101
|
Muacevic A, Adler JR, Soto B, Falb V, Page C. Duplicated Inferior Vena Cava Thrombosis Mimicking Acute Pancreatitis in a COVID-19 Patient. Cureus 2023; 15:e33220. [PMID: 36733566 PMCID: PMC9888417 DOI: 10.7759/cureus.33220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2023] [Indexed: 01/02/2023] Open
Abstract
An 86-year-old woman with a recent hospitalization for severe coronavirus disease 2019 (COVID-19) infection presented to the emergency department with abdominal discomfort and bilateral leg swelling. She was mildly tachycardic on physical exam, with superficial abdominal vessel dilation and bilateral lower extremity edema. Her laboratory results were significant for a mildly elevated lipase of 260 U/L (normal range: 0-160 U/L) and a positive COVID-19 PCR test. CT of the abdomen and pelvis did not show any pancreatic abnormality but revealed a duplicated inferior vena cava (IVC) with a thrombus located in the right IVC. The patient was subsequently placed on full-dose anticoagulation with the eventual achievement of clot lysis. It appears that the incidence of thrombosis, including IVC thrombosis, has been on the rise due to COVID-19-associated coagulopathy; therefore, a high index of clinical suspicion in these cases may prove to be lifesaving.
Collapse
|
102
|
Zhao Z, Pan Z, Zhang S, Ma G, Zhang W, Song J, Wang Y, Kong L, Du G. Neutrophil extracellular traps: A novel target for the treatment of stroke. Pharmacol Ther 2023; 241:108328. [PMID: 36481433 DOI: 10.1016/j.pharmthera.2022.108328] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a threatening cerebrovascular disease caused by thrombus with high morbidity and mortality rates. Neutrophils are the first to be recruited in the brain after stroke, which aggravate brain injury through multiple mechanisms. Neutrophil extracellular traps (NETs), as a novel regulatory mechanism of neutrophils, can trap bacteria and secret antimicrobial molecules, thereby degrading pathogenic factors and killing bacteria. However, NETs also exacerbate certain non-infectious diseases by activating autoimmune or inflammatory responses. NETs have been found to play important roles in the pathological process of stroke in recent years. In this review, the mechanisms of NETs formation, the physiological roles of NETs, and the dynamic changes of NETs after stroke are summarized. NETs participate in stroke through various mechanisms. NETs promote the coagulation cascade and interact with platelets to induce thrombosis. tPA induces the degranulation of neutrophils to form NETs, leading to hemorrhagic transformation and thrombolytic resistance. NETs aggravate stroke by mediating inflammation, atherosclerosis and vascular injury. In addition, the regulation of NETs in stroke, the potential of NETs as biomarker and the treatment of stroke targeting NETs are discussed. The increasing evidences suggest that NETs may be a potential target for stroke treatment. Inhibition of NETs formation or promotion of NETs degradation plays protective effects in stroke. However, how to avoid the adverse effects of NETs-targeted therapy deserves further study. In summary, this review provides a reference for the pathogenesis, drug targets, biomarkers and drug development of NETs in stroke.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
103
|
Hu C, Zhao B, Ye Q, Zou J, Li X, Wu H. The Diagnostic Value of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Deep Venous Thrombosis: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost 2023; 29:10760296231187392. [PMID: 37487186 PMCID: PMC10369103 DOI: 10.1177/10760296231187392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 07/26/2023] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are emerging tools that can be used in the diagnosis of deep venous thrombosis (DVT). This study aims to evaluate the diagnostic value of NLR and PLR for patients with DVT. Our meta-analysis included 11 eligible studies and extracted relevant diagnostic indicators. Of these studies, 4 focused on the NLR, 1 on the PLR, while 6 evaluated both. For the 10 studies on NLR, the pooled sensitivity, specificity, positive-likelihood ratio, and negative-likelihood ratio were 74%, 66%, 2.16, and 0.4, respectively. The estimated diagnostic odds ratio (DOR) was 5.3, and the area under the curve (AUC) of the summary receiver operating characteristic (SROC) curves was 0.74. For the 7 studies on the PLR, the pooled sensitivity, specificity, positive-likelihood ratio, and negative-likelihood ratio were 0.65, 0.77, 2.89, and 0.45, respectively. The estimated DOR was 6.64, and the SROC-AUC was 0.79. Our findings showed that the NLR and PLR exhibit moderate diagnostic accuracy and may be helpful biomarkers for the diagnosis of DVT. Future prospective, well-designed studies with large sample sizes will be required to provide additional evidence to establish cutoff values and clinical value of these indicators.
Collapse
Affiliation(s)
- Chenming Hu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Vascular Surgery, Dazhou Central Hospital, Dazhou, China
| | - Bin Zhao
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianling Ye
- Department of Vascular Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jun Zou
- Department of Vascular Surgery, Dazhou Central Hospital, Dazhou, China
| | - Xiang Li
- Department of Vascular Surgery, Dazhou Central Hospital, Dazhou, China
| | - Huaping Wu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Vascular Surgery, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
104
|
Luo H, Guo H, Zhou Y, Fang R, Zhang W, Mei Z. Neutrophil Extracellular Traps in Cerebral Ischemia/Reperfusion Injury: Friend and Foe. Curr Neuropharmacol 2023; 21:2079-2096. [PMID: 36892020 PMCID: PMC10556361 DOI: 10.2174/1570159x21666230308090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 03/10/2023] Open
Abstract
Cerebral ischemic injury, one of the leading causes of morbidity and mortality worldwide, triggers various central nervous system (CNS) diseases, including acute ischemic stroke (AIS) and chronic ischemia-induced Alzheimer's disease (AD). Currently, targeted therapies are urgently needed to address neurological disorders caused by cerebral ischemia/reperfusion injury (CI/RI), and the emergence of neutrophil extracellular traps (NETs) may be able to relieve the pressure. Neutrophils are precursors to brain injury following ischemic stroke and exert complicated functions. NETs extracellularly release reticular complexes of neutrophils, i.e., double-stranded DNA (dsDNA), histones, and granulins. Paradoxically, NETs play a dual role, friend and foe, under different conditions, for example, physiological circumstances, infection, neurodegeneration, and ischemia/reperfusion. Increasing evidence indicates that NETs exert anti-inflammatory effects by degrading cytokines and chemokines through protease at a relatively stable and moderate level under physiological conditions, while excessive amounts of NETs release (NETosis) irritated by CI/RI exacerbate the inflammatory response and aggravate thrombosis, disrupt the blood-brain barrier (BBB), and initiates sequential neuron injury and tissue damage. This review provides a comprehensive overview of the machinery of NETs formation and the role of an abnormal cascade of NETs in CI/RI, as well as other ischemia-induced neurological diseases. Herein, we highlight the potential of NETs as a therapeutic target against ischemic stroke that may inspire translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Rui Fang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
105
|
Gi (魏 峻洸) T, Kuwahara (桑原 彩) A, Yamashita (山下 篤) A, Matsuda (松田 俊太郎) S, Maekawa (前川 和也) K, Moriguchi-Goto (盛口 淸香) S, Sato (佐藤 勇一郎) Y, Asada (浅田 祐士郎) Y. Histopathological Features of Cancer-Associated Venous Thromboembolism: Presence of Intrathrombus Cancer Cells and Prothrombotic Factors. Arterioscler Thromb Vasc Biol 2023; 43:146-159. [PMID: 36384269 PMCID: PMC9762717 DOI: 10.1161/atvbaha.122.318463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cancer-associated venous thromboembolism (VTE) is a critical complication in patients with cancer. However, the pathological findings of VTE are limited. Here, we investigated the histopathological features of cancer-associated VTE in human autopsy cases. METHODS We clinically examined the autopsy cases of VTE with (n=114) and without cancer (n=66) and immunohistochemically analyzed the expression of prothrombotic factors in intrathrombus cancer cells, the thrombus contents of erythrocytes, fibrin, platelets, citrullinated histone H3, and degree of organization. RESULTS Vascular wall invasion or small cell clusters of cancer cells was observed in thrombi in 27.5% of deep vein thrombosis and 25.9% of pulmonary embolism cases. The majority of the cancer cells in deep vein thrombi appeared to be invading the vessel wall, whereas the majority of pulmonary thrombi had cancer cell clusters, consistent with embolization via blood flow. These cancer cells were immunohistochemically positive for TF (tissue factors) or podoplanin in up to 88% of VTE cases. The frequency of TF-positive monocyte/macrophages in thrombi was higher in cancer-associated VTE than that in VTE without cancer. Citrullinated histone H3 was predominantly observed in the early stages of organizing thrombi. There was no significant difference in thrombus components between VTE with cancer and without cancer groups. CONCLUSIONS Vascular wall invasion or cancer cell clusters in thrombi might influence thrombogenesis of cancer-associated VTE. TF and podoplanin in cancer cells and in monocyte/macrophages may induce coagulation reactions and platelet aggregation. Neutrophil extracellular traps may play a role in the early stages of VTE, regardless of cancer status.
Collapse
Affiliation(s)
- Toshihiro Gi (魏 峻洸)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| | - Aya Kuwahara (桑原 彩)
- Department of Laboratory Center (A.K.), Faculty of Medicine, University of Miyazaki, Japan
| | - Atsushi Yamashita (山下 篤)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| | - Shuntaro Matsuda (松田 俊太郎)
- Department of Medicine and Community Health (S.M.), Faculty of Medicine, University of Miyazaki, Japan
| | - Kazunari Maekawa (前川 和也)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| | - Sayaka Moriguchi-Goto (盛口 淸香)
- Department of Diagnostic Pathology‚ University of Miyazaki Hospital (S.M.-G., Y.S.), Faculty of Medicine, University of Miyazaki, Japan
| | - Yuichiro Sato (佐藤 勇一郎)
- Department of Diagnostic Pathology‚ University of Miyazaki Hospital (S.M.-G., Y.S.), Faculty of Medicine, University of Miyazaki, Japan
| | - Yujiro Asada (浅田 祐士郎)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
106
|
Phthalide derivative CD21 regulates the platelet- neutrophil extracellular trap-thrombin axis and protects against ischemic brain injury in rodents. Int Immunopharmacol 2023; 114:109547. [PMID: 36527877 DOI: 10.1016/j.intimp.2022.109547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Prothrombotic and proinflammatory properties of neutrophil extracellular traps (NETs) contribute to brain damage after ischemic stroke. CD21 is a novel phthalide neuroprotectant against cerebral ischemia in rodents. This study investigated effects of CD21 on the platelet-NET-thrombin axis and ischemic brain injury and the underlying mechanism. CD21 exerteddose-dependent neuroprotectionin rats that were subjected to2 h middle cerebral artery occlusion,dose-dependentlyinhibited adenosine diphosphate-mediatedplatelet aggregationin rats, and dose-dependentlyexertedanti-thrombotic activityin rodents that received a collagen-epinephrine combination, ferric chloride, or an arteriovenous shunt. Equimolar CD21 doses exerted stronger efficacy than 3-N-butylphthalide (NBP, natural phthalide for the treatment of ischemic stroke). CD21 dose-dependently improved regional cerebral blood flow, neurobehavioral deficits, and infarct volume in mice that were subjected to photothrombotic stroke (PTS). CD21 (13.79 mg/kg, i.v.) significantly decreased NET components (plasma dsDNA concentrations; mRNA levels of elastase, myeloperoxidase, and neutrophil gelatinase-associated lipocalin and protein level of citrullinated histone H3 in ischemic brain tissues), mRNA and protein levels of peptidyl-arginine deiminase 4 (PDA4, NET formation enzyme), and mRNA levels of NET-related inflammatory mediators (interleukin-1β, interleukin-17A, matrix metalloproteinase 8, and matrix metalloproteinase 9) in ischemic brain tissues, despite no effect on mRNA levels of deoxyribonuclease I (NET elimination enzyme). Pretreatment with compound C (inhibitor of adenosine monophosphate-activated protein kinase [AMPK]) significantly reversed the inhibitory effects of CD21 on NETs, PDA4, and inflammatory mediators in PTS mice. These results suggest that CD21 might regulate the platelet-NET-thrombin axis and protect against ischemic brain injury partly through the induction of AMPK activation.
Collapse
|
107
|
Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022; 24:153-170. [PMID: 36606252 PMCID: PMC9793227 DOI: 10.1016/j.bioactmat.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.
Collapse
Affiliation(s)
- Taravat Khodaei
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | | | - Abhinav P. Acharya
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA,Biological Design, Arizona State University, Tempe, AZ, 85281, USA,Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State, University, Tempe, AZ, 85281, USA,Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA,Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA,Corresponding author. Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA.
| |
Collapse
|
108
|
Loh W, Vermeren S. Anti-Inflammatory Neutrophil Functions in the Resolution of Inflammation and Tissue Repair. Cells 2022; 11:cells11244076. [PMID: 36552840 PMCID: PMC9776979 DOI: 10.3390/cells11244076] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic products ties with their role in host defence from bacterial and fungal infections. Neutrophilic inflammation is tightly regulated to limit the amount of 'bystander injury' caused. Neutrophils were in the past regarded as short-lived, indiscriminate killers of invading microorganisms. However, this view has changed quite dramatically in recent years. Amongst other insights, neutrophils are now recognised to also have important anti-inflammatory functions that are critical for the resolution of inflammation and return to homeostasis. This minireview focusses on anti-inflammatory neutrophil functions, placing a particular focus on recent findings linked to neutrophil cell death, several types of which may be anti-inflammatory (apoptosis, secondary necrosis, and neutrophil extracellular traps). These are discussed together with features that may further promote the clearance of dead cells by efferocytosis and reprogramming of macrophages to promote resolution and repair.
Collapse
Affiliation(s)
- Waywen Loh
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
109
|
Methods for the Assessment of NET Formation: From Neutrophil Biology to Translational Research. Int J Mol Sci 2022; 23:ijms232415823. [PMID: 36555464 PMCID: PMC9781911 DOI: 10.3390/ijms232415823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have indicated that a neutrophil extracellular trap (NET) formation, apart from its role in host defense, can contribute to or drive pathogenesis in a wide range of inflammatory and thrombotic disorders. Therefore, NETs may serve as a therapeutic target or/and a diagnostic tool. Here, we compare the most commonly used techniques for the assessment of NET formation. Furthermore, we review recent data from the literature on the application of basic laboratory tools for detecting NET release and discuss the challenges and the advantages of these strategies in NET evaluation. Taken together, we provide some important insights into the qualitative and quantitative molecular analysis of NETs in translational medicine today.
Collapse
|
110
|
Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl) 2022; 135:2773-2784. [PMID: 36729096 PMCID: PMC9945416 DOI: 10.1097/cm9.0000000000002359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.
Collapse
|
111
|
Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep 2022; 12:12523. [PMID: 35869087 PMCID: PMC9305055 DOI: 10.1038/s41598-022-15969-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Whereas the detection of antiphospholipid autoantibodies (aPL) in COVID-19 is of increasing interest, their role is still unclear. We analyzed a large aPL panel in 157 patients with COVID-19 according to the disease severity. We also investigated a potential association between aPL and extracellular DNA (exDNA, n = 85) or circulating markers of neutrophil extracellular traps (NET) such as citrullinated histones H3 (CitH3, n = 49). A total of 157 sera of patients infected by SARS-CoV-2 were collected. A large aPL panel including lupus anticoagulant, anti-cardiolipin and anti-beta-2 glycoprotein I (IgG, IgM and IgA), anti-phosphatidylethanolamine IgA, anti-prothrombin (IgG and IgM) was retrospectively analyzed according to the disease severity. We found a total aPL prevalence of 54.8% with almost half of the cases having aCL IgG. Within an extended panel of aPL, only aCL IgG were associated with COVID-19 severity. Additionally, severe patients displayed higher CitH3 levels than mild patients. Interestingly, we highlighted a significant association between the levels of aCL IgG and exDNA only in aCL positive patients with severe disease. In conclusion, we showed a significant link between aPL, namely aCL IgG, and circulating exDNA in patients with severe form of COVID-19, that could exacerbate the thrombo-inflammatory state related to disease severity.
Collapse
|
112
|
There is urgent need to treat atherosclerotic cardiovascular disease risk earlier, more intensively, and with greater precision: A review of current practice and recommendations for improved effectiveness. Am J Prev Cardiol 2022; 12:100371. [PMID: 36124049 PMCID: PMC9482082 DOI: 10.1016/j.ajpc.2022.100371] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/10/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is epidemic throughout the world and is etiologic for such acute cardiovascular events as myocardial infarction, ischemic stroke, unstable angina, and death. ASCVD also impacts risk for dementia, chronic kidney disease peripheral arterial disease and mobility, impaired sexual response, and a host of other visceral impairments that adversely impact the quality and rate of progression of aging. The relationship between low-density lipoprotein cholesterol (LDL-C) and risk for ASCVD is one of the most highly established and investigated issues in the entirety of modern medicine. Elevated LDL-C is a necessary condition for atherogenesis induction. Basic scientific investigation, prospective longitudinal cohorts, and randomized clinical trials have all validated this association. Yet despite the enormous number of clinical trials which support the need for reducing the burden of atherogenic lipoprotein in blood, the percentage of high and very high-risk patients who achieve risk stratified LDL-C target reductions is low and has remained low for the last thirty years. Atherosclerosis is a preventable disease. As clinicians, the time has come for us to take primordial and primary prevention more serously. Despite a plethora of therapeutic approaches, the large majority of patients at risk for ASCVD are poorly or inadequately treated, leaving them vulnerable to disease progression, acute cardiovascular events, and poor aging due to loss of function in multiple visceral organs. Herein we discuss the need to greatly intensify efforts to reduce risk, decrease disease burden, and provide more comprehensive and earlier risk assessment to optimally prevent ASCVD and its complications. Evidence is presented to support that treatment should aim for far lower goals in cholesterol management, should take into account many more factors than commonly employed today and should begin significantly earlier in life.
Collapse
|
113
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Ruixuan Wang
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; Department of Neurosurgery, and Department of Cellular & Molecular Physiology,Yale University School of Medicine, USA; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Jason Hu
- Department of Neonatology, Yale University School of Medicine, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
114
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
115
|
Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, Zhang H, He J. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol 2022; 11:99. [PMCID: PMC9667637 DOI: 10.1186/s40164-022-00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractNeutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.
Collapse
|
116
|
Cha MJ, Ha J, Lee H, Kwon I, Kim S, Kim YD, Nam HS, Lee HS, Song TJ, Choi HJ, Heo JH. Neutrophil Recruitment in Arterial Thrombus and Characteristics of Stroke Patients with Neutrophil-Rich Thrombus. Yonsei Med J 2022; 63:1016-1026. [PMID: 36303310 PMCID: PMC9629897 DOI: 10.3349/ymj.2022.0328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Neutrophils contribute to thrombosis. However, there is limited information on the temporal course of neutrophil recruitment in thrombosis, the contribution of neutrophils to thrombus growth, and the characteristics of stroke patients with neutrophil-rich thrombi. MATERIALS AND METHODS After inducing carotid artery thrombosis in Institute of Cancer Research mice using ferric chloride, aged thrombi were produced by ligating the distal portion of the carotid artery in mice for 0.5, 1, 2, 3, 6, or 24 h. For thrombus analysis in stroke patients, we used registry data and thrombi that were obtained during intra-arterial thrombectomy. Immunohistochemistry was performed to determine thrombus composition. RESULTS In the thrombi of 70 mice, Ly6G positive cell counts (neutrophils) and histone H3-positive cell counts increased in a time-dependent manner (both p<0.001). Ly6G-positive cell count was strongly correlated with histone H3-positive cell counts (r=0.910, p<0.001), but not with thrombus size (p=0.320). In 75 stroke patients, atrial fibrillation and cardioembolism were more frequent in the higher neutrophil group (32/37, 86.5%) than in the lower neutrophil group (19/38, 50%) (p=0.002). The median erythrocyte fraction was higher [52.0 (interquartile range 39.9-57.8)] in the higher neutrophil group than in the lower neutrophil group [40.3 (interquartile range 23.5-53.2)]. The fraction of neutrophils was positively correlated with that of erythrocytes (R=0.35, p=0.002). CONCLUSION Neutrophils were recruited and increased in arterial thrombosis in a time-dependent manner; however, they were not associated with the growth of formed thrombi. Neutrophil fractions in the thrombi of stroke patients appeared to be associated with atrial fibrillation and erythrocyte fraction.
Collapse
Affiliation(s)
- Myoung-Jin Cha
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, National Police Hospital, Seoul, Korea
| | - Jimin Ha
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyungwoo Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Il Kwon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sungeun Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Jin Song
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyun-Jung Choi
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
117
|
Wan Y, Shen J, Ouyang J, Dong P, Hong Y, Liang L, Liu J. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front Immunol 2022; 13:1025861. [PMID: 36341351 PMCID: PMC9634160 DOI: 10.3389/fimmu.2022.1025861] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are specialized structures formed by neutrophils that were initially found to be important in killing pathogenic bacteria during infection. With the development of related research, the relationship between NETs and diseases such as sepsis, cancer, and systemic lupus erythematosus has received close attention. However, there is a lack of reports that comprehensively and objectively present the current status of NETs-related studies. Therefore, this study aims to visually analyze the current status and trends of NETs-related research by means of bibliometrics and knowledge mapping. Methods NETs-related articles and reviews were retrieved using the Web of Science core collection subject search, and bibliometric analysis was performed in Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 4866 publications from 2004 to 2022 were included in the bibliometric analysis. The number of publications shows an increasing trend from year to year. Collaborative network analysis shows that the United States and Germany are the most influential countries in this field, with the highest number of publications and citations. The journal with the most publications is Frontiers in Immunology. Brinkmann Volker is an authoritative author in this field, and his publication "Neutrophil extracellular traps kill bacteria" is the most frequently cited. The literature and keyword analysis shows that the relationship between NETs and diseases (hematological diseases, sepsis, cancer, etc.) and cell death (apoptosis, necroptosis, pyroptosis, etc.) is a popular research topic. Currently, NETs and SARS-CoV-2-related studies are at the forefront of the field. Conclusion This study is the first to visualize the research in NETs-related fields using bibliometric methods, revealing the trends and frontiers of NETs research. This study will provide valuable references for scholars to find research focus questions and partners.
Collapse
Affiliation(s)
- Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jiafu Ouyang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lixin Liang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Jinghua Liu,
| |
Collapse
|
118
|
Bhattacharjee R, Das D, Bhadhuri R, Chakraborty S, Dey T, Buragohain R, Nath A, Muduli K, Barman P, Gundamaraju R. Cellular Landscaping of COVID-19 and Gynaecological Cancers: An Infrequent Correlation. JOURNAL OF ONCOLOGY 2022; 2022:5231022. [PMID: 36299504 PMCID: PMC9592241 DOI: 10.1155/2022/5231022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/16/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 resulted in a mortality rate of 3-6% caused by SARS-CoV-2 and its variant leading to unprecedented consequences of acute respiratory distress septic shock and multiorgan failure. In such a situation, evaluation, diagnosis, treatment, and care for cancer patients are difficult tasks faced by medical staff. Moreover, patients with gynaecological cancer appear to be more prone to severe infection and mortality from COVID-19 due to immunosuppression by chemotherapy and coexisting medical disorders. To deal with such a circumtances oncologists have been obliged to reconsider the entire diagnostic, treatment, and management approach. This review will provide and discuss the molecular link with gynaecological cancer under COVID-19 infection, providing a novel bilateral relationship between the two infections. Moreover, the authors have provided insights to discuss the pathobiology of COVID-19 in gynaecological cancer and their risks associated with such comorbidity. Furthermore, we have depicted the overall impact of host immunity along with guidelines for the treatment of patients with gynaecological cancer under COVID-19 infection. We have also discussed the feasible scope for the management of COVID-19 and gynaecological cancer.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Debanjan Das
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | | | | | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Rupam Buragohain
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Asim Nath
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Kartik Muduli
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pranjan Barman
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Division of Gastroenterology, School of Medicine, Washington University at St Louis, St Louis, MO, USA
| |
Collapse
|
119
|
Xu X, Wu Y, Xu S, Yin Y, Ageno W, De Stefano V, Zhao Q, Qi X. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb J 2022; 20:63. [PMID: 36224604 PMCID: PMC9555260 DOI: 10.1186/s12959-022-00421-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Neutrophil extracellular traps (NETs) may be associated with the development of thrombosis. Experimental studies have confirmed the presence of NETs in thrombi specimens and potential role of NETs in the mechanisms of thrombosis. Clinical studies also have demonstrated significant changes in the levels of serum or plasma NETs biomarkers, such as citrullinated histones, myeloperoxidase, neutrophil elastase, nucleosomes, DNA, and their complexes in patients with thrombosis. This paper aims to comprehensively review the currently available evidence regarding the change in the levels of NETs biomarkers in patients with thrombosis, summarize the role of NETs and its biomarkers in the development and prognostic assessment of venous thromboembolism, coronary artery diseases, ischemic stroke, cancer-associated thromboembolism, and coronavirus disease 2019-associated thromboembolism, explore the potential therapeutic implications of NETs, and further discuss the shortcomings of existing NETs biomarkers in serum and plasma and their detection methods.
Collapse
Affiliation(s)
- Xiangbo Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Shixue Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Yue Yin
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Valerio De Stefano
- Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico A. Gemelli IRCCS, Section of Hematology, Rome, Italy
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.
- Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China.
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
120
|
Potere N, Del Buono MG, Caricchio R, Cremer PC, Vecchié A, Porreca E, Dalla Gasperina D, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 2022; 85:104299. [PMID: 36209522 PMCID: PMC9536001 DOI: 10.1016/j.ebiom.2022.104299] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
A hyperinflammatory response during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection crucially worsens clinical evolution of coronavirus disease 2019 (COVID-19). The interaction between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) triggers the activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Enhanced inflammasome activity has been associated with increased disease severity and poor prognosis. Evidence suggests that inflammasome activation and interleukin-1β (IL-1β) release aggravate pulmonary injury and induce hypercoagulability, favoring progression to respiratory failure and widespread thrombosis eventually leading to multiorgan failure and death. Observational studies with the IL-1 blockers anakinra and canakinumab provided promising results. In the SAVE-MORE trial, early treatment with anakinra significantly shortened hospital stay and improved survival in patients with moderate-to-severe COVID-19. In this review, we summarize current evidence supporting the pathogenetic role of the NLRP3 inflammasome and IL-1β in COVID-19, and discuss clinical trials testing IL-1 inhibition in COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Paul C. Cremer
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandra Vecchié
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy
| | - Ettore Porreca
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | | | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy,Corresponding author.
| |
Collapse
|
121
|
Kacimi SEO, Moeinafshar A, Haghighi SS, Saghazadeh A, Rezaei N. Venous thromboembolism in cancer and cancer immunotherapy. Crit Rev Oncol Hematol 2022; 178:103782. [PMID: 35961476 DOI: 10.1016/j.critrevonc.2022.103782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022] Open
Abstract
Venous thromboembolism (VTE) is a clinical disease that includes deep vein thrombosis and pulmonary embolism. Amongst its underlying risk factors, cancer is of great importance. Stasis, endothelial injury, and hypercoagulability result in clot formation and VTE. Cancer can affect coagulability by favoring these three factors, resulting in VTE incidence. Immunotherapy is a novel therapeutic approach, targeting cancer by immune system enhancement. VTE is one of the most important adverse effects of immunotherapy, which complicates the administration of immunotherapy in cancer patients. The current review provides a brief overview of VTE epidemiology, pathophysiology, risk factors, biomarkers, the relationship of cancer and cancer immunotherapy to VTE incidence, and managing cancer-associated VTE.
Collapse
Affiliation(s)
| | - Aysan Moeinafshar
- Cancer Immunology Project Interest Group (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Shahsavar Haghighi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
122
|
Kondreddy V, Keshava S, Das K, Magisetty J, Rao LVM, Pendurthi UR. The Gab2-MALT1 axis regulates thromboinflammation and deep vein thrombosis. Blood 2022; 140:1549-1564. [PMID: 35895897 PMCID: PMC9523376 DOI: 10.1182/blood.2022016424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is the third most common cause of cardiovascular mortality. Several studies suggest that DVT occurs at the intersection of dysregulated inflammation and coagulation upon activation of inflammasome and secretion of interleukin 1β (IL-1β) in restricted venous flow conditions. Our recent studies showed a signaling adapter protein, Gab2 (Grb2-associated binder 2), plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that Gab2 facilitates the assembly of the CBM (CARMA3 [CARD recruited membrane-associated guanylate kinase protein 3]-BCL-10 [B-cell lymphoma 10]-MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) signalosome, which mediates the activation of Rho and NF-κB in endothelial cells. Gene silencing of Gab2 or MALT1, the effector signaling molecule in the CBM signalosome, or pharmacological inhibition of MALT1 with a specific inhibitor, mepazine, significantly reduced IL-1β-induced Rho-dependent exocytosis of P-selectin and von Willebrand factor (VWF) and the subsequent adhesion of neutrophils to endothelial cells. MALT1 inhibition also reduced IL-1β-induced NF-κB-dependent expression of tissue factor and vascular cell adhesion molecule 1. Consistent with the in vitro data, Gab2 deficiency or pharmacological inhibition of MALT1 suppressed the accumulation of monocytes and neutrophils at the injury site and attenuated venous thrombosis induced by the inferior vena cava ligation-induced stenosis or stasis in mice. Overall, our data reveal a previously unrecognized role of the Gab2-MALT1 axis in thromboinflammation. Targeting the Gab2-MALT1 axis with MALT1 inhibitors may become an effective strategy to treat DVT by suppressing thromboinflammation without inducing bleeding complications.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
123
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
124
|
Leung HHL, Perdomo J, Ahmadi Z, Zheng SS, Rashid FN, Enjeti A, Ting SB, Chong JJH, Chong BH. NETosis and thrombosis in vaccine-induced immune thrombotic thrombocytopenia. Nat Commun 2022; 13:5206. [PMID: 36064843 PMCID: PMC9441824 DOI: 10.1038/s41467-022-32946-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet serious adverse effect of the adenoviral vector vaccines ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Janssen) against COVID-19. The mechanisms involved in clot formation and thrombocytopenia in VITT are yet to be fully determined. Here we show neutrophils undergoing NETosis and confirm expression markers of NETs in VITT patients. VITT antibodies directly stimulate neutrophils to release NETs and induce thrombus formation containing abundant platelets, neutrophils, fibrin, extracellular DNA and citrullinated histone H3 in a flow microfluidics system and in vivo. Inhibition of NETosis prevents VITT-induced thrombosis in mice but not thrombocytopenia. In contrast, in vivo blockage of FcγRIIa abrogates both thrombosis and thrombocytopenia suggesting these are distinct processes. Our findings indicate that anti-PF4 antibodies activate blood cells via FcγRIIa and are responsible for thrombosis and thrombocytopenia in VITT. Future development of NETosis and FcγRIIa inhibitors are needed to treat VITT and similar immune thrombotic thrombocytopenia conditions more effectively, leading to better patient outcomes. The mechanisms underlying the pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT) remain unclear. Here the authors show that anti-PF4 antibodies are responsible for the activation of platelets and neutrophils, and blockage of FcγRIIa or NETosis in vivo can prevent thrombosis.
Collapse
Affiliation(s)
- Halina H L Leung
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Zohra Ahmadi
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Shiying S Zheng
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,New South Wales Health Pathology, Sydney, NSW, Australia
| | - Fairooj N Rashid
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Anoop Enjeti
- Calvary Mater Hospital, Wallsend, NSW, Australia.,University of Newcastle, Callaghan, NSW, Australia
| | - Stephen B Ting
- Department of Haematology, Eastern Health and Monash University, Melbourne, VIC, Australia
| | - James J H Chong
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Beng H Chong
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia. .,New South Wales Health Pathology, Sydney, NSW, Australia.
| |
Collapse
|
125
|
Komorowicz E, Kolev K. Fibrin structure, viscoelasticity and lysis face the interplay of biorelevant polyions. Curr Opin Hematol 2022; 29:244-250. [PMID: 35916559 DOI: 10.1097/moh.0000000000000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the past 5 decades, heparins have been widely used as anticoagulants in the prevention and treatment of thrombosis. Subsequent development of heparin variants of various size and charge facilitated the discovery of their multiple biological actions and nonanticoagulant benefits. Platelet-derived or microbial polyphosphates, as well as DNA released in the course of neutrophil extracellular trap-formation are additional polyanions, which can modulate the development and stability of thrombi associated with cancer or inflammation. In this review, we focus on the size-dependent and electric charge-dependent modulatory effects of the three polyanions of different chemical structure. RECENT FINDINGS The polycationic histones have been recognized as potential biomarkers and therapeutic targets in several diseases related to inflammation and thrombosis. Since combating histones with activated protein C or heparin could cause unwanted bleeding, the quest for nonanticoagulant histone-neutralizing agents is ongoing. Polyanions may neutralize or exaggerate certain histone-mediated effects depending on their electric charge, size and histone effects under investigation. Several prothrombotic effects of polyphosphates and DNA are also size-dependent. SUMMARY The efficiency of future therapeutics targeting prothrombotic polyanions or histones is not a simple matter of electric charge, but may rely on a delicate combination of size, charge and chemical composition.
Collapse
Affiliation(s)
- Erzsébet Komorowicz
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
126
|
Chen S, Guan F, Candotti F, Benlagha K, Camara NOS, Herrada AA, James LK, Lei J, Miller H, Kubo M, Ning Q, Liu C. The role of B cells in COVID-19 infection and vaccination. Front Immunol 2022; 13:988536. [PMID: 36110861 PMCID: PMC9468879 DOI: 10.3389/fimmu.2022.988536] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.
Collapse
Affiliation(s)
- Shiru Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Internal Medicine, The Division of Gastroenterology and Hepatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andres A. Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| |
Collapse
|
127
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
128
|
Kanji R, Gue YX, Farag MF, Spencer NH, Mutch NJ, Gorog DA. Determinants of Endogenous Fibrinolysis in Whole Blood Under High Shear in Patients With Myocardial Infarction. JACC Basic Transl Sci 2022; 7:1069-1082. [PMID: 36687271 PMCID: PMC9849272 DOI: 10.1016/j.jacbts.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023]
Abstract
Hypofibrinolysis is a recently-recognized risk factor for recurrent cardiovascular events in patients with ST-segment elevation myocardial infarction (STEMI), but the mechanistic determinants of this are not well understood. In patients with STEMI, we show that the effectiveness of endogenous fibrinolysis in whole blood is determined in part by fibrinogen level, high sensitivity C-reactive protein, and shear-induced platelet reactivity, the latter directly related to the speed of thrombin generation. Our findings strengthen the evidence for the role of cellular components and bidirectional crosstalk between coagulatory and inflammatory pathways as determinants of hypofibrinolysis.
Collapse
Affiliation(s)
- Rahim Kanji
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom,Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire, United Kingdom
| | - Ying X. Gue
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire, United Kingdom,School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| | - Mohamed F. Farag
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire, United Kingdom,School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| | - Neil H. Spencer
- Statistical Services and Consultancy Unit, Hertfordshire Business School, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| | - Nicola J. Mutch
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Diana A. Gorog
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom,Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire, United Kingdom,School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom,Address for correspondence: Prof Diana A. Gorog, Faculty of Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, United Kingdom.
| |
Collapse
|
129
|
Yang Z, Wang G, Luo N, Tsang CK, Huang L. Consensus clustering of gene expression profiles in peripheral blood of acute ischemic stroke patients. Front Neurol 2022; 13:937501. [PMID: 35989931 PMCID: PMC9388856 DOI: 10.3389/fneur.2022.937501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Acute ischemic stroke (AIS) is a primary cause of mortality and morbidity worldwide. Currently, no clinically approved immune intervention is available for AIS treatment, partly due to the lack of relevant patient classification based on the peripheral immunity status of patients with AIS. In this study, we adopted the consensus clustering approach to classify patients with AIS into molecular subgroups based on the transcriptomic profiles of peripheral blood, and we identified three distinct AIS molecular subgroups and 8 modules in each subgroup by the weighted gene co-expression network analysis. Remarkably, the pre-ranked gene set enrichment analysis revealed that the co-expression modules with subgroup I-specific signature genes significantly overlapped with the differentially expressed genes in AIS patients with hemorrhagic transformation (HT). With respect to subgroup II, exclusively male patients with decreased proteasome activity were identified. Intriguingly, the majority of subgroup III was composed of female patients who showed a comparatively lower level of AIS-induced immunosuppression (AIIS). In addition, we discovered a non-linear relationship between female age and subgroup-specific gene expression, suggesting a gender- and age-dependent alteration of peripheral immunity. Taken together, our novel AIS classification approach could facilitate immunomodulatory therapies, including the administration of gender-specific therapeutics, and attenuation of the risk of HT and AIIS after ischemic stroke.
Collapse
Affiliation(s)
- Zhiyong Yang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Guanghui Wang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Nan Luo
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li'an Huang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| |
Collapse
|
130
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
131
|
Klas K, Ondracek AS, Hofbauer TM, Mangold A, Pfisterer K, Laggner M, Copic D, Direder M, Bormann D, Ankersmit HJ, Mildner M. The Effect of Paracrine Factors Released by Irradiated Peripheral Blood Mononuclear Cells on Neutrophil Extracellular Trap Formation. Antioxidants (Basel) 2022; 11:antiox11081559. [PMID: 36009277 PMCID: PMC9405389 DOI: 10.3390/antiox11081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Neutrophil extracellular trap (NET)-formation represents an important defence mechanism for the rapid clearance of infections. However, exaggerated NET formation has been shown to negatively affect tissue-regeneration after injury. As our previous studies revealed the strong tissue-protective and regenerative properties of the secretome of stressed peripheral blood mononuclear cells (PBMCsec), we here investigated the influence of PBMCsec on the formation of NETs. The effect of PBMCsec on NET formation was assessed ex vivo in ionomycin stimulated neutrophils derived from healthy donors using flow cytometry, image stream analysis, and quantification of released extracellular DNA. The effect of PBMCsec on molecular mechanisms involved in NET formation, including Ca-flux, protein kinase C activity, reactive oxygen species production, and protein arginine deiminase 4 activity, were analysed. Our results showed that PBMCsec significantly inhibited NET formation. Investigation of the different biological substance classes found in PBMCsec revealed only a partial reduction in NET formation, suggesting a synergistic effect. Mechanistically, PBMCsec treatment did not interfere with calcium signalling and PKC-activation, but exerted anti-oxidant activity, as evidenced by reduced levels of reactive oxygen species and upregulation of heme oxygenase 1 and hypoxia inducible-factor 1 in PBMCsec-treated neutrophils. In addition, PBMCsec strongly inhibited the activation of protein arginine deiminase 4 (PAD4), ultimately leading to the inhibition of NET formation. As therapeutics antagonizing excessive NET formation are not currently available, our study provides a promising novel treatment option for a variety of conditions resulting from exaggerated NET formation.
Collapse
Affiliation(s)
- Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Anna S Ondracek
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas M Hofbauer
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Mangold
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
132
|
Ma L, Willey J. The interplay between inflammation and thrombosis in COVID-19: Mechanisms, therapeutic strategies, and challenges. THROMBOSIS UPDATE 2022; 8:100117. [PMID: 38620713 PMCID: PMC9270234 DOI: 10.1016/j.tru.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can cause life-threatening pathology characterized by a dysregulated immune response and coagulopathy. While respiratory failure induced by inflammation is the most common cause of death, micro-and macrovascular thrombosis leading to multiple organ failure are also causes of mortality. Dysregulation of systemic inflammation observed in severe COVID-19 patients is manifested by cytokine release syndrome (CRS) - the aberrant release of high levels of proinflammatory cytokines, such as IL-6, IL-1, TNFα, MP-1, as well as complement. CRS is often accompanied by activation of endothelial cells and platelets, coupled with perturbation of the balance between the pro-and antithrombotic mechanisms, resulting in thrombosis. Inflammation and thrombosis form a vicious circle, contributing to morbidity and mortality. Treatment of hyperinflammation has been shown to decrease thrombosis, while anti-thrombotic treatment also downregulates cytokine release. This review highlights the relationship between COVID-19-mediated systemic inflammation and thrombosis, the molecular pathways involved, the therapies targeting these processes, and the challenges currently encountered.
Collapse
Affiliation(s)
- Li Ma
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Joanne Willey
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
133
|
Sloos PH, Vulliamy P, van 't Veer C, Gupta AS, Neal MD, Brohi K, Juffermans NP, Kleinveld DJB. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion 2022; 62 Suppl 1:S281-S300. [PMID: 35748694 PMCID: PMC9546174 DOI: 10.1111/trf.16971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Pieter H. Sloos
- Department of Intensive Care Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineOLVG HospitalAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
134
|
Neutrophils and Neutrophil Extracellular Traps in Cardiovascular Disease: An Overview and Potential Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10081850. [PMID: 36009397 PMCID: PMC9405087 DOI: 10.3390/biomedicines10081850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in pharmacotherapy have markedly improved the prognosis of cardiovascular disease (CVD) but have not completely conquered it. Therapies targeting the NOD-like receptor family pyrin domain containing 3 inflammasome and its downstream cytokines have proven effective in the secondary prevention of cardiovascular events, suggesting that inflammation is a target for treating residual risk in CVD. Neutrophil-induced inflammation has long been recognized as important in the pathogenesis of CVD. Circadian rhythm-related and disease-specific microenvironment changes give rise to neutrophil diversity. Neutrophils are primed by various stimuli, such as chemokines, cytokines, and damage-related molecular patterns, and the activated neutrophils contribute to the inflammatory response in CVD through degranulation, phagocytosis, reactive oxygen species generation, and the release of neutrophil extracellular traps (NETs). In particular, NETs promote immunothrombosis through the interaction with vascular endothelial cells and platelets and are implicated in the development of various types of CVD, such as acute coronary syndrome, deep vein thrombosis, and heart failure. NETs are promising candidates for anti-inflammatory therapy in CVD, and their efficacy has already been demonstrated in various animal models of the disease; however, they have yet to be clinically applied in humans. This narrative review discusses the diversity and complexity of neutrophils in the trajectory of CVD, the therapeutic potential of targeting NETs, and the related clinical issues.
Collapse
|
135
|
Jin J, Zhao X, Li W, Wang F, Tian J, Wang N, Gao X, Zhang J, Wu J, Mang G, Ma R, Hu S. Neutrophil extracellular traps: A novel therapeutic target for intracranial hemorrhage. Thromb Res 2022; 219:1-13. [DOI: 10.1016/j.thromres.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
|
136
|
Smith P, Rosell A, Farm M, Bruzelius M, Aguilera Gatica K, Mackman N, Odeberg J, Thålin C. Markers of neutrophil activation and neutrophil extracellular traps in diagnosing patients with acute venous thromboembolism: A feasibility study based on two VTE cohorts. PLoS One 2022; 17:e0270865. [PMID: 35901107 PMCID: PMC9333265 DOI: 10.1371/journal.pone.0270865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background Venous thromboembolism (VTE) diagnosis would greatly benefit from the identification of novel biomarkers to complement D-dimer, a marker limited by low specificity. Neutrophil extracellular traps (NETs) have been shown to promote thrombosis and could hypothetically be used for diagnosis of acute VTE. Objectives To assess the levels of specific markers of neutrophil activation and NETs and compare their diagnostic accuracy to D-dimer. Methods We measured plasma levels of neutrophil activation marker neutrophil elastase (NE), the NET marker nucleosomal citrullinated histone H3 (H3Cit-DNA) and cell-free DNA in patients (n = 294) with suspected VTE (pulmonary embolism and deep vein thrombosis) as well as healthy controls (n = 30). A total of 112 VTE positive and 182 VTE negative patients from two prospective cohort studies were included. Results Higher levels of H3Cit-DNA and NE, but not cell-free DNA, were associated with VTE. Area under receiver operating curves (AUC) were 0.90 and 0.93 for D-dimer, 0.65 and 0.68 for NE and 0.60 and 0.67 for H3Cit-DNA in the respective cohorts. Adding NE and H3Cit-DNA to a D-dimer based risk model did not improve AUC. Conclusions Our study demonstrates the presence of neutrophil activation and NET formation in VTE using specific markers. However, the addition of NE or H3Cit-DNA to D-dimer did not improve the discrimination compared to D-dimer alone. This study provides information on the feasibility of using markers of NETs as diagnostic tools in acute VTE. Based on our findings, we believe the potential of these markers are limited in this setting.
Collapse
Affiliation(s)
- Philip Smith
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Theme of Emergency and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Axel Rosell
- Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Maria Farm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bruzelius
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Katherina Aguilera Gatica
- Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jacob Odeberg
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Solna, Sweden
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
137
|
Gupta A, Singh K, Fatima S, Ambreen S, Zimmermann S, Younis R, Krishnan S, Rana R, Gadi I, Schwab C, Biemann R, Shahzad K, Rani V, Ali S, Mertens PR, Kohli S, Isermann B. Neutrophil Extracellular Traps Promote NLRP3 Inflammasome Activation and Glomerular Endothelial Dysfunction in Diabetic Kidney Disease. Nutrients 2022; 14:2965. [PMID: 35889923 PMCID: PMC9320009 DOI: 10.3390/nu14142965] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a metabolic disease largely due to lifestyle and nutritional imbalance, resulting in insulin resistance, hyperglycemia and vascular complications. Diabetic kidney disease (DKD) is a major cause of end-stage renal failure contributing to morbidity and mortality worldwide. Therapeutic options to prevent or reverse DKD progression are limited. Endothelial and glomerular filtration barrier (GFB) dysfunction and sterile inflammation are associated with DKD. Neutrophil extracellular traps (NETs), originally identified as an innate immune mechanism to combat infection, have been implicated in sterile inflammatory responses in non-communicable diseases. However, the contribution of NETs in DKD remains unknown. Here, we show that biomarkers of NETs are increased in diabetic mice and diabetic patients and that these changes correlate with DKD severity. Mechanistically, NETs promote NLRP3 inflammasome activation and glomerular endothelial dysfunction under high glucose stress in vitro and in vivo. Inhibition of NETs (PAD4 inhibitor) ameliorate endothelial dysfunction and renal injury in DKD. Taken together, NET-induced sterile inflammation promotes diabetes-associated endothelial dysfunction, identifying a new pathomechanism contributing to DKD. Inhibition of NETs may be a promising therapeutic strategy in DKD.
Collapse
Grants
- IS-67/8-1, IS-67/11-1, IS-67/22-1, SFB854/B26, RTG2408/P7&P9 to B.I., SFB854/A01, ME-1365/7-2, ME1365/9-2 to P.R.M., RTG2408/P5, SH 849/1-2 to K.S., KO 5736/1-1 to S.K., and Projektnummer 236360313 - SFB 1118 to BI Deutsche Forschungsgemeinschaft
- SPMD to K.S and by funds of the Medical Faculty of the University of Leipzig Stiftung Pathobiochemie und Molekulare Diagnostik
Collapse
Affiliation(s)
- Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Ruaa Younis
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, Uttar Pradesh, India;
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi 110062, India;
| | - Peter Rene Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany; (A.G.); (K.S.); (S.F.); (S.A.); (S.Z.); (R.Y.); (S.K.); (R.R.); (I.G.); (R.B.); (K.S.); (S.K.)
| |
Collapse
|
138
|
Li JC, Zou XM, Yang SF, Jin JQ, Zhu L, Li CJ, Yang H, Zhang AG, Zhao TQ, Chen CY. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer. World J Gastroenterol 2022; 28:3132-3149. [PMID: 36051331 PMCID: PMC9331535 DOI: 10.3748/wjg.v28.i26.3132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of venous thromboembolism (VTE) is associated with high mortality among gastric cancer (GC) patients. Neutrophil extracellular traps (NETs) have been reported to correlate with the prothrombotic state in some diseases, but are rarely reported in GC patients.
AIM To investigate the effect of NETs on the development of cancer-associated thrombosis in GC patients.
METHODS The levels of NETs in blood and tissue samples of patients were analyzed by ELISA, flow cytometry, and immunofluorescence staining. NET generation and hypercoagulation of platelets and endothelial cells (ECs) in vitro were observed by immunofluorescence staining. NET procoagulant activity (PCA) was determined by fibrin formation and thrombin–antithrombin complex (TAT) assays. Thrombosis in vivo was measured in a murine model induced by flow stenosis in the inferior vena cava (IVC).
RESULTS NETs were likely to form in blood and tissue samples of GC patients compared with healthy individuals. In vitro studies showed that GC cells and their conditioned medium, but not gastric mucosal epithelial cells, stimulated NET release from neutrophils. In addition, NETs induced a hypercoagulable state of platelets by upregulating the expression of phosphatidylserine and P-selectin on the cells. Furthermore, NETs stimulated the adhesion of normal platelets on glass surfaces. Similarly, NETs triggered the conversion of ECs to hypercoagulable phenotypes by downregulating the expression of their intercellular tight junctions but upregulating that of tissue factor. Treatment of normal platelets or ECs with NETs augmented the level of plasma fibrin formation and the TAT complex. In the models of IVC stenosis, tumor-bearing mice showed a stronger ability to form thrombi, and NETs abundantly accumulated in the thrombi of tumor-bearing mice compared with control mice. Notably, the combination of deoxyribonuclease I, activated protein C, and sivelestat markedly abolished the PCA of NETs.
CONCLUSION GC-induced NETs strongly increased the risk of VTE development both in vitro and in vivo. NETs are potential therapeutic targets in the prevention and treatment of VTE in GC patients.
Collapse
Affiliation(s)
- Jia-Cheng Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiao-Ming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shi-Feng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Qi Jin
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chang-Jian Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - An-Ge Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Tian-Qi Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chong-Yan Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
139
|
Galli E, Maggio E, Pomero F. Venous Thromboembolism in Sepsis: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10071651. [PMID: 35884956 PMCID: PMC9313423 DOI: 10.3390/biomedicines10071651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Septic patients were commonly affected by coagulation disorders; thus, they are at high risk of thrombotic complications. In the last decades, novel knowledge has emerged about the interconnected and reciprocal influence of immune and coagulation systems. This phenomenon is called immunothrombosis, and it indicates an effective response whereby immune cells and the coagulation cascade cooperate to limit pathogen invasion and endothelial damage. When this network becomes dysregulated due to a systemic inflammatory activation, as occurs during sepsis, it can result in pathological thrombosis. Endothelium, platelets and neutrophils are the main characters involved in this process, together with the TF and coagulation cascade, playing a critical role in both the host defense and in thrombogenesis. A deeper understanding of this relationship may allow us to answer the growing need for clinical instruments to establish the thrombotic risk and treatments that consider more the connection between coagulation and inflammation. Heparin remains the principal therapeutical response to this phenomenon, although not sufficiently effective. To date, no other significant alternatives have been found yet. In this review, we discuss the role of sepsis-related inflammation in the development and resolution of venous thromboembolism and its clinical implications, from bench to bedside.
Collapse
Affiliation(s)
- Eleonora Galli
- Internal Medicine Residency Program, University of Turin, 10100 Turin, TO, Italy;
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Elena Maggio
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Fulvio Pomero
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
- Correspondence: ; Tel.: +39-01721408100
| |
Collapse
|
140
|
Stefanile A, Cellerino M, Koudriavtseva T. Elevated risk of thrombotic manifestations of SARS-CoV-2 infection in cancer patients: A literature review. EXCLI JOURNAL 2022; 21:906-920. [PMID: 36172074 PMCID: PMC9489888 DOI: 10.17179/excli2022-5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) results in higher risks of hospitalization or death in older patients and those with multiple comorbidities, including malignancies. Patients with cancer have greater risks of COVID-19 onset and worse prognosis. This excess is mainly explained by thrombotic complications. Indeed, an imbalance in the equilibrium between clot formation and bleeding, increased activation of coagulation, and endothelial dysfunction characterize both COVID-19 patients and those with cancer. With this review, we provide a summary of the pathological mechanisms of coagulation and thrombotic manifestations in these patients and discuss the possible therapeutic implications of these phenomena.
Collapse
Affiliation(s)
- Annunziata Stefanile
- Department Clinical Pathology and Cancer Biobank, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), 00144 Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy,*To whom correspondence should be addressed: Maria Cellerino, Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy, E-mail:
| | - Tatiana Koudriavtseva
- Medical Direction, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), 00144 Rome, Italy
| |
Collapse
|
141
|
Li D, Shao J, Cao B, Zhao R, Li H, Gao W, Chen P, Jin L, Cao L, Ji S, Dong G. The Significance of Neutrophil Extracellular Traps in Colorectal Cancer and Beyond: From Bench to Bedside. Front Oncol 2022; 12:848594. [PMID: 35747797 PMCID: PMC9209713 DOI: 10.3389/fonc.2022.848594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs), products of neutrophil death when exposed to certain stimuli, were first proposed as a type of response to bacterial infection in infectious diseases. Since then, extensive studies have discovered its involvement in other non-infectious inflammatory diseases including thromboembolism, autoimmune diseases, and cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. NET formation is closely associated with tumorigenesis, progression, and metastasis in CRC. Therefore, the application of NETs in clinical practice as diagnostic biomarkers, therapeutic targets, and prognostic predictors has a promising prospect. In addition, therapeutics targeting NETs are significantly efficient in halting tumor progression in preclinical cancer models, which further indicates its potential clinical utility in cancer treatment. This review focuses on the stimuli of NETosis, its pro-tumorigenic activity, and prospective clinical utility primarily in but not limited to CRC.
Collapse
Affiliation(s)
- Dingchang Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | | | - Bo Cao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ruiyang Zhao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanghang Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wenxing Gao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peng Chen
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lujia Jin
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Cao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shuaifei Ji
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Shuaifei Ji, ; Guanglong Dong,
| | - Guanglong Dong
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuaifei Ji, ; Guanglong Dong,
| |
Collapse
|
142
|
Zhou Y, Xu Z, Liu Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front Cell Infect Microbiol 2022; 12:910908. [PMID: 35711663 PMCID: PMC9195303 DOI: 10.3389/fcimb.2022.910908] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombotic diseases seriously endanger human health, neutrophils and neutrophil extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs are extracellular structures released by neutrophils upon stimulation by pathogens. NETs include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active substances. The network structure provided by NETs can prevent the spread of pathogens and effectively kill and eliminate pathogens. However, the components of NETs can also abnormally activate the coagulation pathway and participate in the formation of pathological thrombi. This review aims to summarize the mechanisms of NETs formation in detail; the research progress of NETs in venous thrombosis, arterial thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as well as the strategies to target NETs in thrombosis prevention and treatment.
Collapse
Affiliation(s)
| | - Zhendong Xu
- *Correspondence: Zhiqiang Liu, ; Zhendong Xu,
| | | |
Collapse
|
143
|
Datsi A, Piotrowski L, Markou M, Köster T, Kohtz I, Lang K, Plöttner S, Käfferlein HU, Pleger B, Martinez R, Pintea B, Fried R, Müller M, Chapot R, Gousias K. Stroke-derived neutrophils demonstrate higher formation potential and impaired resolution of CD66b + driven neutrophil extracellular traps. BMC Neurol 2022; 22:186. [PMID: 35596126 PMCID: PMC9121602 DOI: 10.1186/s12883-022-02707-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Recent evidence suggests a merging role of immunothrombosis in the formation of arterial thrombosis. Our study aims to investigate its relevance in stroke patients. Methods We compared the peripheral immunological profile of stroke patients vs. healthy controls. Serum samples were functionally analyzed for their formation and clearance of Neutrophil-Extracellular-Traps. The composition of retrieved thrombi has been immunologically analyzed. Results Peripheral blood of stroke patients showed significantly elevated levels of DNAse-I (p < 0.001), LDG (p = 0.003), CD4 (p = 0.005) as well as the pro-inflammatory cytokines IL-17 (p < 0.001), INF-γ (p < 0.001) and IL-22 (p < 0.001) compared to controls, reflecting a TH1/TH17 response. Increased counts of DNAse-I in sera (p = 0.045) and Neutrophil-Extracellular-Traps in thrombi (p = 0.032) have been observed in patients with onset time of symptoms longer than 4,5 h. Lower values of CD66b in thrombi were independently associated with greater improvement of NIHSS after mechanical thrombectomy (p = 0.045). Stroke-derived neutrophils show higher potential for Neutrophil-Extracellular-Traps formation after stimulation and worse resolution under DNAse-I treatment compared to neutrophils derived from healthy individuals. Conclusions Our data provide new insight in the role of activated neutrophils and Neutrophil-Extracellular-Traps in ischemic stroke. Future larger studies are warranted to further investigate the role of immunothrombosis in the cascades of stroke. Trial registration DRKS, DRKS00013278, Registered 15 November 2017, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013278 Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02707-0.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Laura Piotrowski
- Medical School, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund Freud Strasse 25, 53121, Bonn, Germany
| | - Markella Markou
- Department of Neurology and Psychotraumatology, BG Klinikum Duisburg, Großenbaumer Allee 250, 47249, Duisburg, Germany
| | - Thomas Köster
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn Venusberg-Campus 1, 53127, Bonn, Germany
| | - Isabelle Kohtz
- Ruhr University Bochum, Universitätsstraße 150, Bergmannsheil Bochum, 44801, Bochum, Germany
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Heiko Udo Käfferlein
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Burkhard Pleger
- Department of Neurology, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Ramon Martinez
- Department of BG Neurosurgery and Spinal Surgery, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Bogdan Pintea
- Department of BG Neurosurgery and Spinal Surgery, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Roland Fried
- Statistics in the Biosciences, TU Dortmund University, Vogelpothsweg 87, 44221, Dortmund, Germany
| | - Marcus Müller
- Department of Neurology, St Marien Academic Hospital Hamm, St Paulus Corporation, Knappenstrasse 19, 59071, Hamm, Germany
| | - Rene Chapot
- Department of Radiology and Neuroradiology, Alfried-Krupp-Hospital Rüttenscheid, 45131, Essen, Germany
| | - Konstantinos Gousias
- Department of Neurosurgery, KLW St Paulus Corporation, St Marien Academic Hospital Lünen, Westfälische Wilhelms-University Münster, Altstadtstrasse 23, 44534, Lünen, Germany. .,Medical School, University of Münster, Domagkstrasse 3, 48149, Münster, Germany. .,Medical School, University of Nicosia, Ilia Papakyriakou 21, 2414, Nicosia, Cyprus.
| |
Collapse
|
144
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
145
|
Brito-Dellan N, Tsoukalas N, Font C. Thrombosis, cancer, and COVID-19. Support Care Cancer 2022; 30:8491-8500. [PMID: 35567609 PMCID: PMC9106567 DOI: 10.1007/s00520-022-07098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/28/2022] [Indexed: 01/08/2023]
Abstract
Cancer and coronavirus disease 2019 (COVID-19) have unusual similarities: they both result in a markedly elevated risk of thrombosis, exceptionally high D-dimer levels, and the failure of anticoagulation therapy in some cases. Cancer patients are more vulnerable to COVID-19 infection and have a higher mortality rate. Science has uncovered much about SARS-CoV-2, and made extraordinary and unprecedented progress on the development of various treatment strategies and COVID-19 vaccines. In this review, we discuss known data on cancer-associated thrombosis (CAT), SARS-CoV-2 infection, and COVID-19 vaccines and discuss considerations for managing CAT in patients with COVID-19. Cancer patients should be given priority for COVID-19 vaccination; however, they may demonstrate a weaker immune response to COVID-19 vaccines than the general population. Currently, the Centers for Disease Control and Prevention recommends an additional dose and booster shot of the COVID-19 vaccine after the primary series in patients undergoing active cancer treatment for solid tumors or hematological cancers, recipients of stem cell transplant within the last 2 years, those taking immunosuppressive medications, and those undergoing active treatment with high-dose corticosteroids or other drugs that suppress the immune response. The mainstay of thrombosis treatment in patients with cancer and COVID-19 is anticoagulation therapy.
Collapse
Affiliation(s)
- Norman Brito-Dellan
- Department of Hospital Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030-4009, USA.
| | - Nikolaos Tsoukalas
- Medical Oncology Department, 401 General Military Hospital of Athens, Athens, Greece
| | - Carme Font
- Medical Oncology Department, Day Hospital for Outpatient Care, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
146
|
Xing Y, Jiang Y, Xing S, Mao T, Guan G, Niu Q, Zhao X, Zhou J, Jing X. Neutrophil extracellular traps are associated with enhanced procoagulant activity in liver cirrhosis patients with portal vein thrombosis. J Clin Lab Anal 2022; 36:e24433. [PMID: 35435260 PMCID: PMC9102620 DOI: 10.1002/jcla.24433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Patients with liver cirrhosis (LC) commonly exhibit hypercoagulability and tend to develop thrombosis. Neutrophil extracellular traps (NETs) are associated with a variety of thrombotic conditions, but their possible value in portal vein thrombosis (PVT) is not known. We assessed whether NETs promote thrombosis and contribute to the procoagulant state in patients with LC. METHODS The circulating levels of NETs markers (myeloperoxidase, neutrophil elastase, citrullinated histone H3) were measured in 72 patients (median age, 55 years; 48 [66.7%] men) with LC from September 2020 to February 2021. Then they were divided into two groups: patients with or without PVT. NETs procoagulant activity was assessed based on thrombin-antithrombin complex (TAT complex) and Factor X. The levels of plasma markers were determined by ELISA. RESULTS There were 28 patients with PVT and 44 patients without PVT. The levels of NETs markers and hypercoagulability markers in the plasma of cirrhosis patients with PVT were significantly higher than those of cirrhosis patients without PVT (p < 0.05). Additionally, the levels of the NETs markers correlated with TAT complex and Factor X (Spearman correlation rho >0.73, p < 0.0001). CONCLUSIONS Neutrophil extracellular traps seem to enhance procoagulant activity in LC patients with PVT; thus, they may be a practical predictor of PVT as well as a rapid and easy-to-use diagnostic and treatment guide for PVT in patients with cirrhosis.
Collapse
Affiliation(s)
- Yueyi Xing
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yueping Jiang
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shichao Xing
- Medical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Mao
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ge Guan
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qinghui Niu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xianzhi Zhao
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianrui Zhou
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xue Jing
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
147
|
Lin MS, Chung CM, Chen MY, Chu PH, Chang ST, Yang TY, Wu VCC, Lin WY, Lin YS. Venous Thromboembolism and Critical Limb Events in Patients with Atrial Fibrillation: A Nationwide Population-Based Cohort Study. Angiology 2022; 73:413-421. [PMID: 34284641 DOI: 10.1177/00033197211033747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known about whether venous thromboembolism (VTE) causes worse critical limb events in populations with atrial fibrillation (AF). A retrospective cohort study using claims data from Taiwan's National Health Insurance program between 2001 and 2013 compared AF patients with or without VTE. Outcomes were percutaneous transluminal angioplasty (PTA), amputation, systemic thromboembolism, all-cause mortality, cardiovascular death, ischemic stroke, and acute myocardial infarction. Patients (n = 316,817) with newly diagnosed AF were analyzed; of those, 2514 (0.79%) had VTE history. After inverse probability of treatment weighting, a history of VTE was significantly associated with higher risks of PTA (3.3 vs 2.2%; subdistribution hazard ratio [SHR] 1.47; 95% confidence interval [CI] 1.17-1.84); above knee amputation (0.7 vs 0.3%; HR 2.15; 95% CI 1.10-4.21); systemic thromboembolism (5.8 vs 3.9%; SHR 1.48; 95% CI 1.21-1.80); all-cause mortality (53 vs 46.4%; HR 1.20, 95% CI 1.12-1.29); and cardiovascular death (34.8 vs 29.4%; HR 1.25, 95% CI 1.14-1.36). In conclusion, VTE might increase the risk of critical lower limb events (PTA and above-knee amputation), systemic thromboembolism, and mortality in the AF population. However, current data cannot confirm a causal relationship between VTE and clinical outcomes in this population.
Collapse
Affiliation(s)
- Ming-Shyan Lin
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Chang-Min Chung
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Mei-Yen Chen
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Nursing, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- Department of Neurology, Landseed Hospital, Taoyuan, Taiwan
| | - Shih-Tai Chang
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Teng-Yao Yang
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Victor C-C Wu
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Wey-Yil Lin
- Department of Neurology, Landseed Hospital, Taoyuan, Taiwan
| | - Yu-Sheng Lin
- Department of Cardiology, 38014Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
148
|
Singh AK, Malviya R. Coagulation and inflammation in cancer: Limitations and prospects for treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188727. [PMID: 35378243 DOI: 10.1016/j.bbcan.2022.188727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
The development of so-called immune checkpoint inhibitors (ICIs), which target specific molecular processes of tumour growth, has had a transformative effect on cancer treatment. Widespread use of antibody-based medicines to inhibit tumour cell immune evasion by modulating T cell responses is becoming more common. Despite this, response rates are still low, and secondary resistance is an issue that arises often. In addition, a wide range of serious adverse effects is triggered by enhancing the immunological response. As a result of an increased mortality rate, a higher prevalence of thrombotic complications is connected with an increased incidence of immunological reactions, complement activation, and skin toxicity. This suggests that the tumour microenvironment's interaction between coagulation and inflammation is important at every stage of the tumour's life cycle. The coagulation system's function in tumour formation is the topic of this review. By better understanding the molecular mechanisms in which tumour cells circulate, plasmatic coagulation and immune system cells are engaged, new therapy options for cancer sufferers may be discovered.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
149
|
Rosell A, Martinod K, Mackman N, Thålin C. Neutrophil extracellular traps and cancer-associated thrombosis. Thromb Res 2022; 213 Suppl 1:S35-S41. [DOI: 10.1016/j.thromres.2021.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
|
150
|
Ghasemzadeh M, Ahmadi J, Hosseini E. Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? Thromb Res 2022; 213:179-194. [PMID: 35397313 PMCID: PMC8969450 DOI: 10.1016/j.thromres.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Platelet-leukocyte crosstalk is commonly manifested by reciprocal links between thrombosis and inflammation. Platelet thrombus acts as a reactive matrix that recruits leukocytes to the injury site where their massive accumulation, activation and migration promote thrombotic events while triggering inflammatory responses. As a life-threatening condition with the associations between inflammation and thrombosis, COVID-19 presents diffuse alveolar damage due to exaggerated macrophage activity and cytokine storms. These events, together with direct intracellular virus invasion lead to pulmonary vascular endothelialitis, cell membranes disruption, severe endothelial injury, and thrombosis. The developing pre-alveolar thrombus provides a hyper-reactive milieu that recruits circulating leukocytes to the injury site where their activation contributes to thrombus stabilization and thrombosis propagation, primarily through the formation of Neutrophil extracellular trap (NET). NET fragments can also circulate and deposit in further distance where they may disseminate intravascular thrombosis in severe cases of disease. Thrombi may also facilitate leukocytes migration into alveoli where their accumulation and activation exacerbate cytokine storms and tissue damage, further complicating the disease. Based on these mechanisms, whether an effective anti-inflammatory protocol can prevent thrombotic events, or on the other hand; efficient antiplatelet or anticoagulant regimens may be associated with reduced cytokine storms and tissue damage, is now of interests for several ongoing researches. Thus shedding more light on platelet-leukocyte crosstalk, the review presented here discusses the detailed mechanisms by which platelets may contribute to the pathogenesis of COVID-19, especially in severe cases where their interaction with leukocytes can intensify both inflammatory state and thrombosis in a reciprocal manner.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|