS domain but not dominant negative Rac. An inhibitor of epidermal growth factor receptor kinase AG1478 did not affect angiotensin II-induced JNK activation cascade. These results suggest that Galpha(12/13)-mediated ROS production through Rho and Rac is essential for JNK and p38 MAPK activation.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Szászi K, Sirokmány G, Di Ciano-Oliveira C, Rotstein OD, Kapus A. Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells. Am J Physiol Cell Physiol 2005; 289:C673-85. [PMID: 15857905 DOI: 10.1152/ajpcell.00481.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Myosin-based contractility plays important roles in the regulation of epithelial functions, particularly paracellular permeability. However, the triggering factors and the signaling pathways that control epithelial myosin light chain (MLC) phosphorylation have not been elucidated. Herein we show that plasma membrane depolarization provoked by distinct means, including high extracellular K(+), the lipophilic cation tetraphenylphosphonium, or the ionophore nystatin, induced strong diphosphorylation of MLC in kidney epithelial cells. In sharp contrast to smooth muscle, depolarization of epithelial cells did not provoke a Ca(2+) signal, and removal of external Ca(2+) promoted rather than inhibited MLC phosphorylation. Moreover, elevation of intracellular Ca(2+) did not induce significant MLC phosphorylation, and the myosin light chain kinase (MLCK) inhibitor ML-7 did not prevent the depolarization-induced MLC response, suggesting that MLCK is not a regulated element in this process. Instead, the Rho-Rho kinase (ROK) pathway is the key mediator because 1) depolarization stimulated Rho and induced its peripheral translocation, 2) inhibition of Rho by Clostridium difficile toxin B or C3 transferase abolished MLC phosphorylation, and 3) the ROK inhibitor Y-27632 suppressed the effect. Importantly, physiological depolarizing stimuli were able to activate the same pathway: L-alanine, the substrate of the electrogenic Na(+)-alanine cotransporter, stimulated Rho and induced Y-27632-sensitive MLC phosphorylation in a Na(+)-dependent manner. Together, our results define a novel mode of the regulation of MLC phosphorylation in epithelial cells, which is depolarization triggered and Rho-ROK-mediated but Ca(2+) signal independent. This pathway may be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and thereby regulate paracellular transport.
Collapse
Affiliation(s)
- Katalin Szászi
- Department of Surgery, The Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
135
|
Riobo NA, Manning DR. Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol Sci 2005; 26:146-54. [PMID: 15749160 DOI: 10.1016/j.tips.2005.01.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Much regarding the engagement of the G(12) family of heterotrimeric G proteins (G(12) and G(13)) by agonist-activated receptors remains unclear. For example, the identity of receptors that couple unequivocally to G(12) and G(13) and how signals are allocated among these and other G proteins remain open questions. Part of the problem in understanding signaling through G(12) and G(13) is that the activation of these G proteins is rarely demonstrated directly and is instead presumed usually from far removed downstream events. Furthermore, receptors that couple to G(12) and G(13) invariably couple to additional G proteins, and thus few events can be linked unambiguously to one G protein or another. In this article, we document receptors that reportedly couple to G(12), G(13) or both G(12) and G(13), evaluate the methodology used to understand the coupling of these receptors, and discuss the ability of these receptors to couple also to G(q).
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
136
|
Budzyn K, Marley PD, Sobey CG. Opposing Roles of Endothelial and Smooth Muscle Phosphatidylinositol 3-Kinase in Vasoconstriction: Effects of Rho-Kinase and Hypertension. J Pharmacol Exp Ther 2005; 313:1248-53. [PMID: 15743931 DOI: 10.1124/jpet.104.082784] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) can activate endothelial nitric oxide synthase (eNOS), leading to production of the vasodilator NO. In contrast, vascular smooth muscle (VSM) PI3K may partially mediate vascular contraction, particularly during hypertension. We tested whether endothelial and VSM PI3K may have opposing functional roles in regulating vascular contraction. Secondly, we tested whether the procontractile protein rho-kinase can suppress endothelial PI3K/eNOS activity in intact arteries, thus contributing to vasoconstriction by G protein-coupled receptor (GPCR) agonists. We studied contractile responses to the GPCR agonist phenylephrine, and the receptor-independent vasoconstrictor KCl, in aortic rings from Sprague-Dawley rats. In endothelium-intact rings, the PI3K inhibitor wortmannin (0.1 microM) markedly augmented responses to phenylephrine (P < 0.05) by approximately 50% but not to KCl. However, in endothelium-denuded or N(G)-nitro-L-arginine methyl ester (L-NAME) (100 microM)-treated rings, wortmannin reduced responses to phenylephrine and KCl (P < 0.05). Furthermore, the rhokinase inhibitor Y-27632 (R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cycloheaxanecarboxamide; 1 microM) abolished responses to phenylephrine, and this effect was partially reversed by wortmannin or L-NAME. The ability of wortmannin to oppose the effect of rho-kinase inhibition on contractions to phenylephrine was L-NAME-sensitive. In aortas from angiotensin II-induced hypertensive rats, relaxation to acetylcholine (10 microM) was impaired (P < 0.05), and vasoconstriction by phenylephrine was markedly enhanced and not further augmented by wortmannin. These data suggest that endothelial PI3K-induced NO production can modulate GPCR agonist-induced vascular contraction and that this effect is impaired in hypertension in association with endothelial dysfunction. In addition, endothelial rho-kinase may act to suppress PI3K activity and, hence, attenuate NO-mediated relaxation and augment GPCR-dependent contraction.
Collapse
Affiliation(s)
- Klaudia Budzyn
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
137
|
Sun X, Kaltenbronn KM, Steinberg TH, Blumer KJ. RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol Pharmacol 2004; 67:631-9. [PMID: 15563583 DOI: 10.1124/mol.104.007724] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nitric oxide (NO)-cGMP pathway regulates vascular tone and blood pressure by mechanisms that are incompletely understood. RGS2, a GTPase-activating protein for Gqalpha that is critical for blood pressure homeostasis, has been suggested to serve as an effector of the NO-cGMP pathway that promotes vascular relaxation based on studies of aortic rings in vitro. To test this hypothesis and its relevance to blood pressure control, we determined whether RGS2 functions as an NO effector in smooth muscle of the resistance vasculature. We report that 1) the ability of the NO donor sodium nitroprusside to reduce blood pressure is impaired in RGS2-/- mice, 2) vasopressin-triggered Ca2+ transients are augmented in smooth muscle cells from resistance arteries of RGS2-/- mice, and 3) cGMP analogs fail to inhibit vasopressin-triggered Ca2+ transients in smooth muscle cells from resistance arteries of RGS2-/- mice even though cGMP-dependent protein kinase (PKG)1alpha and PKG1beta are expressed and activated normally. These results indicated that the NO-cGMP pathway uses RGS2 as a novel downstream effector to promote vascular relaxation by attenuating vasoconstrictor-triggered Ca2+ signaling in vascular smooth muscle cells. Genetic or epigenetic impairment of this mechanism may contribute to the development of hypertension, and augmenting it pharmacologically may provide a novel means of treating this disease.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
138
|
Jin L, Ying Z, Webb RC. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol 2004; 287:H1495-500. [PMID: 15371261 DOI: 10.1152/ajpheart.01006.2003] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence indicates that both the Rho/Rho kinase signaling pathway and reactive oxygen species (ROS) such as superoxide and H(2)O(2) are involved in the pathogenesis of hypertension. This study aimed to determine whether ROS-induced vascular contraction is mediated through activation of Rho/Rho kinase. Rat aortic rings (endothelium denuded) were isolated and placed in organ chambers for measurement of isometric force development. ROS were generated by a xanthine (X)-xanthine oxidase (XO) mixture. The antioxidants tempol (3 mM) and catalase (1,200 U/ml) or the XO inhibitor allopurinol (400 microM) significantly reduced X/XO-induced contraction. A Rho kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632), decreased the contraction in a concentration-dependent manner; however, the Ca(2+)-independent protein kinase C inhibitor rottlerin did not have an effect on X/XO-induced contraction. Phosphorylation of the myosin light chain phosphatase target subunit (MYPT1) was increased by ROS, and preincubation with Y-27632 blocked this increased phosphorylation. Western blotting for cytosolic and membrane-bound fractions of Rho showed that Rho was increased in the membrane fraction by ROS, suggesting activation of Rho. These observations demonstrate that ROS-induced Ca(2+) sensitization is through activation of Rho and a subsequent increase in Rho kinase activity but not Ca(2+)-independent PKC.
Collapse
Affiliation(s)
- Liming Jin
- Dept. of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3000, USA.
| | | | | |
Collapse
|
139
|
Hersch E, Huang J, Grider JR, Murthy KS. Gq/G13signaling by ET-1 in smooth muscle: MYPT1 phosphorylation via ETAand CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol 2004; 287:C1209-18. [PMID: 15475516 DOI: 10.1152/ajpcell.00198.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the signaling pathways initiated by endothelin receptors ETAand ETBin intestinal circular and longitudinal smooth muscle cells. The response to endothelin-1 (ET-1) consisted of two phases in both cell types. The initial, transient phase of contraction and phosphorylation of 20-kDa myosin light chain (MLC20) was mediated additively by ETAand ETBreceptors and initiated by Gαq-, Ca2+/calmodulin-dependent activation of MLC kinase. In contrast, the sustained phase was mediated selectively by ETAreceptors via a pathway involving sequential activation of Gα13, RhoA, and Rho kinase, resulting in phosphorylation of MYPT1 at Thr696and phosphorylation of MLC20. Although PKC was activated, CPI-17 was not phosphorylated and hence did not contribute to inhibition of MLC phosphatase. The absence of CPI-17 phosphorylation by PKC reflected active dephosphorylation of CPI-17 by protein phosphatase 2A (PP2A). PP2A was activated via a pathway involving ETB-dependent stimulation of p38 MAPK activity. CPI-17 phosphorylation was unmasked in the presence of the ETBantagonist BQ-788, but not the ETAantagonist BQ-123, and in the presence of a low concentration of okadaic acid, which selectively inactivates PP2A. The resultant phosphorylation of CPI-17 was blocked by bisindolylmaleimide, providing direct confirmation that it was PKC dependent. We conclude that the two phases of the intestinal smooth muscle response to ET-1 involve distinct receptors, G proteins, and signaling pathways. The sustained response is mediated via selective ETA-dependent phosphorylation of MYPT1. In contrast, ETBinitiates an inhibitory pathway involving p38 MAPK-dependent activation of PP2A that causes dephosphorylation of CPI-17.
Collapse
Affiliation(s)
- Eric Hersch
- Department of Physiology, Virginia Commonwealth University Medical School, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
140
|
Vázquez-Prado J, Miyazaki H, Castellone MD, Teramoto H, Gutkind JS. Chimeric G alpha i2/G alpha 13 proteins reveal the structural requirements for the binding and activation of the RGS-like (RGL)-containing Rho guanine nucleotide exchange factors (GEFs) by G alpha 13. J Biol Chem 2004; 279:54283-90. [PMID: 15485891 DOI: 10.1074/jbc.m410594200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-subunit of G proteins of the G(12/13) family stimulate Rho by their direct binding to the RGS-like (RGL) domain of a family of Rho guanine nucleotide exchange factors (RGL-RhoGEFs) that includes PDZ-RhoGEF (PRG), p115RhoGEF, and LARG, thereby regulating cellular functions as diverse as shape and movement, gene expression, and normal and aberrant cell growth. The structural features determining the ability of G alpha(12/13) to bind RGL domains and the mechanism by which this association results in the activation of RGL-RhoGEFs are still poorly understood. Here, we explored the structural requirements for the functional interaction between G alpha(13) and RGL-RhoGEFs based on the structure of RGL domains and their similarity with the area by which RGS4 binds the switch region of G alpha(i) proteins. Using G alpha(i2), which does not bind RGL domains, as the backbone in which G alpha(13) sequences were swapped or mutated, we observed that the switch region of G alpha(13) is strictly necessary to bind PRG, and specific residues were identified that are critical for this association, likely by contributing to the binding surface. Surprisingly, the switch region of G alpha(13) was not sufficient to bind RGL domains, but instead most of its GTPase domain is required. Furthermore, membrane localization of G alpha(13) and chimeric G alpha(i2) proteins was also necessary for Rho activation. These findings revealed the structural features by which G alpha(13) interacts with RGL domains and suggest that molecular interactions occurring at the level of the plasma membrane are required for the functional activation of the RGL-containing family of RhoGEFs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Embryo, Mammalian
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, G12-G13/chemistry
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Guanine Nucleotide Exchange Factors/chemistry
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Kidney
- Mice
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- NIH 3T3 Cells
- Point Mutation
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RGS Proteins/chemistry
- RGS Proteins/metabolism
- Receptors, Glutamate/chemistry
- Receptors, Glutamate/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Rho Guanine Nucleotide Exchange Factors
- Structure-Activity Relationship
- Transfection
Collapse
Affiliation(s)
- José Vázquez-Prado
- Oral & Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
141
|
Aktories K, Wilde C, Vogelsgesang M. Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 2004; 152:1-22. [PMID: 15372308 DOI: 10.1007/s10254-004-0034-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.
Collapse
Affiliation(s)
- K Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, Otto-Krayer-Haus, Albertstr. 25, Freiburg, Germany.
| | | | | |
Collapse
|
142
|
Moriki N, Ito M, Seko T, Kureishi Y, Okamoto R, Nakakuki T, Kongo M, Isaka N, Kaibuchi K, Nakano T. RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27:263-70. [PMID: 15127884 DOI: 10.1291/hypres.27.263] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RhoA is commonly activated in the aorta in various hypertensive models, indicating that RhoA seems to be a molecular switch in hypertension. The molecular mechanisms for RhoA activation in stroke-prone spontaneously hypertensive rats (SHRSP) were here investigated using cultured aortic smooth muscle cells (VSMC). The level of the active form of RhoA was higher in VSMC from SHRSP than in those from Wistar-Kyoto rats (WKY). The phosphorylation level of myosin phosphatase target subunit 1 (MYPT1) at the inhibitory site was also significantly higher in SHRSP, and the phosphorylation levels in both VSMCs were strongly inhibited to a similar extent by treatment with Y-27632, a Rho-kinase inhibitor. The expression levels of RhoA/Rho-kinase related molecules, namely RhoA, Rho-kinase, MYPT1, CPI-17 (inhibitory phosphoprotein for myosin phosphatase) and myosin light chain kinase, were not different between SHRSP and WKY. Valsartan, an angiotensin II (Ang II)- type 1 receptor antagonist, selectively and significantly reduced the RhoA activation in VSMC from SHRSP. The expression levels of the Rho GDP-dissociation inhibitor (RhoGDI) and leukemia-associated Rho-specific guanine nucleotide exchange factor (RhoGEF) did not differ between SHRSP and WKY. In cyclic nucleotide signaling, cyclic GMP (cGMP)-dependent protein kinase Ialpha (cGKIalpha) was significantly downregulated in SHRSP cells, although there were no changes in the expression levels of guanylate cyclase beta and cyclic AMP (cAMP)-dependent protein kinase or the intracellular contents of cGMP and cAMP between the two rat models. These results suggest that the possible mechanisms underlying RhoA activation in VSMC from SHRSP are autocrine/paracrine regulation by Ang II and/or cGKIalpha downregulation.
Collapse
Affiliation(s)
- Nobuyuki Moriki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Takuwa Y. Regulation of the Rho signaling pathway by excitatory agonists in vascular smooth muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 538:67-75; discussion 75. [PMID: 15098655 DOI: 10.1007/978-1-4419-9029-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan 920-8640
| |
Collapse
|
144
|
Büyükafşar K, Arikan O, Ark M, Seçilmiş A, Un I, Singirik E. Rho-kinase expression and its contribution to the control of perfusion pressure in the isolated rat mesenteric vascular bed. Eur J Pharmacol 2004; 485:263-8. [PMID: 14757149 DOI: 10.1016/j.ejphar.2003.11.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Rho-kinase expression was investigated in the rat mesenteric artery and the effects of its inhibitors, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632) and fasudil (HA-1077), were examined on the increase in perfusion pressure induced by two different receptor agonists, namely the alpha-adrenoceptor agonist, phenylephrine and, the endothelin ET(A) and ET(B) receptor agonist, endothelin-1. Y-27632 and fasudil produced a concentration-dependent decrease in perfusion pressure. There was no difference between the concentration-response lines of these two inhibitors. The maximum decrease in the perfusion pressure induced by 10(-5) M Y-27632 was 85.8+/-3.7% when the tone was increased by phenylephrine. However, it was 48.1+/-5.4% (P<0.001) when the perfusion pressure was elevated by endothelin-1. Saponin perfusion (100 mg l(-1), for 10 min), which abolished acetylcholine-induced relaxation, did not significantly modify the Y-27632-elicited relaxation. Western blot analysis revealed that rat mesenteric artery expresses Rho-kinase protein with a molecular weight of approximately 160 kDa. These results show that Rho-kinase enzyme is expressed in rat mesenteric artery and that it contributes to the control of vascular resistance. Moreover, endothelium removal had no marked effect on the vasodilatation induced by Y-27632. In addition, the endothelin-1-induced vasoconstriction was more resistant to the Rho-kinase inhibitors than was that induced by phenylephrine, probably because excitatory endothelin receptors are associated with this signal transduction pathway at a different level from that of alpha-adrenoceptors.
Collapse
Affiliation(s)
- Kansu Büyükafşar
- Department of Pharmacology, Medical Faculty Mersin University, Campus Yenişehir 33169, Mersin, Turkey.
| | | | | | | | | | | |
Collapse
|
145
|
Lan C, Das D, Wloskowicz A, Vollrath B. Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho kinase and protein kinase C. Am J Physiol Heart Circ Physiol 2004; 286:H165-73. [PMID: 14500131 DOI: 10.1152/ajpheart.00664.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-1 (ET-1) and oxyhemoglobin (OxyHb) have been implicated in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. However, the contribution of ET-1 to this condition has not been definitely established. In this study, we investigated whether threshold concentration of ET-1 enhances cerebrovascular smooth muscle (CVSM) contraction to OxyHb by activating the RhoA/Rho kinase and protein kinase C (PKC) pathways. CVSM contraction was measured in endothelium-denuded rabbit basilar arteries. Cytosolic and particulate fractions of CVSM cells were examined for RhoA and PKC reactivity with specific antibodies using immunoblotting procedures. ET-1 (0.1 nM) alone did not produce any significant contraction, but it markedly potentiated the magnitude (223% of control) and rate (149% of control) of contraction in response to OxyHb, which was attenuated by the inhibitors of Rho kinase Y-27632 and HA-1077. ET-1-mediated potentiation of the contraction was also inhibited by inhibitors of PKC, Ro-32-0432, and GF-109203X. BQ-123 prevented potentiation of vasoconstriction mediated by ET-1, indicating that the action of ET-1 was mediated by the endothelin type A receptor. Pretreatment with ET-1 significantly enhanced OxyHb-mediated RhoA translocation in CVSM cells and intact basilar arteries. ET-1 also caused potentiation of PKC-ϵ expression in membranes of CVSM cells exposed to OxyHb for 10 and 60 min but did not markedly change the distribution of PKC-α. Thus, in CVSM, threshold concentration of ET-1 potentiates contraction induced by OxyHb via RhoA/Rho kinase- and PKC-ϵ-dependent mechanisms. This process may contribute to the pathological contraction of cerebral arteries observed after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Christopher Lan
- Department of Pharmacology, Faculty of Medicine, 9-70 Medical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
146
|
Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83:1325-58. [PMID: 14506307 DOI: 10.1152/physrev.00023.2003] [Citation(s) in RCA: 1535] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Galphaq, Galpha12, Galpha13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP. RhoA. GDI to GTP. RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.
Collapse
Affiliation(s)
- Andrew P Somlyo
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, PO Box 800736, Charlottesville, VA 22908-0736.
| | | |
Collapse
|
147
|
Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME, Tang M, Wang G. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 2003; 9:1506-12. [PMID: 14608379 DOI: 10.1038/nm958] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 10/09/2003] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) inhibits vascular contraction by activating cGMP-dependent protein kinase I-alpha (PKGI-alpha), which causes dephosphorylation of myosin light chain (MLC) and vascular smooth muscle relaxation. Here we show that PKGI-alpha attenuates signaling by the thrombin receptor protease-activated receptor-1 (PAR-1) through direct activation of regulator of G-protein signaling-2 (RGS-2). NO donors and cGMP cause cGMP-mediated inhibition of PAR-1 and membrane localization of RGS-2. PKGI-alpha binds directly to and phosphorylates RGS-2, which significantly increases GTPase activity of G(q), terminating PAR-1 signaling. Disruption of the RGS-2-PKGI-alpha interaction reverses inhibition of PAR-1 signaling by nitrovasodilators and cGMP. Rgs2-/- mice develop marked hypertension, and their blood vessels show enhanced contraction and decreased cGMP-mediated relaxation. Thus, PKGI-alpha binds to, phosphorylates and activates RGS-2, attenuating receptor-mediated vascular contraction. Our study shows that RGS-2 is required for normal vascular function and blood pressure and is a new drug development target for hypertension.
Collapse
Affiliation(s)
- K Mary Tang
- Molecular Cardiology Research Institute, New England Medical Center and Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Rattan S, Puri RN, Fan YP. Involvement of rho and rho-associated kinase in sphincteric smooth muscle contraction by angiotensin II. Exp Biol Med (Maywood) 2003; 228:972-81. [PMID: 12968070 DOI: 10.1177/153537020322800814] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tonic smooth muscles of lower esophageal sphincter (LES) and internal anal sphincter (IAS) are subject to modulation by the neurohumoral agents. We report that angiotensin (Ang) II-induced contraction of rat IAS and LES smooth muscle cells (SMC) was inhibited by Clostridium botulinum C3 exozyme, HA 1077 and Y 27632, suggesting a role for Rho kinase and a Rho-associated kinase (ROK). Ang II-induced contraction of the SMC was also attenuated by genistein, antibodies to the pp60(c-src), p(190) RhoGTPase-activating protein (p190 RhoGAP), carboxyl terminus of Galpha13, carboxyl terminus peptide, and ADP ribosylation factor (ARF) antibody. Ang II-induced increase in p(190) RhoGAP tyrosine phosphorylation was attenuated by genistein. Furthermore, Ang II-induced increase in smooth muscle tone and phosphorylation of myosin light chain (MLC; 20 kDa; MLC20-P) were attenuated by Y 27632 and genistein. The results suggest an important role for Galpha13 and pp60(c-src) in the intracellular events responsible for the activation of RhoA/ROK in Ang II-induced contraction of LES and IAS SMC.
Collapse
Affiliation(s)
- Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
149
|
Bauer J, Parekh N. Variations in cell signaling pathways for different vasoconstrictor agonists in renal circulation of the rat. Kidney Int 2003; 63:2178-86. [PMID: 12753305 DOI: 10.1046/j.1523-1755.2003.00021.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Major cell signaling pathways involved in agonist-induced vasoconstriction are recognized to be Ca2+ mobilization via inositol-1,4,5 triphosphate (IP3), Ca2+ influx through l-type channels, activation of protein kinase C (PKC), and of Rho-associated kinase (ROK). However, their contribution for renal vasoconstriction induced by different agonists is not well characterized. METHODS Increasing doses of angiotensin II (Ang II), norepinephrine, and arginine vasopressin (AVP) were infused into the left renal artery of anesthetized rats to reduce renal blood flow from a threshold value to about 50%. Rightward shift of the dose-response curves due to coinfusion of inhibitors served to assess contribution of different pathways: trimethoxybenzoate (TMB-8) against Ca2+ mobilization, nifedipine against Ca2+ influx, staurosporine and Ro-318220 against PKC, and Y-27632 and HA-1077 against ROK. Effects of inhibitors were also determined for renal response to a single dose of U-46619, a thromboxane A2 agonist. Composite response to U-46619 consisting of a fast and slow component did not permit determination of dose-response curves. RESULTS Inhibition of ROK by Y-27632 or HA-1077 had the largest effect on renal responses to agonists. They shifted dose-response curves of Ang II, norepinephrine, and AVP to sevenfold and higher values. Staurosporine, nifedipine, and TMB-8 had variable effect on agonist responses. They attenuated effects of Ang II and norepinephrine in an additive manner, and each of them increased effective dose values about fourfold. TMB-8 did not attenuate response to AVP and U-46619. Staurosporine and nifedipine diminished effects of AVP in a nonadditive manner, and attenuated additively the fast component of U-46619 response. CONCLUSION In contrast to other cell signaling pathways, ROK plays a common role for all vasoconstrictor agonistsis in renal circulation.
Collapse
Affiliation(s)
- Johannes Bauer
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
150
|
Salomone S, Yoshimura SI, Reuter U, Foley M, Thomas SS, Moskowitz MA, Waeber C. S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur J Pharmacol 2003; 469:125-34. [PMID: 12782194 DOI: 10.1016/s0014-2999(03)01731-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We characterized the effect of Sphingosine-1-phosphate (S1P) on vascular tone. S1P selectively constricted isolated cerebral, but not peripheral arteries, despite ubiquitous expression of S1P(1), S1P(2), S1P(3) and S1P(5) receptor mRNA. Clostridium B and C3 toxins and the rho-kinase inhibitor Y27632 (trans-N-(4-pyridyl)-4-(l-aminoethyl)-cyclohexane carboxamide) reduced this vasoconstriction to S1P, indicating that the response was mediated through Rho. Pertussis toxin displayed only weak inhibition, suggesting minor involvement of G(i/o) protein. The S1P effect was specifically reduced by adenovirus bearing a s1p(3) but not s1p(2), antisense construct. Furthermore, suramin, which selectively blocks S1P(3) receptors, inhibited the vasoconstrictor effect of S1P, indicating that S1P(3) receptors account for at least part of S1P-mediated vasoconstriction in cerebral arteries. In vivo, intracarotid injection of S1P decreased cerebral blood flow, an effect prevented by suramin treatment. Because S1P constricts cerebral blood vessels and is released from platelets during clotting, the S1P/S1P(3) system constitutes a novel potential target for cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Salvatore Salomone
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, CNY 149 13th Street, Room 6403, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|