101
|
Sharma NK, Prabhakar S, Gupta A, Singh R, Gupta PK, Gupta PK, Anand A. New biomarker for neovascular age-related macular degeneration: eotaxin-2. DNA Cell Biol 2012; 31:1618-27. [PMID: 23025269 DOI: 10.1089/dna.2012.1786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently, eotaxin-CCR3 was reported to play an important role in choroidal neovascularization (CNV) development and was documented to be superior than vascular endothelial growth factor-A treatment when tested in CNV animals. As eotaxin studies are lacking in the human age-related macular degeneration (AMD) patients, we sought to determine whether eotaxin-2 (CCL24) has any association with inflammatory processes that occur in CNV. CCL24 levels were determined by enzyme linked immunosorbant assay (ELISA) after normalization to total serum protein and levels of ELISA were correlated to various risk factors in about 133 AMD patients and 80 healthy controls. The CCL24 levels were significantly higher in wet AMD patients as compared with dry AMD and normal controls. There was a significant difference when compared among wet AMD patients (i.e., minimally classic, predominantly classic, and occult). We also report significant difference in the CCL24 levels of Avastin-treated and untreated AMD patients. This study shows that CCL24 levels were found to be significantly increased in AMD patients despite Avastin treatment as compared with normal controls and those without Avastin, indicating that CCL24 may have an association with CNV and may be an important target to validate future therapeutic approaches in AMD in tandem with Avastin treatment.
Collapse
Affiliation(s)
- Neel Kamal Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
102
|
Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy? Mediators Inflamm 2012; 5:393-416. [PMID: 18475745 PMCID: PMC2365823 DOI: 10.1155/s0962935196000567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five to 10% of the human population have a disorder of the respiratory tract called 'asthma'. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. beta(2)-agonists) to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids). Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8-10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain chemokines stimulate the recruitment of multiple cell types including monocytes, lymphocytes, basophils, and eosinophils, which are important cells in asthma. Intervention in this process, by the development of chemokine antagonists, might be the key to new therapy. In this review we present an overview of recent developments in the field of chemokines and their role in inflammations as reported in literature.
Collapse
|
103
|
Ma J, Altomare A, Guarino M, Cicala M, Rieder F, Fiocchi C, Li D, Cao W, Behar J, Biancani P, Harnett KM. HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells. AMERICAN JOURNAL OF PHYSIOLOGY. GASTROINTESTINAL AND LIVER PHYSIOLOGY 2012. [PMID: 22790593 DOI: 10.1152/ajpgi.00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of gastroesophageal reflux disease (GERD) remains elusive, but recent evidence suggests that early secretion of inflammatory cytokines and chemokines by the mucosa leads to influx of immune cells followed by tissue damage. We previously showed that exposure of esophageal mucosa to HCl causes ATP release, resulting in activation of acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT), the enzyme responsible for the production of platelet-activating factor (PAF). In addition, HCl causes release of IL-8 from the esophageal mucosa. We demonstrate that esophageal epithelial cells secrete proinflammatory mediators in response to HCl and that this response is mediated by ATP. Monolayers of the human esophageal epithelial cell line HET-1A were exposed to acidified cell culture medium (pH 5) for 12 min, a total of seven times over 48 h, to simulate the recurrent acid exposure clinically occurring in GERD. HCl upregulated mRNA and protein expression for the acid-sensing transient receptor potential cation channel, subfamily vanilloid member 1 (TRPV1), lyso-PAF AT, IL-8, eotaxin-1, -2, and -3, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1. The chemokine profile secreted by HET-1A cells in response to repeated HCl exposure parallels similar findings in erosive esophagitis patients. In HET-1A cells, the TRPV1 agonist capsaicin reproduced these findings for mRNA of the inflammatory mediators lyso-PAF AT, IL-8, and eotaxin-1. These effects were blocked by the TRPV1 antagonists iodoresiniferatoxin and JNJ-17203212. These effects were imitated by direct application of ATP and blocked by the nonselective ATP antagonist suramin. We conclude that HCl/TRPV-induced ATP release upregulated secretion of various chemoattractants by esophageal epithelial cells. These chemoattractants are selective for leukocyte subsets involved in acute inflammatory responses and allergic inflammation. The data support the validity of HET-1A cells as a model of the response of the human esophageal mucosa in GERD.
Collapse
Affiliation(s)
- Jie Ma
- Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ma J, Altomare A, Guarino M, Cicala M, Rieder F, Fiocchi C, Li D, Cao W, Behar J, Biancani P, Harnett KM. HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G635-G645. [PMID: 22790593 PMCID: PMC3468560 DOI: 10.1152/ajpgi.00097.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 01/31/2023]
Abstract
The pathogenesis of gastroesophageal reflux disease (GERD) remains elusive, but recent evidence suggests that early secretion of inflammatory cytokines and chemokines by the mucosa leads to influx of immune cells followed by tissue damage. We previously showed that exposure of esophageal mucosa to HCl causes ATP release, resulting in activation of acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT), the enzyme responsible for the production of platelet-activating factor (PAF). In addition, HCl causes release of IL-8 from the esophageal mucosa. We demonstrate that esophageal epithelial cells secrete proinflammatory mediators in response to HCl and that this response is mediated by ATP. Monolayers of the human esophageal epithelial cell line HET-1A were exposed to acidified cell culture medium (pH 5) for 12 min, a total of seven times over 48 h, to simulate the recurrent acid exposure clinically occurring in GERD. HCl upregulated mRNA and protein expression for the acid-sensing transient receptor potential cation channel, subfamily vanilloid member 1 (TRPV1), lyso-PAF AT, IL-8, eotaxin-1, -2, and -3, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1. The chemokine profile secreted by HET-1A cells in response to repeated HCl exposure parallels similar findings in erosive esophagitis patients. In HET-1A cells, the TRPV1 agonist capsaicin reproduced these findings for mRNA of the inflammatory mediators lyso-PAF AT, IL-8, and eotaxin-1. These effects were blocked by the TRPV1 antagonists iodoresiniferatoxin and JNJ-17203212. These effects were imitated by direct application of ATP and blocked by the nonselective ATP antagonist suramin. We conclude that HCl/TRPV-induced ATP release upregulated secretion of various chemoattractants by esophageal epithelial cells. These chemoattractants are selective for leukocyte subsets involved in acute inflammatory responses and allergic inflammation. The data support the validity of HET-1A cells as a model of the response of the human esophageal mucosa in GERD.
Collapse
Affiliation(s)
- Jie Ma
- Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Innate immune cells in liver inflammation. Mediators Inflamm 2012; 2012:949157. [PMID: 22933833 PMCID: PMC3425885 DOI: 10.1155/2012/949157] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/17/2012] [Indexed: 12/20/2022] Open
Abstract
Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair.
Collapse
|
106
|
Valent P, Gleich GJ, Reiter A, Roufosse F, Weller PF, Hellmann A, Metzgeroth G, Leiferman KM, Arock M, Sotlar K, Butterfield JH, Cerny-Reiterer S, Mayerhofer M, Vandenberghe P, Haferlach T, Bochner BS, Gotlib J, Horny HP, Simon HU, Klion AD. Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev Hematol 2012; 5:157-76. [PMID: 22475285 DOI: 10.1586/ehm.11.81] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eosinophils and their products play an essential role in the pathogenesis of various reactive and neoplastic disorders. Depending on the underlying disease, molecular defect and involved cytokines, hypereosinophilia may develop and may lead to organ damage. In other patients, persistent eosinophilia is accompanied by typical clinical findings, but the causative role and impact of eosinophilia remain uncertain. For patients with eosinophil-mediated organ pathology, early therapeutic intervention with agents reducing eosinophil counts can be effective in limiting or preventing irreversible organ damage. Therefore, it is important to approach eosinophil disorders and related syndromes early by using established criteria, to perform all appropriate staging investigations, and to search for molecular targets of therapy. In this article, we review current concepts in the pathogenesis and evolution of eosinophilia and eosinophil-related organ damage in neoplastic and non-neoplastic conditions. In addition, we discuss classifications of eosinophil disorders and related syndromes as well as diagnostic algorithms and standard treatment for various eosinophil-related disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Nakashima T, Hayashi T, Mizuno T. Reovirus type-2 infection in newborn DBA/1J mice reduces the development of late allergic asthma. Int J Exp Pathol 2012; 93:234-42. [PMID: 22583134 DOI: 10.1111/j.1365-2613.2012.00816.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to determine whether or not the development of a helper T (Th) 1 response induced by Reovirus type-2 (Reo-2) infection would protect against the development of Th2-mediated late allergic asthma. This hypothesis was examined by infecting one day old neonatal DB A/1J mice with Reo-2 in an ovalbumin (OVA)-induced late asthma model. Compared with the controls (either infected or uninfected mice with or without OVA sensitization and/or OVA challenge), Reo-2 infection lessened the magnitude of the subsequent allergic Th2-mediated late asthma. In infected mice with allergic late asthma, there was decreased infiltration of interleukin (IL)-4(+), IL-5(+), IL-13(+) and very late antigen (VLA)-4(+) lymphocytes, and eotaxin-2(+) and VLA-4(+) eosinophils, in both bronchial and bronchiolar lesions. Also the expression of vascular cell adhesion molecule (VCAM)-1 and eotaxin-2 on vascular endothelial cells was reduced. Moreover, the systemic production of IL-4, IL-5, tumour necrosis factor-α and OVA-specific IgE was reduced, whereas systemic IFN-γ production was increased. In addition, there was no increase in IFN-α production. Thus the present study suggests that systemic Reo-2 infection at birth may reduce the development of subsequent late allergic asthma by the induction of a Th1 response. Therefore the potential suppressive mechanism(s) that might be induced by Reo-2 infection in newborn mice and their effects on the development of late allergic asthma are discussed.
Collapse
Affiliation(s)
- Tomomi Nakashima
- Laboratory of Veterinary Pathology, The United graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | |
Collapse
|
108
|
Máchal J, Vašků A, Kincl V, Hlavna M, Bartáková V, Jurajda M, Meluzín J. Association between three single nucleotide polymorphisms in eotaxin (CCL 11) gene, hexanucleotide repetition upstream, severity and course of coronary atherosclerosis. J Appl Genet 2012; 53:271-8. [PMID: 22773402 DOI: 10.1007/s13353-012-0104-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023]
Abstract
The impact of three single-nucleotide polymorphisms in eotaxin (SCYA11) gene promoter (-426C>T and -384A>G) and first exon (67G>A) and recently described hexanucleotide (GAAGGA)(n) 10.9 kb upstream on coronary atherosclerosis was investigated. Elective coronary angiography of 1050 consecutive subjects was performed. All patients were genotyped for the three SNPs. In a subset of the first 472 samples, the number of (GAAGGA)(n) repetitions was determined. For further evaluation, short and long variants were distinguished; the borderline corresponded with the median value of all alleles: ≤8 repetitions were considered as short sequence, ≥9 repetitions as long. Patients with bronchial asthma or insignificant atherosclerosis were excluded; the remaining group of 933 subjects was further investigated. Patients were grouped according to the form of CAD (ACS vs. stable angina) and the number of diseased vessels. The GG variant of 67 G>A polymorphism was associated with acute form of CAD compared to stable angina (p=0.0011, p(corr.)=0.013). The number of (GAAGGA)(n) repetitions in our set of patients ranged from 3 to 12. There were no subjects with 4 or 5 repetitions. The frequency of short repetition alleles increased with the number of affected vessels (1 vs. 3 diseased vessels: p=0.0043, p(corr)=0.034). In our study, the (GAAGGA)(n) hexanucleotide was associated with the severity of CAD. The 67 GG was associated with acute form of CAD. None of the two SNPs in eotaxin promoter had any relation to CAD. The number of (GAAGGA)(n) repetitions can thus be a novel genetic marker of the extent of CAD.
Collapse
Affiliation(s)
- J Máchal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
109
|
Paquet J, Goebel JC, Delaunay C, Pinzano A, Grossin L, Cournil-Henrionnet C, Gillet P, Netter P, Jouzeau JY, Moulin D. Cytokines profiling by multiplex analysis in experimental arthritis: which pathophysiological relevance for articular versus systemic mediators? Arthritis Res Ther 2012; 14:R60. [PMID: 22414623 PMCID: PMC3446427 DOI: 10.1186/ar3774] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/23/2011] [Accepted: 03/13/2012] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION We have taken advantage of the large screening capacity of a multiplex immunoassay to better define the respective contribution of articular versus systemic cytokines in experimental arthritis. METHODS We performed a follow up (from 7 hours to 14 days) multiplex analysis of 24 cytokines in synovial fluid and sera of rats developing Antigen-Induced Arthritis (AIA) and confronted their protein level changes with molecular, biochemical, histological and clinical events occurring in the course of the disease. RESULTS The time-scheduled findings in arthritic joints correlated with time-dependent changes of cytokine amounts in joint effusions but not with their blood levels. From seven hours after sensitization, high levels of chemokines (MCP-1, MIP1α, GRO/KC, RANTES, eotaxin) were found in synovial fluid of arthritic knees whereas perivascular infiltration occurred in the synovium; local release of inflammatory cytokines (IFNγ, IL-1β, IL-6) preceded the spreading of inflammation and resulted in progressive degradation of cartilage and bone. Finally a local overexpression of several cytokines/adipocytokines poorly described in arthritis (IL-13, IL-18, leptin) was observed. CONCLUSIONS Distinct panels of cytokines were found in arthritic fluid during AIA, and the expected effect of mediators correlated well with changes occurring in joint tissues. Moreover, multiplex analysis could be helpful to identify new pathogenic mediators and to elucidate the mechanisms supporting the efficacy of putative targeted therapies.
Collapse
Affiliation(s)
- Joseph Paquet
- Physiopathologie, Pharmacologie et Ingénierie Articulaire - PPIA-UMR 7561 CNRS UHP, Université de Lorraine, Faculté de Médecine, BP 184, 54505 Vandoeuvre Les Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kuwabara Y, Katayama A, Igarashi T, Tomiyama R, Piao H, Kaneko R, Abe T, Mine K, Akira S, Orimo H, Takeshita T. Rapid and transient upregulation of CCL11 (eotaxin-1) in mouse ovary during terminal stages of follicular development. Am J Reprod Immunol 2012; 67:358-68. [PMID: 22221885 DOI: 10.1111/j.1600-0897.2011.01100.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/08/2011] [Indexed: 11/30/2022] Open
Abstract
PROBLEM This study aimed to investigate the regulation of expression, localization and physiological role of the CCL11/CCR3 axis in mouse ovary during the periovulatory period. METHOD OF STUDY CCL11/CCR3 expression in the mouse ovary after treatment with pregnant mare serum gonadotropin (PMSG) followed by human chorionic gonadotropin (hCG) 48 hr later was assessed in vivo and in 3-dimensional cultures in vitro. RESULTS Real-time RT-PCR analyses revealed transient CCL11 mRNA upregulation 6 hr after hCG treatment. Immunohistochemical staining of serial ovarian sections demonstrated overlapping expression of CCL11, CCR3 and CD31 endothelial cell marker in the theca-interstitial layer at 10 hr after hCG treatment. In vitro 3-dimensional cultures of periovulatory ovarian tissues demonstrated that treatment with anti-CCL11 neutralizing antibody significantly decreased CD31 transcript. CONCLUSIONS Gonadotropin surge leads to transient CCL11/CCR3 axis upregulation in the ovarian theca-interstitial layer, suggesting that it is involved in periovulatory physiological processes by affecting follicular vessels.
Collapse
Affiliation(s)
- Yoshimitsu Kuwabara
- Department of Obstetrics and Gynecology, Nippon Medical, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Hodyl NA, Stark MJ, Osei-Kumah A, Clifton VL. Prenatal programming of the innate immune response following in utero exposure to inflammation: a sexually dimorphic process? Expert Rev Clin Immunol 2011; 7:579-92. [PMID: 21895471 DOI: 10.1586/eci.11.51] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maternal infection and inflammation are common events during pregnancy. This article documents evidence that suggests such inflammation compromises the development of the fetal innate immune response, in support of an in utero origins hypothesis of neonatal and childhood inflammatory disease. The potential for this response to exhibit sex specificity is also explored, based on evidence of sexually dimorphic placental responses to maternal inflammation.
Collapse
Affiliation(s)
- Nicolette A Hodyl
- The Robinson Institute, Obstetrics and Gynaecology, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
112
|
El-Shazly AE, Henket M, Lefebvre PP, Louis R. 2B4 (CD244) is involved in eosinophil adhesion and chemotaxis, and its surface expression is increased in allergic rhinitis after challenge. Int J Immunopathol Pharmacol 2011; 24:949-960. [PMID: 22230401 DOI: 10.1177/039463201102400413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A role for the subtypes of CD2 Ig superfamily receptors has been recently demonstrated in eosinophilic inflammation in experimental asthma and atopic asthmatics. We investigated the functions of 2B4 (CD244) molecules in eosinophil adhesion and chemotaxis, and correlated the results to the pathophysiology of allergic rhinitis (AR). Herein, we show that agonistic stimulation of 2B4 by C1.7, the anti-human 2B4 functional grade purified antibody, resulted in significant increase of eosinophils and eosinophil cell line (Eol-1 cells) adhesion to collagen type IV, and random migration. These functions were associated with tyrosine kinase phosphorylation of several protein residues of low molecular weight. Flow cytometry (FACS) experiments demonstrated that Eol-1 cells, normal peripheral blood eosinophils and eosinophils from AR patients, express surface 2B4 molecules. In vitro AR model demonstrated that the CC-chemokine receptor CCR3 stimulation by eotaxin induced significant increase in the expression of surface 2B4 in eosinophils and Eol-1 cells. Immunofluorescence confocal microscopy images showed that eotaxin induces also redistribution of 2B4 molecules towards the pseudopods in eosinophils and Eol-1 cells, changing their shape. Blocking of 2B4 molecules by the corresponding neutralizing antibody inhibited eotaxin induced Eol-1-adhesion, chemotaxis and the cytoskeleton changes. Pretreatment of Eol-1 cells with 1 microM genistein blocked eotaxin-induced Eol-1 adhesion, chemotaxis and 2B4 up-regulated expression. In vivo correlation demonstrated the expression of 2B4 molecules in eosinophils from AR patients to be significantly increased, after nasal provocation challenge. These results identify a novel role for 2B4 molecules in eosinophil functional migratory response and may point to a novel tyrosine kinase-mediated ligation between CCR3 receptor and 2B4 co-receptor in eosinophil chemotaxis. If so, then 2B4 molecules would be a novel target for therapeutic modalities in diseases characterized by eosinophilia such as AR.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Cell Adhesion/drug effects
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Shape
- Chemotaxis, Leukocyte/drug effects
- Eosinophils/drug effects
- Eosinophils/immunology
- Flow Cytometry
- Fluorescent Antibody Technique
- Humans
- Microscopy, Confocal
- Nasal Provocation Tests
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyroglyphidae/immunology
- Receptors, CCR3/immunology
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Rhinitis, Allergic, Perennial/diagnosis
- Rhinitis, Allergic, Perennial/immunology
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family
Collapse
Affiliation(s)
- A E El-Shazly
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Liege University Hospitals, Liege, Belgium.
| | | | | | | |
Collapse
|
113
|
Garro AP, Chiapello LS, Baronetti JL, Masih DT. Eosinophils elicit proliferation of naive and fungal-specific cells in vivo so enhancing a T helper type 1 cytokine profile in favour of a protective immune response against Cryptococcus neoformans infection. Immunology 2011; 134:198-213. [PMID: 21896014 PMCID: PMC3194227 DOI: 10.1111/j.1365-2567.2011.03479.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 01/21/2023] Open
Abstract
Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, because as in healthy humans, rats can effectively contain cryptococcal infection. Moreover, it has been shown that eosinophils are components of the immune response to C. neoformans infections. In a previous in vitro study, we demonstrated that rat peritoneal eosinophils phagocytose opsonized live yeasts of C. neoformans, thereby triggering their activation, as indicated by the up-regulation of MHC and co-stimulatory molecules and the increase in interleukin-12, tumour necrosis factor-α and interferon-γ production. Furthermore, this work demonstrated that C. neoformans-specific CD4(+) and CD8(+) T lymphocytes cultured with these activated C. neoformans-pulsed eosinophils proliferated, and produced important amounts of T helper type 1 (Th1) cytokines in the absence of Th2 cytokine synthesis. In the present in vivo study, we have shown that C. neoformans-pulsed eosinophils are also able to migrate into lymphoid organs to present C. neoformans antigens, thereby priming naive and re-stimulating infected rats to induce T-cell and B-cell responses against infection with the fungus. Furthermore, the antigen-specific immune response induced by C. neoformans-pulsed eosinophils, which is characterized by the development of a Th1 microenvironment with increased levels of NO synthesis and C. neoformans-specific immunoglobulin production, was demonstrated to be able to protect rats against subsequent infection with fungus. In summary, the present work demonstrates that eosinophils act as antigen-presenting cells for the fungal antigen, hence initiating and modulating a C. neoformans-specific immune response. Finally, we suggest that C. neoformans-loaded eosinophils might participate in the protective immune response against these fungi.
Collapse
Affiliation(s)
- Ana P Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
114
|
LIU JY, LI LY, YANG XZ, LI J, ZHONG G, WANG J, LI LJ, JI B, WU ZQ, LIU H, YANG X, LIU PM. Adoptive transfer of dendritic cells isolated from helminth-infected mice enhanced T regulatory cell responses in airway allergic inflammation. Parasite Immunol 2011; 33:525-34. [DOI: 10.1111/j.1365-3024.2011.01308.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
115
|
Weng M, Baron DM, Bloch KD, Luster AD, Lee JJ, Medoff BD. Eosinophils are necessary for pulmonary arterial remodeling in a mouse model of eosinophilic inflammation-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2011; 301:L927-36. [PMID: 21908591 DOI: 10.1152/ajplung.00049.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is increasing evidence that inflammation plays a pivotal role in the pathogenesis of some forms of pulmonary hypertension (PH). We recently demonstrated that deficiency of adiponectin (APN) in a mouse model of PH induced by eosinophilic inflammation increases pulmonary arterial remodeling, pulmonary pressures, and the accumulation of eosinophils in the lung. Based on these data, we hypothesized that APN deficiency exacerbates PH indirectly by increasing eosinophil recruitment. Herein, we examined the role of eosinophils in the development of inflammation-induced PH. Elimination of eosinophils in APN-deficient mice by treatment with anti-interleukin-5 antibody attenuated pulmonary arterial muscularization and PH. In addition, we observed that transgenic mice that are devoid of eosinophils also do not develop pulmonary arterial muscularization in eosinophilic inflammation-induced PH. To investigate the mechanism by which APN deficiency increased eosinophil accumulation in response to an allergic inflammatory stimulus, we measured expression levels of the eosinophil-specific chemokines in alveolar macrophages isolated from the lungs of mice with eosinophilic inflammation-induced PH. In these experiments, the levels of CCL11 and CCL24 were higher in macrophages isolated from APN-deficient mice than in macrophages from wild-type mice. Finally, we demonstrate that the extracts of eosinophil granules promoted the proliferation of pulmonary arterial smooth muscle cells in vitro. These data suggest that APN deficiency may exacerbate PH, in part, by increasing eosinophil recruitment into the lung and that eosinophils could play an important role in the pathogenesis of inflammation-induced PH. These results may have implications for the pathogenesis and treatment of PH caused by vascular inflammation.
Collapse
Affiliation(s)
- M Weng
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | |
Collapse
|
116
|
Identification of inflammatory biomarkers for pediatric malarial anemia severity using novel statistical methods. Infect Immun 2011; 79:4674-80. [PMID: 21859849 DOI: 10.1128/iai.05161-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Areas where Plasmodium falciparum transmission is holoendemic are characterized by high rates of pediatric severe malarial anemia (SMA) and associated mortality. Although the etiology of SMA is complex and multifactorial, perturbations in inflammatory mediator production play an important role in the pathogenic process. As such, the current study focused on identification of inflammatory biomarkers in children with malarial anemia. Febrile children (3 to 30 months of age) presenting at Siaya District Hospital in western Kenya underwent a complete clinical and hematological evaluation. Children with falciparum malaria and no additional identifiable anemia-promoting coinfections were stratified into three groups: uncomplicated malaria (hemoglobin [Hb] levels of ≥11.0 g/dl; n = 31), non-SMA (Hb levels of 6.0 to 10.9 g/dl; n = 37), and SMA (Hb levels of <6.0 g/dl; n = 80). A Luminex hu25-plex array was used to determine potential biomarkers (i.e., interleukin 1β [IL-1β], IL-1 receptor antagonist [IL-1Ra], IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-17, tumor necrosis factor alpha [TNF-α], alpha interferon [IFN-α], IFN-γ, granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage inflammatory protein 1 alpha [MIP-1α], MIP-1β, IFN-inducible protein of 10 kDa [IP-10], monokine induced by IFN-γ [MIG], eotaxin, RANTES, and monocyte chemoattractant protein 1 [MCP-1]) in samples obtained prior to any treatment interventions. To determine the strongest biomarkers of anemia, a parsimonious set of predictor variables for Hb was generated by least-angle regression (LAR) analysis, controlling for the confounding effects of age, gender, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and sickle cell trait, followed by multiple linear regression analyses. IL-12p70 and IFN-γ emerged as positive predictors of Hb, while IL-2R, IL-13, and eotaxin were negatively associated with Hb. The results presented here demonstrate that the IL-12p70/IFN-γ pathway represents a set of biomarkers that predicts elevated Hb levels in children with falciparum malaria, while activation of the IL-13/eotaxin pathway favors more profound anemia.
Collapse
|
117
|
Foster EL, Simpson EL, Fredrikson LJ, Lee JJ, Lee NA, Fryer AD, Jacoby DB. Eosinophils increase neuron branching in human and murine skin and in vitro. PLoS One 2011; 6:e22029. [PMID: 21811556 PMCID: PMC3140999 DOI: 10.1371/journal.pone.0022029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/13/2011] [Indexed: 12/30/2022] Open
Abstract
Cutaneous nerves are increased in atopic dermatitis, and itch is a prominent symptom. We studied the functional interactions between eosinophils and nerves in human and mouse skin and in culture. We demonstrated that human atopic dermatitis skin has eosinophil granule proteins present in the same region as increased nerves. Transgenic mice in which interleukin-5 (IL-5) expression is driven by a keratin-14 (K14) promoter had many eosinophils in the epidermis, and the number of nerves was also significantly increased in the epidermis. In co-cultures, eosinophils dramatically increased branching of sensory neurons isolated from the dorsal root ganglia (DRG) of mice. This effect did not occur in DRG neurons co-cultured with mast cells or with dead eosinophils. Physical contact of the eosinophils with the neurons was not required, and the effect was not blocked by an antibody to nerve growth factor. DRG neurons express eotaxin-1, ICAM-1 and VCAM-1, which may be important in the recruitment, binding, and activation of eosinophils in the region of cutaneous nerves. These data indicate a pathophysiological role for eosinophils in cutaneous nerve growth in atopic dermatitis, and suggest they may present a therapeutic target in atopic dermatitis and other eosinophilic skin conditions with neuronal symptoms such as itch.
Collapse
Affiliation(s)
- Erin L. Foster
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Eric L. Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lorna J. Fredrikson
- Department of Biochemistry, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - James J. Lee
- Department of Biochemistry, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Nancy A. Lee
- Department of Biochemistry, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care, Department of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David B. Jacoby
- Division of Pulmonary and Critical Care, Department of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
118
|
Verjan Garcia N, Umemoto E, Saito Y, Yamasaki M, Hata E, Matozaki T, Murakami M, Jung YJ, Woo SY, Seoh JY, Jang MH, Aozasa K, Miyasaka M. SIRPα/CD172a regulates eosinophil homeostasis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2268-77. [PMID: 21775684 DOI: 10.4049/jimmunol.1101008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Eosinophils are abundant in the lamina propria of the small intestine, but they rarely show degranulation in situ under steady-state conditions. In this study, using two novel mAbs, we found that intestinal eosinophils constitutively expressed a high level of an inhibitory receptor signal regulatory protein α (SIRPα)/CD172a and a low, but significant, level of a tetraspanin CD63, whose upregulation is closely associated with degranulation. Cross-linking SIRPα/CD172a on the surface of wild-type eosinophils significantly inhibited the release of eosinophil peroxidase induced by the calcium ionophore A23187, whereas this cross-linking effect was not observed in eosinophils isolated from mice expressing a mutated SIRPα/CD172a that lacks most of its cytoplasmic domain (SIRPα Cyto(-/-)). The SIRPα Cyto(-/-) eosinophils showed reduced viability, increased CD63 expression, and increased eosinophil peroxidase release with or without A23187 stimulation in vitro. In addition, SIRPα Cyto(-/-) mice showed increased frequencies of Annexin V-binding eosinophils and free MBP(+)CD63(+) extracellular granules, as well as increased tissue remodeling in the small intestine under steady-state conditions. Mice deficient in CD47, which is a ligand for SIRPα/CD172a, recapitulated these phenomena. Moreover, during Th2-biased inflammation, increased eosinophil cell death and degranulation were obvious in a number of tissues, including the small intestine, in the SIRPα Cyto(-/-) mice compared with wild-type mice. Collectively, our results indicated that SIRPα/CD172a regulates eosinophil homeostasis, probably by interacting with CD47, with substantial effects on eosinophil survival. Thus, SIRPα/CD172a is a potential therapeutic target for eosinophil-associated diseases.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- Laboratory of Immunodynamics, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Qiu H, KuoLee R, Harris G, Zhou H, Miller H, Patel GB, Chen W. Acinetobacter baumannii infection inhibits airway eosinophilia and lung pathology in a mouse model of allergic asthma. PLoS One 2011; 6:e22004. [PMID: 21789200 PMCID: PMC3138758 DOI: 10.1371/journal.pone.0022004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/14/2011] [Indexed: 12/17/2022] Open
Abstract
Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen.
Collapse
Affiliation(s)
- Hongyu Qiu
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rhonda KuoLee
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Harris
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hongyan Zhou
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Harvey Miller
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Girishchandra B. Patel
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biology, Brock University, St. Catharines, Ontario, Canada
- * E-mail:
| |
Collapse
|
120
|
Kurokawa M, Matsukura S, Kawaguchi M, Ieki K, Suzuki S, Odaka M, Watanabe S, Homma T, Sato M, Yamaguchi M, Takeuchi H, Adachi M. Expression and effects of IL-33 and ST2 in allergic bronchial asthma: IL-33 induces eotaxin production in lung fibroblasts. Int Arch Allergy Immunol 2011; 155 Suppl 1:12-20. [PMID: 21646790 DOI: 10.1159/000327259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interleukin (IL)-33, a new member of the IL-1 cytokine family, has been recognized as a key cytokine that enhances T helper 2-balanced immune regulation through its receptor ST2; however, the function and relationship of the IL-33 and ST2 pathways in bronchial asthma are still unclear. We investigated the cellular origin and regulation of IL-33 and ST2 in allergic bronchial asthma in vivo and in vitro. METHODS BALB/c mice were sensitized by intraperitoneal injections of ovalbumin (OVA) with alum. Mice were exposed to aerosolized 1% OVA for 30 min a day for 7 days. These mice were then challenged with aerosolized 1% OVA 2 days after the last day of exposure. After the OVA challenge, the mice were sacrificed and their lung tissues were obtained. Mouse lung fibroblasts were cultured and treated with IL-33 or IL-13. RESULTS The levels of IL-33 mRNA and IL-33 protein in lung tissue increased after the OVA challenge. Most IL-33-expressing cells were CD11c+ cells and epithelial cells, and many ST2-expressing cells were stained lung fibroblasts and inflammatory cells. IL-33 induced eotaxin/CCL11 production in lung fibroblasts. IL-33 and IL-13 synergistically induced eotaxin expression. CONCLUSIONS IL-33 may contribute to the induction and maintenance of eosinophilic inflammation in the airways by acting on lung fibroblasts. IL-33 and ST2 may play important roles in allergic bronchial asthma.
Collapse
Affiliation(s)
- Masatsugu Kurokawa
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Garin A, Proudfoot AEI. Chemokines as targets for therapy. Exp Cell Res 2011; 317:602-12. [PMID: 21376173 DOI: 10.1016/j.yexcr.2010.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/23/2010] [Indexed: 02/04/2023]
Affiliation(s)
- Alexandre Garin
- Merck Serono S.A., 9 Chemin des Mines, 1202 Geneva, Switzerland
| | | |
Collapse
|
122
|
Yang CJ, Lin CY, Hsieh TC, Olson SC, Wu JM. Control of eotaxin-1 expression and release by resveratrol and its metabolites in culture human pulmonary artery endothelial cells. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:16-30. [PMID: 22254182 PMCID: PMC3253506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Indexed: 05/31/2023]
Abstract
Population studies suggest that moderate red wine intake correlates with reduced risk of cardiovascular disease (CVD); cardioprotection may attribute to consumption of red wine polyphenol resveratrol. Since inflammation plays a key role in CVD, we investigated modulation of inflammation by resveratrol and its metabolites by determining the expression and release of chemokine, eotaxin-1, in cultured human pulmonary artery endothelial cells (HPAEC) treated with proinflammatory cytokines IL-13 and TNF-α. Up-regulation of eotaxin-1 gene expression by IL-13 or TNF-α was confirmed by RT-PCR, by reporter assays using eotaxin-1 gene promoter constructs, and by the changes in transcriptional factors STAT6 and NF-κB. Exposure to resveratrol suppressed IL-13 and TNF-α induced eotaxin-1 gene expression as well as attenuated the eotaxin-1 promoter activity, in coordination with inhibition of expression of JAK-1, reduction in phosphorylated-STAT6 and decreased p65 subunit of NF-κB. In addition, quantitative determination of eotaxin-1 release using enzyme-linked immunosorbent assay (ELISA) showed increased eotaxin-1 release in response to treatment by IL-13 and TNF-α, which was effectively inhibited by resveratrol. Whether resveratrol metabolites affected eotaxin-1 was also tested; piceatannol showed potency similar to resveratrol. We propose that control of eotaxin-1 expression and release by proinflammatory cytokines in HPAEC may be considered as an in vitro model for screening and discovering polyphenols with anti-inflammatory activities and cardioprotective potentials.
Collapse
Affiliation(s)
- Ching Jen Yang
- Department of Biochemistry & Molecular Biology, New York Medical College Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
123
|
|
124
|
Zweifel M, Matozan K, Dahinden C, Schaffner T, Mohacsi P. Eotaxin/CCL11 levels correlate with myocardial fibrosis and mast cell density in native and transplanted rat hearts. Transplant Proc 2011; 42:2763-6. [PMID: 20832583 DOI: 10.1016/j.transproceed.2010.05.152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Myocardial fibrosis contributes to hemodynamic and cardiac functional alterations commonly observed posttransplantation. Cardiac mast cells (MC) have been linked to fibrosis in posttransplantation hearts. Eotaxin, which has been shown to be involved in fibrogenesis, has been demonstrated to be increased in production in cardiac macrophages. The aim of our study was to correlate myocardial fibrosis during heart transplant rejection in the rat with eotaxin/chemokine [c-c motif] ligand 11 (CCL11) expression, and with various subtypes of infiltrating cardiac MC, namely connective-type MC (CTMC) and mucosa-type MC (MMC). METHODS We used tissues from 2 previous studies of ongoing acute rejection in allogeneic Brown-Norway to Lewis rat and an isogeneic Brown-Norway to Brown-Norway heterotopic heart transplantation models under cyclosporin/prednisolone immunosuppression. Collagen fibrils were stained with Masson's trichrome with myocardial fibrosis expressed as percent fibrotic area per total section area. Eotaxin/CCL11 previously measured in heart tissue using enzyme-linked immunosorbent assay (ELISA) was correlated with the extent of myocardial fibrosis. We compared values from native hearts (n = 4) as well as transplants on days 5, 16, and 28 (n = 4 in each group). RESULTS The area of myocardial fibrosis was significantly increased in the allogeneic compared with the isogeneic group at day 16 (38% vs 21%) and at day 28 (49% vs 22%) after transplantation. Myocardial fibrosis correlated significantly with eotaxin/CCL11 concentrations and the density of MMC, but not with CTMC in heart tissue. CONCLUSIONS Eotaxin-triggered MC infiltration of the heart may contribute to myocardial fibrosis after transplantation. Targeting eotaxin/CCL11 with monoclonal antibodies, such as bertilimumab, could reduce MC infiltration, possibly resulting in decreased myocardial fibrosis and improved contractile function after heart transplantation.
Collapse
Affiliation(s)
- M Zweifel
- Department of Cardiology, Swiss Cardiovascular Center, University Hospital Bern, Switzerland.
| | | | | | | | | |
Collapse
|
125
|
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011; 71:1263-71. [PMID: 21303976 DOI: 10.1158/0008-5472.can-10-2907] [Citation(s) in RCA: 891] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tumor microenvironment includes a complex network of immune T-cell subpopulations. In this study, we systematically analyzed the balance between cytotoxic T cells and different subsets of helper T cells in human colorectal cancers and we correlated their impact on disease-free survival. A panel of immune related genes were analyzed in 125 frozen colorectal tumor specimens. Infiltrating cytotoxic T cells, Treg, Th1, and Th17 cells were also quantified in the center and the invasive margin of the tumors. By hierarchical clustering of a correlation matrix we identified functional clusters of genes associated with Th17 (RORC, IL17A), Th2 (IL4, IL5, IL13), Th1 (Tbet, IRF1, IL12Rb2, STAT4), and cytotoxicity (GNLY, GZMB, PRF1). Patients with high expression of the Th17 cluster had a poor prognosis, whereas patients with high expression of the Th1 cluster had prolonged disease-free survival. In contrast, none of the Th2 clusters were predictive of prognosis. Combined analysis of cytotoxic/Th1 and Th17 clusters improved the ability to discriminate relapse. In situ analysis of the density of IL17+ cells and CD8+ cells in tumor tissues confirmed the results. Our findings argue that functional Th1 and Th17 clusters yield opposite effects on patient survival in colorectal cancer, and they provide complementary information that may improve prognosis.
Collapse
Affiliation(s)
- Marie Tosolini
- INSERM, Integrative Cancer Immunology Team, INSERM U872, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Gahr N, Fölster-Holst R, Weichenthal M, Christophers E, Schröder JM, Bartels J. Dermal fibroblasts from acute inflamed atopic dermatitis lesions display increased eotaxin/CCL11 responsiveness to interleukin-4 stimulation. Br J Dermatol 2011; 164:586-92. [PMID: 21039413 DOI: 10.1111/j.1365-2133.2010.10112.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The presence of eosinophils and/or eosinophil-derived products in the dermis is characteristic for involved skin of patients with atopic dermatitis and contributes to the observed tissue injury. CCL11 is a potent chemoattractant and activator of human eosinophils and interleukin (IL)-4 is a potent inducer of CCL11 expression in dermal fibroblasts. OBJECTIVES As increased fibroblast CCL11 expression may explain eosinophilic infiltration of involved skin areas in atopic dermatitis, we asked whether dermal fibroblasts from atopic patients differ from fibroblasts of healthy individuals in their ability to express CCL11. METHODS We compared IL-4-induced CCL11 mRNA expression using reverse transcription-polymerase chain reaction from cultured dermal fibroblasts derived from biopsies of chronic lesional and acute lesional atopic skin as well as from skin biopsies derived from normal skin of healthy donors. RESULTS Considerable variability in IL-4-induced relative CCL11 mRNA expression was detected in fibroblasts derived from biopsies of different individuals. The lowest median IL-4 concentration inducing half maximal CCL11 mRNA expression (EC(50)) was found in fibroblasts derived from acute inflamed atopic lesions. CONCLUSIONS Inducibility of CCL11 in dermal fibroblasts upon stimulation with Th2 cytokines explains the tissue eosinophilia observed in the presence of Th2 cytokines and the localization of eosinophils to the dermis. Decreased EC(50) values of IL-4-induced CCL11 expression in fibroblasts from acute inflamed atopic skin lesions indicates increased IL-4 responsiveness in these lesions and further substantiates the special role for IL-4-induced dermal fibroblast CCL11 expression in acute lesions. Variable CCL11 expression in fibroblasts from different patients with atopic dermatitis indicates heterogeneity of factors determining atopic phenotype in atopic dermatitis.
Collapse
Affiliation(s)
- N Gahr
- Clinical Research Unit, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Paulissen G, Rocks N, Guéders MM, Bedoret D, Crahay C, Quesada-Calvo F, Hacha J, Bekaert S, Desmet C, Foidart JM, Bureau F, Noel A, Cataldo DD. ADAM-8, a metalloproteinase, drives acute allergen-induced airway inflammation. Eur J Immunol 2010; 41:380-91. [PMID: 21268008 DOI: 10.1002/eji.200940286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 09/16/2010] [Accepted: 11/19/2010] [Indexed: 11/08/2022]
Abstract
Asthma is a complex disease linked to various pathophysiological events including the activity of proteinases. The multifunctional A disintegrin and metalloproteinases (ADAMs) displaying the ability to cleave membrane-bound mediators or cytokines appear to be key mediators in various inflammatory processes. In the present study, we investigated ADAM-8 expression and production in a mouse model of allergen-induced airway inflammation. In allergen-exposed animals, increased expression of ADAM-8 was found in the lung parenchyma and in DC purified from the lungs. The potential role of ADAM-8 in the development of allergen-induced airway inflammation was further investigated by the use of an anti-ADAM-8 antibody and ADAM-8 knockout animals. We observed a decrease in allergen-induced acute inflammation both in BALF and the peribronchial area in anti-ADAM-8 antibody-treated mice and in ADAM-8-deficient mice (ADAM-8(-/-) ) after allergen exposure. ADAM-8 depletion led to a significant decrease of the CD11c(+) lung DC. We also report lower levels of CCL11 and CCL22 production in antibody-treated mice and ADAM-8- deficient mice that might be explained by decreased eosinophilic inflammation and lower numbers of DC, respectively. In conclusion, ADAM-8 appears to favour allergen-induced acute airway inflammation by promoting DC recruitment and CCL11 and CCL22 production.
Collapse
Affiliation(s)
- Geneviève Paulissen
- Laboratory of Tumor and Development Biology, GIGA-Research (GIGA-I3 and GIGA-cancer), University of Liege and CHU of Liege, Sart-Tilman, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bae SJ, Lee JB, Shimizu K, Kuwazuka Y. Increase effect of transforming growth factor on eotaxin production by normal cultured dermal fibroblasts stimulated with interleukin-4: inhibitory effect of suplatast tosilate on eotaxin production. Immunol Invest 2010; 39:93-102. [PMID: 20136617 DOI: 10.3109/08820130903496769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eotaxin plays a central role in the development of allergic disease, including atopic dermatitis, asthma, and nasal allergy. Interleukin (IL)-4 induces eotaxin production in normal human dermal fibroblasts. On the other hands, Transforming growth factor-beta (TGF-beta), a multifunctional regulatory cytokine, affects many biological functions, including fibroblast growth and differentiation and Th2 cytokine regulation. In this study, we investigated the effect of TGF-beta on IL-4-induced eotaxin production by normal human fibroblasts, as well as the effect of suplatast tosilate, an antiallergic drug that selectively inhibits Th2 cytokine production. Dermal fibroblast treatment with IL-4 and TGF-beta for 24 h increased eotaxin production and expression of eotaxin mRNA, as measured by enzyme-linked immunosorbent assay (ELISA) and reverse-transcriptase polymerase chain reaction (RT-PCR), respectively. TGF-beta synergistically up-regulated eotaxin production and eotaxin mRNA expression when stimulated with IL-4. Suplatast tosilate dose-dependently inhibited eotaxin production induced by IL-4 or IL-4 plus TGF-beta. These results suggest that TGF-beta may regulate skin allergic inflammation by up-regulating eotaxin production in dermal fibroblasts. Suplatast tosilate might suppress this inflammation by inhibiting eotaxin production.
Collapse
Affiliation(s)
- Sang Jae Bae
- Department of Dermatology, Nagasaki University, School of Medicine, Nagasaki, Japan
| | | | | | | |
Collapse
|
129
|
Tsuchiya K, Jo T, Takeda N, Al Heialy S, Siddiqui S, Shalaby KH, Risse PA, Maghni K, Martin JG. EGF receptor activation during allergic sensitization affects IL-6-induced T-cell influx to airways in a rat model of asthma. Eur J Immunol 2010; 40:1590-602. [PMID: 20373517 DOI: 10.1002/eji.200939907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
EGF receptor (EGFR) is involved in cell differentiation and proliferation in airways and may trigger cytokine production by T cells. We hypothesized that EGFR inhibition at the time of allergic sensitization may affect subsequent immune reactions. Brown Norway rats were sensitized with OVA, received the EGFR tyrosine kinase inhibitor, AG1478 from days 0 to 7 and OVA challenge on day 14. OVA-specific IgE in serum and cytokines and chemokines in BAL were measured 24 h after challenge. To evaluate effects on airway hyperresponsiveness (AHR), rats were sensitized, treated with AG1478, intranasally challenged, and then AHR was assessed. Furthermore chemotactic activity of BALF for CD4(+) T cells was examined. The eosinophils, neutrophils and lymphocytes in BAL were increased by OVA and only the lymphocytes were reduced by AG1478. OVA significantly enhanced IL-6 concentration in BAL, which was inhibited by AG1478. However AHR, OVA-specific IgE and IL-4 mRNA expression in CD4(+) T cells were not affected by AG1478. BALF from OVA-sensitized/challenged rats induced CD4(+) T-cell migration, which was inhibited by both AG1478 treatment in vivo and neutralization of IL-6 in vitro. EGFR activation during sensitization may affect the subsequent influx of CD4(+) T cells to airways, mainly mediated through IL-6.
Collapse
Affiliation(s)
- Kimitake Tsuchiya
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Wise EL, Bonner KT, Williams TJ, Pease JE. A single nucleotide polymorphism in the CCR3 gene ablates receptor export to the plasma membrane. J Allergy Clin Immunol 2010; 126:150-7.e2. [PMID: 20541248 DOI: 10.1016/j.jaci.2010.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND The chemokine receptor CCR3 orchestrates the migration of eosinophils, basophils, T(H)2 lymphocytes, and mast cells during the allergic response, with CCR3 blockade a potential means of therapeutic intervention. Non-synonymous single nucleotide polymorphisms (SNPs) within the ccr3 gene have previously been described, with little information regarding their effects on CCR3 function. OBJECTIVE To characterize the effects of nonsynonymous SNPs within the ccr3 gene. METHODS Site-directed mutagenesis was used to generate N-terminally tagged mutant CCR3 constructs corresponding to reported SNPs. Cell transfectants expressing either wild-type or mutant CCR3 were studied by flow cytometry, Western blotting, and confocal microscopy and examined for their ability to migrate to the CC chemokine ligand CCL11/eotaxin. RESULTS An L324P mutant CCR3 protein corresponding to the previously identified T971C SNP was not expressed at the cell surface, and cells remained unresponsive to CCL11 in chemotaxis assays. Confocal microscopy confirmed that L324P-CCR3 had a predominantly intracellular distribution compared with wild-type CCR3. A L324A variant of CCR3 had an identical phenotype to the L324P mutant, suggesting that L324 per se is critical for successful trafficking of nascent CCR3 to the cell membrane. The processes involved appear to be specific for CCR3, because an identical mutation in the homologous receptor CCR1 had minor effects. CONCLUSION Trafficking to the cell surface of nascent CCR3 is critically dependent on a C-terminal leucine residue, suggestive of specific mechanisms for CCR3 export. Manipulation of these mechanisms may suggest novel means of antagonizing CCR3 function in the treatment of allergy.
Collapse
Affiliation(s)
- Emma L Wise
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
131
|
Ablin JN, Entin-Meer M, Aloush V, Oren S, Elkayam O, George J, Barshack I. Protective effect of eotaxin-2 inhibition in adjuvant-induced arthritis. Clin Exp Immunol 2010; 161:276-83. [PMID: 20456418 DOI: 10.1111/j.1365-2249.2010.04172.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eotaxin-2 is a potent chemoattractant for eosinophils, basophils and T helper type 2 (Th2) lymphocytes. The eotaxin-2/CCL24 receptor CCR3 is expressed in human brain, skin, endothelium and macrophages. The aim of the current study was to evaluate the protective effect of a monoclonal anti-eotaxin-2 antibody on the development of adjuvant-induced arthritis in rats (AIA). Adjuvant arthritis was induced in Lewis rats by intradermal injection of incomplete Freund's adjuvant +Mycobacterium tuberculosis. Rats were treated by intraperitoneal (i.p.) injection with three monoclonal antibodies against eotaxin-2 (G7, G8, D8) three times per week. Controls were treated with total mouse immunoglobulin G (IgG), methotrexate (MTX) or phosphate-buffered saline (PBS). Arthritis severity was evaluated by measuring ankle swelling, arthritic score, whole animal mobility and body weight. Sample joints were obtained for pathological evaluation and postmortem X-ray of ankle joints was performed to document erosions. Significant inhibition of arthritis was observed in rats treated with anti-eotaxin-2 antibodies compared to those treated with immunoglobulin or PBS. Inhibition was manifest in ankle diameter, arthritic score and mobility score. The antibody marked D8 showed the greatest efficacy. The effect was observed both in animals treated before the appearance of arthritis and in those where treatment was begun after development of joint inflammation. Combined treatment with D8 and MTX caused additional protection. Significant reduction of inflammation in D8-treated animals was also demonstrated in pathological and X-ray examinations. Inhibition of eotaxin-2 by monoclonal antibodies has a significant protective effect in adjuvant arthritis. These results may introduce a novel therapeutic target in rheumatoid arthritis and additional inflammatory joint disorders.
Collapse
Affiliation(s)
- J N Ablin
- Sourasky Medical Center, Rheumatology Institute, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
132
|
Asosingh K, Hanson JD, Cheng G, Aronica MA, Erzurum SC. Allergen-induced, eotaxin-rich, proangiogenic bone marrow progenitors: a blood-borne cellular envoy for lung eosinophilia. J Allergy Clin Immunol 2010; 125:918-25. [PMID: 20227754 PMCID: PMC2850950 DOI: 10.1016/j.jaci.2010.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/15/2009] [Accepted: 01/07/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophilic inflammation is closely related to angiogenesis in asthmatic airway remodeling. In ovalbumin (OVA)-sensitized mice bone marrow-derived, proangiogenic endothelial progenitor cells (EPCs) are rapidly recruited into the lungs after OVA aerosol challenge and promptly followed by mobilization and recruitment of eosinophils. OBJECTIVE We hypothesized that bone marrow-derived EPCs initiate the recruitment of eosinophils through expression of the eosinophil chemoattractant eotaxin-1. METHODS EPCs were isolated from an OVA murine model of allergic airway inflammation and from asthmatic patients. Endothelial and smooth muscle cells were isolated from mice. Eotaxin-1 expression was analyzed by means of immunofluorescence, real-time PCR, or ELISA. In vivo recruitment of eosinophils by EPCs was analyzed in mice. RESULTS Circulating EPCs of asthmatic patients had higher levels of eotaxin-1 compared with those seen in control subjects. In the murine model OVA allergen exposure augmented eotaxin-1 mRNA and protein levels in EPCs. The EPCs from OVA-sensitized and OVA-challenged mice released high levels of eotaxin-1 on contact with lung endothelial cells from sensitized and challenged mice but not from control animals and not on contact with cardiac or hepatic endothelial cells from sensitized and challenged mice. Intranasal administration of the eotaxin-rich media overlying cultures of EPCs caused recruitment into the lungs, confirming functional chemoattractant activity. CONCLUSIONS Bone marrow-derived EPCs are early responders to environmental allergen exposures and initiate a parallel switch to a proangiogenic and proeosinophilic environment in the lungs of asthmatic patients.
Collapse
Affiliation(s)
- Kewal Asosingh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. and
| | | | | | | | | |
Collapse
|
133
|
Abstract
IMPORTANCE OF THE FIELD The chemokine network, comprised of mediators of inflammation, has been implicated in the development of a number of human cancers. The eosinophil chemoattractant CCL11 was recently shown to play a role in the development of ovarian cancer. Here we review findings regarding CCL11 and discuss its use as a target in the treatment of ovarian cancer. AREAS COVERED IN THIS REVIEW We review published findings related to the physiological actions of CCL11, its tumourigenic effects, the chemokine network and inflammatory response present in ovarian cancer, and the current state of therapeutics targeting CCL11 and its receptors. Findings published within the last 10 years receive particular attention. WHAT THE READER WILL GAIN An overview of the emerging role of the chemokine network in malignancy and a review of the role of CCL11 in ovarian tumourigenesis. The reader will be presented with a description of the unique aspects of CCL11 action and the inflammatory environment in the setting of ovarian malignancy that make this chemokine an attractive target for intervention. TAKE HOME MESSAGE Targeting CCL11 and its receptors through the use of monoclonal antibodies and small-molecule inhibitors may represent a beneficial new avenue of ovarian cancer treatment.
Collapse
Affiliation(s)
- Brian M Nolen
- University of Pittsburgh, Cancer Institute, Hillman Cancer Center, Suite 1.19d, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
134
|
Chu YT, Chang TT, Jong YJ, Kuo PL, Lee HM, Lee MS, Chang HW, Hung CH. Suppressive effects of formoterol and salmeterol on eotaxin-1 in bronchial epithelial cells. Pediatr Allergy Immunol 2010; 21:345-52. [PMID: 20003162 DOI: 10.1111/j.1399-3038.2009.00906.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eotaxin-1 (CCL11), an eosinophil-specific C-C chemokine, is a potent chemoattractant for mobilization of eosinophils into airways after allergic stimulation. Eotaxin-1 recruits eosinophils into inflammatory sites, and may play a role in the pathogenesis of asthma. Formoterol and salmeterol are two inhaled long acting beta(2) adrenoceptor agonists (LABAs), widely used for the local treatment of asthma. However, little is known about their effects on the eotaxin-1 expression of bronchial epithelial cells. BEAS-2B cells were stimulated by adding IL-4 with or without 2 h pre-treatment of formoterol or salmeterol. The protein and mRNA expression of eotaxin-1 were measured by ELISA assay and real-time PCR, respectively. Effects of formoterol and salmeterol on nuclear and cytosolic pSTAT-6 expression were evaluated by Western blot and immunofluorescence study. Formoterol and salmeterol (10(-7)-10(-10) m) significantly down-regulated IL-4- induced eotaxin-1 expression in BEAS-2B cells. A specific beta(2) adrenoceptor antagonist (ICI 118,551) reversed their suppression of eotaxin-1 production. Forskolin, an cAMP activator, could also suppress the expression of eotaxin-1 by IL-4 in a dose dependent manner (10(-7)-10(-10 )m). The western blot and immunofluorescence studies demonstrated that formoterol 10(-7 )m suppressed the nuclear expression of pSTAT-6. Formoterol and salmeterol, two inhaled long-acting beta(2) agonists, down-regulated IL-4- induced eotaxin-1 expression in BEAS-2B cells. The effect was mediated via the beta(2) adrenoceptor, and cAMP. Formoterol significantly down-regulated pSTAT6 at higher concentration, and further turned off the IL-4 signaling pathway.
Collapse
Affiliation(s)
- Yu-Te Chu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Thiara AS, Andersen VY, Videm V, Mollnes TE, Svennevig K, Hoel TN, Fiane AE. Comparable biocompatibility of Phisio- and Bioline-coated cardiopulmonary bypass circuits indicated by the inflammatory response. Perfusion 2010; 25:9-16. [DOI: 10.1177/0267659110362822] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background: The biocompatibility of cardiopulmonary bypass surfaces has been improved by heparin and polymer surface modifications. The present study compared the effect of two such coatings on the inflammatory reactions after open heart surgery. Methods:Thirty patients undergoing elective heart surgery were randomly assigned to receive one of two types of coated circuits: Bioline (n=15) or phosphorylcholine (Phisio, n=15). The platelet and leukocyte counts, neutrophil activation (myeloperoxidase), complement activation (C3a and TCC), concentrations of lactate dehydrogenase, 27 cytokines (including interleukins, chemokines and growth factors), thrombin-antithrombin complexes, and the endothelial cell marker syndecan-1 were analyzed at five predetermined time points until 24 hrs post operatively. Results: Most measurements were comparable in both groups. However, myeloperoxidase was significantly higher in the Bioline group (p < 0.001). Postoperative lactate dehydrogenase concentrations were significantly higher in the Phisio group (p<0.01) and the maximal concentration of thrombin-antithrombin complexes 2 hours postoperatively tended to be higher in the Phisio group (p=0.08), consistent with a longer aortic cross-clamp and cardiopulmonary bypass time. Conclusions: The two circuits exhibited a comparable degree of in vivo biocompatibility.
Collapse
Affiliation(s)
- AS Thiara
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway,
| | - VY Andersen
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway
| | - V. Videm
- Department of Immunology and Transfusion Medicine, Trondheim University Hospital and Institute of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - TE Mollnes
- Institute of Immunology, Oslo University Hospital, Oslo, Norway, Nordland Hospital, Bodø, and University of Tromsø, Norway, Faculty Division Rikshospitalet, University of Oslo, Oslo, Norway
| | - K. Svennevig
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - TN Hoel
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway
| | - AE Fiane
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway, Faculty Division Rikshospitalet, University of Oslo, Oslo, Norway
| |
Collapse
|
136
|
Stubbs VEL, Power C, Patel KD. Regulation of eotaxin-3/CCL26 expression in human monocytic cells. Immunology 2010; 130:74-82. [PMID: 20059579 DOI: 10.1111/j.1365-2567.2009.03214.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Eotaxin-3/CCL26 is an agonist for chemokine receptor 3 (CCR3) and a natural antagonist for CCR1, CCR2 and CCR5. CCL26 expression by non-haematopoietic cells has been well documented; however, no studies to date have demonstrated CCL26 expression by leucocytes. In this study, we investigated the ability of human monocytic cells to produce CCL26 in response to cytokines. We found that interleukin-4 (IL-4) increased the expression of CCL26 messenger RNA (mRNA) and protein in U937 cells, in human monocytes and in human monocyte-derived macrophages. Tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) alone did not induce CCL26 expression, yet these pro-inflammatory cytokines synergized with IL-4 to increase CCL26 protein expression. Signal transducer and activator of transcription 6 (STAT6) was not affected by costimulation with TNF-alpha, suggesting that the synergy between IL-4 and TNF-alpha occurs at a step downstream of STAT6 activation. Co-incubation of interferon-gamma (IFN-gamma) with IL-4 had no effect on CCL26 protein release. By contrast, pretreatment with IFN-gamma decreased total STAT6 protein, blocked IL-4-mediated STAT6 phosphorylation and decreased IL-4-mediated CCL26 mRNA expression and protein release. These data show that IL-4 and pro-inflammatory cytokines such as TNF-alpha, IL-1beta and IFN-gamma regulate CCL26 synthesis in human monocytic cells, which may be important in regulating monocyte inflammatory responses.
Collapse
|
137
|
Dekkers BGJ, Bos IST, Gosens R, Halayko AJ, Zaagsma J, Meurs H. The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a guinea pig model of allergic asthma. Am J Respir Crit Care Med 2009; 181:556-65. [PMID: 20019343 DOI: 10.1164/rccm.200907-1065oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in regulating ASM proliferation and contractility has been found, suggesting that matrix proteins and their integrins actively modulate airway remodeling. OBJECTIVES To investigate the role of RGD (Arg-Gly-Asp)-binding integrins in airway remodeling in an animal model of allergic asthma. METHODS Using a guinea pig model of allergic asthma, the effects of topical application of the integrin-blocking peptide RGDS (Arg-Gly-Asp-Ser) and its negative control GRADSP (Gly-Arg-Ala-Asp-Ser-Pro) were assessed on markers of ASM remodeling, fibrosis, and inflammation induced by repeated allergen challenge. In addition, effects of these peptides on human ASM proliferation and maturation were investigated in vitro. MEASUREMENTS AND MAIN RESULTS RGDS attenuated allergen-induced ASM hyperplasia and hypercontractility as well as increased pulmonary expression of smooth muscle myosin heavy chain and the proliferative marker proliferating cell nuclear antigen (PCNA). No effects were observed for GRADSP. The RGDS effects were ASM selective, as allergen-induced eosinophil and neutrophil infiltration as well as fibrosis were unaffected. In cultured human ASM cells, we demonstrated that proliferation induced by collagen I, fibronectin, serum, and platelet-derived growth factor requires signaling via RGD-binding integrins, particularly of the alpha(5)beta(1) subtype. In addition, RGDS inhibited smooth muscle alpha-actin accumulation in serum-deprived ASM cells. CONCLUSIONS This is the first study indicating that integrins modulate ASM remodeling in an animal model of allergic asthma, which can be inhibited by a small peptide containing the RGD motif.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
138
|
Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice. ASN Neuro 2009; 1:e00024. [PMID: 19922414 PMCID: PMC2826103 DOI: 10.1042/an20090017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/07/2009] [Accepted: 10/12/2009] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.
Collapse
|
139
|
Lee H, Han AR, Kim Y, Choi SH, Ko E, Lee NY, Jeong JH, Kim SH, Bae H. A new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione, suppresses airway epithelial cell inflammatory responses in a murine model of asthma. Int J Immunopathol Pharmacol 2009; 22:591-603. [PMID: 19822076 DOI: 10.1177/039463200902200305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clinical and experimental studies have established eosinophilia as a sign of allergic disorders. Activation of eosinophils in the airways is believed to cause epithelial tissue injury, contraction of airway smooth muscle and increased bronchial responsiveness. As part of the search for new antiasthmatic agents produced by medicinal plants, the effects of 270 standardized medicinal plant extracts on cytokine-activated A549 human lung epithelial cells were evaluated. After several rounds of activity-guided screening, the new natural compound, 1H,8H-Pyrano[3,4-c]pyran-1,8-dione (PPY), was isolated from Vitex rotundifolia L. To elucidate the mechanism by which the anti-asthmatic responses of PPY occurred in vitro, lung epithelial cells (A549 cell) were stimulated with TNF-alpha, IL-4 and IL-1beta to induce the expression of chemokines and adhesion molecules involved in eosinophil chemotaxis. PPY treatments reduced the expression of eotaxin, IL-8, IL-16 and VCAM-1 mRNA significantly. Additionally, PPY reduced eotaxin secretion in a dose-dependent manner and significantly inhibited eosinophil migration toward A549 medium. In addition, PPY treatment suppressed the phosphorylation of p65 and ERK1/2, suggesting that it can inhibit the MAPK/NF-KB pathway. To clarify the anti-inflammatory and antiasthmatic effects of PPY in vivo, we examined the influence of PPY on the development of pulmonary eosinophilic inflammation in a murine model of asthma. To accomplish this, mice were sensitized and challenged with ovalbumin (OVA) and then examined for the following typical asthmatic reactions: an increase in the number of eosinophils in BALF; the presence of Th2 cytokines such as IL-4 and IL-5 in the BALF; the presence of allergen-specific IgE in the serum; and a marked influx of inflammatory cells into the lung. Taken together, our results revealed that PPY exerts profound inhibitory effects on the accumulation of eosinophils into the airways while reducing the levels of IL-4, IL-5, and IL-13 in the BALF. Therefore, these results suggest that PPY may be useful as a new therapeutic drug for the treatment of allergic asthma.
Collapse
Affiliation(s)
- H Lee
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
D'Armiento JM, Scharf SM, Roth MD, Connett JE, Ghio A, Sternberg D, Goldin JG, Louis TA, Mao JT, O'Connor GT, Ramsdell JW, Ries AL, Schluger NW, Sciurba FC, Skeans MA, Voelker H, Walter RE, Wendt CH, Weinmann GG, Wise RA, Foronjy RF. Eosinophil and T cell markers predict functional decline in COPD patients. Respir Res 2009; 10:113. [PMID: 19925666 PMCID: PMC2785783 DOI: 10.1186/1465-9921-10-113] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/19/2009] [Indexed: 12/12/2022] Open
Abstract
Background The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. Methods Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. Results and Discussion Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). Conclusion These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.
Collapse
|
141
|
Zweifel M, Mueller C, Schaffner T, Dahinden C, Matozan K, Driscoll R, Mohacsi P. Eotaxin/CCL11 expression by infiltrating macrophages in rat heart transplants during ongoing acute rejection. Exp Mol Pathol 2009; 87:127-32. [PMID: 19631640 DOI: 10.1016/j.yexmp.2009.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/15/2009] [Indexed: 11/17/2022]
Affiliation(s)
- Martin Zweifel
- Department of Cardiology, Heart Transplant-Research Laboratory, Swiss Cardiovascular Center, University Hospital Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
142
|
Medoff BD, Okamoto Y, Leyton P, Weng M, Sandall BP, Raher MJ, Kihara S, Bloch KD, Libby P, Luster AD. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol 2009; 41:397-406. [PMID: 19168697 PMCID: PMC2746986 DOI: 10.1165/rcmb.2008-0415oc] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 12/22/2008] [Indexed: 01/18/2023] Open
Abstract
Obesity is associated with an increased incidence and severity of asthma, as well as other lung disorders, such as pulmonary hypertension. Adiponectin (APN), an antiinflammatory adipocytokine, circulates at lower levels in the obese, which is thought to contribute to obesity-related inflammatory diseases. We sought to determine the effects of APN deficiency in a murine model of chronic asthma. Allergic airway inflammation was induced in APN-deficient mice (APN(-/-)) using sensitization without adjuvant followed by airway challenge with ovalbumin. The mice were then analyzed for changes in inflammation and lung remodeling. APN(-/-) mice in this model develop increased allergic airway inflammation compared with wild-type mice, with greater accumulation of eosinophils and monocytes in the airways associated with elevated lung chemokine levels. Surprisingly, APN(-/-) mice developed severe pulmonary arterial muscularization and pulmonary arterial hypertension in this model, whereas wild-type mice had only mild vascular remodeling and comparatively less pulmonary arterial hypertension. Our findings demonstrate that APN modulates allergic inflammation and pulmonary vascular remodeling in a model of chronic asthma. These data provide a possible mechanism for the association between obesity and asthma, and suggest a potential novel link between obesity, inflammatory lung disease, and pulmonary hypertension.
Collapse
Affiliation(s)
- Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, CNY 8301, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Jamaluddin MS, Wang X, Wang H, Rafael C, Yao Q, Chen C. Eotaxin increases monolayer permeability of human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 2009; 29:2146-52. [PMID: 19778943 DOI: 10.1161/atvbaha.109.194134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this study was to determine the effects and molecular mechanisms of eotaxin, a newly discovered chemokine (CCL11), on endothelial permeability in the human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS Cells were treated with eotaxin, and the monolayer permeability was studied by using a costar transwell system with a Texas Red-labeled dextran tracer. Eotaxin significantly increased monolayer permeability in a concentration-dependent manner. In addition, eotaxin treatment significantly decreased the mRNA and protein levels of endothelial junction molecules including zonula occludens-1 (ZO-1), occludin, and claudin-1 in a concentration-dependent manner as determined by real-time RT-PCR and Western blot analysis, respectively. Increased oxidative stress was observed in eotaxin-treated HCAECs by analysis of cellular glutathione levels. Furthermore, eotaxin treatment substantially activated the phosphorylation of MAPK p38. HCAECs expressed CCR3. Consequently, antioxidants (ginkgolide B and MnTBAP), specific p38 inhibitor SB203580, and anti-CCR3 antibody effectively blocked the eotaxin-induced permeability increase in HCAECs. Eotaxin also increased the phosphorylation of Stat3 and nuclear translocation of NF-kappaB in HCAECs. CONCLUSIONS Eotaxin increases vascular permeability through CCR3, the downregulation of tight junction proteins, increase of oxidative stress, and activation of MAPK p38, Stat3, and NF-kB pathways in HCAECs.
Collapse
Affiliation(s)
- Md Saha Jamaluddin
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
144
|
Joyce EA, Popper SJ, Falkow S. Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression. BMC Genomics 2009; 10:404. [PMID: 19712482 PMCID: PMC2743716 DOI: 10.1186/1471-2164-10-404] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/27/2009] [Indexed: 01/22/2023] Open
Abstract
Background We employed DNA microarray technology to investigate the host response to Streptococcus pneumoniae in a mouse model of asymptomatic carriage. Over a period of six weeks, we profiled transcript abundance and complexity in the Nasal Associated Lymphoid Tissue (NALT) to identify genes whose expression differed between pneumococcal-colonized and uncolonized states. Results Colonization with S. pneumoniae altered the expression of hundreds of genes over the course of the study, demonstrating that carriage is a dynamic process characterized by increased expression of a set of early inflammatory responses, including induction of a Type I Interferon response, and the production of several antimicrobial factors. Subsequent to this initial inflammatory response, we observed increases in transcripts associated with T cell development and activation, as well as wounding, basement membrane remodeling, and cell proliferation. Our analysis suggests that microbial colonization induced expression of genes encoding components critical for controlling JAK/STAT signaling, including stat1, stat2, socs3, and mapk1, as well as induction of several Type I Interferon-inducible genes and other antimicrobial factors at the earliest stages of colonization. Conclusion Examining multiple time points over six weeks of colonization demonstrated that asymptomatic carriage stimulates a dynamic host response characterized by temporal waves with distinct biological programs. Our data suggest that the usual response to the presence of the pneumocccus is an initial controlled inflammatory response followed by activation of host physiological processes such as response to wounding, basement membrane remodeling, and increasing cellular numbers that ultimately allow the host to maintain an intact epithelium and eventually mount a preventive adaptive immune response.
Collapse
Affiliation(s)
- Elizabeth A Joyce
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94131, USA.
| | | | | |
Collapse
|
145
|
Knott ML, Matthaei KI, Foster PS, Dent LA. The roles of eotaxin and the STAT6 signalling pathway in eosinophil recruitment and host resistance to the nematodes Nippostrongylus brasiliensis and Heligmosomoides bakeri. Mol Immunol 2009; 46:2714-22. [PMID: 19535141 DOI: 10.1016/j.molimm.2009.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/14/2009] [Indexed: 01/21/2023]
Abstract
Expulsion of adult Nippostrongylus brasiliensis worms from the small intestine is profoundly impaired in signal transducer and activator of transcription (STAT)6-deficient mice. IL-5 transgenic (Tg) mice with constitutive eosinophilia show profound early resistance in the skin and/or later pre-lung phase of primary infections with N. brasiliensis. This study was designed to assess the importance of the eosinophil chemokine eotaxin and the STAT6/interleukin (IL)-4/IL-13 signalling pathway in early resistance to N. brasiliensis. Eosinophil recruitment into the skin following injection of N. brasiliensis larvae was reduced in STAT6- or eotaxin-deficient/IL-5 Tg double mutant mice. While ablation of eotaxin did not impair resistance in the pre-lung phase of N. brasiliensis infections in IL-5 Tg mice, elimination of STAT6 caused a modest reduction in resistance in both primary and secondary infections on this genetic background. STAT6(-/-)-, IL-13(-/-)- and IL-4Ralpha(-/-)-deficient single mutant and IL-13(-/-)/IL-4Ralpha(-/-) double mutant mice were more susceptible than WT mice during the pre-lung phase of secondary N. brasiliensis infections. In contrast, primary or secondary resistance were unaffected at either the pre-lung or gut stages of infection in eotaxin(-/-) single mutant mice. STAT6(-/-) and eotaxin(-/-) mice with or without the IL-5 transgene, were no more susceptible than WT or IL-5 Tg mice to protracted primary infections with Heligmosomoides bakeri, a parasitic nematode that is restricted to the gut. Our data suggest that parasitic nematodes that transit through the skin and lungs en route to the gut may be susceptible to early (pre-lung) innate and adaptive immune mechanisms that are dependent on the STAT6/IL-4/IL-13 signalling pathway, and this may be important for the development of effective therapies and vaccines.
Collapse
|
146
|
Yao T, Kojima Y, Koyanagi A, Yokoi H, Saito T, Kawano K, Furukawa M, Kusunoki T, Ikeda K. Eotaxin-1, -2, and -3 immunoreactivity and protein concentration in the nasal polyps of eosinophilic chronic rhinosinusitis patients. Laryngoscope 2009; 119:1053-9. [PMID: 19296494 DOI: 10.1002/lary.20191] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES/HYPOTHESIS Eosinophilic chronic rhinosinusitis (CRS) is characterized by the accumulation of numerous eosinophils in the sinus mucosa and nasal polyps, which are frequently difficult to control, even with surgery. The present study was designed to evaluate the expression and localization of eotaxins, which are well known to be potent and selective chemoattractants for eosinophils in CRS. STUDY DESIGN Randomized study. METHODS The patients were classified into eosinophilic and noneosinophilic groups. Histopathological profiles of the nasal polyp were observed with hematoxylin-eosin staining. Eotaxin-1, -2, and -3 were immunohistochemically stained in the nasal polyps. Furthermore, the protein content of eotaxin subtypes inside the nasal polyp and sinus effusion was measured using enzyme-linked immunosorbent assay (ELISA). RESULTS In the nasal polyps, immunoreactivities of the eotaxin subfamily, eotaxin-1, -2, and -3, were noted in most of the infiltrating eosinophils, as well as in other inflammatory cells, epithelial cells, and endothelial cells. Compared with noneosinophilic CRS groups, eosinophilic CRS groups had a significant expression of eotaxins in their eosinophils. The eotaxin concentrations of nasal polyp and sinus effusion as measured by ELISA were significantly increased in the eosinophilic CRS group compared to the noneosinophilic CRS group. CONCLUSIONS The present findings suggest that enhanced eotaxin family production by eosinophils results in the recruitment of eosinophils into the tissue by a self-amplifying process. Laryngoscope, 2009.
Collapse
Affiliation(s)
- Toru Yao
- Department of Otorhinolaryngology, and BioMedical Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Levina V, Nolen BM, Marrangoni AM, Cheng P, Marks JR, Szczepanski MJ, Szajnik ME, Gorelik E, Lokshin AE. Role of eotaxin-1 signaling in ovarian cancer. Clin Cancer Res 2009; 15:2647-56. [PMID: 19351767 PMCID: PMC2669845 DOI: 10.1158/1078-0432.ccr-08-2024] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Tumor cell growth and migration can be directly regulated by chemokines. In the present study, the association of CCL11 with ovarian cancer has been investigated. EXPERIMENTAL DESIGN AND RESULTS Circulating levels of CCL11 in sera of patients with ovarian cancer were significantly lower than those in healthy women or women with breast, lung, liver, pancreatic, or colon cancer. Cultured ovarian carcinoma cells absorbed soluble CCL11, indicating that absorption by tumor cells could be responsible for the observed reduction of serum level of CCL11 in ovarian cancer. Postoperative CCL11 levels in women with ovarian cancer negatively correlated with relapse-free survival. Ovarian tumors overexpressed three known cognate receptors of CCL11, CC chemokine receptors (CCR) 2, 3, and 5. Strong positive correlation was observed between expression of individual receptors and tumor grade. CCL11 potently stimulated proliferation and migration/invasion of ovarian carcinoma cell lines, and these effects were inhibited by neutralizing antibodies against CCR2, CCR3, and CCR5. The growth-stimulatory effects of CCL11 were likely associated with activation of extracellular signal-regulated kinase 1/2, MEK1, and STAT3 phosphoproteins and with increased production of multiple cytokines, growth factors, and angiogenic factors. Inhibition of CCL11 signaling by the combination of neutralizing antibodies against the ligand and its receptors significantly increased sensitivity to cisplatin in ovarian carcinoma cells. CONCLUSION We conclude that CCL11 signaling plays an important role in proliferation and invasion of ovarian carcinoma cells and CCL11 pathway could be targeted for therapy in ovarian cancer. Furthermore, CCL11 could be used as a biomarker and a prognostic factor of relapse-free survival in ovarian cancer.
Collapse
Affiliation(s)
- Vera Levina
- University of Pittsburgh Cancer Institute, Department of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Bachert C, Van Bruaene N, Toskala E, Zhang N, Olze H, Scadding G, Van Drunen CM, Mullol J, Cardell L, Gevaert P, Van Zele T, Claeys S, Halldén C, Kostamo K, Foerster U, Kowalski M, Bieniek K, Olszewska-Ziaber A, Nizankowska-Mogilnicka E, Szczeklik A, Swierczynska M, Arcimowicz M, Lund V, Fokkens W, Zuberbier T, Akdis C, Canonica G, Van Cauwenberge P, Burney P, Bousquet J. Important research questions in allergy and related diseases: 3-chronic rhinosinusitis and nasal polyposis - a GALEN study. Allergy 2009; 64:520-33. [PMID: 19317839 DOI: 10.1111/j.1398-9995.2009.01964.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic rhinosinusitis is one of the most common health care challenges, with significant direct medical costs and severe impact on lower airway disease and general health outcomes. The diagnosis of chronic rhinosinusitis (CRS) currently is based on clinical signs, nasal endoscopy and CT scanning, and therapeutic recommendations are focussing on 2 classes of drugs, corticosteroids and antibiotics. A better understanding of the pathogenesis and the factors amplifying mucosal inflammation therefore seems to be crucial for the development of new diagnostic and therapeutic tools. In an effort to extend knowledge in this area, the WP 2.7.2 of the GA(2)LEN network of excellence currently collects data and samples of 1000 CRS patients and 250 control subjects. The main objective of this project is to characterize patients with upper airway disease on the basis of clinical parameters, infectious agents, inflammatory mechanisms and remodeling processes. This collaborative research will result in better knowledge on patient phenotypes, pathomechanisms, and subtypes in chronic rhinosinusitis. This review summarizes the state of the art on chronic rhinosinusitis and nasal polyposis in different aspects of the disease. It defines potential gaps in the current research, and points to future research perspectives and targets.
Collapse
|
149
|
MATSUURA H, ISHIGURO A, ABE H, MAMADA Y, SUZUKI T, KOHDA K, SHIMBO T. Elevation of Plasma Eotaxin Levels in Children with Food Allergy. ACTA ACUST UNITED AC 2009; 32:180-5. [DOI: 10.2177/jsci.32.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hiroki MATSUURA
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
- National hospital organization Chushinmatsumoto Hospital
| | - Akira ISHIGURO
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Hiroyuki ABE
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Yoko MAMADA
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Tetsuomi SUZUKI
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Kyoko KOHDA
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Toshikazu SHIMBO
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine
| |
Collapse
|
150
|
Cortez-Retamozo V, Swirski FK, Waterman P, Yuan H, Figueiredo JL, Newton AP, Upadhyay R, Vinegoni C, Kohler R, Blois J, Smith A, Nahrendorf M, Josephson L, Weissleder R, Pittet MJ. Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation. J Clin Invest 2008; 118:4058-66. [PMID: 19033674 PMCID: PMC2579705 DOI: 10.1172/jci36335] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/24/2008] [Indexed: 01/18/2023] Open
Abstract
Eosinophils are multifunctional leukocytes that degrade and remodel tissue extracellular matrix through production of proteolytic enzymes, release of proinflammatory factors to initiate and propagate inflammatory responses, and direct activation of mucus secretion and smooth muscle cell constriction. Thus, eosinophils are central effector cells during allergic airway inflammation and an important clinical therapeutic target. Here we describe the use of an injectable MMP-targeted optical sensor that specifically and quantitatively resolves eosinophil activity in the lungs of mice with experimental allergic airway inflammation. Through the use of real-time molecular imaging methods, we report the visualization of eosinophil responses in vivo and at different scales. Eosinophil responses were seen at single-cell resolution in conducting airways using near-infrared fluorescence fiberoptic bronchoscopy, in lung parenchyma using intravital microscopy, and in the whole body using fluorescence-mediated molecular tomography. Using these real-time imaging methods, we confirmed the immunosuppressive effects of the glucocorticoid drug dexamethasone in the mouse model of allergic airway inflammation and identified a viridin-derived prodrug that potently inhibited the accumulation and enzyme activity of eosinophils in the lungs. The combination of sensitive enzyme-targeted sensors with noninvasive molecular imaging approaches permitted evaluation of airway inflammation severity and was used as a model to rapidly screen for new drug effects. Both fluorescence-mediated tomography and fiberoptic bronchoscopy techniques have the potential to be translated into the clinic.
Collapse
Affiliation(s)
- Virna Cortez-Retamozo
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Filip K. Swirski
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Waterman
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hushan Yuan
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jose Luiz Figueiredo
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andita P. Newton
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rabi Upadhyay
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Claudio Vinegoni
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rainer Kohler
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Blois
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adam Smith
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lee Josephson
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mikael J. Pittet
- Center for Systems Biology and
Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|