101
|
Wu B, Guo X, Feng L, Gao J, Xia W, Xie P, Ma S, Liu H, Zhao D, Qu G, Sun C, Lowe S, Bentley R, Sun Y. Combined exposure to multiple dioxins and dioxin-like polychlorinated biphenyls on hypertension among US adults in NHANES: a cross-sectional study under three statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28730-28744. [PMID: 36401011 DOI: 10.1007/s11356-022-24271-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are mainly released as by-products of human activities, often in the form of mixtures, and the potential harm on human health deserves attention. Therefore, our study aimed to analyze the combined effect of dioxins and DL-PCB exposures on hypertension (HTN) among US adults. Data of eligible participants were acquired from the National Health and Nutrition Examination Survey (NHANES). Multiple logistic regression models with adjustment for covariates were applied to explore the associations between 13 persistent organic pollutants (POPs) and HTN. Stratified analyses and interaction analyses were then conducted by age and gender. Finally, the combined effects of dioxins and DL-PCBs on HTN were assessed by the weighted quantile sum (WQS) model and the Bayesian kernel machine regression (BKMR) model. A total of 976 adults were included in our study, of whom 397 had HTN. Spearman correlations indicated positive correlations among 13 POPs. And most of them (except PCB28, PCB66, and 1,2,3,4,7,8,9-hpcdf) had significant effects on HTN. The result of WQS revealed that mixed exposure to dioxins and DL-PCBs was significantly associated with increased risk of HTN (OR: 2.205; 95% CIs: 1.555, 3.127). The BKMR model also presented a positive trend of HTN risk with exposure to multiple dioxins and DL-PCBs. And 1,2,3,4,6,7,8,9-ocdd may be the main factor for this positive association. Considering the limitations of our cross-sectional study with the small sample, further prospective studies are necessary to validate our findings.
Collapse
Affiliation(s)
- Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, China.
| |
Collapse
|
102
|
Hu X, Zhao W, Deng J, Du Z, Zeng X, Zhou B, Hao E. Mangiferin alleviates renal inflammatory injury in spontaneously hypertensive rats by inhibiting MCP-1/CCR2 signaling pathway. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
103
|
都 昌, 王 瑜, 付 计, 曹 冬, 梅 仁, 张 奇. [Inducible co-stimulatory molecules participate in mesenteric vascular endothelial-mesenchymal transition and sclerosis of mesenteric vessels in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:308-316. [PMID: 36946053 PMCID: PMC10034542 DOI: 10.12122/j.issn.1673-4254.2023.02.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To investigate the correlation of inducible co-stimulatory molecules (ICOS) with mesenteric vascular endothelial- mesenchymal transition (EndMT) and sclerosis in spontaneously hypertensive rats (SHR). METHODS Twenty 4-week-old WKY rats and 20 SHRs of the same strain were both randomly divided into 4 groups for observation at 4, 6, 10 and 30 weeks of age. ICOS expression frequency in rat spleen CD4+T cells was analyzed using flow cytometry, and the expressions of ICOS, VE-cad, α-SMA and Col3 mRNA in rat mesentery were detected by RT-PCR. The distributions of ICOS, IL-17A and TGF-β in rat mesentery were detected by immunohistochemistry. The levels of IL-17A and TGF-β in rat plasma were measured using ELISA. The morphological changes of rat mesenteric vessels were observed with Masson staining. Spearman or Pearson correlation analyses were used to evaluate the correlation between ICOS expression and the expressions of the markers of vascular EndMT and sclerosis. RESULTS Compared with the control WKY rats, the SHRs began to show significantly increased systolic blood pressure and ICOS expression frequency on CD4+T cells at 6 weeks of age (P < 0.05). In the SHRs, the mRNA and protein expressions of ICOS, α-SMA, Col3, IL-17A and TGF-β in the mesentery were significantly higher than those in control group (P < 0.05), while the mRNA and protein expressions of VE-cad started to reduce significantly at 10 weeks of age (P < 0.05). The plasma levels of IL-17A and TGF-β were significantly increased in SHRs since 6 weeks of age (P < 0.05) with progressive worsening of mesenteric vascular sclerosis (P < 0.05). ICOS mRNA and protein expression levels in the mesenteric tissues of SHRs began to show positive correlations with α-SMA and Col3 expression levels and the severity of vascular sclerosis at 6 weeks of age (P < 0.05) and a negative correlation with VE-cad expression level at 10 weeks (P < 0.05). CONCLUSION ICOS play an important pathogenic role in EndMT and sclerosis of mesenteric vessels in essential hypertension by mediating related immune responses.
Collapse
Affiliation(s)
- 昌乐 都
- />安徽理工大学医学院机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College, Anhui University of Science and Technology, Huainan 232001, China
| | - 瑜 王
- />安徽理工大学医学院机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College, Anhui University of Science and Technology, Huainan 232001, China
| | - 计锋 付
- />安徽理工大学医学院机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College, Anhui University of Science and Technology, Huainan 232001, China
| | - 冬黎 曹
- />安徽理工大学医学院机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College, Anhui University of Science and Technology, Huainan 232001, China
| | - 仁彪 梅
- />安徽理工大学医学院机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College, Anhui University of Science and Technology, Huainan 232001, China
| | - 奇 张
- />安徽理工大学医学院机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
104
|
Heim TA, Lin Z, Steele MM, Mudianto T, Lund AW. CXCR6 promotes dermal CD8 + T cell survival and transition to long-term tissue residence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528487. [PMID: 36824892 PMCID: PMC9949075 DOI: 10.1101/2023.02.14.528487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue resident memory T cells (TRM) provide important protection against infection, and yet the interstitial signals necessary for their formation and persistence remain incompletely understood. Here we show that antigen-dependent induction of the chemokine receptor, CXCR6, is a conserved requirement for TRM formation in peripheral tissue after viral infection. CXCR6 was dispensable for the early accumulation of antigen-specific CD8+ T cells in skin and did not restrain their exit. Single cell sequencing indicated that CXCR6-/- CD8+ T cells were also competent to acquire a transcriptional program of residence but exhibited deficiency in multiple pathways that converged on survival and metabolic signals necessary for memory. As such, CXCR6-/- CD8+ T cells exhibited increased rates of apoptosis relative to controls in the dermis, leading to inefficient TRM formation. CXCR6 expression may therefore represent a common mechanism across peripheral non-lymphoid tissues and inflammatory states that increases the probability of long-term residence.
Collapse
Affiliation(s)
- Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY, USA
| | - Maria M. Steele
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
105
|
Chen BY, Lin WZ, Li YL, Bi C, Du LJ, Liu Y, Zhou LJ, Liu T, Xu S, Shi CJ, Zhu H, Wang YL, Sun JY, Liu Y, Zhang WC, Zhang Z, Zhang HL, Zhu YQ, Duan SZ. Characteristics and Correlations of the Oral and Gut Fungal Microbiome with Hypertension. Microbiol Spectr 2023; 11:e0195622. [PMID: 36475759 PMCID: PMC9927468 DOI: 10.1128/spectrum.01956-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The mycobiome is an essential constituent of the human microbiome and is associated with various diseases. However, the role of oral and gut fungi in hypertension (HTN) remains largely unexplored. In this study, saliva, subgingival plaques, and feces were collected from 36 participants with HTN and 24 healthy controls for metagenomic sequencing. The obtained sequences were analyzed using the Kraken2 taxonomic annotation pipeline to assess fungal composition and diversity. Correlations between oral and gut fungi and clinic parameters, between fungi within the same sample types, and between different sample types were identified by Spearman's correlation analysis. Overall, the subgingival fungal microbiome had substantially higher alpha diversity than the salivary and fecal fungal microbiomes. The fungal microbiomes of the three sample types displayed distinct beta diversity from each other. Oral fungi but not gut fungi in HTN had beta diversity significantly different from that of controls. Among the fungi shared in the oral cavity and gut, Exophiala was the genus with the most notable changes. Exophiala spinifera was the most abundant salivary species in HTN. Some fungal species directly correlated with blood pressure, including gut Exophiala xenobiotica and Exophiala mesophila. The markedly impaired ecological cocorrelation networks of oral and gut fungi in HTN suggested compromised association among fungal species. Most fungi were shared in the oral cavity and gut, and their correlations suggested the potential interplays between oral and gut fungi. In conclusion, the oral cavity and intestine have unique fungal ecological environments. The fungal enrichment and ecology in HTN, the correlations between oral and gut fungi, and the associations between oral and gut fungi and clinical parameters suggest an important role that the fungal microbiome may play in HTN. IMPORTANCE Our study fills the gap in human studies investigating the oral and gut fungal microbiota in association with blood pressure. It characterizes the diversity and composition of the oral and gut fungal microbiome in human subjects, elucidates the dysbiosis of fungal ecology in a hypertensive population, and establishes oral-gut fungal correlations and fungus-clinical parameter correlations. Targeting fungi in the oral cavity and/or gut may provide novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao Bi
- Department of Stomatology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao-Ji Shi
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-li Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Qin Zhu
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
106
|
Al-Hajj S, Lemoine R, Chadet S, Goumard A, Legay L, Roxburgh E, Heraud A, Deluce N, Lamendour L, Burlaud-Gaillard J, Gatault P, Büchler M, Roger S, Halimi JM, Baron C. High extracellular sodium chloride concentrations induce resistance to LPS signal in human dendritic cells. Cell Immunol 2023; 384:104658. [PMID: 36566700 DOI: 10.1016/j.cellimm.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.
Collapse
Affiliation(s)
- Sally Al-Hajj
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Annabelle Goumard
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Laura Legay
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Ellena Roxburgh
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Audrey Heraud
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Nora Deluce
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Lucille Lamendour
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- U1259 Morphogenesis and Antigenicity of HIV and Hepatitis virus (MAVIVH), University of Tours, Tours, France; IBISA Facility of Electronic Microscopy, University Hospital of Tours, Tours, France
| | - Philippe Gatault
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Mathias Büchler
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France.
| | - Jean-Michel Halimi
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| |
Collapse
|
107
|
Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, Navarro-González JF, Ortiz A, Ruiz-Ortega M. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int 2023; 103:282-296. [PMID: 36470394 DOI: 10.1016/j.kint.2022.10.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2022]
Abstract
Diabetic kidney disease (DKD) is one of the fastest growing causes of chronic kidney disease and associated morbidity and mortality. Preclinical research has demonstrated the involvement of inflammation in its pathogenesis and in the progression of kidney damage, supporting clinical trials designed to explore anti-inflammatory strategies. However, the recent success of sodium-glucose cotransporter-2 inhibitors and the nonsteroidal mineralocorticoid receptor antagonist finerenone has changed both guidelines and standard of care, rendering obsolete older studies directly targeting inflammatory mediators and the clinical development was discontinued for most anti-inflammatory drugs undergoing clinical trials for DKD in 2016. Given the contribution of inflammation to the pathogenesis of DKD, we review the impact on kidney inflammation of the current standard of care, therapies undergoing clinical trials, or repositioned drugs for DKD. Moreover, we review recent advances in the molecular regulation of inflammation in DKD and discuss potential novel therapeutic strategies with clinical relevance. Finally, we provide a road map for future research aimed at integrating the growing knowledge on inflammation and DKD into clinical practice to foster improvement of patient outcomes.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Raul R Rodrigues-Diez
- Ricord2040, Instituto de Salud Carlos II, Spain; Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, Oviedo, Asturias, Spain
| | - Beatriz Fernandez-Fernandez
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Carmen Mora-Fernández
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Javier Donate-Correa
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain.
| |
Collapse
|
108
|
Luo M, Luo S, Xue Y, Chang Q, Yang H, Dong W, Zhang T, Cao S. Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience 2023; 26:105990. [PMID: 36798442 PMCID: PMC9926087 DOI: 10.1016/j.isci.2023.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
To determine the effect of aerobic exercise in different intensities on renal injury and epithelial-mesenchymal transformation (EMT) in the kidney of spontaneously hypertensive rats (SHR) and explore possible mechanisms, we subjected SHR to different levels of 14-week aerobic treadmill training. We tested the effects of aerobic exercise on irisin level, renal function, and EMT modulators in the kidney. We also treated angiotensin II-induced HK-2 cells with irisin and tested the changes in EMT levels. The data showed low and moderate aerobic exercise improved renal function and inhibited EMT through promoting irisin expression in SHR. However, high-intensity exercise training had no effect on renal injury and EMT in SHR but did significantly activate STAT3 phosphorylation in the kidney. These results clarify the mechanisms of exercise in improving hypertension-related renal injury and suggest that irisin might be a therapeutic target for patients with kidney injury.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
| | - Hui Yang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyu Dong
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- Corresponding author
| |
Collapse
|
109
|
Zhao S, Dong S, Qin Y, Wang Y, Zhang B, Liu A. Inflammation index SIRI is associated with increased all-cause and cardiovascular mortality among patients with hypertension. Front Cardiovasc Med 2023; 9:1066219. [PMID: 36712259 PMCID: PMC9874155 DOI: 10.3389/fcvm.2022.1066219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background Inflammation plays an essential role in the pathogenesis of hypertension. A novel inflammatory biomarker systemic inflammatory response index (SIRI) is related with all-cause and cardiovascular (CVD) mortality, while the role of SIRI in hypertension patients is unclear. Methods A total of 21,506 participants with hypertension were recruited in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. SIRI was calculated as the neutrophil count * monocyte count/lymphocyte count. Hypertension was defined according to the examination of blood pressure, prescription, and self-reported physician diagnosis. Survival status was followed through 31 December 2019. The non-linear relationship was assessed using restricted cubic spline analysis. The association of all-cause mortality with SIRI was evaluated using the Kaplan-Meier curve and the weighted Cox regression analysis. The predictive abilities were assessed with Receiver operating curve. Results During 189,063 person-years of follow-up, 5,680 (26.41%) death events were documented, including 1,967 (9.15%) CVD related deaths. A J-shaped association was observed between SIRI and all-cause and CVD mortality. The Kaplan-Meier curve indicated the all-cause and CVD mortality risks were higher in high SIRI quartiles compared with lower SIRI quartiles. After adjusting for all covariates, the SIRI was positively associated with the all-mortality risk with HR = 1.19 (1.15, 1.22), and CVD mortality with HR = 1.19 (1.15, 1.24). The result was robust in subgroup analysis and sensitivity analysis. Conclusion Elevated SIRI level is associated with increased all-cause and CVD mortality among patients with hypertension. SIRI is considered as a potential inflammatory biomarker in the clinical practice. Further large-scale cohort studies are required to confirm our findings.
Collapse
Affiliation(s)
- Songfeng Zhao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyuan Dong
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongkai Qin
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Baorui Zhang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Baorui Zhang ✉
| | - Aihua Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Aihua Liu ✉
| |
Collapse
|
110
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
111
|
Mass Cytometry Reveals the Imbalanced Immune State in the Peripheral Blood of Patients with Essential Hypertension. Cardiovasc Ther 2023; 2023:9915178. [PMID: 36891527 PMCID: PMC9988372 DOI: 10.1155/2023/9915178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Mounting evidence has confirmed that essential hypertension (EH) is closely related to low-grade inflammation, but there is still a lack of in-depth understanding of the state of immune cells in the circulating blood of patients with EH. We analyzed whether hypertensive peripheral blood immune cell balance was destroyed. The peripheral blood mononuclear cells (PBMCs) of all subjects were analyzed using time-of-flight cytometry (CyTOF) based on 42 kinds of metal-binding antibodies. CD45+ cells were categorized into 32 kinds of subsets. Compared with the health control (HC) group, the percentage of total dendritic cells, two kinds of myeloid dendritic cell subsets, one intermediate/nonclassical monocyte subset and one CD4+ central memory T cell subset in the EH group, was significantly higher; the percentage of low-density neutrophils, four kinds of classical monocyte subsets, one CD14lowCD16- monocyte subset, one naive CD4+ and one naive CD8+ T cell subsets, one CD4+ effector and one CD4+ central memory T cell subsets, one CD8+ effector memory T cell subset, and one terminally differentiated γδ T cell subset, decreased significantly in EH. What is more, the expression of many important antigens was enhanced in CD45+ immune cells, granulocytes, and B cells in patients with EH. In conclusion, the altered number and antigen expression of immune cells reflect the imbalanced immune state of the peripheral blood in patients with EH.
Collapse
|
112
|
Wang L, Xia X, Liu X, Wu G, Wang Y, Yang D, Liu P, Chen Z, Wang L, Li X. Twenty-four-hour ambulatory blood pressure variability and association with ischemic stroke subtypes in the subacute stage. Front Neurol 2023; 14:1139816. [PMID: 37139058 PMCID: PMC10149864 DOI: 10.3389/fneur.2023.1139816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background and purpose Blood pressure (BP) variability (BPV) increases the risk of cerebral disease in both hemorrhagic and ischemic strokes. However, whether BPV is associated with different types of ischemic stroke remains unclear. In this study, we explored the relationship between BPV and ischemic stroke subtypes. Methods We enrolled consecutive patients aged 47-95 years with ischemic stroke in the subacute stage. We categorized them into four groups based on their artery atherosclerosis severity, brain magnetic resonance imaging markers, and disease history: large-artery atherosclerosis, branch atheromatous disease, small-vessel disease, and cardioembolic stroke. Twenty-four-hour ambulatory blood pressure monitoring was performed, and the mean systolic blood pressure/diastolic blood pressure, standard deviation, and coefficient of variation were calculated. A multiple logistic regression model and random forest were used to test the relationship between BP and BPV in the different types of ischemic stroke. Results A total of 286 patients, including 150 men (73.0 ± 12.3 years) and 136 women (77.8 ± 9.6 years) were included in the study. Of these, 86 (30.1%) patients had large-artery atherosclerosis, 76 (26.6%) had branch atheromatous disease, 82 (28.7%) had small-vessel disease, and 42 (14.7%) had cardioembolic stroke. There were statistically significant differences in BPV between subtypes of ischemic stroke in 24-h ambulatory blood pressure monitoring. The random forest model showed that BP and BPV were important features associated with ischemic stroke. Multinomial logistic regression analysis demonstrated that systolic blood pressure levels; systolic blood pressure variability at 24 h, daytime and nighttime; and nighttime diastolic blood pressure were independent risk factors for large-artery atherosclerosis after adjustment for confounders. When compared to branch atheromatous disease and small-vessel disease, nighttime diastolic blood pressure and standard deviation of diastolic blood pressure were significantly associated with patients in the cardioembolic stroke group. However, a similar statistical difference was not seen in patients with large-artery atherosclerosis. Conclusion The results of this study indicate a discrepancy in blood pressure variability among different ischemic stroke subtypes during the subacute stage. Higher systolic blood pressure and systolic blood pressure variability during the 24 h, daytime, and nighttime, and nighttime diastolic blood pressure were independent predictors for large-artery atherosclerosis stroke. Increased nighttime diastolic BPV was an independent risk factor for cardioembolic stroke.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Neurology, Beijing Zhongguancun Hospital, Beijing, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of Neurology, Beijing Zhongguancun Hospital, Beijing, China
| | - Guilin Wu
- Beijing Municipal Medical Insurance Bureau, Beijing, China
| | - Yanna Wang
- Department of Computer Teaching and Research Section, Cangzhou Medical College, Hebei, China
| | - Dongliang Yang
- Department of Computer Teaching and Research Section, Cangzhou Medical College, Hebei, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Xin Li
| |
Collapse
|
113
|
Zan Y, Wang J, Wang W, Cui T, Xu K, Li Y, Huang X, Zhang Y, Wei N, Xing X. Inflammatory cytokines and their correlations with different left ventricular geometries and functions in PHT patients. Echocardiography 2022; 39:1589-1600. [PMID: 36376258 DOI: 10.1111/echo.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate relationships between hypersensitive C-reactive protein (hs-CRP), tumor necrosis factor -α (TNF-α), interleukin-17A (IL-17A), and interferon -γ (IFN-γ), with left ventricular geometry (LVG) and function in patients with primary hypertension (PHT). METHODS A total of 396 PHT patients were assigned into four groups: Normal Geometry (NG), Concentric Remodeling (CR), Eccentric Hypertrophy (EH), and Concentric Hypertrophy (CH). The correlation between hs-CRP, TNF-α, IL-17A, IFN-γ, and clinical, biochemical parameters were analyzed by Pearson correlation analysis and Logistic regression. Receiver Operating Characteristic (ROC) curve was used to analyze the clinical values of hs-CRP, TNF-α, IL-17A, and IFN-γ for abnormal LVG prediction. RESULTS NG, CR, EH, and CH group all presented increasingly higher levels of Hs-CRP, TNF-α, IL-17A, and IFN-γ, and the increase was the most prominent in the CH group. Pearson correlation analysis showed that hs-CRP, IL-17A, and IFN-γ were all positively correlated with LASct. Hs-CRP, TNF-α, and IL-17A were all negatively correlated with GLS, LASr, and LAScd. However, IFN-γ was only negatively correlated with GLS and LAScd. Logistic regression analysis showed that hs-CRP and IL-17A were independently correlated with CR; hs-CRP, TNF-α, IFN-γ, and IL-17A were independently correlated with EH and CH. ROC curve analysis showed that the area under the curve (AUC) of hs-CRP was 0.816. When the optimal diagnostic threshold of hs-CRP was 3.04 mg/L, the sensitivity and specificity of the abnormal LVG were 72.1% and 81.5%, respectively. CONCLUSION In PHT patients, hs-CRP, TNF-α, IL-17A, and IFN-γ were correlated with abnormal LVG and left ventricular function, suggesting that inflammatory cytokines may be involved in the process of PHT-induced abnormal left ventricular structure and function. In addition, hs-CRP can be used as a health screening index for patients at high risk of abnormal LVG.
Collapse
Affiliation(s)
- Yu Zan
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Wang
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Wang
- Department of Integrated, Shanxi International Travel Health Care Center, Taiyuan, China
| | - Tong Cui
- Department of Ultrasound, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Kun Xu
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiying Li
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Huang
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanjing Zhang
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Wei
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueqing Xing
- Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
114
|
Crorkin P, Hao S, Ferreri NR. Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension 2022; 79:2656-2670. [PMID: 36129177 PMCID: PMC9649876 DOI: 10.1161/hypertensionaha.122.19464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.
Collapse
Affiliation(s)
- Patrick Crorkin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
115
|
Harimenshi D, Niyongabo T, Preux PM, Aboyans V, Desormais I. Hypertension and associated factors in HIV-infected patients receiving antiretroviral treatment in Burundi: a cross-sectional study. Sci Rep 2022; 12:20509. [PMID: 36443478 PMCID: PMC9705296 DOI: 10.1038/s41598-022-24997-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, the life expectancy of people living with the human immunodeficiency virus (HIV) and the general population are similar. Hypertension is a major public health issue in Africa and is largely underdiagnosed. Most HIV-infected individuals, especially those on Anti-Retroviral Therapy (ART) have hypertension. Our project aims to determine the prevalence of hypertension and associated factors amongst HIV-infected adults treated by ART in Burundi. A cross-sectional study was conducted among HIV-infected subjects over the age of 20, managed in five healthcare centers for people living with HIV (PLWH). The World Health Organization STEPWISE survey and anthropometric measurements were employed. Blood pressure was measured according to the ESC 2018 recommendations. 1 250 HIV-infected patients aged between 35.4 and 50.2 years were included (18.4% men). The prevalence of hypertension was 17.4% (95% CI 13.2-22.1). Approximately 47.25% of HIV patients with hypertension were previously undiagnosed. Other factors were associated with HTN, such as being overweight (OR 2.88; 95% CI 1.46-5.62), obesity (OR 2.65; 95% CI 1.27-5.55), longer duration of HIV infection: ≥ 10 years (OR 1.04; 95% CI 1.14-3.20), diabetes (OR 2.1; 95% CI 1.37-3.32) and age (OR 1.13; 95% CI 1.09-1.14). Despite their young age, almost 20% of HIV-ART treated patients had hypertension, 50% of these were undiagnosed. Blood pressure monitoring is crucial in these patients, especially those identified as high-risk, with prompt life and disability-saving interventions.
Collapse
Affiliation(s)
- Déo Harimenshi
- grid.9966.00000 0001 2165 4861Inserm U1094, IRD U270, CHU Limoges, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, University of Limoges, Limoges, France
| | - Théodore Niyongabo
- grid.7749.d0000 0001 0723 7738Department of Internal Medicine, CHU Kamenge, University of Burundi, Bujumbura, Burundi
| | - Pierre-Marie Preux
- grid.9966.00000 0001 2165 4861Inserm U1094, IRD U270, CHU Limoges, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, University of Limoges, Limoges, France
| | - Victor Aboyans
- grid.9966.00000 0001 2165 4861Inserm U1094, IRD U270, CHU Limoges, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, University of Limoges, Limoges, France ,grid.411178.a0000 0001 1486 4131Department of Cardiology, CHU Limoges, Limoges, France
| | - Ileana Desormais
- grid.9966.00000 0001 2165 4861Inserm U1094, IRD U270, CHU Limoges, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, University of Limoges, Limoges, France ,grid.411178.a0000 0001 1486 4131Department of Vascular Surgery and Vascular Medicine, CHU Limoges, Limoges, France
| |
Collapse
|
116
|
Liu W, Xu S, Liang S, Duan C, Xu Z, Zhao L, Wen F, Li Q, Li Y, Zhang J. Hypertensive vascular and cardiac remodeling protection by allicin in spontaneous hypertension rats via CaMK Ⅱ/NF-κB pathway. Biomed Pharmacother 2022; 155:113802. [DOI: 10.1016/j.biopha.2022.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022] Open
|
117
|
Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, Fehrenbach DJ, Chen Y, Prabakaran N, Tirado B, Centrella M, Ao M, Du L, Shyr Y, Levy D, Madhur MS. A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage. Circ Res 2022; 131:731-747. [PMID: 36169218 PMCID: PMC9588739 DOI: 10.1161/circresaha.121.320625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Hank
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, VUMC, Nashville, TN, USA
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Yuhan Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | | | | | - Megan Centrella
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Mingfang Ao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Liping Du
- Department of Biostatistics, VUMC, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, VUMC, Nashville, TN
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA and Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
118
|
De Vitis C, Capalbo C, Torsello A, Napoli C, Salvati V, Loffredo C, Blandino G, Piaggio G, Auciello FR, Pelliccia F, Salerno G, Simmaco M, Di Magno L, Canettieri G, Coluzzi F, Mancini R, Rocco M, Sciacchitano S. Opposite Effect of Thyroid Hormones on Oxidative Stress and on Mitochondrial Respiration in COVID-19 Patients. Antioxidants (Basel) 2022; 11:antiox11101998. [PMID: 36290721 PMCID: PMC9598114 DOI: 10.3390/antiox11101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Thyroid hormones (TH)s are master regulators of mitochondrial activity and biogenesis. Nonthyroidal illness syndrome (NTIS) is generally considered an adaptative response to reduced energy that is secondary to critical illness, including COVID-19. COVID-19 has been associated with profound changes in the cell energy metabolism, especially in the cells of the immune system, with a central role played by the mitochondria, considered the power units of every cell. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects and alters mitochondrial functions, both to influence its intracellular survival and to evade host immunity. Aim of the study: This study was undertaken to analyze the oxidative balance and mitochondrial respiration in COVID-19 patients with and without NTIS to elucidate the role that thyroid hormones (TH)s play in this context. Methods: In our cohort of 54 COVID-19 patients, admitted to our University Hospital during the COVID-19 pandemic, we evaluated the generation of reactive oxygen species (ROS) by measuring the serum levels of derivatives of reactive oxygen metabolites (dROMs), and we analyzed the antioxidant capacity by measuring the serum biological antioxidant potential (BAP). We then analyzed the mitochondrial respiration in peripheral blood mononuclear cells (PBMC)s of 28 of our COVID-19 patients, using the seahorse instrument (Agilent). Results were correlated with the serum levels of THs and, in particular, of FT3. In addition, the role of T3 on bioelectrical impedance analysis (BIA) and mitochondrial respiration parameters was directly evaluated in two COVID-19 patients with NTIS, in which treatment with synthetic liothyronine (LT3) was given both in vivo and in vitro. Results: In our COVID-19 patients with NTIS, the dROMs values were significantly lower and the BAP values were significantly higher. Consequently, the oxidative stress index (OSi), measured as BAP/dROMs ratio was reduced compared to that observed in COVID-19 patients without NTIS, indicating a protective role exerted by NTIS on oxidative stress. In our COVID-19 patients, the mitochondrial respiration, measured in PBMCs, was reduced compared to healthy controls. Those with NTIS showed a reduced maximal respiratory capacity and a reduced proton leak, compared to those with normal FT3 serum values. Such lowered mitochondrial respiratory capacity makes the cells more vulnerable to bioenergetic exhaustion. In a pilot study involving two COVID-19 patients with NTIS, we could reinforce our previous observation regarding the role of T3 in the maintenance of adequate peripheral hydroelectrolytic balance. In addition, in these two patients, we demonstrated that by treating their PBMCs with LT3, both in vitro and in vivo, all mitochondrial respiration parameters significantly increased. Conclusions: Our results regarding the reduction in the serum levels of the reactive oxygen species (ROS) of COVID-19 patients with NTIS support the hypothesis that NTIS could represent an adaptative response to severe COVID-19. However, beside this beneficial effect, we demonstrate that, in the presence of an acute reduction of FT3 serum levels, the mitochondrial respiration is greatly impaired, with a consequent establishment of a hypoenergetic state of the immune cells that may hamper their capacity to react to massive viral infection.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Carlo Capalbo
- Department of Medical Oncology, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessandra Torsello
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00181 Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Chiara Loffredo
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Francesca Romana Auciello
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Flaminia Pelliccia
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Gerardo Salerno
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, 00161 Rome, Italy
| | - Flaminia Coluzzi
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00181 Rome, Italy
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Correspondence:
| |
Collapse
|
119
|
Purnamasari D, Tetrasiwi EN, Kartiko GJ, Astrella C, Husam K, Laksmi PW. Sarcopenia and Chronic Complications of Type 2 Diabetes Mellitus. Rev Diabet Stud 2022; 18:157-165. [PMID: 36309772 PMCID: PMC9652710 DOI: 10.1900/rds.2022.18.157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sarcopenia, defined as the loss of skeletal muscle mass and strength and/or a decrease in physical performance, is classically related to aging. However, chronic disease, including type 2 diabetes mellitus (T2DM), may accelerate the development of sarcopenia. Previous studies found strong association between T2DM and sarcopenia. Insulin resistance that exists in T2DM is thought to be the key mediator for impaired physical function and mobility which may lead to sarcopenia. T2DM may cause sarcopenia through the mediation of insulin resistance, inflammation, accumulation of advanced glycation end-products, and oxidative stress that may affect muscle mass and strength, protein metabolism, and vascular and mitochondrial dysfunction. On the other hand, loss of muscle in sarcopenia may play a role in the development of T2DM through the decreased production of myokines that play a role in glucose and fat metabolism. This review highlights the findings of existing literature on the relationship between T2DM and sarcopenia which emphasize the pathophysiology, chronic vascular complications, and the course of macrovascular and microvascular complications in T2DM.
Collapse
Affiliation(s)
- Dyah Purnamasari
- Division of Endocrinology Metabolism and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia,,Metabolic Disorder, Cardiovascular and Aging Research Center, The Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Erpryta Nurdia Tetrasiwi
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gracia Jovita Kartiko
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Cindy Astrella
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Khoirul Husam
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Purwita Wijaya Laksmi
- Division of Geriatric, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Address correspondence to: Purwita Wijaya Laksmi, e-mail:
| |
Collapse
|
120
|
Yang T, Song C, Ralph DL, Andrews P, Sparks MA, Koller BH, McDonough AA, Coffman TM. Cell-Specific Actions of the Prostaglandin E-Prostanoid Receptor 4 Attenuating Hypertension: A Dominant Role for Kidney Epithelial Cells Compared With Macrophages. J Am Heart Assoc 2022; 11:e026581. [PMID: 36172956 PMCID: PMC9673718 DOI: 10.1161/jaha.122.026581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti-inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E-prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II-dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation. We also found that elimination of EP4R from vascular smooth muscle cells did not affect the severity of hypertension, suggesting nonvascular targets of prostaglandin E mediate this antihypertensive effect. Methods and Results Here we generated mice with cell-specific deletion of EP4R from macrophage-specific EP4 receptor knockouts or kidney epithelial cells (KEKO) to assess the contributions of EP4R in these cells to hypertension pathogenesis. Macrophage-specific EP4 receptor knockouts showed similar blood pressure responses to alterations in dietary sodium or chronic angiotensin II infusion as Controls. By contrast, angiotensin II-dependent hypertension was significantly augmented in KEKOs (mean arterial pressure: 146±3 mm Hg) compared with Controls (137±4 mm Hg; P=0.02), which was accompanied by impaired natriuresis in KEKOs. Because EP4R expression in the kidney is enriched in the collecting duct, we compared responses to amiloride in angiotensin II-infused KEKOs and Controls. Blockade of the epithelial sodium channel with amiloride caused exaggerated natriuresis in KEKOs compared with Controls (0.21±0.01 versus 0.15±0.02 mmol/24 hour per 20 g; P=0.015). Conclusions Our data suggest EP4R in kidney epithelia attenuates hypertension. This antihypertension effect of EP4R may be mediated by reducing the activity of the epithelial sodium channel, thereby promoting natriuresis.
Collapse
Affiliation(s)
- Ting Yang
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Chengcheng Song
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
| | - Donna L. Ralph
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Portia Andrews
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Matthew A. Sparks
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | | | - Alicia A. McDonough
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Thomas M. Coffman
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Cardiovascular and Metabolic Disorders Research ProgramDuke‐National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
121
|
Ertuglu LA, Kirabo A. Dendritic Cell Epithelial Sodium Channel in Inflammation, Salt-Sensitive Hypertension, and Kidney Damage. KIDNEY360 2022; 3:1620-1629. [PMID: 36245645 PMCID: PMC9528365 DOI: 10.34067/kid.0001272022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for cardiovascular morbidity and mortality. The pathophysiologic mechanisms leading to different individual BP responses to changes in dietary salt remain elusive. Research in the last two decades revealed that the immune system plays a critical role in the development of hypertension and related end organ damage. Moreover, sodium accumulates nonosmotically in human tissue, including the skin and muscle, shifting the dogma on body sodium balance and its regulation. Emerging evidence suggests that high concentrations of extracellular sodium can directly trigger an inflammatory response in antigen-presenting cells (APCs), leading to hypertension and vascular and renal injury. Importantly, sodium entry into APCs is mediated by the epithelial sodium channel (ENaC). Although the role of the ENaC in renal regulation of sodium excretion and BP is well established, these new findings imply that the ENaC may also exert BP modulatory effects in extrarenal tissue through an immune-dependent pathway. In this review, we discuss the recent advances in our understanding of the pathophysiology of salt-sensitive hypertension with a particular focus on the roles of APCs and the extrarenal ENaC.
Collapse
|
122
|
NMR-Based Metabolomic Analysis of Cardiac Tissues Clarifies Molecular Mechanisms of CVB3-Induced Viral Myocarditis and Dilated Cardiomyopathy. Molecules 2022; 27:molecules27186115. [PMID: 36144851 PMCID: PMC9500976 DOI: 10.3390/molecules27186115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Viral myocarditis (VMC), which is defined as inflammation of the myocardium with consequent myocardial injury, may develop chronic disease eventually leading to dilated cardiomyopathy (DCM). Molecular mechanisms underlying the progression from acute VMC (aVMC), to chronic VMC (cVMC) and finally to DCM, are still unclear. Here, we established mouse models of VMC and DCM with Coxsackievirus B3 infection and conducted NMR-based metabolomic analysis of aqueous metabolites extracted from cardiac tissues of three histologically classified groups including aVMC, cVMC and DCM. We showed that these three pathological groups were metabolically distinct from their normal counterparts and identified three impaired metabolic pathways shared by these pathological groups relative to normal controls, including nicotinate and nicotinamide metabolism; alanine, aspartate and glutamate metabolism; and D-glutamine and D-glutamate metabolism. We also identified two extra impaired metabolic pathways in the aVMC group, including glycine, serine and threonine metabolism; and taurine and hypotaurine metabolism Furthermore, we identified potential cardiac biomarkers for metabolically distinguishing these three pathological stages from normal controls. Our results indicate that the metabolomic analysis of cardiac tissues can provide valuable insights into the molecular mechanisms underlying the progression from acute VMC to DCM.
Collapse
|
123
|
Wang X, He B, Deng Y, Liu J, Zhang Z, Sun W, Gao Y, Liu X, Zhen Y, Ye Z, Liu P, Wen J. Identification of a biomarker and immune infiltration in perivascular adipose tissue of abdominal aortic aneurysm. Front Physiol 2022; 13:977910. [PMID: 36187757 PMCID: PMC9523244 DOI: 10.3389/fphys.2022.977910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) refers to unusual permanent dilation of the abdominal aorta, and gradual AAA expansion can lead to fatal rupture. However, we lack clear understanding of the pathogenesis of this disease. The effect of perivascular adipose tissue (PVAT) on vascular functional status has attracted increasing attention. Here, we try to identify the potential mechanisms linking AAA and PVAT. Methods: We downloaded dataset GSE119717, including 30 dilated AAA PVAT samples and 30 non-dilated aorta PVAT samples from AAA cases, from Gene Expression Omnibus to identify differentially expressed genes (DEGs). We performed pathway enrichment analysis by Metascape, ClueGo and DAVID to annotate PVAT functional status according to the DEGs. A protein-protein interaction network, the support vector machine (SVM)-recursive feature elimination and the least absolute shrinkage and selection operator regression model were constructed to identify feature genes. Immune infiltration analysis was explored by CIBERSORT. And the correlation between feature gene and immune cells was also calculated. Finally, we used the angiotensin II (Ang II)-ApoE−/− mouse model of AAA to verify the effect of feature gene expression by confirming protein expression using immunohistochemistry and western blot. Results: We identified 22 DEGs, including 21 upregulated genes and 1 downregulated gene. The DEGs were mainly enriched in neutrophil chemotaxis and IL-17 signaling pathway. FOS was identified as a good diagnostic feature gene (AUC = 0.964). Immune infiltration analysis showed a higher level of T cells follicular helper, activated NK cells, Monocytes, activated Mast cells in AAA group. And FOS was correlated with immune cells. Immunohistochemistry and western blot confirmed higher FOS expression in PVAT of the AAA mouse model compared to control group. Conclusion: The differentially expressed genes and pathways identified in this study provide further understanding of how PVAT affects AAA development. FOS was identified as the diagnostic gene. There was an obvious difference in immune cells infiltration between normal and AAA groups.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bin He
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yisen Deng
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zhaohua Zhang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| | - Jianyan Wen
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| |
Collapse
|
124
|
Pitzer A, Elijovich F, Laffer CL, Ertuglu LA, Sahinoz M, Saleem M, Krishnan J, Dola T, Aden LA, Sheng Q, Raddatz MA, Wanjalla C, Pakala S, Davies SS, Patrick DM, Kon V, Ikizler TA, Kleyman T, Kirabo A. DC ENaC-Dependent Inflammasome Activation Contributes to Salt-Sensitive Hypertension. Circ Res 2022; 131:328-344. [PMID: 35862128 PMCID: PMC9357159 DOI: 10.1161/circresaha.122.320818] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension. In the current study, we hypothesized that ENaC-dependent entry of sodium into APCs activates the NLRP3 (NOD [nucleotide-binding and oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome via IsoLG formation leading to salt-sensitive hypertension. METHODS We performed RNA sequencing on human monocytes treated with elevated sodium in vitro and Cellular Indexing of Transcriptomes and Epitopes by Sequencing analysis of peripheral blood mononuclear cells from participants rigorously phenotyped for salt sensitivity of blood pressure using an established inpatient protocol. To determine mechanisms, we analyzed inflammasome activation in mouse models of deoxycorticosterone acetate salt-induced hypertension as well as salt-sensitive mice with ENaC inhibition or expression, IsoLG scavenging, and adoptive transfer of wild-type dendritic cells into NLRP3 deficient mice. RESULTS We found that high levels of salt exposure upregulates the NLRP3 inflammasome, pyroptotic and apoptotic caspases, and IL (interleukin)-1β transcription in human monocytes. Cellular Indexing of Transcriptomes and Epitopes by Sequencing revealed that components of the NLRP3 inflammasome and activation marker IL-1β dynamically vary with changes in salt loading/depletion. Mechanistically, we found that sodium-induced activation of the NLRP3 inflammasome is ENaC and IsoLG dependent. NLRP3 deficient mice develop a blunted hypertensive response to elevated sodium, and this is restored by the adoptive transfer of NLRP3 replete APCs. CONCLUSIONS These findings reveal a mechanistic link between ENaC, inflammation, and salt-sensitive hypertension involving NLRP3 inflammasome activation in APCs. APC activation via the NLRP3 inflammasome can serve as a potential diagnostic biomarker for salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Ashley Pitzer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Fernando Elijovich
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Cheryl L. Laffer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Lale A. Ertuglu
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melis Sahinoz
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Jaya Krishnan
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Thanvi Dola
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A. Raddatz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Celestine Wanjalla
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Suman Pakala
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - David M Patrick
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - T. Alp Ikizler
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
125
|
Dikalov SI, Dikalova AE, Kirilyuk IA. Coupling of phagocytic NADPH oxidase activity and mitochondrial superoxide production. Front Cardiovasc Med 2022; 9:942736. [PMID: 35966537 PMCID: PMC9366351 DOI: 10.3389/fcvm.2022.942736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Superoxide radical plays an important role in redox cell signaling and physiological processes; however, overproduction of superoxide or insufficient activity of antioxidants leads to oxidative stress and contributes to the development of pathological conditions such as endothelial dysfunction and hypertension. Meanwhile, the studies of superoxide in biological systems represent unique challenges associated with short lifetime of superoxide, insufficient reactivity of the superoxide probes, and lack of site-specific detection of superoxide. In this work we have developed 15N-and deuterium-enriched spin probe 15N-CAT1H for high sensitivity and site-specific detection of extracellular superoxide. We have tested simultaneous tracking of extracellular superoxide by 15N-CAT1H and intramitochondrial superoxide by conventional 14N-containing spin probe mitoTEMPO-H in immune cells isolated from spleen, splenocytes, under basal conditions or stimulated with inflammatory cytokines IL-17A and TNFα, NADPH oxidase activator PMA, or treated with inhibitors of mitochondrial complex I rotenone or complex III antimycin A. 15N-CAT1H provides two-fold increase in sensitivity and improves detection since EPR spectrum of 15N-CAT1 nitroxide does not overlap with biological radicals. Furthermore, concurrent use of cell impermeable 15N-CAT1H and mitochondria-targeted 14N-mitoTEMPO-H allows simultaneous detection of extracellular and mitochondrial superoxide. Analysis of IL-17A- and TNFα-induced superoxide showed parallel increase in 15N-CAT1 and 14N-mitoTEMPO signals suggesting coupling between phagocytic NADPH oxidase and mitochondria. The interplay between mitochondrial superoxide production and activity of phagocytic NADPH oxidase was further investigated in splenocytes isolated from Sham and angiotensin II infused C57Bl/6J and Nox2KO mice. Angiotensin II infusion in wild-type mice increased the extracellular basal splenocyte superoxide which was further enhanced by complex III inhibitor antimycin A, mitochondrial uncoupling agent CCCP and NADPH oxidase activator PMA. Nox2 depletion attenuated angiotensin II mediated stimulation and inhibited both extracellular and mitochondrial PMA-induced superoxide production. These data indicate that splenocytes isolated from hypertensive angiotensin II-infused mice are "primed" for enhanced superoxide production from both phagocytic NADPH oxidase and mitochondria. Our data demonstrate that novel 15N-CAT1H provides high sensitivity superoxide measurements and combination with mitoTEMPO-H allows independent and simultaneous detection of extracellular and mitochondrial superoxide. We suggest that this new approach can be used to study the site-specific superoxide production and analysis of important sources of oxidative stress in cardiovascular conditions.
Collapse
Affiliation(s)
| | - Anna E. Dikalova
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| |
Collapse
|
126
|
Wu R, Luo P, Luo M, Li X, Zhong X, He Q, Zhang J, Zhang Y, Xiong Y, Han P. Genetically predicted adiponectin causally reduces the risk of chronic kidney disease, a bilateral and multivariable mendelian randomization study. Front Genet 2022; 13:920510. [PMID: 35957678 PMCID: PMC9360570 DOI: 10.3389/fgene.2022.920510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: It is not clarified whether the elevation of adiponectin is the results of kidney damage, or the cause of kidney function injury. To explore the causal association of adiponectin on estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD), this study was performed.Materials and methods: The genetic association of adiponectin were retrieved from one genome-wide association studies with 39,883 participants. The summary-level statistics regarding the eGFR (133,413 participants) and CKD (12,385 CKD cases and 104,780 controls) were retrieved from the CKDGen consortium in the European ancestry. Single-variable Mendelian randomization (MR), bilateral and multivariable MR analyses were used to verify the causal association between adiponectin, eGFR, and CKD.Results: Genetically predicted adiponectin reduces the risk of CKD (OR = 0.71, 95% CI = 0.57–0.89, p = 0.002) and increases the eGFR (β = 0.014, 95% CI = 0.001–0.026, p = 0.034) by the inverse variance weighting (IVW) estimator. These findings remain consistent in the sensitivity analyses. No heterogeneity and pleiotropy were detected in this study (P for MR-Egger 0.617, P for global test > 0.05, and P for Cochran’s Q statistics = 0.617). The bilateral MR identified no causal association of CKD on adiponectin (OR = 1.01, 95% CI = 0.96–1.07, p = 0.658), nor did it support the association of eGFR on adiponectin (OR = 0.86, 95% CI = 0.68–1.09, p = 0.207) by the IVW estimator. All the sensitivity analyses reported similar findings (p > 0.05). Additionally, after adjusting for cigarette consumption, alcohol consumption, body mass index, low density lipoprotein, and total cholesterol, the ORs for CKD are 0.70 (95% CI = 0.55–0.90, p = 0.005), 0.75 (95% CI = 0.58–0.97, p = 0.027), 0.82 (95% CI = 0.68–0.99, p = 0.039), 0.74 (95% CI = 0.59–0.93, p = 0.011), and 0.79 (95% CI = 0.61–0.95, p = 0.018), respectively.Conclusion: Using genetic data, this study provides novel causal evidence that adiponectin can protect the kidney function and further reduce the risk of CKD.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyi Luo
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Min Luo
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Centre, Chongqing Medical University, Chongqing, China
| | - Xin Zhong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangchang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yang Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Han,
| |
Collapse
|
127
|
Huang M, Li F, Chen S, Liu M, Qin W, Wu J, Chen Y, Zhong J, Zhao Q, Hu B. Total White Blood Cell Count is Associated with Arterial Stiffness Among Hypertensive Patients. Angiology 2022:33197221115566. [PMID: 35833809 DOI: 10.1177/00033197221115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The association between white blood cell (WBC) count and arterial stiffness in patients with hypertension is not well-documented. We aimed to examine the relationships of total WBC count with arterial stiffness and risk of macrovascular damage in hypertensive patients. A total of 631 hypertensive adults (mean age: 65.6 years) were included in the present study. Arterial stiffness was determined by brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI). Macrovascular damage was defined as baPWV >1.8 m/s or ABI <.9. The dose-response associations were assessed by multivariate linear or logistic regression models. After multivariate adjustments, we observed a dose-response relationship between increasing total WBC count and arterial stiffness. Participants in the highest tertile of total WBC count showed a significantly elevated baPWV (β = .088; 95% CI: .021, .154; Ptrend = .010) and reduced ABI (β = -.027; 95% CI: -.046, -.008; Ptrend = .005), as compared with those in the first tertile. The association was similar in different subgroups. In addition, elevated total WBC count was related to a greater risk of macrovascular damage, as indicated by baPWV >1.8 m/s (OR = 1.86; 95% CI: 1.15, 2.99, comparing the extreme tertiles). Our data suggest that elevated total WBC count was related to arterial stiffness among individuals with hypertension.
Collapse
Affiliation(s)
- Min Huang
- Central Laboratory, 12390Renmin Hospital of Wuhan University, Wuhan, China
| | - Fajiu Li
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Si Chen
- Department of Infectious Disease, 74495The No. 969 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Huhehot, China
| | - Min Liu
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Wei Qin
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Juanjuan Wu
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Chen
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jinnan Zhong
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Qian Zhao
- Department of Cardiology, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bingzhu Hu
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
128
|
Chen H, Liu N, Zhuang S. Macrophages in Renal Injury, Repair, Fibrosis Following Acute Kidney Injury and Targeted Therapy. Front Immunol 2022; 13:934299. [PMID: 35911736 PMCID: PMC9326079 DOI: 10.3389/fimmu.2022.934299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a renal disease with a high incidence and mortality. Currently, there are no targeted therapeutics for preventing and treating AKI. Macrophages, important players in mammalian immune response, are involved in the multiple pathological processes of AKI. They are dynamically activated and exhibit a diverse spectrum of functional phenotypes in the kidney after AKI. Targeting the mechanisms of macrophage activation significantly improves the outcomes of AKI in preclinical studies. In this review, we summarize the role of macrophages and the underlying mechanisms of macrophage activation during kidney injury, repair, regeneration, and fibrosis and provide strategies for macrophage-targeted therapies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
129
|
Luo M, Cao S, Lv D, He L, He Z, Li L, Li Y, Luo S, Chang Q. Aerobic Exercise Training Improves Renal Injury in Spontaneously Hypertensive Rats by Increasing Renalase Expression in Medulla. Front Cardiovasc Med 2022; 9:922705. [PMID: 35898283 PMCID: PMC9309879 DOI: 10.3389/fcvm.2022.922705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
We aimed to examine the effects of aerobic exercise training on renal function in spontaneously hypertensive rats (SHR) and elucidate their possible mechanisms. Adult male SHR and age-matched Wistar-Kyoto rats (WKY) were divided into four groups: WKY sedentary group, SHR sedentary group, low-intensity training group, and medium-intensity training group. Using molecular and biochemical approaches, we investigated the effects of 14-week training on renalase (RNLS) protein levels, renal function, and apoptosis and oxidative stress modulators in kidney tissues. In vitro, angiotensin II (Ang II)-induced human kidney proximal epithelial cells (HK-2) were treated with RNLS, and changes in apoptosis and oxidative stress levels were observed. Our results show that moderate training improved renal function decline in SHR. In addition, aerobic exercise therapy significantly increased levels of RNLS in the renal medulla of SHR. We observed in vitro that RNLS significantly inhibited the increase of Ang II-inducedapoptosis and oxidative stress levels in HK-2. In conclusion, aerobic exercise training effectively improved renal function in SHR by promoting RNLS expression in the renal medulla. These results explain the possible mechanism in which exercise improves renal injury in hypertensive patients and suggest RNLS as a novel therapy for kidney injury patients.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Longlin He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingang Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Qing Chang
| |
Collapse
|
130
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
131
|
Jiang J, Deng H, Liao H, Fang X, Zhan X, Wu S, Xue Y. Development and Validation of a Deep-Learning Model to Detect CRP Level from the Electrocardiogram. Front Physiol 2022; 13:864747. [PMID: 35707008 PMCID: PMC9189881 DOI: 10.3389/fphys.2022.864747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: C-reactive protein (CRP), as a non-specific inflammatory marker, is a predictor of the occurrence and prognosis of various arrhythmias. It is still unknown whether electrocardiographic features are altered in patients with inflammation. Objectives: To evaluate the performance of a deep learning model in detection of CRP levels from the ECG in patients with sinus rhythm. Methods: The study population came from an epidemiological survey of heart disease in Guangzhou. 12,315 ECGs of 11,480 patients with sinus rhythm were included. CRP > 5mg/L was defined as high CRP level. A convolutional neural network was trained and validated to detect CRP levels from 12 leads ECGs. The performance of the model was evaluated by calculating the area under the curve (AUC), accuracy, sensitivity, specificity, and balanced F Score (F1 score). Results: Overweight, smoking, hypertension and diabetes were more common in the High CRP group (p < 0.05). Although the ECG features were within the normal ranges in both groups, the high CRP group had faster heart rate, longer QTc interval and narrower QRS width. After training and validating the deep learning model, the AUC of the validation set was 0.86 (95% CI: 0.85-0.88) with sensitivity, specificity of 89.7 and 69.6%, while the AUC of the testing set was 0.85 (95% CI: 0.84-0.87) with sensitivity, specificity of 90.7 and 67.6%. Conclusion: An AI-enabled ECG algorithm was developed to detect CRP levels in patients with sinus rhythm. This study proved the existence of inflammation-related changes in cardiac electrophysiological signals and provided a noninvasive approach to screen patients with inflammatory status by detecting CRP levels.
Collapse
Affiliation(s)
- Junrong Jiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongtao Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianhong Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianzhang Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
132
|
Tain YL, Hsu CN. Novel Insights on Dietary Polyphenols for Prevention in Early-Life Origins of Hypertension: A Review Focusing on Preclinical Animal Models. Int J Mol Sci 2022; 23:6620. [PMID: 35743061 PMCID: PMC9223825 DOI: 10.3390/ijms23126620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with health benefits. Early life appears to offer a critical window of opportunity for launching interventions focused on preventing hypertension, as increasing evidence supports the supposition that hypertension can originate in early life. Although polyphenols have antihypertensive actions, knowledge of the potential beneficial action of the early use of polyphenols to avert the development of hypertension is limited. Thus, in this review, we first provide a brief summary of the chemistry and biological function of polyphenols. Then, we present the current epidemiological and experimental evidence supporting the early-life origins of hypertension. We also document animal data on the use of specific polyphenols as an early-life intervention to protect offspring against hypertension in adulthood and discuss underlying mechanisms. Continued research into the use of polyphenols to prevent hypertension from starting early in life will have far-reaching implications for future health.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
133
|
Wang Z, Wang J, Yang P, Song X, Li Y. Elevated Th17 cell proportion, related cytokines and mRNA expression level in patients with hypertension-mediated organ damage: a case control study. BMC Cardiovasc Disord 2022; 22:257. [PMID: 35676631 PMCID: PMC9178804 DOI: 10.1186/s12872-022-02698-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune abnormalities and inflammatory responses play critical roles in progression of hypertension. Basic studies have confirmed that Th17 cell and related cytokines are important in promoting hypertension-mediated organ damage, but few clinical evidences have been published. Therefore, our study aimed to investigate the relationship between Th17 cell and its related cytokines and hypertension-mediated organ damage in human. METHODS This study enrolled 179 patients with hypertension (including 92 with hypertension-mediated organ damage and 87 without hypertension-mediated organ damage) and 63 healthy participants. The proportion of Th17 cells in peripheral blood mononuclear cells was measured by flow cytometry. The concentrations of interleukin-17 and interleukin-23 were detected by enzyme-linked immunosorbent assay. Real time-polymerase chain reaction was used to detect the mRNA expression levels of interleukin-17, retinoic acid-related orphan receptor (ROR) γt and signal transducer and activator of transcription-3 (STAT-3). RESULTS The proportion of Th17 cells, the concentration of interleukin-17 and interleukin-23 and the mRNA expression levels of interleukin-17, retinoic acid-related orphan receptor γt and signal transducer and activator of transcription-3 were significantly increased in hypertension-mediated organ damage group compared with those in non-hypertension-mediated organ damage group and control group (P < 0.005). CONCLUSION Th17 cells and their associated cytokines may be involved in hypertension-mediated organ damage formation and may be able to serve as new biomarkers of hypertension-mediated organ damage and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | | | - Pengfei Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiwen Song
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yongle Li
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
134
|
Dai LS, Zhu MP, Li YM, Zhou HM, Liao HL, Cheng PP, Xia XY, Yao XY, Zhang HJ, Liu XQ, Huang W, Wan L, Xu XY, Wang FR, Xu CQ. Hypertension Exacerbates Severity and Outcomes of COVID-19 in Elderly Patients: A Retrospective Observational Study. Curr Med Sci 2022; 42:561-568. [PMID: 35678917 PMCID: PMC9178941 DOI: 10.1007/s11596-022-2539-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
Objective To evaluate the impact of hypertension on the clinical outcome of COVID-19 patients aged 60 years old and older. Methods This single-center retrospective cohort study enrolled consecutive COVID-19 patients aged 60 years old and older, who were admitted to Liyuan Hospital from January 1, 2020 to April 25, 2020. All included patients were divided into two groups: hypertension and nonhypertension group. The baseline demographic characteristics, laboratory test results, chest computed tomography (CT) images and clinical outcomes were collected and analyzed. The prognostic value of hypertension was determined using binary logistic regression. Results Among the 232 patients included in the analysis, 105 (45.3%) patients had comorbid hypertension. Compared to the nonhypertension group, patients in the hypertension group had higher neutrophil-to-lymphocyte ratios, red cell distribution widths, lactate dehydrogenase, high-sensitivity C-reactive protein, D-dimer and severity of lung lesion, and lower lymphocyte counts (all P<0.05). Furthermore, the hypertension group had a higher proportion of intensive care unit admissions [24 (22.9%) vs. 14 (11.0%), P=0.02) and deaths [16 (15.2%) vs. 3 (2.4%), P<0.001] and a significantly lower probability of survival (P<0.001) than the nonhypertension group. Hypertension (OR: 4.540, 95% CI: 1.203–17.129, P=0.026) was independently correlated with all-cause in-hospital death in elderly patients with COVID-19. Conclusion The elderly COVID-19 patients with hypertension tend to have worse conditions at baseline than those without hypertension. Hypertension may be an independent prognostic factor of poor clinical outcome in elderly COVID-19 patients.
Collapse
|
135
|
Wu J, Ye Q, Fang L, Deng L, Liao T, Liu B, Lv X, Zhang J, Tao J, Ye D. Short-term association of NO 2 with hospital visits for chronic kidney disease and effect modification by temperature in Hefei, China: A time series study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113505. [PMID: 35462193 DOI: 10.1016/j.ecoenv.2022.113505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A large body of evidence has linked air pollution and temperature with chronic kidney disease (CKD) prevalence and hospitalizations. However, most studies have focused on the influence of heat stress on CKD prevalence, and the potential effect modification of temperature on the association between air pollution and CKD has not been well-investigated. In this study, we examined the associations of the whole temperature spectrum and air pollution with CKD-related hospital visits and explored whether temperature modifies the short-term association of air pollution with CKD-related hospital visits. METHODS AND FINDINGS We collected 40 276 CKD-related hospital visits from the first Affiliated Hospital of Anhui Medical University and Anhui Provincial Hospital in Hefei, China, during 2015-2019. A two-stage time-series design was conducted to investigate the associations of air pollution and daily mean temperature with CKD-related hospital visits. First, we estimated the associations between air pollution and CKD-related hospital visits as well as temperature and CKD-related hospital visits. Second, we analyzed the associations of air pollution with CKD hospital visits at different temperatures. We found that NO2 exposure and low temperature were associated with an increased risk of CKD-related hospital visits. Low temperature enhanced the association between NO2 exposure and CKD-related hospital visits, with an increase of 4.30% (95% CI: 2.47-5.92%) per 10 μg/m3 increment in NO2 at low temperature. Effect modification of the association between NO2 and the risk of CKD-related hospital visits was stronger at low temperature across the whole population. CONCLUSIONS Our findings indicate that low temperature-related chronic kidney damage should be of immediate public health concern. Impact of NO2 exposure on the risk of CKD-related hospital visits may increase under the low temperature, which suggests the need for NO2 exposure mitigation strategies in the context of climate change and an enhanced understanding of the mechanisms underlying the temperature variance of air pollution effect to help reduce the magnitude of the CKD burden on the healthcare systems.
Collapse
Affiliation(s)
- Jun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - QianLing Ye
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - LanLan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - LiJun Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - XiaoJie Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - JinHui Tao
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Hefei, Anhui, China.
| | - DongQing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
136
|
Zhuang R, Chen J, Cheng HS, Assa C, Jamaiyar A, Pandey AK, Pérez-Cremades D, Zhang B, Tzani A, Wara AK, Plutzky J, Barrera V, Bhetariya P, Mitchell RN, Liu Z, Feinberg MW. Perivascular Fibrosis Is Mediated by a KLF10-IL-9 Signaling Axis in CD4+ T Cells. Circ Res 2022; 130:1662-1681. [PMID: 35440172 PMCID: PMC9149118 DOI: 10.1161/circresaha.121.320420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.
Collapse
Affiliation(s)
- Rulin Zhuang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jingshu Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry S. Cheng
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carmel Assa
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arvind K. Pandey
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Physiology, University of Valencia, and INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Bofang Zhang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aspasia Tzani
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Akm Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jorge Plutzky
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Barrera
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Preetida Bhetariya
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Richard N. Mitchell
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
137
|
Wang H, Yin J, Gu X, Shao W, Jia Z, Chen H, Xia W. Immune Regulator Retinoic Acid-Inducible Gene I (RIG-I) in the Pathogenesis of Cardiovascular Disease. Front Immunol 2022; 13:893204. [PMID: 35693778 PMCID: PMC9178270 DOI: 10.3389/fimmu.2022.893204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that contains two CARD domains, an RNA helicase domain, and a C-terminal domain. RIG-I initiates antiviral innate immunity by recognizing exogenous viral RNAs/DNAs. However, some studies have reported that RIG-I activation leads to damage in various organs and tissues in diverse circumstances. Recent studies have shown that RIG-I is involved in cancer, lupus nephritis, immunoglobulin A nephropathy, Crohn's disease, and atherosclerosis. These reports indicate that RIG-I not only participates in antiviral signaling pathways but also exerts an influence on non-viral infectious diseases. RIG-I is widely expressed in immune and non-immune cells including smooth muscle cells, endothelial cells, and cardiomyocytes. A succinct overview of RIG-I and its signaling pathways, with respect to the cardiovascular system, will aid in the development of novel therapeutics for cardiovascular diseases. In this review, we summarize the structure, activation, signaling pathways, and role of RIG-I in cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenhui Shao
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
138
|
Mediterranean G6PD variant rats are protected from Angiotensin II-induced hypertension and kidney damage, but not from inflammation and arterial stiffness. Vascul Pharmacol 2022; 145:107002. [PMID: 35623546 DOI: 10.1016/j.vph.2022.107002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
RATIONALE Epidemiological studies suggest that individuals in the Mediterranean region with deficiency of glucose-6-phosphate dehydrogenase (G6PD) are less susceptible to cardiovascular diseases. However, our knowledge regarding the effects of G6PD deficiency on pathogenesis of vascular diseases caused by factors, like angiotensin II (Ang-II), which stimulate synthesis of inflammatory cytokines and vascular inflammation, is lacking. Furthermore, to-date the effect of G6PD deficiency on vascular health has been controversial and difficult to experimentally prove due to a lack of good animal model. OBJECTIVE To determine the effect of Ang-II-induced hypertension (HTN) and stiffness in a rat model of the Mediterranean G6PD (G6PDS188F) variant and in wild-type (WT) rats. METHODS AND RESULTS Our findings revealed that infusion of Ang-II (490 ng/kg/min) elicited less HTN and medial hypertrophy of carotid artery in G6PDS188F than in WT rats. Additionally, Ang-II induced less glomerular and tubular damage in the kidneys - a consequence of elevated pressure - in G6PDS188F than WT rats. However, Ang-II-induced arterial stiffness increased in G6PDS188F and WT rats, and there were no differences between the groups. Mechanistically, we found aorta of G6PDS188F as compared to WT rats produced less sustained contraction and less inositol-1,2,3-phosphate (IP3) and superoxide in response to Ang-II. Furthermore, aorta of G6PDS188F as compared to WT rats expressed lower levels of phosphorylated extracellular-signal regulated kinase (ERK). Interestingly, the aorta of G6PDS188F as compared to WT rats infused with Ang-II transcribed more (50-fold) myosin heavy chain-11 (MYH11) gene, which encodes contractile protein of smooth muscle cell (SMC), and less (2.3-fold) actin-binding Rho-activating gene, which encodes a protein that enhances SMC proliferation. A corresponding increase in MYH11 and Leiomodin-1 (LMOD1) staining was observed in arteries of Ang-II treated G6PDS188F rats. However, G6PD deficiency did not affect the accumulation of CD45+ cells and transcription of genes encoding interleukin-6 and collagen-1a1 by Ang-II. CONCLUSIONS The G6PDS188F loss-of-function variant found in humans protected rats from Ang-II-induced HTN and kidney damage, but not from vascular inflammation and arterial stiffness.
Collapse
|
139
|
向 茂, 王 瑜, 梅 仁, 付 计, 陈 静, 都 昌. [Interleukin-17A is closely correlated with the progression of renal epithelial-mesenchymal transition in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:772-779. [PMID: 35673924 PMCID: PMC9178642 DOI: 10.12122/j.issn.1673-4254.2022.05.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of interleukin-17A (IL-17A) in renal epithelial- mesenchymal transition (EMT) in essential hypertensive nephropathy. METHODS Four-week-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats (control group) were both randomized into 4 groups (n=5) for observation at 4, 6, 10 and 30 weeks of age. Blood pressure of the rats was monitored using a noninvasive tail artery blood pressure measurement instrument. The percentage of Th17 cells in the splenocytes was analyzed using flow cytometry. The mRNA and protein expression levels of IL-17A, iNOS, Arg-1, E-cadherin, and α-SMA in the kidneys of the rats were detected using RT-PCR and immunohistochemical staining, respectively, and plasma levels of IL-17A were regularly detected using ELISA. RESULTS At the age of 6 weeks, the SHRs began to show significantly higher blood pressure with greater Th17 cell percentage in the splenocytes and high renal expression and plasma level of IL-17A than WKY rats (P < 0.05 or P < 0.01). At 30 weeks, renal expression of E-cadherin mRNA and protein was significantly lower and the expression of Arg-1 mRNA and protein was significantly higher in SHR than in WKY rats (P < 0.01). Compared with the WKY rats, the SHRs showed significantly higher mRNA and protein expressions of iNOS at 6 and 10 weeks (P < 0.05 or 0.01) and higher α-SMA mRNA and protein expressions since 10 weeks of age (P < 0.05 or 0.01). In SHRs older than 10 weeks, renal IL-17A mRNA and protein expression levels were negatively correlated with those of E-cadherin (r=-0.731, P < 0.05; r=-0.827, P < 0.01) and positively correlated with those of α-SMA (r=0.658, P < 0.05; r=0.968, P < 0.01). CONCLUSION IL-17A is closely correlated with the progression of renal EMT in SHR and plays its role possibly by mediating M1/M2 polarization of renal infiltrating macrophages.
Collapse
Affiliation(s)
- 茂翠 向
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 瑜 王
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 仁彪 梅
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 计锋 付
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 静 陈
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 昌乐 都
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
140
|
Luo M, Mou Q, Liu L, Tian J, Liu L. Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate-Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy. J Cardiovasc Pharmacol 2022; 79:711-718. [PMID: 35058409 PMCID: PMC9067088 DOI: 10.1097/fjc.0000000000001220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (AAC) + vehicle, and AAC + EGCG groups. Intraperitoneal EGCG (50 mg/kg/d) administration was conducted. Cardiac structure and function were examined by ultrasonography. Pathology was examined by hematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichome staining. T-lymphocyte subtypes were analyzed using immunofluorescence and flow cytometry assays. Ultrasonography showed that the ventricular wall in the AAC + vehicle group was thicker than that in the sham + vehicle group (P < 0.05). Hematoxylin and eosin staining revealed cardiomyocyte hypertrophy accompanied by a small amount of inflammatory cell infiltration in the AAC + vehicle group. The results of wheat germ agglutinin staining demonstrated the presence of hypertrophic cardiomyocytes in the AAC + vehicle group (P < 0.01). Masson's trichome staining showed cardiac fibrosis in the AAC + vehicle group, and the immunofluorescence assay revealed infiltration of CD4+ cells in both AAC + vehicle and AAC + EGCG groups. Splenic flow cytometry showed a significant increase in the proportion of Treg cells in the AAC + EGCG group (P < 0.05). The proportion of Th17 cells in the AAC + vehicle group was significantly higher than that in the sham + vehicle group (P < 0.05). In conclusion, changes in the Treg/Th17 ratio are associated with the occurrence of myocardial hypertrophy caused by increased afterload. Moreover, regulation of the Treg/Th17 ratio by EGCG may play an important role in the attenuation of myocardial hypertrophy.
Collapse
Affiliation(s)
- Min Luo
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Qiuhong Mou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Lingjuan Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Jie Tian
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Lifei Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
141
|
Interleukin 10 Attenuates Angiotensin II-Induced Aortic Remodelling by Inhibiting Oxidative Stress-Induced Activation of the Vascular p38 and NF-κB Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8244497. [PMID: 35528508 PMCID: PMC9072025 DOI: 10.1155/2022/8244497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Interleukin 10 (IL-10) is a probable anti-inflammatory factor that can attenuate hypertrophic remodelling caused by overloaded pressure and improve cardiac function. In this study, IL-10 was decreased in both the plasma of hypertensive patients and the aortic vessels of angiotensin II (Ang II)-induced hypertensive mice. IL-10 was unable to alter blood pressure in the case of Ang II-induced hypertension. The aortic thickness, collagen deposition, and the levels of fibrosis-associated markers, including collagen type I α 1 (Col1α1), connective tissue growth factor (CTGF), transforming growth factor-β (TGF-β), and matrix metalloproteinase 2 (MMP2), were significantly reduced in the IL-10 treatment group compared with the vehicle group after Ang II treatment. Moreover, IL-10 treatment significantly inhibited the number of CD45+ positive cells and the mRNA expression levels of proinflammatory cytokines in the vascular tissue of Ang II-infused mice. Furthermore, dihydroethidium (DHE) and 4hydroxynonenal (4-HNE) staining showed that IL-10 decreased Ang II-induced vascular oxidative stress and lipid peroxidation. Furthermore, IL-10 suppressed Ang II-induced proliferation, fibrosis, and inflammation of mouse vascular adventitial fibroblasts (mVAFs). Mechanistically, IL-10 suppressed the phosphorylation of p38 mitogen-activated protein (MAP) kinase and nuclear factor-κB (NF-κB) in Ang II-induced vascular fibrosis. In summary, our data indicated that IL-10, as a potential therapeutic target treatment, could limit the progression of Ang II-induced aortic remodelling.
Collapse
|
142
|
Revealing Potential Diagnostic Gene Biomarkers Associated with Immune Infiltration in Patients with Renal Fibrosis Based on Machine Learning Analysis. J Immunol Res 2022; 2022:3027200. [PMID: 35497880 PMCID: PMC9045970 DOI: 10.1155/2022/3027200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease is characterized by the development of renal fibrosis. The basic mechanisms of renal fibrosis have not yet been fully investigated despite significant progress in understanding the etiology of the disease. In this work, the researchers sought to identify potential diagnostic indicators for renal fibrosis. From the GEO database, we were able to acquire two gene expression profiles with publically available data (GSE22459 and GSE76882, respectively) from human renal fibrosis and control samples. 215 renal fibrosis specimens and 124 normal specimens were examined for differentially expressed genes (DEGs). The SVM-RFE and LASSO regression models were used to discover potential markers. CIBERSORT was applied to estimate the combined cohorts' immune cell fraction compositional trends in renal fibrosis. RT-PCR was used to examine the expression of ISG20 in renal fibrosis and healthy samples. In vitro experiments were applied to examine the function of ISG20 knockdown on the progression of renal fibrosis. In this study, we identified 24 DEGs. The result of LASSO and SVM-RFE identified nine critical genes. ROC assays confirmed the diagnostic value of the above nine genes for renal fibrosis. Immune cell infiltration analysis revealed that ISG20 and SERPINA3 were both found to be correlated with T cell follicular helper, neutrophils, T cell CD4 memory activated, eosinophils, T cell CD8, dendritic cell activated, B cell memory, monocytes, macrophage M2, plasma cells, T cell CD4 naïve, mast cell resting, B cell naïve, T cell regulatory, and NK cell activated. Finally, we observed that the expression of ISG20 and SERPINA3 was distinctly increased in renal fibrosis samples compared with normal samples. ISG20 siRNA significantly suppressed the progression of renal fibrosis in vitro. Overall, this study identified nine diagnostic biomarkers for renal fibrosis. ISG20 may be a novel therapeutic target of renal fibrosis.
Collapse
|
143
|
Berro LF, Maurer P, Rubio D, Retamoso V, Santos L, Manfredini V, Piccoli JDCE. The Val16Ala MnSOD gene polymorphism is associated with hypertension in self-declared black individuals. Free Radic Res 2022; 56:154-162. [DOI: 10.1080/10715762.2022.2060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lyana Feijoó Berro
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
- Postgraduate Program in Biochemistry, Federal University of Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| | - Patricia Maurer
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
- Postgraduate Program in Biochemistry, Federal University of Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| | - Debora Rubio
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
- Course of Pharmacy, Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
| | - Vanessa Retamoso
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
- Postgraduate Program in Biochemistry, Federal University of Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| | - Lauren Santos
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
| | - Vanusa Manfredini
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
- Postgraduate Program in Biochemistry, Federal University of Pampa, Campus Uruguaiana, Uruguaiana, Brazil
- Course of Pharmacy, Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
| | - Jacqueline da Costa Escobar Piccoli
- Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
- Postgraduate Program in Biochemistry, Federal University of Pampa, Campus Uruguaiana, Uruguaiana, Brazil
- Course of Pharmacy, Federal University of Pampa – Campus Uruguaiana, Uruguaiana, Brazil
| |
Collapse
|
144
|
Tain YL, Hsu CN. Hypertension of Developmental Origins: Consideration of Gut Microbiome in Animal Models. Biomedicines 2022; 10:biomedicines10040875. [PMID: 35453625 PMCID: PMC9030804 DOI: 10.3390/biomedicines10040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Hypertension is the leading cause of global disease burden. Hypertension can arise from early life. Animal models are valuable for giving cogent evidence of a causal relationship between various environmental insults in early life and the hypertension of developmental origins in later life. These insults consist of maternal malnutrition, maternal medical conditions, medication use, and exposure to environmental chemicals/toxins. There is a burgeoning body of evidence on maternal insults can shift gut microbiota, resulting in adverse offspring outcomes later in life. Emerging evidence suggests that gut microbiota dysbiosis is involved in hypertension of developmental origins, while gut microbiota-targeted therapy, if applied early, is able to help prevent hypertension in later life. This review discusses the innovative use of animal models in addressing the mechanisms behind hypertension of developmental origins. We will also highlight the application of animal models to elucidate how the gut microbiota connects with other core mechanisms, and the potential of gut microbiota-targeted therapy as a novel preventive strategy to prevent hypertension of developmental origins. These animal models have certainly enhanced our understanding of hypertension of developmental origins, closing the knowledge gap between animal models and future clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-975-368-975; Fax: +886-7733-8009
| |
Collapse
|
145
|
Potential Pathophysiological Mechanisms Underlying Multiple Organ Dysfunction in Cytokine Release Syndrome. Mediators Inflamm 2022; 2022:7137900. [PMID: 35431655 PMCID: PMC9007670 DOI: 10.1155/2022/7137900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
In recent decades, many serious respiratory infections have broken out all over the world, including SARS-CoV, MERS, and COVID-19. They are characterized by strong infectivity, rapid disease progression, high mortality, and poor prognosis. Excessive immune system activation results in cytokine hypersecretion, which is an important reason for the aggravation of symptoms, and can spread throughout the body leading to systemic multiple organ dysfunction, namely, cytokine release syndrome (CRS). Although many diseases related to CRS have been identified, the mechanism of CRS is rarely mentioned clearly. This review is intended to clarify the pathogenetic mechanism of CRS in the deterioration of related diseases, describe the important signaling pathways and clinical pathophysiological characteristics of CRS, and provide ideas for further research and development of specific drugs for corresponding targets to treat CRS.
Collapse
|
146
|
Zhuang C, Guo Z, Zhu J, Wang W, Sun R, Qi M, Wang Q, Fan X, Ma R, Yu J. PTEN inhibitor attenuates cardiac fibrosis by regulating the M2 macrophage phenotype via the PI3K/AKT/TGF-β/Smad 2/3 signaling pathway. Int J Cardiol 2022; 356:88-96. [PMID: 35395283 DOI: 10.1016/j.ijcard.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022]
Abstract
Cardiac fibrosis is a key feature of hypertensive cardiac remodeling. In response to microenvironmental stimuli, phenotypic and functional changes in macrophages are considered important determinants of cardiac fibrosis attenuation. VO-OHpic, a phosphatase and tension homolog of chromosome 10 (PTEN) inhibitor, has been demonstrated to be cardioprotective in cardiac remodeling. However, whether VO-OHpic can improve cardiac fibrosis and macrophage polarization remains elusive. The interaction between VO-OHpic and the macrophage phenotype to attenuate cardiac fibrosis was studied in both spontaneously hypertensive rats in vivo and an Ang II-induced hypertension model in vitro. In vitro experiments showed that VO-OHpic promoted M2 macrophage polarization and markedly inhibited proinflammatory M1 macrophages, while VO-OHpic treatment of protein kinase B (AKT)-knockdown/LY294002 (a PI3K inhibitor) macrophages exerted a reduced effect. In a coculture system, culturing cardiac fibroblasts with VO-OHpic-treated macrophages led to significant suppression of proliferation, fibrotic marker expression, and transforming growth factor (TGF)-β and Smad 2/3 protein expression. Taken together, VO-OHpic mediated a fibro-protective effect and increased M2 macrophage polarization via the phosphatidylinositol 3-kinase (PI3K)/AKT/TGF-β/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Ziyi Guo
- School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | - Jumo Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Wang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Runmin Sun
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Miaomiao Qi
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Qiongying Wang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Xin Fan
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Runxin Ma
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yu
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
147
|
Effects of Peroxiredoxin 6 and Its Mutants on the Isoproterenol Induced Myocardial Injury in H9C2 Cells and Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2576310. [PMID: 35378825 PMCID: PMC8976673 DOI: 10.1155/2022/2576310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
Background Peroxiredoxin 6 (PRDX6) is an important antioxidant enzyme, with a potential application value in the treatment of diseases caused by oxidative damage. Methods PRDX6 and a mutant (mPRDX6) were heterologously expressed by using an E.coli expression system and purified by Ni-affinity chromatography. Isoproterenol (ISO) was used to induce a myocardial cell injury model and an animal myocardial injury model. After the treatment with PRDX6 and mPRDX6, the proliferation activity of H9C2 cells was detected by Cell Counting Kit-8 (CCK8) method; the apoptosis was evaluated by flow cytometry, and the histological changes of myocardial cells were observed by hematoxylin and eosin (H&E) staining, the levels of catalase (CAT), glutathione peroxidase (GPX), malondialdehyde (MDA), and superoxide dismutase (SOD) in ISO-treated H9C2 cells as well as in the heart tissue and serum of rats treated with ISO were detected, and the expression levels of Bax, Bcl-2 and peroxisome proliferators-activated receptors-γ (PPAR-γ) proteins were detected by Western blot. Results PRDX6 and mPRDX6 were successfully expressed and purified. The results of efficacy study showed that the mutant mPRDX6, in which the phospholipaseA2 (PLA2) activity of PRDX6 was deleted by site directed mutation, had a better protective effect against the myocardial injury than PRDX6. CCK8 results showed that compared with that in ISO group, the proliferation activity of H9C2 cells was significantly enhanced (P < 0.01), the apoptosis rate was significantly decreased (P < 0.01), and the fluorescence intensity of reactive oxygen species (ROS) was significantly decreased (P < 0.01) in mPRDX6 group. The results of H&E staining showed that the myocardial injury was alleviated to a certain extent in mPRDX6 group. Compared with those in ISO group, the activities of CAT, GPX, and SOD in H9C2 cells and the heart tissue and serum of rats were significantly increased (P < 0.05), while the contents of MDA were significantly decreased (P < 0.05). Western blot analysis showed that the expression level of Bcl-2 in H9C2 cells was significantly decreased (P < 0.01), and that of Bax and PPAR-γ was significantly increased (P < 0.05). Conclusion mPRDX6 has a protective effect against the myocardial injury induced by ISO, and the mechanism may be related to its antioxidation. This study may provide a theoretical basis for the research and development of drugs used for the treatment of myocardial injury.
Collapse
|
148
|
Henrion D. Modulating the immune response to reduce hypertension-associated cardiovascular damage. J Clin Invest 2022; 132:158280. [PMID: 35289312 PMCID: PMC8920331 DOI: 10.1172/jci158280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality and disability worldwide. Hypertension, a major risk factor for these diseases, remains difficult to treat despite numerous drugs being available. In this issue of the JCI, Failer et al. show that the endogenous antiinflammatory agent developmental endothelial locus-1 (DEL-1) decreased blood pressure and cardiac and aortic hypertrophy in mouse models of hypertension through reduction in αvβ3 integrin–dependent metalloproteinase activity and immune cell recruitment, leading to reduced production of proinflammatory cytokines in cardiovascular tissues. This study offers an alternative in the treatment of hypertension-mediated organ damage through the immunomodulatory effect of DEL-1.
Collapse
|
149
|
Zhou J, Wen T, Li Q, Chen Z, Peng X, Wei C, Wei Y, Peng J, Zhang W. Single-Cell Sequencing Revealed Pivotal Genes Related to Prognosis of Myocardial Infarction Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6534126. [PMID: 35317194 PMCID: PMC8934393 DOI: 10.1155/2022/6534126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023]
Abstract
Objectives Myocardial infarction (MI) is a common cardiovascular disease. Histopathology is a main molecular characteristic of MI, but often, differences between various cell subsets have been neglected. Under this premise, MI-related molecular biomarkers were screened using single-cell sequencing. Methods This work examined immune cell abundance in normal and MI samples from GSE109048 and determined differences in the activated mast cells and activated CD4 memory T cells, resting mast cells. Weighted gene coexpression network analysis (WGCNA) demonstrated that activated CD4 memory T cells were the most closely related to the turquoise module, and 10 hub genes were screened. Single-cell sequencing data (scRNA-seq) of MI were examined. We used t-distributed stochastic neighbor embedding (t-SNE) for cell clustering. Results We obtained 8 cell subpopulations, each of which had different marker genes. 7 out of the 10 hub genes were detected by single-cell sequencing analysis. The expression quantity and proportion of the 7 genes were different in 8 cell clusters. Conclusion In general, our study revealed the immune characteristics and determined 7 prognostic markers for MI at the single-cell level, providing a new understanding of the molecular characteristics and mechanism of MI.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Qing Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Zhixin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Chunying Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Yunfeng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province 330006, China
- Hypertension Research Institute, Hypertension Research Institute of Jiangxi Province, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang City Jiangxi Province, China
| |
Collapse
|
150
|
Zhang J, Cao L, Wang X, Li Q, Zhang M, Cheng C, Yu L, Xue F, Sui W, Sun S, li N, Bu P, Liu B, Gao F, Zhen J, Su G, Zhang C, Gao C, Zhang M, Zhang Y. The E3 ubiquitin ligase TRIM31 plays a critical role in hypertensive nephropathy by promoting proteasomal degradation of MAP3K7 in the TGF-β1 signaling pathway. Cell Death Differ 2022; 29:556-567. [PMID: 34584221 PMCID: PMC8901735 DOI: 10.1038/s41418-021-00874-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Renal fibrosis and inflammation are critical for the initiation and progression of hypertensive renal disease (HRD). However, the signaling mechanisms underlying their induction are poorly understood, and the role of tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase, in HRD remains unclear. This study aimed to elucidate the role of TRIM31 in the pathogenesis of HRD, discover targets of TRIM31, and explore the underlying mechanisms. Pathological specimens of human HRD kidney were collected and an angiotensin II (AngII)-induced HRD mouse model was developed. We found that TRIM31 was markedly reduced in both human and mouse HRD renal tissues. A TRIM31-/- mice was thus constructed and showed significantly aggravated hypertension-induced renal dysfunction, fibrosis, and inflammation, following chronic AngII infusion compared with TRIM31+/+ mice. In contrast, overexpression of TRIM31 by injecting adeno-associated virus (AAV) 9 into C57BL/6J mice markedly ameliorated renal dysfunction, fibrotic and inflammatory response in AngII-induced HRD relative to AAV-control mice. Mechanistically, TRIM31 interacted with and catalyzed the K48-linked polyubiquitination of lysine 72 on Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), followed by the proteasomal degradation of MAP3K7, which further negatively regulated TGF-β1-mediated Smad and MAPK/NF-κB signaling pathways. In conclusion, this study has demonstrated for the first time that TRIM31 serves as an important regulator in AngII-induced HRD by promoting MAP3K7 K48-linked polyubiquitination and inhibiting the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Cao
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohong Wang
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Li
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhang
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Cheng
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liwen Yu
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Xue
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shangwen Sun
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na li
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peili Bu
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingyu Liu
- grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fei Gao
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junhui Zhen
- grid.452402.50000 0004 1808 3430Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Guohai Su
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Zhang
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China ,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengjiang Gao
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Meng Zhang
- grid.27255.370000 0004 1761 1174The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China ,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|