101
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
102
|
Jiang J, Li C, Hu Y, Li C, He J, Leng X, Xiang J, Ge J, Wang J. A novel CFD-based computed index of microcirculatory resistance (IMR) derived from coronary angiography to assess coronary microcirculation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106897. [PMID: 35636354 DOI: 10.1016/j.cmpb.2022.106897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study sought to present a novel approach for computation of the index of microcirculatory resistance (IMR) and to evaluate its diagnostic performance. BACKGROUND IMR is a quantitative assessment to identify coronary microvascular dysfunction. However, its clinical use remains extremely limited. Calculation of IMR from coronary angiography images may increase the utility of coronary microvasculature assessment. METHODS 203 patients with 203 vessels were included in this study. Physiology measurements were obtained with pressure-wire in the whole cohort. The computational fluid dynamics (CFD)-based AccuIMR was computed and evaluated in a blinded fashion using wire-based IMR as the reference standard. RESULTS The overall diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of AccuIMR for detecting coronary microvascular disease were 91.1% (95% CI: 86.4% to 94.7%), 89.4% (95% CI: 80.9% to 95.0%), 92.4% (95% CI: 86.0% to 96.5%), 89.4% (95% CI: 81.8% to 94.1%), and 92.2% (95% CI: 86.7% to 95.8%), respectively. The correlation coefficient equaled to 0.81 (p < 0.001) between AccuIMR and wire-based IMR with the receiver-operating curve had area under the curve of 0.924 (95% CI: 0.878 to 0.956). CONCLUSIONS AccuIMR is a novel pressure-wire free approach to assess coronary microvascular disease with great diagnostic performance, which can be a valid, efficient, and cost-reducing tool to provide an easier routine assessment of coronary microcirculation.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yumeng Hu
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | - Changling Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingsong He
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | | | | | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
103
|
Zhao X, Zhang J, Gong Y, Xu L, Liu H, Wei S, Wu Y, Cha G, Wei H, Mao J, Xia L. Reliable Detection of Myocardial Ischemia Using Machine Learning Based on Temporal-Spatial Characteristics of Electrocardiogram and Vectorcardiogram. Front Physiol 2022; 13:854191. [PMID: 35707012 PMCID: PMC9192098 DOI: 10.3389/fphys.2022.854191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Myocardial ischemia is a common early symptom of cardiovascular disease (CVD). Reliable detection of myocardial ischemia using computer-aided analysis of electrocardiograms (ECG) provides an important reference for early diagnosis of CVD. The vectorcardiogram (VCG) could improve the performance of ECG-based myocardial ischemia detection by affording temporal-spatial characteristics related to myocardial ischemia and capturing subtle changes in ST-T segment in continuous cardiac cycles. We aim to investigate if the combination of ECG and VCG could improve the performance of machine learning algorithms in automatic myocardial ischemia detection. Methods: The ST-T segments of 20-second, 12-lead ECGs, and VCGs were extracted from 377 patients with myocardial ischemia and 52 healthy controls. Then, sample entropy (SampEn, of 12 ECG leads and of three VCG leads), spatial heterogeneity index (SHI, of VCG) and temporal heterogeneity index (THI, of VCG) are calculated. Using a grid search, four SampEn and two features are selected as input signal features for ECG-only and VCG-only models based on support vector machine (SVM), respectively. Similarly, three features (S I , THI, and SHI, where S I is the SampEn of lead I) are further selected for the ECG + VCG model. 5-fold cross validation was used to assess the performance of ECG-only, VCG-only, and ECG + VCG models. To fully evaluate the algorithmic generalization ability, the model with the best performance was selected and tested on a third independent dataset of 148 patients with myocardial ischemia and 52 healthy controls. Results: The ECG + VCG model with three features (S I ,THI, and SHI) yields better classifying results than ECG-only and VCG-only models with the average accuracy of 0.903, sensitivity of 0.903, specificity of 0.905, F1 score of 0.942, and AUC of 0.904, which shows better performance with fewer features compared with existing works. On the third independent dataset, the testing showed an AUC of 0.814. Conclusion: The SVM algorithm based on the ECG + VCG model could reliably detect myocardial ischemia, providing a potential tool to assist cardiologists in the early diagnosis of CVD in routine screening during primary care services.
Collapse
Affiliation(s)
- Xiaoye Zhao
- School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei, China
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, China
- Key Laboratory of Atmospheric Environment Remote Sensing of Ningxia, Yinchuan, China
| | - Jucheng Zhang
- Department of Clinical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinglan Gong
- Hangzhou Maixin Technology Co., Ltd., Hangzhou, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, China
| | - Lihua Xu
- Hangzhou Linghua Biotech Ltd., Hangzhou, China
| | - Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Shujun Wei
- Department of Cardiology, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, China
| | - Yuan Wu
- Department of Cardiology, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, China
| | - Ganhua Cha
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, China
| | - Haicheng Wei
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, China
| | - Jiandong Mao
- School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei, China
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, China
- Key Laboratory of Atmospheric Environment Remote Sensing of Ningxia, Yinchuan, China
| | - Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
104
|
Cattaneo M, Halasz G, Cattaneo MM, Younes A, Gallino C, Sudano I, Gallino A. The Central Nervous System and Psychosocial Factors in Primary Microvascular Angina. Front Cardiovasc Med 2022; 9:896042. [PMID: 35647077 PMCID: PMC9136057 DOI: 10.3389/fcvm.2022.896042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Patients diagnosed with ischemia without obstructive coronary artery disease (INOCA) comprise the group of patients with primary microvascular angina (MVA). The pathophysiology underlying ischemia and angina is multifaceted. Differences in vascular tone, collateralization, environmental and psychosocial factors, pain thresholds, and cardiac innervation seem to contribute to clinical manifestations. There is evidence suggesting potential interactions between the clinical manifestations of MVA and non-cardiac conditions such as abnormal function of the central autonomic network (CAN) in the central nervous system (CNS), pain modulation pathways, and psychological, psychiatric, and social conditions. A few unconventional non-pharmacological and pharmacological techniques targeting these psychosocial conditions and modulating the CNS pathways have been proposed to improve symptoms and quality of life. Most of these unconventional approaches have shown encouraging results. However, these results are overall characterized by low levels of evidence both in observational studies and interventional trials. Awareness of the importance of microvascular dysfunction and MVA is gradually growing in the scientific community. Nonetheless, therapeutic success remains frustratingly low in clinical practice so far. This should promote basic and clinical research in this relevant cardiovascular field investigating, both pharmacological and non-pharmacological interventions. Standardization of definitions, clear pathophysiological-directed inclusion criteria, crossover design, adequate sample size, and mid-term follow-up through multicenter randomized trials are mandatory for future study in this field.
Collapse
Affiliation(s)
- Mattia Cattaneo
- Cardiology Department, Istituto Cardiocentro Ticino, Lugano, Switzerland
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
- *Correspondence: Mattia Cattaneo ;
| | - Geza Halasz
- Heart Failure Unit, Guglielmo da Saliceto Hospital, Azienda unità sanitaria locale (AUSL) Piacenza, University of Parma, Parma, Italy
| | - Magdalena Maria Cattaneo
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
| | - Adel Younes
- Cardiology Department, Istituto Cardiocentro Ticino, Lugano, Switzerland
| | - Camilla Gallino
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
| | - Isabella Sudano
- Human Medicine Department, University of Zurich, Zurich, Switzerland
- Cardiology Department, University Hospital, University Heart Center Zurich, Zurich, Switzerland
| | - Augusto Gallino
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
- Human Medicine Department, University of Zurich, Zurich, Switzerland
| |
Collapse
|
105
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
106
|
Li S, Liu HH, Guo YL, Zhu CG, Wu NQ, Xu RX, Dong Q, Qian J, Dou KF, Li JJ. Current Guideline Risk Stratification and Cardiovascular Outcomes in Chinese Patients Suffered From Atherosclerotic Cardiovascular Disease. Front Endocrinol (Lausanne) 2022; 13:860698. [PMID: 35574011 PMCID: PMC9096217 DOI: 10.3389/fendo.2022.860698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aims Heterogeneity exists among patients with atherosclerotic cardiovascular disease (ASCVD) with regard to the risk of recurrent events. Current guidelines have definitely refined the disease and we aimed to examine the practicability in Chinese population. Methods A cohort of 9944 patients with ASCVD was recruited. Recurrent events occurred during an average of 38.5 months' follow-up were collected. The respective and combinative roles of major ASCVD (mASCVD) events and high-risk conditions, being defined by 2018 AHA/ACC guideline, in coronary severity and outcome were studied. Results The number of high-risk conditions was increased with increasing number of mASCVD events (1.95 ± 1.08 vs. 2.16 ± 1.10 vs. 2.42 ± 1.22). Trends toward the higher to the highest frequency of multi-vessel coronary lesions were found in patients with 1- (71.1%) or ≥2 mASCVD events (82.8%) when compared to those without (67.9%) and in patients with 2- (70.5%) or ≥3 high-risk conditions (77.4%) when compared to those with 0-1 high-risk condition (61.9%). The survival rate was decreased by 6.2% between none- and ≥2 mASCVD events or by 3.5% between 0-1 and ≥3 high-risk conditions. Interestingly, diabetes was independently associated with outcome in patients with 1- [1.54(1.06-2.24)] and ≥2 mASCVD events [1.71(1.03-2.84)]. The positive predictive values were increased among groups with number of mASCVD event increasing (1.10 vs. 1.54 vs. 1.71). Conclusion Propitious refinement of ASCVD might be reasonable to improve the survival. Concomitant diabetes was differently associated with the incremental risk among different ASCVD categories, suggesting the need of an appropriate estimate rather than a 'blanket' approach in risk stratification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian-Jun Li
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
107
|
Common Shared Pathogenic Aspects of Small Vessels in Heart and Brain Disease. Biomedicines 2022; 10:biomedicines10051009. [PMID: 35625746 PMCID: PMC9138783 DOI: 10.3390/biomedicines10051009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Small-vessel disease (SVD), also known as microvascular endothelial dysfunction, is a disorder with negative consequences for various organs such as the heart and brain. Impaired dilatation and constriction of small vessels in the heart lead to reduced blood flow and ischemia independently of coronary artery disease (CAD) and are associated with major cardiac events. SVD is usually a silent form of subcortical vascular burden in the brain with various clinical manifestations, such as silent-lacunar-ischemic events and confluent white-matter hyperintensities. Imaging techniques are the main help for clinicians to diagnose cardiac and brain SVD correctly. Markers of inflammation, such as C-reactive protein, tumor-necrosis-factor α, and interleukin 6, provide insight into the disease and markers that negatively influence nitric-oxide bioavailability and promote oxidative stress. Unfortunately, the therapeutic approach against SVD is still not well-defined. In the last decades, various antioxidants, oxidative stress inhibitors, and superoxide scavengers have been the target of extensive investigations due to their potential therapeutic effect, but with unsatisfactory results. In clinical practice, traditional anti-ischemic and risk-reduction therapies for CAD are currently in use for SVD treatment.
Collapse
|
108
|
Spione F, Arevalos V, Gabani R, Sabaté M, Brugaletta S. Coronary Microvascular Angina: A State-of-the-Art Review. Front Cardiovasc Med 2022; 9:800918. [PMID: 35433857 PMCID: PMC9005807 DOI: 10.3389/fcvm.2022.800918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
Up to 60–70% of patients, undergoing invasive coronary angiography due to angina and demonstrable myocardial ischemia with provocative tests, do not have any obstructive coronary disease. Coronary microvascular angina due to a dysfunction of the coronary microcirculation is the underlying cause in almost 50% of these patients, associated with a bad prognosis and poor quality of life. In recent years, progress has been made in the diagnosis and management of this condition. The aim of this review is to provide an insight into current knowledge of this condition, from current diagnostic methods to the latest treatments.
Collapse
Affiliation(s)
- Francesco Spione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victor Arevalos
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rami Gabani
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manel Sabaté
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Salvatore Brugaletta
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: Salvatore Brugaletta,
| |
Collapse
|
109
|
Huang Q, Wang SS, Luo RH. Correlation and mechanism between cardiac magnetic resonance imaging and oral streptococcus count in patients with primary microvascular angina pectoris. Medicine (Baltimore) 2022; 101:e29060. [PMID: 35357350 PMCID: PMC11319317 DOI: 10.1097/md.0000000000029060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although primary microvascular angina (PMVA) can be diagnosed clinically, the etiology and pathophysiology of PMVA remain unclear. The effects of conventional clinical medications (aspirin, statins, and nitrates) are unsatisfactory, and PMVA can lead to serious cardiovascular events. The present study was designed to analyze the correlation between the load perfusion cardiovascular magnetic resonance imaging (CMR) results and the Streptococcus sanguinis(S sanguinis) count and the correlations between the S sanguinis count in oral cavity subgingival plaque and changes in the plasma levels of platelet alpha-granule membrane glycoprotein 140 (GMP-140), fibrinopeptide A (FPA), von Willebrand factor (vWF), and homocysteine (Hcy) in patients with PMVA after increased anti-infective treatment of the oral cavity. This study also discusses the pathogenesis of PMVA from this perspective. The differences in the S sanguinis count in oral cavity subgingival plaque and oral health status between healthy people and PMVA patients will be compared, and the correlation between the oral cavity health status and disease in PMVA patients will be analyzed. METHODS The present randomized controlled trial with a parallel control group will be conducted in 68 PMVA patients diagnosed by the in-patient cardiology department. The selected patients will be randomly divided into 2 groups, one receiving routine drug treatment and the other a combination of anti-infective treatments. The normal control group will comprise 30 healthy people with no infectious oral cavity disease matched by age and sex. We will conduct CMR, and the presence of S sanguinis in subgingival plaques will be used to determine the bacterial count in PMVA patients. Blood samples will also be collected to determine the levels of GMP-140, FPA, vWF, and Hcy. S sanguinis in the subgingival plaque of PMVA patients will be further analyzed after increasing the oral cavity anti-infective treatment; the resulting changes and their correlations with changes in GMP-140, FPA, vWF, and Hcy levels will be assessed. Additionally, the differences in the S sanguinis count and the oral cavity health status of oral cavity dental plaque between healthy people and PMVA patients will be determined, and the correlation between the oral cavity conditions and PMVA will be analyzed. The relationship between the perfusion CMR results and the oral cavity S sanguinis count of PMVA patients, and the potential pathogenesis, will be explored. We will use the SPSS19.0 statistical software package to analyze the data. The measurements will be expressed as means±standard deviation. Student t test will be used for intergroup comparisons, a relative number description will be used for the count data, and the chi-square test will be used for intergroup comparisons. Multivariate logistic regression will be performed to identify associations. A P value < .05 will be considered significant. DISCUSSION In this study, the correlation between the perfusion CMR results and the S sanguinis count in oral cavity subgingival plaque of PMVA patients will be analyzed. Changes in the levels of GMP-140, FPA, vWF, and Hcy of PMVA patients after receiving increased oral cavity anti-infective treatment will be explored, and the difference in the S sanguinis count in oral cavity subgingival plaque and the oral cavity health status between healthy people and PMVA patients will be compared. ATRIAL REGISTRATION Chinese Clinical Trial Registry, (http://www.chictr.org.cn/showprojen.aspx?proj=45091).
Collapse
Affiliation(s)
- Qi Huang
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine (HangZhou Red Cross Hospital), Hangzhou, 208 Huancheng East Road, Zhejiang, China.
| | - Shi Sheng Wang
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine (HangZhou Red Cross Hospital), Hangzhou, 208 Huancheng East Road, Zhejiang, China.
| | - Rong Hua Luo
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine (HangZhou Red Cross Hospital), Hangzhou, 208 Huancheng East Road, Zhejiang, China.
| |
Collapse
|
110
|
Michallek F, Nakamura S, Ota H, Ogawa R, Shizuka T, Nakashima H, Wang YN, Ito T, Sakuma H, Dewey M, Kitagawa K. Fractal analysis of 4D dynamic myocardial stress-CT perfusion imaging differentiates micro- and macrovascular ischemia in a multi-center proof-of-concept study. Sci Rep 2022; 12:5085. [PMID: 35332236 PMCID: PMC8948301 DOI: 10.1038/s41598-022-09144-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/17/2022] [Indexed: 12/30/2022] Open
Abstract
Fractal analysis of dynamic, four-dimensional computed tomography myocardial perfusion (4D-CTP) imaging might have potential for noninvasive differentiation of microvascular ischemia and macrovascular coronary artery disease (CAD) using fractal dimension (FD) as quantitative parameter for perfusion complexity. This multi-center proof-of-concept study included 30 rigorously characterized patients from the AMPLIFiED trial with nonoverlapping and confirmed microvascular ischemia (nmicro = 10), macrovascular CAD (nmacro = 10), or normal myocardial perfusion (nnormal = 10) with invasive coronary angiography and fractional flow reserve (FFR) measurements as reference standard. Perfusion complexity was comparatively high in normal perfusion (FDnormal = 4.49, interquartile range [IQR]:4.46-4.53), moderately reduced in microvascular ischemia (FDmicro = 4.37, IQR:4.36-4.37), and strongly reduced in macrovascular CAD (FDmacro = 4.26, IQR:4.24-4.27), which allowed to differentiate both ischemia types, p < 0.001. Fractal analysis agreed excellently with perfusion state (κ = 0.96, AUC = 0.98), whereas myocardial blood flow (MBF) showed moderate agreement (κ = 0.77, AUC = 0.78). For detecting CAD patients, fractal analysis outperformed MBF estimation with sensitivity and specificity of 100% and 85% versus 100% and 25%, p = 0.02. In conclusion, fractal analysis of 4D-CTP allows to differentiate microvascular from macrovascular ischemia and improves detection of hemodynamically significant CAD in comparison to MBF estimation.
Collapse
Affiliation(s)
- Florian Michallek
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Satoshi Nakamura
- grid.260026.00000 0004 0372 555XDepartment of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideki Ota
- grid.69566.3a0000 0001 2248 6943Department of Advanced MRI Collaborative Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryo Ogawa
- grid.459909.80000 0004 0640 6159Saiseikai Matsuyama Hospital, Matsuyama, Japan
| | | | - Hitoshi Nakashima
- grid.416799.4National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yi-Ning Wang
- grid.413106.10000 0000 9889 6335Peking Union Medical College Hospital, Beijing, China
| | - Tatsuro Ito
- grid.31432.370000 0001 1092 3077Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hajime Sakuma
- grid.260026.00000 0004 0372 555XDepartment of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marc Dewey
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Kakuya Kitagawa
- grid.260026.00000 0004 0372 555XDepartment of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
111
|
Zhan J, Yin Q, Zhao P, Hong L. Role and mechanism of the lncRNA SNHG1/miR‑450b‑5p/IGF1 axis in the regulation of myocardial ischemia reperfusion injury. Mol Med Rep 2022; 25:176. [PMID: 35315499 PMCID: PMC8972235 DOI: 10.3892/mmr.2022.12692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
The increasing rates of morbidity and mortality caused by ischemic heart disease pose a serious threat to human health. Long non‑coding (lnc)RNA small nucleolar RNA host gene 1 (SNHG1) has a protective effect on the myocardium. In the present study, the role of lncRNA SNHG1 in myocardial ischemia reperfusion injury (MIRI) and the underlying mechanisms were investigated. After hypoxia/reoxygenation (H/R) induction, the expression levels of lncRNA SNHG1 were detected using reverse transcription‑quantitative PCR. After lncRNA SNHG1 overexpression via cell transfection, cell viability was detected using an MTT assay, apoptotic rates were detected using TUNEL staining, apoptosis‑related protein expression levels were detected using western blotting and respective kits were used to measure the oxidative stress levels. The Encyclopedia of RNA Interactomes database predicted the presence of binding sites between lncRNA SNHG1 and microRNA (miR)‑450b‑5p, and between miR‑450b‑5p and insulin‑like growth factor 1 (IGF1). These interactions were then verified using luciferase reporter assays. Subsequently, the regulatory mechanism underlying the lncRNA SNHG1/miR‑450b‑5p/IGF1 axis in MIRI was investigated by overexpressing miR‑450b‑5p and knocking down IGF1 expression in H/R‑induced cells. Finally, the expression of PI3K/Akt signaling pathway‑related proteins was detected using western blotting. lncRNA SNHG1 expression was significantly downregulated in H/R‑induced AC16 cells. lncRNA SNHG1 overexpression significantly inhibited apoptosis and decreased oxidative stress levels in H/R‑induced AC16 cells, which was mediated via regulation of the miR‑450b‑5p/IGF1 axis and activation of the PI3K/Akt signaling pathway. Therefore, the present study suggested that activation of the PI3K/Akt signaling pathway via the lncRNA SNHG1/miR‑450b‑5p/IGF1 axis inhibited the apoptosis and oxidative stress levels of H/R‑induced AC16 cells.
Collapse
Affiliation(s)
- Junfeng Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiulin Yin
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peng Zhao
- Department of Cardiology, People's Hospital of Zixi County, Fuzhou, Jiangxi 335300, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
112
|
Barton JC, Kaski JC. Ethnic and Regional Differences in the Management of Angina: The Way Forward. Eur Cardiol 2022; 17:e07. [PMID: 35321525 PMCID: PMC8924955 DOI: 10.15420/ecr.2021.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
For decades, there has been great interest in ethnic differences in the management of angina and stable cardiovascular disease. Clinical decisionmaking is known to be both consciously and unconsciously influenced by a patient's demographics, and this is due to in part to differences in clinical guidance and opinion. However, the evidence supporting such decision-making is sparse. Nonetheless, there is overwhelming evidence that international, national, regional, institutional, departmental and individual bias disproportionately affect subgroups of the population, resulting in adverse patient outcomes. While without doubt there will be rapid advancements in individualised therapies over the coming years and decades, the most beneficial immediate action clinicians can take is to reduce disparities in both the evidence base and care provision. Doing so will require great collaborative effort.
Collapse
Affiliation(s)
- Jack C Barton
- Critical Care and Perioperative Medicine Research Group, Royal London Hospital, London, UK
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| |
Collapse
|
113
|
Wang X, Kanda H, Tsujino T, Kogure Y, Zhu F, Yamamoto S, Sakaguchi T, Noguchi K, Dai Y. Reactive Oxygen Species Cause Exercise-Induced Angina in a Myocardial Ischaemia-Reperfusion Injury Model. Int J Mol Sci 2022; 23:ijms23052820. [PMID: 35269964 PMCID: PMC8910887 DOI: 10.3390/ijms23052820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Percutaneous coronary intervention (PCI) effectively treats obstructive coronary artery syndrome. However, 30–40% patients continue to have angina after a successful PCI, thereby reducing patient satisfaction. The mechanisms underlying persistent angina after revascularisation therapy are still poorly understood; hence, the treatment or guideline for post-PCI angina remains unestablished. Thus, this study aimed to investigate the mechanisms underlying effort angina in animals following myocardial ischaemia-reperfusion (I/R) injury. Phosphorylated extracellular signal-regulated kinase (p-ERK), a marker for painful stimulation-induced neuronal activation, was used for the investigation. After a forced treadmill exercise (FTE), the number of p-ERK-expressing neurons increased in the superficial dorsal horn of the I/R model animals. Moreover, FTE evoked hydrogen peroxide (H2O2) production in the I/R-injured heart, inducing angina through TRPA1 activation on cardiac sensory fibres. Notably, the treatment of a TEMPOL, a reactive oxygen species scavenger, or TRPA1−/− mice successfully alleviated the FTE-induced p-ERK expression in the dorsal horn. The production of H2O2, a reactive oxygen species, through physical exercise contributes to angina development following I/R. Hence, our findings may be useful for understanding and treating angina following revascularisation therapy.
Collapse
Affiliation(s)
- Xiaohang Wang
- Department of Cardiovascular Surgery, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan; (X.W.); (T.S.)
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
| | - Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan;
| | - Takeshi Tsujino
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
| | - Feng Zhu
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
| | - Taichi Sakaguchi
- Department of Cardiovascular Surgery, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan; (X.W.); (T.S.)
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan;
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Hyogo, Japan; (H.K.); (T.T.); (Y.K.); (F.Z.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan;
- Correspondence:
| |
Collapse
|
114
|
Imam SS, Al-Abbasi FA, Hosawi S, Afzal M, Nadeem MS, Ghoneim MM, Alshehri S, Alzarea SI, Alquraini A, Gupta G, Kazmi I. Role of platelet rich plasma mediated repair and regeneration of cell in early stage of cardiac injury. Regen Ther 2022; 19:144-153. [PMID: 35229012 PMCID: PMC8856949 DOI: 10.1016/j.reth.2022.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Platelet-rich plasma (PRP) is a widely accepted treatment approach and has heightened the quality of care among physicians. PRP has been used over the last decade to boost clinical results of plastic therapies, periodontal surgery and intra-bony defects. According to certain research, elevated levels of PRP growth factors that could promote tissue repair and have the potential for PRP to be beneficial in regenerating processes that Maxillofacial and Oral Surgeons, Veterinary Officers, Athletic medicine specialists and Dermatologists have long admired. PRP is an autologous whole blood fraction that has a heavy amount of a variety of growth factors such as epidermal growth factor (EGF), Vascular Endothelial Growth Factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factors (FGFs), transforming growth factor beta-1 (TGF-b), insulin-like growth factor-I (IGF-I) and platelet-derived growth factor (PDGF) which can facilitate repair and regeneration. Moreover, a clinical trial of PRP in severe angina patients has shown its excellent safety profile. However, PRP is a very complex biological substance with an array of active biomolecules, its functions are yet to be fully clarified. In-addition, there was insufficient work assessing possible cardiovascular tissue benefits from PRP. Thus, it still remains necessary to identify the most clinically important cardiovascular applications and further research in clinical scenario need to be validated.
Collapse
Key Words
- ADMSC, adipose-derived mesenchymal stem cells
- BMSCs, bone marrow-derived mesenchymal stem cells
- Cardiac injury
- Cell repair and regeneration
- EGF, epidermal growth factor
- FDPs, fibrin degradation products
- FGFs, fibroblast growth factors
- HGF, hepatocyte growth factor
- IGF-I, insulin-like growth factor-I
- IRI, ischemic reperfusion injury
- ISO, Isoproterenol
- LP-PRP, leukocyte-poor PRP
- LR-PRP, leukocyte-rich PRP
- MH, Manuka honey
- MI, myocardial infarction
- MRI, magnetic resonance imaging
- P-PRF, pure platelet-rich fibrin
- PDGF, platelet-derived growth factor
- PRP, platelet-rich plasma
- Platelet-rich plasma
- ROS, reactive oxygen species
- TGF-b, transforming growth factor beta
- VEGF, vascular endothelial growth factor
- nsPEF, nanosecond pulsed electric fields
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
115
|
Chen H, Xue R, Huang P, Wu Y, Fan W, He X, Dong Y, Liu C. Modified Exosomes: a Good Transporter for miRNAs within Stem Cells to Treat Ischemic Heart Disease. J Cardiovasc Transl Res 2022; 15:514-523. [PMID: 35229250 DOI: 10.1007/s12265-022-10216-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy for ischemic heart disease (IHD) has become a promising but controversial strategy during the past two decades. The fate and effects of stem cells engrafted into ischemia myocardium are still not fully understood. Stem cell-derived exosomes, a subcategory of extracellular vesicles with nano size, have been considered as an efficient and safe transporter for microRNAs (miRNAs) and a central mediator of the cardioprotective potentials of the parental cells. Hypoxia, pharmacological intervention, and gene manipulation could alter the exosomal miRNAs cargos from stem cells and promote therapeutic potential. Furthermore, several bioengineering methods were also successfully applied to modify miRNAs content and components of exosomal membrane proteins recently. In this review, we outline relevant results about exosomal miRNAs from stem cells and focus on the current strategies to promote their therapeutic efficiency in IHD.
Collapse
Affiliation(s)
- Hao Chen
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruicong Xue
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peisen Huang
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuzhong Wu
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wendong Fan
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin He
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yugang Dong
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Liu
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China. .,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. .,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
116
|
Yang Y, Huang Y, Zeng Z. Advances in cGAS-STING Signaling Pathway and Diseases. Front Cell Dev Biol 2022; 10:800393. [PMID: 35186921 PMCID: PMC8851069 DOI: 10.3389/fcell.2022.800393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogens can produce conserved pathogen-associated molecular patterns (PAMPs) after invading the body, which can be specifically recognized by host pattern recognition receptors (PRRs). In recent years, it has been found that cytoplasmic DNA receptors recognize exogenous DNA inducing activation of interferon 1 (IFN1), which is a rapid advance in various research areas. The cyclic GMP–AMP synthase (cGAS) stimulator of interferon gene (STING) signaling pathway is a critical natural immune pathway in cells. Early studies revealed that it plays a crucial regulatory role in pathogen infection and tumor, and it is associated with various human autoimmune diseases. Recently studies have found that activation of cGAS-STING signaling pathway is related to different organ injuries. The present review elaborates on the regulation of the cGAS-STING signaling pathway and its role in various diseases, aiming to provide a theoretical basis for immunotherapy targeting this pathway.
Collapse
|
117
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022; 19:20210898. [PMID: 35167770 PMCID: PMC8848759 DOI: 10.1098/rsif.2021.0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K. Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
118
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022. [PMID: 35167770 DOI: 10.1101/2021.02.10.430654v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
119
|
Zhang H, Che W, Shi K, Huang Y, Xu C, Fei M, Fan X, Zhang J, Hu X, Hu F, Qin S, Zhang X, Huang Q, Yu F. FT4/FT3 ratio: A novel biomarker predicts coronary microvascular dysfunction (CMD) in euthyroid INOCA patients. Front Endocrinol (Lausanne) 2022; 13:1021326. [PMID: 36187090 PMCID: PMC9520241 DOI: 10.3389/fendo.2022.1021326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Ischemia and no obstructive coronary artery disease (INOCA) patients who presented coronary microvascular dysfunction (CMD) demonstrate a poor prognosis, yet the risk factors for CMD remain unclear. Subtle changes in thyroid hormone levels within the normal range, especially the free thyroxine (FT4)/free triiodothyronine (FT3) ratio, have been shown to regulate the cardiovascular system. This prospective study investigated the correlation between FT4/FT3 ratio and CMD in euthyroid patients with INOCA. METHODS This prospective study (www.chictr.org.cn/, ChiCTR2000037112) recruited patients with myocardial ischemia symptoms who underwent both coronary angiography (CAG) and myocardial perfusion imaging (MPI) with dynamic single-photon emission computed tomography (D-SPECT). INOCA was defined as coronary stenosis< 50% and CMD was defined as coronary flow reserve (CFR)<2.5. All patients were excluded from abnormal thyroid function and thyroid disease history. RESULTS Among 71 INOCA patients (15 [21.1%] CMD), FT4 and FT4/FT3 ratio in CMD group were significantly higher and both showed significantly moderate correlation with CFR (r=-0.25, p=0.03; r=-0.34, p=0.003, respectively). The ROC curve revealed that FT4/FT3 ratio had the highest efficacy for predicting CMD with an optimized cutoff value>3.39 (AUC 0.78, p<0.001, sensitivity, 80.0%; specificity, 71.4%). Multivariate logistic regression showed that FT4/FT3 ratio was an independent predictor of CMD (OR 7.62, 95% CI 1.12-51.89, p=0.038, P for trend=0.006). CONCLUSION In euthyroid INOCA patients, increased FT4/FT3 ratio levels are associated with the occurrence of CMD, presenting a novel biomarker for improving the risk stratification.
Collapse
Affiliation(s)
- Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Yan Huang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengyu Fei
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xueping Hu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fan Hu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiaoying Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Qingqing Huang, ; Fei Yu,
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Qingqing Huang, ; Fei Yu,
| |
Collapse
|
120
|
Gozalo AS, Lambert LE, Zerfas PM, Elkins WR. Detection of early myocardial cell death in owl monkeys (Aotus nancymai) using complement component C9 immunohistochemistry in formalin-fixed paraffin-embedded heart tissues: A retrospective study. J Med Primatol 2021; 51:93-100. [PMID: 34971004 DOI: 10.1111/jmp.12567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/20/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Owl monkeys are commonly used in biomedical research which is affected by the high incidence of cardiomyopathy in this species. Occasionally, owl monkeys with no clinical signs of heart disease are found dead and at necropsy show no, or very mild, cardiomyopathy. A possible explanation for sudden death is acute myocardial infarction; however, early myocardial changes may be difficult to assess by conventional stains and light microscopy. METHODS Complement component C9 immunohistochemistry was performed in paraffin-embedded heart tissue samples from owl monkeys who died suddenly, or were euthanized due to sickness, to determine whether these animals suffered from acute myocardial infarcts. RESULTS AND CONCLUSION C9 deposits were found in the myocardium of 19 out of 20 (95%) animals. The findings in this study suggest owl monkeys suffer from acute myocardial infarcts, and complement component C9 immunohistochemistry may be a useful diagnostic tool.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia M Zerfas
- Pathology Service, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
121
|
Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:789267. [PMID: 34957264 PMCID: PMC8695728 DOI: 10.3389/fcvm.2021.789267] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic heart disease refers to myocardial degeneration, necrosis, and fibrosis caused by coronary artery disease. It can lead to severe left ventricular dysfunction (LVEF ≤ 35–40%) and is a major cause of heart failure (HF). In each contraction, myocardium is subjected to a variety of mechanical forces, such as stretch, afterload, and shear stress, and these mechanical stresses are clinically associated with myocardial remodeling and, eventually, cardiac outcomes. Mitochondria produce 90% of ATP in the heart and participate in metabolic pathways that regulate the balance of glucose and fatty acid oxidative phosphorylation. However, altered energetics and metabolic reprogramming are proved to aggravate HF development and progression by disturbing substrate utilization. This review briefly summarizes the current insights into the adaptations of cardiomyocytes to mechanical stimuli and underlying mechanisms in ischemic heart disease, with focusing on mitochondrial metabolism. We also discuss how mechanical circulatory support (MCS) alters myocardial energy metabolism and affects the detrimental metabolic adaptations of the dysfunctional myocardium.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cadre Ward, The 960 Hospital of Chinese People's Liberation Army, Jinan, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
122
|
Effectiveness and Tolerability of Trimetazidine 80 Mg Once Daily in Patients with Stable Angina Uncontrolled with Bisoprolol-Based Therapy: The Modus Vivendi Observational Study. Cardiol Ther 2021; 11:93-111. [PMID: 34958427 PMCID: PMC8933606 DOI: 10.1007/s40119-021-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Modus Vivendi was conducted in routine clinical practice to evaluate the effect of adding trimetazidine 80 mg once daily (TMZ 80 OD) to treat patients with persistent symptoms despite treatment with background antianginal therapies including maximally tolerated bisoprolol. Methods This multicenter, prospective, observational, open-label, uncontrolled study recruited adult outpatients with a confirmed diagnosis of stable angina to whom physicians had decided to prescribe TMZ 80 OD. All patients were symptomatic despite treatment, including maximally tolerated doses of bisoprolol. Data on number of angina attacks, use of short-acting nitrates, and quality of life (QoL) were collected at baseline (V1) and at 1-month (V2) and 3-month (V2) follow-up visits. Two sub-analyses assessed efficacy in patients who remained on a stable bisoprolol dose throughout the study, and in patients in whom background antianginal therapy was known. Results A total of 1939 patients were recruited (57.2% women). The mean age was 65.6 ± 8.8 years; 73.8% had class II and 26.2% class III angina. At V1, the mean number of angina attacks per week was 6.2 ± 6.5 despite antianginal therapy including maximally tolerated bisoprolol dosage. Following the addition of TMZ 80 OD, this decreased to 3.4 ± 4.2 attacks per week at V2, and 1.6 ± 2.6 at V3 (P < 0.05 at V2 and V3), with concomitant reductions in short-acting nitrate use (P < 0.05). Significant improvements in QoL were observed throughout the study. Subgroup analyses showed that the addition of TMZ 80 OD to guideline-recommended antianginal therapy was associated with significant reductions in the mean number of weekly angina attacks and consumption of short-acting nitrates and improvements in QoL whether patients were treated with maximally tolerated bisoprolol and TMZ 80 OD alone, or maximally tolerated bisoprolol and TMZ 80 OD on top of other antianginal therapies. Treatment was well tolerated. Conclusion The study findings support the addition of TMZ 80 OD to bisoprolol with or without other antianginal therapies for patients with persistent angina. Trial Registration This study was retrospectively registered under the number ISRCTN29992579.
Collapse
|
123
|
Seitz A, McChord J, Bekeredjian R, Sechtem U, Ong P. Definitions and Epidemiology of Coronary Functional Abnormalities. Eur Cardiol 2021; 16:e51. [PMID: 34950247 PMCID: PMC8674628 DOI: 10.15420/ecr.2021.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022] Open
Abstract
Coronary functional abnormalities are frequent causes of angina pectoris, particularly in patients with unobstructed coronary arteries. There is a spectrum of endotypes of functional coronary abnormalities with different mechanisms of pathology including enhanced vasoconstriction (i.e. coronary artery spasm) or impaired vasodilatation, such as impaired coronary flow reserve or increased microvascular resistance. These vasomotor abnormalities can affect various compartments of the coronary circulation such as the epicardial conduit arteries and/or the coronary microcirculation. Unequivocal categorisation and nomenclature of the broad spectrum of disease endotypes is crucial both in clinical practice as well as in clinical trials. This article describes the definitions of coronary functional abnormalities with currently accepted cut-off values, as well as diagnostic methods to identify and distinguish endotypes. The authors also provide a summary of contemporary data on the prevalence of the different endotypes of coronary functional abnormalities and their coexistence.
Collapse
Affiliation(s)
- Andreas Seitz
- Robert-Bosch-Krankenhaus, Department of Cardiology and Angiology, Stuttgart, Germany
| | - Johanna McChord
- Robert-Bosch-Krankenhaus, Department of Cardiology and Angiology, Stuttgart, Germany
| | - Raffi Bekeredjian
- Robert-Bosch-Krankenhaus, Department of Cardiology and Angiology, Stuttgart, Germany
| | - Udo Sechtem
- Robert-Bosch-Krankenhaus, Department of Cardiology and Angiology, Stuttgart, Germany
| | - Peter Ong
- Robert-Bosch-Krankenhaus, Department of Cardiology and Angiology, Stuttgart, Germany
| |
Collapse
|
124
|
Garland CJ, Dora KA. Endothelium-Dependent Hyperpolarization: The Evolution of Myoendothelial Microdomains. J Cardiovasc Pharmacol 2021; 78:S3-S12. [PMID: 34840265 DOI: 10.1097/fjc.0000000000001087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/29/2021] [Indexed: 10/19/2022]
Abstract
ABSTRACT Endothelium-derived hyperpolarizing factor (EDHF) was envisaged as a chemical entity causing vasodilation by hyperpolarizing vascular smooth muscle (VSM) cells and distinct from nitric oxide (NO) ([aka endothelium-derived relaxing factor (EDRF)]) and prostacyclin. The search for an identity for EDHF unraveled the complexity of signaling within small arteries. Hyperpolarization originates within endothelial cells (ECs), spreading to the VSM by 2 branches, 1 chemical and 1 electrical, with the relative contribution varying with artery location, branch order, and prevailing profile of VSM activation. Chemical signals vary likewise and can involve potassium ion, lipid mediators, and hydrogen peroxide, whereas electrical signaling depends on physical contacts formed by homocellular and heterocellular (myoendothelial; MEJ) gap junctions, both able to conduct hyperpolarizing current. The discovery that chemical and electrical signals each arise within ECs resulted in an evolution of the single EDHF concept into the more inclusive, EDH signaling. Recognition of the importance of MEJs and particularly the fact they can support bidirectional signaling also informed the discovery that Ca2+ signals can pass from VSM to ECs during vasoconstriction. This signaling activates negative feedback mediated by NO and EDH forming a myoendothelial feedback circuit, which may also be responsible for basal or constitutive release of NO and EDH activity. The MEJs are housed in endothelial projections, and another spin-off from investigating EDH signaling was the discovery these fine structures contain clusters of signaling proteins to regulate both hyperpolarization and NO release. So, these tiny membrane bridges serve as a signaling superhighway or infobahn, which controls vasoreactivity by responding to signals flowing back and forth between the endothelium and VSM. By allowing bidirectional signaling, MEJs enable sinusoidal vasomotion, co-ordinated cycles of widespread vasoconstriction/vasodilation that optimize time-averaged blood flow. Cardiovascular disease disrupts EC signaling and as a result vasomotion changes to vasospasm.
Collapse
|
125
|
Bertero E, Heusch G, Münzel T, Maack C. A pathophysiological compass to personalize antianginal drug treatment. Nat Rev Cardiol 2021; 18:838-852. [PMID: 34234310 DOI: 10.1038/s41569-021-00573-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Myocardial ischaemia results from coronary macrovascular or microvascular dysfunction compromising the supply of oxygen and nutrients to the myocardium. The underlying pathophysiological processes are manifold and encompass atherosclerosis of epicardial coronary arteries, vasospasm of large or small vessels and microvascular dysfunction - the clinical relevance of which is increasingly being appreciated. Myocardial ischaemia can have a broad spectrum of clinical manifestations, together denoted as chronic coronary syndromes. The most common antianginal medications relieve symptoms by eliciting coronary vasodilatation and modulating the determinants of myocardial oxygen consumption, that is, heart rate, myocardial wall stress and ventricular contractility. In addition, cardiac substrate metabolism can be altered to alleviate ischaemia by modulating the efficiency of myocardial oxygen use. Although a universal agreement exists on the prognostic importance of lifestyle interventions and event prevention with aspirin and statin therapy, the optimal antianginal treatment for patients with chronic coronary syndromes is less well defined. The 2019 guidelines of the ESC recommend a personalized approach, in which antianginal medications are tailored towards an individual patient's comorbidities and haemodynamic profile. Although no antianginal medication improves survival, their efficacy for reducing symptoms profoundly depends on the underlying mechanism of the angina. In this Review, we provide clinicians with a rationale for when to use which compound or combination of drugs on the basis of the pathophysiology of the angina and the mode of action of antianginal medications.
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany.
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.
- Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
126
|
Aronov DM, Bubnova MG, Drapkina OM. Atherosclerosis pathogenesis from the perspective of microvascular dysfunction. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-3076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The article discusses different points of view on atherosclerosis development. The facts confirming the lipid hypothesis are presented. Attention is drawn to the possible participation of vasa vasorum in the development of atherosclerosis.
Collapse
Affiliation(s)
- D. M. Aronov
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. G. Bubnova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
127
|
Extreme Heat and Cardiovascular Health: What a Cardiovascular Health Professional Should Know. Can J Cardiol 2021; 37:1828-1836. [PMID: 34802857 DOI: 10.1016/j.cjca.2021.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023] Open
Abstract
As global temperatures continue to rise, extreme heat events are becoming more frequent and intense. Extreme heat affects cardiovascular health as it is associated with a greater risk of adverse cardiovascular events, especially for adults with preexisting cardiovascular diseases. Nonetheless, the pathophysiology underlying the association between extreme heat and cardiovascular risk remains understudied. Furthermore, specific recommendations to mitigate the effects of extreme heat on cardiovascular health remain limited to guide clinical practice within the context of a warming climate. The overall objective of this review article is to raise awareness that extreme heat poses a risk for cardiovascular health. Specifically, the review discusses why cardiovascular healthcare professionals should care about extreme heat, how extreme heat affects cardiovascular health, and recommendations to minimise the cardiovascular consequences of extreme heat. Future research directions are also provided to further our understating of the cardiovascular health consequences of extreme heat. A better awareness and understanding of the cardiovascular consequences of extreme heat will help cardiovascular health professionals assess the risk and optimise the care of their patients exposed to an increasingly warm climate.
Collapse
|
128
|
Meeder JG, Hartzema-Meijer MJ, Jansen TPJ, Konst RE, Damman P, Elias-Smale SE. Outpatient Management of Patients With Angina With No Obstructive Coronary Arteries: How to Come to a Proper Diagnosis and Therapy. Front Cardiovasc Med 2021; 8:716319. [PMID: 34796207 PMCID: PMC8592903 DOI: 10.3389/fcvm.2021.716319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Two-thirds of women and one-third of men who undergo a clinically indicated coronary angiography for stable angina, have no obstructive coronary artery disease (CAD). Coronary vascular dysfunction is a highly prevalent underlying cause of angina in these so called “Angina with No Obstructive Coronary Arteries (ANOCA)” patients, foremost in middle aged women. Coronary vascular dysfunction encompasses various endotypes, namely epicardial and microvascular coronary spasms, impaired vasodilatation, and increased microvascular resistance. ANOCA patients, especially those with underlying coronary vascular dysfunction, have an adverse cardiovascular prognosis, poor physical functioning, and a reduced quality of life. Since standard ischemia detection tests and coronary angiograms are not designed to diagnose coronary vascular dysfunction, this ischemic heart disease is often overlooked and hence undertreated. But adequate diagnosis is vital, so that treatment can be started to reduce symptoms, reduce healthcare costs and improve quality of life and cardiovascular prognosis. The purpose of this review is to give a contemporary overview of ANOCA with focus on coronary vascular dysfunction. We will provide a possible work-up of patients suspected of coronary vascular dysfunction in the outpatient clinical setting, based on the latest scientific insights and international consensus documents. We will discuss the value of ischemia detection testing, and non-invasive and invasive methods to diagnose coronary vascular dysfunction. Furthermore, we will go into pharmacological and non-pharmacological therapeutic options including anti-anginal regimens and lifestyle interventions.
Collapse
Affiliation(s)
- Joan G Meeder
- Department of Cardiology, VieCuri Medical Center, Venlo, Netherlands
| | | | - Tijn P J Jansen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Regina E Konst
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
129
|
Srinivasa S, Thomas TS, Feldpausch MN, Adler GK, Grinspoon SK. Coronary Vasculature and Myocardial Structure in HIV: Physiologic Insights From the Renin-Angiotensin-Aldosterone System. J Clin Endocrinol Metab 2021; 106:3398-3412. [PMID: 33624807 PMCID: PMC8864747 DOI: 10.1210/clinem/dgab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 11/19/2022]
Abstract
The landscape of HIV medicine dramatically changed with the advent of contemporary antiretroviral therapies, which has allowed persons with HIV (PWH) to achieve good virologic control, essentially eliminating HIV-related complications and increasing life expectancy. As PWH are living longer, noncommunicable diseases, such as cardiovascular disease (CVD), have become a leading cause of morbidity and mortality in PWH with rates that are 50% to 100% higher than in well-matched persons without HIV. In this review, we focus on disease of the coronary microvasculature and myocardium in HIV. We highlight a key hormonal system important to cardiovascular endocrinology, the renin-angiotensin-aldosterone system (RAAS), as a potential mediator of inflammatory driven-vascular and myocardial injury and consider RAAS blockade as a physiologically targeted strategy to reduce CVD in HIV.
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan N Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Steven K. Grinspoon, MD, Metabolism Unit, Massachusetts General Hospital, 55 Fruit Street, 5LON207, Boston, MA 02114, USA. E-mail:
| |
Collapse
|
130
|
Pavão RB, Moreira HT, Pintya AO, Haddad JL, Badran AV, Lima-Filho MDO, Lago IM, Chierice JRA, Schmidt A, Marin-Neto JA. Aspirin plus verapamil relieves angina and perfusion abnormalities in patients with coronary microvascular dysfunction and Chagas disease: a pilot non-randomized study. Rev Soc Bras Med Trop 2021; 54:e0181. [PMID: 34787258 PMCID: PMC8582967 DOI: 10.1590/0037-8682-0181-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Most patients with chronic cardiomyopathy of Chagas disease (CCCD) harbor a secondary cause of coronary microvascular dysfunction (CMD), for which there is no evidence-based therapy. We evaluated the impact of verapamil plus aspirin on symptoms and perfusion abnormalities in patients with CCCD and CMD. METHODS Consecutive patients with angina pectoris, who had neither coronary artery obstructions nor moderate-severe left ventricular dysfunction (left ventricular ejection fraction > 40%) despite showing wall motion abnormalities on ventriculography, were referred for invasive angiography and tested for Chagas disease. Thirty-two patients with confirmed CCCD and ischemia on stress-rest SPECT myocardial perfusion scintigraphy (MPS) were included. Clinical evaluation, quality of life (EQ-5D/ Seattle Angina Questionnaire), and MPS were assessed before and after 3 months of treatment with oral verapamil plus aspirin (n=26) or placebo (n=6). RESULTS The mean patient age was 64 years, and 18 (56%) were female. The ischemic index summed difference score (SDS) in MPS was significantly reduced by 55.6% after aspirin+verapamil treatment. A decrease in SDS was observed in 20 (77%) participants, and in 10 participants, no more ischemia could be detected. Enhancements in quality of life were also detected. No change in symptoms or MPS was observed in the placebo group. CONCLUSIONS This low-cost 3-month treatment for patients diagnosed with CCCD and CMD was safe and resulted in a 55.6% reduction in ischemic burden, symptomatic improvement, and better quality of life.
Collapse
Affiliation(s)
- Rafael Brolio Pavão
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - Henrique Turin Moreira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - Antonio Oswaldo Pintya
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - Jorge Luis Haddad
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - André Vannuchi Badran
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - Moysés de Oliveira Lima-Filho
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - Igor Matos Lago
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - João Reynaldo Abbud Chierice
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - André Schmidt
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - J Antonio Marin-Neto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| |
Collapse
|
131
|
Mangiacapra F, Viscusi MM, Paolucci L, Nusca A, Melfi R, Ussia GP, Grigioni F. The Pivotal Role of Invasive Functional Assessment in Patients With Myocardial Infarction With Non-Obstructive Coronary Arteries (MINOCA). Front Cardiovasc Med 2021; 8:781485. [PMID: 34869695 PMCID: PMC8637881 DOI: 10.3389/fcvm.2021.781485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Myocardial infarction with non-obstructive coronary arteries (MINOCA) encompasses several pathophysiological mechanisms not yet fully understood. Among the latter, vasomotion abnormalities and coronary microvascular dysfunction (CMD) play a major role for both epidemiological and prognostic reasons. Despite current guidelines do not recommend routine physiological assessment of both epicardial and microvascular coronary compartments within the context of an acute myocardial infarction, several recent evidence support the critical role of a comprehensive invasive functional assessment in order to identify the underlying pathophysiological mechanism and consequently to select an appropriate therapeutic strategy. Unfortunately, optimal medical therapy for these patients is not currently established due to the lack of dedicated trials evaluating clinical outcomes of commonly used medications for secondary prevention in MINOCA patients. For this reason, additional research is warranted to provide personalized treatments for patients affected by this puzzling clinical entity.
Collapse
Affiliation(s)
- Fabio Mangiacapra
- Unit of Cardiovascular Science, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Ischemic heart disease (IHD) is commonly recognized as the consequence of coronary atherosclerosis and obstructive coronary artery disease (CAD). However, a significant number of patients may present angina or myocardial infarction even in the absence of any significant coronary artery stenosis and impairment of the coronary microcirculation has been increasingly implicated as a relevant cause of IHD. The term "coronary microvascular dysfunction" (CMD) encompasses several pathogenic mechanisms resulting in functional and/or structural changes in the coronary microcirculation and determining angina and myocardial ischemia in patients with angina without obstructive CAD ("primary" microvascular angina), as well as in several other conditions, including obstructive CAD, cardiomyopathies, Takotsubo syndrome and heart failure, especially the phenotype with preserved ejection fraction. The pathogenesis of CMD is complex and involves the combination of functional and structural alterations leading to impaired coronary blood flow and resulting in myocardial ischemia. In the absence of therapies specifically targeting CMD, attention has been focused on the role of modifiable risk factors. Here, we provide updated evidence regarding the pathophysiological mechanisms underlying CMD, with a particular focus on the role of cardiovascular risk factors and comorbidities. Moreover, we discuss the specific pathogenic mechanisms of CMD across the different cardiovascular diseases, aiming to pave the way for further research and the development of novel strategies for a precision medicine approach.
Collapse
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS
| | - Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart
| |
Collapse
|
133
|
van der Meer RE, Maas AH. The Role of Mental Stress in Ischaemia with No Obstructive Coronary Artery Disease and Coronary Vasomotor Disorders. Eur Cardiol 2021; 16:e37. [PMID: 34721671 PMCID: PMC8532004 DOI: 10.15420/ecr.2021.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
Ischaemic heart disease has been estimated to affect 126.5 million people globally. Approximately 70% of patients with angina and suspected myocardial ischaemia show no signs of obstructed coronary arteries after coronary angiography, but may still demonstrate ischaemia. Ischaemia with no obstructive coronary artery disease (INOCA) is increasingly acknowledged as a serious condition because of its association with poor quality of life and elevated risk for cardiovascular events. The negative effects of psychological stress on INOCA are gaining more attention. Psychological stress is associated with adverse cardiovascular outcomes such as mental stress-induced myocardial ischaemia. Psychological stress includes anxiety, depression, anger and personality disturbances. Coronary microvascular dysfunction and coronary arterial spasm are phenotypes of coronary vasomotor disorders that are triggered by psychological distress and depression, thereby increasing cardiovascular disease risk. Coronary vasomotor disorders are often co-existent in INOCA patients and might be considered as a contributing factor to mental stress-associated adverse cardiovascular outcomes. Additionally, psychological stress induces endothelial dysfunction more often in (young) women with INOCA than in men. Overall, many studies demonstrate an association between mental stress, coronary microvascular dysfunction and coronary vasospasm in patients with INOCA - especially women. Future research on stress-reducing therapies that target coronary vasomotor disorders in patients with INOCA is needed. This is particularly the case in young adolescents, in whom this type of ischaemic heart disease is increasing.
Collapse
Affiliation(s)
| | - Angela Hem Maas
- Department of Cardiology, Radboud University Medical Center Nijmegen, the Netherlands
| |
Collapse
|
134
|
Povsic TJ, Henry TD, Ohman EM, Pepine CJ, Crystal RG, Rosengart TK, Reinhardt RR, Dittrich HC, Traverse JH, Answini GA, Mokadam NA. Epicardial delivery of XC001 gene therapy for refractory angina coronary treatment (The EXACT Trial): Rationale, design, and clinical considerations. Am Heart J 2021; 241:38-49. [PMID: 34224684 DOI: 10.1016/j.ahj.2021.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/25/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Patients with refractory angina (RA) have poor quality of life and new therapies are needed. XC001 is a novel adenoviral vector expressing multiple isoforms of vascular endothelial growth factor (VEGF) promoting an enhanced local angiogenic effect. METHODS The Epicardial Delivery of XC001 Gene Therapy for Refractory Angina Coronary Treatment (EXACT) trial is a 6-month (with 6-month extension) phase 1/2, first-in-human, multicenter, open-label, single-arm, dose-escalation study to evaluate the safety, tolerability, and preliminary efficacy of XC001 in patients with RA. The trial will enroll 33 patients in an initial (n = 12) ascending dose-escalation phase (1 × 109, 1 × 1010, 4 × 1010, and 1 × 1011 viral particles), followed by phase 2 (n = 21) assessing the highest tolerated dose. Patients must have stable Canadian Cardiovascular Society (CCS) class II-IV angina on maximally tolerated medical therapy without options for conventional revascularization, demonstrable ischemia on stress testing, and angina limiting exercise tolerance. XC001 will be delivered directly to ischemic myocardium via surgical transthoracic epicardial access. The primary outcome is safety via adverse event monitoring through 6 months. Efficacy assessments include difference from baseline to month 6 in time to 1 mm of ST segment depression, time to angina, and total exercise duration; myocardial blood flow at rest, and stress and coronary flow reserve by positron emission tomography; quality of life; CCS functional class; and angina frequency. CONCLUSIONS The EXACT trial will determine whether direct intramyocardial administration of XC001 in patients with RA is safe and evaluate its effect on exercise tolerance, myocardial perfusion, angina and physical activity, informing future clinical investigation. CLINICAL TRIAL REGISTRATION NCT04125732.
Collapse
Affiliation(s)
- Thomas J Povsic
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC.
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH
| | - E Magnus Ohman
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY
| | | | | | | | - Jay H Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN
| | - Geoffrey A Answini
- Division of Cardiovascular Surgery, The Christ Hospital Physicians-Heart & Vascular, Cincinnati, OH
| | - Nahush A Mokadam
- Division of Cardiac Surgery, The Ohio State Wexner Medical Center, Columbus, OH
| |
Collapse
|
135
|
Gonen T, Katz-Talmor D, Amital H, Comaneshter D, Cohen AD, Tiosano S. The Association between Sarcoidosis and Ischemic Heart Disease-A Healthcare Analysis of a Large Israeli Population. J Clin Med 2021; 10:jcm10215067. [PMID: 34768590 PMCID: PMC8584952 DOI: 10.3390/jcm10215067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Inflammation plays a pivotal role in atherosclerosis, and the association between chronic inflammatory states and ischemic heart disease (IHD) has been shown in several rheumatic diseases. Persistent inflammation might also be a risk factor for IHD in sarcoidosis patients. (2) Methods: Demographic and clinical data of 3750 sarcoidosis patients and 18,139 age- and sex-matched controls were retrieved from the database of Clalit Health Services, Israel’s largest healthcare organization. Variables associated with IHD were assessed by a logistic regression model. To assess for variables that were related to increased risk of all-cause mortality, the Cox proportional hazards method was used, and a log-rank test was performed for survival analysis. (3) Results: Both groups were composed of 64% females with a median age of 56 years. An association between sarcoidosis and IHD was demonstrated by a multivariate analysis (adjusted odds ratio (OR) 1.5; 95% confidence interval (CI) 1.36–1.66). Long-term follow-up revealed increased mortality among sarcoidosis patients: 561 (15%) deaths compared to 1636 (9%) deaths among controls (p < 0.001). Survival analysis demonstrated that sarcoidosis patients were also at increased risk for all-cause mortality compared to controls (multivariate model, adjusted HR 1.93; 95% CI 1.76–2.13).
Collapse
Affiliation(s)
- Tal Gonen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (T.G.); (H.A.)
- Sheba Medical Center, Department of Medicine ‘B’, Tel-Hashomer, Ramat-Gan 5266202, Israel
| | - Daphna Katz-Talmor
- Department of Medicine ‘A’, University Hospital Samason Assuta Ashdod, Ashdod 7747629, Israel;
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 5266202, Israel
| | - Howard Amital
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (T.G.); (H.A.)
- Sheba Medical Center, Department of Medicine ‘B’, Tel-Hashomer, Ramat-Gan 5266202, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 5266202, Israel
| | - Doron Comaneshter
- Chief Physician’s Office, Clalit Health Services Tel Aviv, Tel-Aviv 6209813, Israel; (D.C.); (A.D.C.)
| | - Arnon D. Cohen
- Chief Physician’s Office, Clalit Health Services Tel Aviv, Tel-Aviv 6209813, Israel; (D.C.); (A.D.C.)
- Faculty of Health Sciences, Siaal Research Center for Family Medicine and Primary Care, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Shmuel Tiosano
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (T.G.); (H.A.)
- Sheba Medical Center, Department of Medicine ‘B’, Tel-Hashomer, Ramat-Gan 5266202, Israel
- The Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 5266202, Israel
- Correspondence: ; Tel.: +972-3-530-2644
| |
Collapse
|
136
|
Nguyen TH, Ong GJ, Girolamo OC, De Menezes Caceres' V, Muminovic A, Chirkov YY, Horowitz JD. Angina due to coronary artery spasm (variant angina): diagnosis and intervention strategies. Expert Rev Cardiovasc Ther 2021; 19:917-927. [PMID: 34633245 DOI: 10.1080/14779072.2021.1991314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Since Prinzmetal first described a 'variant' form of angina pectoris, with predominantly resting episodes of pain and cyclic severity variations, it has gradually become apparent that this clinical presentation is caused by episodes of coronary artery spasm (CAS) involving focal or diffuse changes in large and/or small coronary arteries in the presence or absence of 'fixed' coronary artery stenoses. However, most clinicians have only limited understanding of this group of disorders. AREAS COVERED We examine the clinical presentation of CAS, associated pathologies outside the coronary vasculature, impediments to making the diagnosis, provocative diagnostic tests, available and emerging treatments, and the current understanding of pathogenesis. EXPERT OPINION CAS is often debilitating and substantially under-diagnosed and occur mainly in women. Many patients presenting with CAS crises have non-diagnostic ECGs and normal serum troponin concentrations, but CAS can be suspected on the basis of history and association with migraine, Raynaud's phenomenon and Kounis syndrome. Definitive diagnosis requires provocative testing at coronary angiography. Treatment still centers around the use of calcium antagonists, but with greater understanding of pathogenesis, new management options are emerging.
Collapse
Affiliation(s)
- Thanh Ha Nguyen
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| | - Gao-Jing Ong
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| | - Olivia C Girolamo
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| | - Viviane De Menezes Caceres'
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| | - Armin Muminovic
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| | - Yuliy Y Chirkov
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| | - John D Horowitz
- Department of Cardiology, Central Adelaide Local Health Network, University of Adelaide, Basil Hetzel Institute for Translational Research, Adelaide, Australia
| |
Collapse
|
137
|
Giordano C, Francone M, Cundari G, Pisano A, d'Amati G. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc Pathol 2021; 56:107391. [PMID: 34601072 DOI: 10.1016/j.carpath.2021.107391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial fibrosis is defined as an increased amount of collagen in the myocardium relative to cardiac myocytes. Two main morphologic patterns are recognized: 1) replacement fibrosis, which occurs in response to myocyte necrosis (myocardial scarring); and 2) interstitial fibrosis, which is usually a diffuse process and has been shown to be reversible and treatable. Replacement and interstitial fibrosis often coexist and are a constant feature of pathologic cardiac remodeling. In the last twenty years, there has been significant interest in developing objective non-invasive methods to identify and quantitatively assess myocardial fibrosis in vivo, both for diagnostic purposes and to improve stratification of patients. The present Review focuses on the morphologic patterns of myocardial fibrosis observed either at autopsy and heart transplant, or in vivo by non-invasive imaging techniques. Main aim is to provide clues for the differential diagnosis, with emphasis on entities whose diagnosis may be challenging. An update on the diagnostic and prognostic role of imaging, along with recent data on available biomarkers, is also proposed.
Collapse
Affiliation(s)
- Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy.
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Giulia Cundari
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Annalinda Pisano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
138
|
Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G, Crea F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1352-1371. [PMID: 34556322 PMCID: PMC8528638 DOI: 10.1016/j.jacc.2021.07.042] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Coronary microvascular dysfunction (CMD) encompasses several pathogenetic mechanisms involving coronary microcirculation and plays a major role in determining myocardial ischemia in patients with angina without obstructive coronary artery disease, as well as in several other conditions, including obstructive coronary artery disease, nonischemic cardiomyopathies, takotsubo syndrome, and heart failure, especially the phenotype associated with preserved ejection fraction. Unfortunately, despite the identified pathophysiological and prognostic role of CMD in several conditions, to date, there is no specific treatment for CMD. Due to the emerging role of CMD as common denominator in different clinical phenotypes, additional research in this area is warranted to provide personalized treatments in this "garden variety" of patients. The purpose of this review is to describe the pathophysiological mechanisms of CMD and its mechanistic and prognostic role across different cardiovascular diseases. We will also discuss diagnostic modalities and the potential therapeutic strategies resulting from recent clinical studies.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy. https://twitter.com/marcodelbuono3
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia, USA; VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carl J Lavie
- Department of Cardiovascular Diseases, Ochsner Clinical School, New Orleans, Louisiana, USA
| | | | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
139
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
140
|
Wen GL, Liu SQ, Li M. Two mixed-ligand coordination polymers: treatment activity on coronary artery heart disease by reducing the inflammatory response in the vascular endothelial cells. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1966445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Guang-Lian Wen
- Disinfection Supply Room, First People’s Hospital of Jinan, Jinan, Shandong, China
| | - Shi-Qing Liu
- Static Distribution Center, People's Hospital of Jiyang District, Jinan, Shandong, China
| | - Meng Li
- Human Resources Department, Jinan Central Hospital, Jinan, Shandong, China
| |
Collapse
|
141
|
Prognostic implications of coronary artery stenosis and coronary spasm in patients with stable angina: 5-year follow-up of the Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries (ACOVA) study. Coron Artery Dis 2021; 31:530-537. [PMID: 32168049 DOI: 10.1097/mca.0000000000000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries study, we showed that 62% of patients with stable angina and unobstructed coronary arteries had coronary spasm. In this study, we sought to assess the 5-year prognosis in these patients. METHODS Data regarding the following endpoints were obtained: death, non-fatal myocardial infarction, coronary event (=cardiac death or non-fatal myocardial infarction), persistent angina and repeated coronary angiography. Quality of life was assessed using the Seattle Angina Questionnaire. RESULTS Among patients with unobstructed coronary arteries there were three deaths (2.9%) and no non-fatal myocardial infarction. Among those with obstructive CAD 15 died (13.8%) and three had a non-fatal myocardial infarction (2.8%). Patients with obstructive CAD had a higher rate of all-cause death and coronary events compared to those without (P = 0.004). Persistent angina was more prevalent in patients with unobstructed coronaries (P = 0.042). Prognosis of patients with unobstructed coronaries regarding hard clinical events, persistent angina and repeated coronary angiography was independent of the presence of coronary spasm (all P > 0.05). However, spasm patients were more likely to take nitrate medication at follow-up (P = 0.029). CONCLUSION Patients with stable angina and unobstructed coronary arteries have a favorable prognosis regarding mortality and non-fatal myocardial infarction after 5 years compared to patients with obstructive CAD irrespective of the presence of coronary artery spasm. However, persistent angina remains a common issue in patients with unobstructed coronary arteries leading to a similar frequency of repeated invasive procedures as in patients with obstructive CAD.
Collapse
|
142
|
Zenger B, Good WW, Bergquist JA, Rupp LC, Perez M, Stoddard GJ, Sharma V, MacLeod RS. Pharmacological and simulated exercise cardiac stress tests produce different ischemic signatures in high-resolution experimental mapping studies. J Electrocardiol 2021; 68:56-64. [PMID: 34339897 DOI: 10.1016/j.jelectrocard.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Test the hypothesis that exercise and pharmacological cardiac stressors create different electrical ischemic signatures. INTRODUCTION Current clinical stress tests for detecting ischemia lack sensitivity and specificity. One unexplored source of the poor detection is whether pharmacological stimulation and regulated exercise produce identical cardiac stress. METHODS We used a porcine model of acute myocardial ischemia in which animals were instrumented with transmural plunge-needle electrodes, an epicardial sock array, and torso arrays to simultaneously measure cardiac electrical signals within the heart wall, the epicardial surface, and the torso surface, respectively. Ischemic stress via simulated exercise and pharmacological stimulation were created with rapid electrical pacing and dobutamine infusion, respectively, and mimicked clinical stress tests of five 3-minute stages. Perfusion to the myocardium was regulated by a hydraulic occluder around the left anterior descending coronary artery. Ischemia was measured as deflections to the ST-segment on ECGs and electrograms. RESULTS Across eight experiments with 30 (14 simulated exercise and 16 dobutamine) ischemic interventions, the spatial correlations between exercise and pharmacological stress diverged at stage three or four during interventions (p<0.05). We found more detectable ST-segment changes on the epicardial surface during simulated exercise than with dobutamine (p<0.05). The intramyocardial ischemia formed during simulated exercise had larger ST40 potential gradient magnitudes (p<0.05). CONCLUSION We found significant differences on the epicardium between cardiac stress types using our experimental model, which became more pronounced at the end stages of each test. A possible mechanism for these differences was the larger ST40 potential gradient magnitudes within the myocardium during exercise. The presence of microvascular dysfunction during exercise and its absence during dobutamine stress may explain these differences.
Collapse
Affiliation(s)
- Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; School of Medicine, University of Utah, SLC, UT, USA.
| | - Wilson W Good
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Jake A Bergquist
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Lindsay C Rupp
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Maura Perez
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | | | - Vikas Sharma
- School of Medicine, University of Utah, SLC, UT, USA
| | - Rob S MacLeod
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| |
Collapse
|
143
|
Bechsgaard DF, Prescott E. Coronary Microvascular Dysfunction: A Practical Approach to Diagnosis and Management. Curr Atheroscler Rep 2021; 23:54. [PMID: 34268637 DOI: 10.1007/s11883-021-00947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of diagnostic and treatment considerations in patients with coronary microvascular dysfunction (CMD) in the absence of obstructive coronary artery disease (CAD). RECENT FINDINGS The prevalence of obstructive CAD in unselected patient populations referred for evaluation of angina is less than 10%. A significant proportion of patients with angina and no obstructive CAD have CMD, a condition associated with impaired cardiovascular prognosis. Non-invasive and invasive evaluation of coronary microvascular function is feasible and widely available, yet CMD is underdiagnosed and undertreated. A patient-tailored treatment approach guided by coronary microvascular testing shows promising results for patient-reported outcomes of symptom burden and quality of life. Coronary microvascular testing should be considered in angina patients with no obstructive CAD, before other causes of chest pain are explored. A patient-tailored treatment approach guided by a complete evaluation of epicardial anatomy and macro-and microvascular function may help optimize treatment strategy and prevent unnecessary medical interventions. More research is needed to establish the long-term effect of patient-tailored therapies on risk reduction in CMD.
Collapse
Affiliation(s)
- Daria Frestad Bechsgaard
- Department of Cardiology, North Zealand University Hospital, University of Copenhagen, Dyrehavevej 29, 3400, Hillerød, Denmark.
| | - Eva Prescott
- Department of Cardiology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| |
Collapse
|
144
|
Figtree GA, Broadfoot K, Casadei B, Califf R, Crea F, Drummond GR, Freedman JE, Guzik TJ, Harrison D, Hausenloy DJ, Hill JA, Januzzi JL, Kingwell BA, Lam CSP, MacRae CA, Misselwitz F, Miura T, Ritchie RH, Tomaszewski M, Wu JC, Xiao J, Zannad F. A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation 2021; 144:159-169. [PMID: 33876947 DOI: 10.1161/cir.0000000000000981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While we continue to wrestle with the immense challenge of implementing equitable access to established evidence-based treatments, substantial gaps remain in our pharmacotherapy armament for common forms of cardiovascular disease including coronary and peripheral arterial disease, heart failure, hypertension, and arrhythmia. We need to continue to invest in the development of new approaches for the discovery, rigorous assessment, and implementation of new therapies. Currently, the time and cost to progress from lead compound/product identification to the clinic, and the success rate in getting there reduces the incentive for industry to invest, despite the enormous burden of disease and potential size of market. There are tremendous opportunities with improved phenotyping of patients currently batched together in syndromic "buckets." Use of advanced imaging and molecular markers may allow stratification of patients in a manner more aligned to biological mechanisms that can, in turn, be targeted by specific approaches developed using high-throughput molecular technologies. Unbiased "omic" approaches enhance the possibility of discovering completely new mechanisms in such groups. Furthermore, advances in drug discovery platforms, and models to study efficacy and toxicity more relevant to the human disease, are valuable. Re-imagining the relationships among discovery, translation, evaluation, and implementation will help reverse the trend away from investment in the cardiovascular space, establishing innovative platforms and approaches across the full spectrum of therapeutic development.
Collapse
Affiliation(s)
- Gemma A Figtree
- Kolling Institute, Royal North Shore Hospital, University of Sydney, Australia (G.A.F.)
| | - Keith Broadfoot
- Clinical Committee, National Heart Foundation of Australia (K.B.)
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (B.C.)
- NIHR Oxford Biomedical Research Centre, UK (B.C.)
- British Heart Foundation Centre of Research Excellence, Oxford, UK (B.C.)
| | | | | | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia (G.R.D.)
| | - Jane E Freedman
- Cardiovascular Research, University of Massachusetts Medical School, Worcester (J.E.F.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (T.J.G.)
- Jagiellonian University Collegium Medicum, Krakow, Poland (T.J.G.)
| | - David Harrison
- Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (D.H.)
| | - Derek J Hausenloy
- Signature Research Program in Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore NUS Medical School (D.J.H.)
- National Heart Research Institute Singapore, National Heart Centre (D.J.H.)
- Yong Loo Lin School of Medicine, National University Singapore (D.J.H.)
- The Hatter Cardiovascular Institute, University College London, UK (D.J.H.)
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.)
| | | | - James L Januzzi
- Massachusetts General Hospital, Harvard University, Boston (J.L.J.)
| | | | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore (C.S.P.L.)
| | - Calum A MacRae
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.A.M.)
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Japan (T.M.)
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), VIC, Australia (R.H.R.)
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health and Manchester University NHS Foundation Trust, University of Manchester, UK (M.T.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, CA (J.C.W.)
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, China (J.X.)
| | - Faiez Zannad
- Universite´ de Lorraine, INSERM CIC 1493, INI CRCT, CHRU, Nancy, France (F.Z.)
| |
Collapse
|
145
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
146
|
Abstract
PURPOSE OF THE REVIEW Ischemic heart disease is among the most common causes of morbidity and mortality worldwide. In its stable manifestation, obstructing coronary artery stenoses prevent myocardial blood flow from matching metabolic needs of the heart under exercise conditions, which manifests clinically as dyspnea or chest pain. Prolonged bouts of ischemia may result in permanent myocardial dysfunction, heart failure, and eventually reduced survival. The aim of the present work is to review currently available approaches to provide relief of ischemia in stable coronary artery disease (CAD). RECENT FINDINGS Several pharmacological and interventional approaches have proven effectiveness in reducing the burden of ischemia in stable CAD and allow for symptom control and quality of life improvement. However, substantial evidence in favor of improved survival with ischemia relief is lacking, and recently published randomized controlled trial suggests that only selected groups of patients may substantially benefit from this approach. Pharmacological treatments aimed at reducing ischemia were shown to significantly reduce ischemic symptoms but failed to provide prognostic benefit. Myocardial revascularization is able to re-establish adequate coronary artery flow and was shown to improve survival in selected groups of patients, i.e., those with significant left main CAD or severe left ventricular dysfunction in multivessel CAD. Outside the previously mentioned categories, revascularization appears to improve symptoms control over medical therapy, but does not confer prognostic advantage. More studies are needed to elucidate the role of systematic invasive functional testing to identify individuals more likely to benefit from revascularization and to evaluate the prognostic role of chronic total occlusion recanalization.
Collapse
|
147
|
Barman PM, VanWagner LB. Cardiac Risk Assessment in Liver Transplant Candidates: Current Controversies and Future Directions. Hepatology 2021; 73:2564-2576. [PMID: 33219576 PMCID: PMC8220582 DOI: 10.1002/hep.31647] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
In the changing landscape of liver transplantation (LT), we are now evaluating older and sicker patients with more cardiovascular comorbidities, and the spectrum of cardiovascular disease is uniquely physiologically impacted by end-stage liver disease. Cardiac complications are now the leading cause of morbidity and mortality in LT recipients, and the pretransplant risk is exacerbated immediately during the transplant operation and continues long term under the umbrella of immunosuppression. Accurate risk estimation of cardiac complications before LT is paramount to guide allocation of limited health care resources and to improve both short-term and long-term clinical outcomes for patients. Current screening and diagnostic testing are limited in their capacity to accurately identify early coronary disease and myocardial dysfunction in persons with end-stage liver disease physiology. Furthermore, a number of testing modalities have not been evaluated in patients with end-stage liver disease. As a result, there is wide variation in cardiac risk assessment practices across transplant centers. In this review, we propose a definition for defining cardiac events in LT, evaluate the current evidence for surgery-related, short-term and long-term cardiac risk assessment in LT candidates, propose an evidence-based testing algorithm, and highlight specific gaps in knowledge and current controversies, identifying areas for future research.
Collapse
Affiliation(s)
- Pranab M. Barman
- Department of Medicine-Division of Gastroenterology & Hepatology, University of California San Diego, San Diego, CA
| | - Lisa B. VanWagner
- Department of Medicine-Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL,Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
148
|
Pelliccia F, Pepine CJ, Berry C, Camici PG. The role of a comprehensive two-step diagnostic evaluation to unravel the pathophysiology of MINOCA: A review. Int J Cardiol 2021; 336:1-7. [PMID: 34087335 DOI: 10.1016/j.ijcard.2021.05.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
The role of cardiac magnetic resonance (CMR) in identifying mechanisms for myocardial infarction with non-obstructed coronary arteries (MINOCA) is well established. Recent reports have highlighted the potentially key role of invasive management in this diagnostic process. Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) allow precise evaluation of coronary anatomy, and assessment of coronary physiology in the catheter laboratory provides information on the hemodynamic significance of sub-critical atherosclerosis and on coronary microvascular dysfunction (CMD). We reviewed the evidence for the contribution of invasive diagnostic techniques in identifying provisional causes for MINOCA. Overall, among 82 studies including 8457 patients were selected. In the acute phase, 16 studies with IVUS or OCT (1207 patients) disclosed that plaque disruption and spontaneous coronary artery dissection had a pooled prevalence of 38% (95% confidence intervals (CI): 29% to 51%) and 16% (95% CI: 9% to 27%), respectively. In 18 studies, coronary function testing (1449 patients) showed a pooled prevalence of spontaneous and/or provoked epicardial coronary spasm of ~28% (95% CI:17% to 41%). In 3 studies (456 patients), the pooled prevalence of CMD was ~32% (95% CI: 20% to 49%). In the subacute phase, 42 CMR studies (5821 patients) showed that a pooled prevalence of myocarditis, takotsubo syndrome and cardiomyopathy of 26% (95% CI: 12% to 40%), 11% (95% CI: 5% to 25%), and 7% (95% CI: 1% to 19%), respectively. In 12 studies on thrombophilia screening (n = 834), the pooled prevalence of thrombotic disorder was ~11% (95% CI: 7%% to 25%). In conclusion, the pathophysiology of MINOCA can be established in the majority of cases using both invasive and non-invasive tools to provide direction for appropriate management.
Collapse
Affiliation(s)
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of FL, Gainesville, FL, USA
| | - Colin Berry
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
| | - Paolo G Camici
- San Raffaele Hospital and Vita e Salute University, Milan, Italy
| |
Collapse
|
149
|
Gersh BJ, Bhatt DL. To stent or not to stent? Treating angina after ISCHEMIA-the impact of the ISCHEMIA trial on the indications for angiography and revascularization in patients with stable coronary artery disease. Eur Heart J 2021; 42:1389-1393. [PMID: 33827132 DOI: 10.1093/eurheartj/ehab069.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo College of Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
| | - Deepak L Bhatt
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
150
|
Sechtem U, Ong P. Coronary stenoses in patients suspected to have obstructive coronary artery disease: the exemption rather than the rule! Eur Heart J 2021; 42:1412-1414. [PMID: 33205154 DOI: 10.1093/eurheartj/ehaa762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Udo Sechtem
- Department of Cardiology, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany.,Cardiologicum Stuttgart, Stuttgart, Germany
| | - Peter Ong
- Department of Cardiology, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany
| |
Collapse
|