101
|
Low Bone Turnover Due to Hypothyroidism or Anti-Resorptive Treatment Does Not Affect Whole-Body Glucose Homeostasis in Male Mice. J Pers Med 2022; 12:jpm12091462. [PMID: 36143246 PMCID: PMC9502862 DOI: 10.3390/jpm12091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bone is a large and dynamic tissue and its maintenance requires high amounts of energy as old or damaged bone structures need to be replaced during the process of bone remodeling. Glucose homeostasis is an essential prerequisite for a healthy bone and vice versa, the skeleton can act as an endocrine organ on energy metabolism. We recently showed that hypothyroidism in mice leads to an almost complete arrest of bone remodeling. Here, we aimed to investigate whether the profound suppression of bone remodeling affects whole-body glucose homeostasis. To that end, male C57BL/6JRj mice were rendered hypothyroid over 4 weeks using methimazole and sodium perchlorate in the drinking water. We confirmed trabecular bone gain due to decreased bone turnover in hypothyroid mice with decreased cortical but increased vertebral bone strength. Further, we found impaired glucose handling but not insulin resistance with hypothyroidism. In hypothyroid bone, glucose uptake and expression of glucose transporter Glut4 were reduced by 44.3% and 13.9%, respectively, suggesting lower energy demands. Nevertheless, hypothyroidism led to distinct changes in glucose uptake in muscle, liver, and epididymal white adipose tissue (eWAT). Reduced glucose uptake (−30.6%) and Glut1/Glut4 transcript levels (−31.9%/−67.5%) were detected in muscle tissue. In contrast, in liver and eWAT we observed increased glucose uptake by 25.6% and 68.6%, respectively, and upregulated expression of glucose transporters with hypothyroidism. To more specifically target bone metabolism and discriminate between the skeletal and systemic effects of hypothyroidism on energy metabolism, male mice were treated with zoledronate (ZOL), a bisphosphonate, that led to decreased bone turnover, trabecular bone gain, and reduced local glucose uptake into bone (−40.4%). However, ZOL-treated mice did not display alterations of systemic glucose handling nor insulin tolerance. Despite the close mutual crosstalk of bone and glucose metabolism, in this study, we show that suppressing bone remodeling does not influence whole-body glucose homeostasis in male mice.
Collapse
|
102
|
Zawada A, Ratajczak AE, Rychter AM, Szymczak-Tomczak A, Dobrowolska A, Krela-Kaźmierczak I. Treatment of Diabetes and Osteoporosis—A Reciprocal Risk? Biomedicines 2022; 10:biomedicines10092191. [PMID: 36140292 PMCID: PMC9495959 DOI: 10.3390/biomedicines10092191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus is a metabolic and systematic disorder that requires individualized therapy. The disease leads to various consequences, resulting in the destruction of tissues and organs. The aforementioned outcomes also include bone mineral disorders, caused by medications as well as diet therapy and physical activity. Some drugs may have a beneficial effect on both bone mineral density and the risk of fractures. Nevertheless, the impact of other medications remains unknown. Focusing on pharmacotherapy in diabetes may prevent bone mineral disorders and influence both the treatment and quality of life in patients suffering from diabetes mellitus. On the other hand, anti-osteoporosis drugs, such as antiresorptive or anabolic drugs, as well as drugs with a mixed mechanism of action, may affect carbohydrate metabolism, particularly in patients with diabetes. Therefore, the treatment of diabetes as well as osteoporosis prevention are vital for this group of patients.
Collapse
Affiliation(s)
- Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
- Correspondence: (A.Z.); (A.E.R.); Tel.: +48-667-385-996 or +48-8691-343 (A.E.R.); Fax: +48-8691-686 (A.E.R.)
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence: (A.Z.); (A.E.R.); Tel.: +48-667-385-996 or +48-8691-343 (A.E.R.); Fax: +48-8691-686 (A.E.R.)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
| |
Collapse
|
103
|
Laskou F, Patel H, Cooper C, Dennison E. Functional capacity, sarcopenia, and bone health. Best Pract Res Clin Rheumatol 2022; 36:101756. [PMID: 35691825 DOI: 10.1016/j.berh.2022.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone and muscle are recognised as interacting tissues, the so-called 'muscle-bone unit', in which these two tissues communicate to coordinate their development (chemically and metabolically), as well as their response to loading or injury. Musculoskeletal disorders of ageing, specifically osteoporosis and sarcopenia, are highly prevalent in older individuals. They signify a significant burden for older people affecting their mobility, confidence, and quality of life, as well as being a major cost to healthcare systems worldwide. This review considers the coexistence of osteoporosis and sarcopenia in individuals and describes risk factors, clinical consequences, approaches to management, and the link with functional capacity.
Collapse
Affiliation(s)
- Faidra Laskou
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| | - Harnish Patel
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| |
Collapse
|
104
|
Lee S, Song DW, Shin S, Hong N, Rhee Y. Elevated serum gamma-glutamyl transferase is associated with low muscle function in adults independent of muscle mass. Nutrition 2022; 103-104:111813. [DOI: 10.1016/j.nut.2022.111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
|
105
|
DI Monaco M, Castiglioni C, Bardesono F, Freiburger M, Milano E, Massazza G. Is sarcopenia associated with osteoporosis? A cross-sectional study of 262 women with hip fracture. Eur J Phys Rehabil Med 2022; 58:638-645. [PMID: 35412037 PMCID: PMC9980561 DOI: 10.23736/s1973-9087.22.07215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Several lines of evidence support the view that sarcopenia and osteoporosis are strictly connected. However, the capability of the updated sarcopenia definition to capture the concomitant presence of osteoporosis has been scarcely investigated. AIM The main aim was to assess the association between sarcopenia defined according to the revised criteria from the European Working Group on Sarcopenia in Older People (EWGSOP2) and osteoporosis in women with a hip fracture. A second aim was to investigate the thresholds for low appendicular lean mass (aLM) and handgrip strength to optimize osteoporosis detection. DESIGN Cross-sectional study. SETTING Rehabilitation hospital. POPULATION Women with subacute hip fracture. METHODS A scan by dual-energy X-ray absorptiometry (DXA) was performed to assess body composition. A Jamar dynamometer was used to measure handgrip strength. Sarcopenia was diagnosed with both handgrip strength <16 kg and aLM <15 kg. Osteoporosis was identified with femoral bone mineral density lower than 2.5 standard deviations below the mean of the young reference population. RESULTS We studied 262 of 290 women. Osteoporosis was found in 189 of the 262 women (72%; 95% CI: 67-78%) whereas sarcopenia in 147 (56%; 95% CI: 50-62%). After adjustment for age, time interval between fracture and DXA scan and body fat percentage the odds ratio to have osteoporosis for a sarcopenic woman was 2.30 (95% CI: 1.27-4.14; P=0.006). Receiver operating characteristic curve analyses showed that the best cut-off points to discriminate osteoporosis were 20 kg for handgrip strength and 12.5 kg for aLM. Adopting the optimized thresholds to define sarcopenia, the adjusted odds ratio to have osteoporosis for a sarcopenic woman was 3.68 (95% CI: 1.93-7.03; P<0.001). CONCLUSIONS This preliminary study shows a positive association between sarcopenia defined according to the EWGSOP2 criteria and osteoporosis in 262 women with hip fracture. The association may be bettered by refining the cut-off points for low aLM and handgrip strength. CLINICAL REHABILITATION IMPACT Sarcopenia seems to be a risk factor for osteoporosis in hip-fracture women. The issue, and the potential role of optimized thresholds should be addressed by robust longitudinal studies.
Collapse
Affiliation(s)
- Marco DI Monaco
- Osteoporosis Research Center, Division of Physical and Rehabilitation Medicine, Presidio Sanitario San Camillo, Opera San Camillo Foundation, Turin, Italy
| | - Carlotta Castiglioni
- Osteoporosis Research Center, Division of Physical and Rehabilitation Medicine, Presidio Sanitario San Camillo, Opera San Camillo Foundation, Turin, Italy
| | - Francesca Bardesono
- Osteoporosis Research Center, Division of Physical and Rehabilitation Medicine, Presidio Sanitario San Camillo, Opera San Camillo Foundation, Turin, Italy
| | - Margherita Freiburger
- Division of Physical and Rehabilitation Medicine, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Edoardo Milano
- Osteoporosis Research Center, Division of Physical and Rehabilitation Medicine, Presidio Sanitario San Camillo, Opera San Camillo Foundation, Turin, Italy
| | - Giuseppe Massazza
- Division of Physical and Rehabilitation Medicine, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
106
|
Dimas A, Politi A, Bargiota A, Panoskaltsis T, Vlahos NF, Valsamakis G. The Gestational Effects of Maternal Bone Marker Molecules on Fetal Growth, Metabolism and Long-Term Metabolic Health: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158328. [PMID: 35955462 PMCID: PMC9368754 DOI: 10.3390/ijms23158328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal exposure in adverse environmental factors during intrauterine life can lead to various biological adjustments, affecting not only in utero development of the conceptus, but also its later metabolic and endocrine wellbeing. During human gestation, maternal bone turnover increases, as reflected by molecules involved in bone metabolism, such as vitamin D, osteocalcin, sclerostin, sRANKL, and osteoprotegerin; however, recent studies support their emerging role in endocrine functions and glucose homeostasis regulation. Herein, we sought to systematically review current knowledge on the effects of aforementioned maternal bone biomarkers during pregnancy on fetal intrauterine growth and metabolism, neonatal anthropometric measures at birth, as well as on future endocrine and metabolic wellbeing of the offspring. A growing body of literature converges on the view that maternal bone turnover is likely implicated in fetal growth, and at least to some extent, in neonatal and childhood body composition and metabolic wellbeing. Maternal sclerostin and sRANKL are positively linked with fetal abdominal circumference and subcutaneous fat deposition, contributing to greater birthweights. Vitamin D deficiency correlates with lower birthweights, while research is still needed on intrauterine fetal metabolism, as well as on vitamin D dosing supplementation during pregnancy, to diminish the risks of low birthweight or SGA neonates in high-risk populations.
Collapse
Affiliation(s)
- Angelos Dimas
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece
- Obst & Gynae Department, University Hospital of Ioannina, Stavros Niarchos Ave., 45500 Ioannina, Greece
- Correspondence: (A.D.); (G.V.)
| | - Anastasia Politi
- Nephrology Department, University Hospital of Ioannina, Stavros Niarchos Ave., 45500 Ioannina, Greece;
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Medical School, Larissa University Hospital, University of Thessaly, 41334 Larissa, Greece;
| | - Theodoros Panoskaltsis
- 2nd University Department of Obstetrics & Gynecology, “Aretaieion” University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (T.P.); (N.F.V.)
| | - Nikolaos F. Vlahos
- 2nd University Department of Obstetrics & Gynecology, “Aretaieion” University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (T.P.); (N.F.V.)
| | - Georgios Valsamakis
- Endocrine Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, “Aretaieion” University Hospital, 11528 Athens, Greece
- Correspondence: (A.D.); (G.V.)
| |
Collapse
|
107
|
Park JW, Kim HS, Lee YK, Yoo JI, Choi Y, Ha YC, Koo KH. Sarcopenia: an unsolved problem after hip fracture. J Bone Miner Metab 2022; 40:688-695. [PMID: 35639177 DOI: 10.1007/s00774-022-01334-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Sarcopenia, loss of muscle mass and strength, leads to functional dependence and disability. To date, no study reported the postoperative change of sarcopenia prevalence after hip fractures. Thus, we assessed postoperative changes in the prevalence of osteoporosis and sarcopenia in hip fracture patients. MATERIALS AND METHODS Among 1159 patients, who underwent surgery for low-energy hip fractures between May 2012 and December 2019, 224 patients (38 men and 186 women with a mean age of 76.8 ± 8.7 years) were studied with preoperative and follow-up dual-energy X-ray absorptiometry (DXA). Bone mineral density (BMD) and skeletal muscle mass were measured on DXA scans. The postoperative changes in the prevalence of osteoporosis and that of the sarcopenia were evaluated as well as Koval grade of the hip fracture patients. RESULTS While there was no significant change in BMD, SMI significantly decreased postoperatively. Mean decrease of the SMI was 0.53 kg/m2 in men and 0.38 kg/m2 in women. Prevalence of sarcopenia increased from 63 to 89% (p = 0.014) in men and from 45 to 57% (p = 0.006) in women. Lower BMI (Odds ratio (OR) 0.85 (95% confidence interval (CI) 0.76-0.96), p = 0.008) and prior sarcopenia (OR 14.47 (95% CI 5.29-35.39), p < 0.001) were the risk factors for the decrease of SMI after hip fracture. CONCLUSIONS After hip fracture, osteoporosis seemed to be well managed and the prevalence of osteoporosis did not increase. However, SMI decreased and the prevalence of sarcopenia increased. More active measures are warranted to prevent sarcopenia in elderly hip fracture patients.
Collapse
Affiliation(s)
- Jung-Wee Park
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, South Korea
| | - Hong-Seok Kim
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Kyun Lee
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, South Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, South Korea
| | - Yangseon Choi
- Department of Orthopaedic Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - Yong-Chan Ha
- Department of Orthopaedic Surgery, Seoul Bumin Hospital, 389 Gonghang-daero, Gangseo-gu, Seoul, 07590, South Korea.
| | - Kyung-Hoi Koo
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, South Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
108
|
Liang H, Wang O, Cheng Z, Xia P, Wang L, Shen J, Kong X, Zeng Y, Chao A, Yan L, Lin H, Sun H, Cheng Q, Zhu M, Hu Z, Zhang Z, Tang H, Xia W. Jintiange combined with alfacalcidol improves muscle strength and balance in primary osteoporosis: A randomized, double-blind, double-dummy, positive-controlled, multicenter clinical trial. J Orthop Translat 2022; 35:53-61. [PMID: 36090002 PMCID: PMC9428785 DOI: 10.1016/j.jot.2022.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 10/28/2022] Open
|
109
|
Sfeir JG, Drake MT, Khosla S, Farr JN. Skeletal Aging. Mayo Clin Proc 2022; 97:1194-1208. [PMID: 35662432 PMCID: PMC9179169 DOI: 10.1016/j.mayocp.2022.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Aging represents the single greatest risk factor for chronic diseases, including osteoporosis, a skeletal fragility syndrome that increases fracture risk. Optimizing bone strength throughout life reduces fracture risk. Factors critical for bone strength include nutrition, physical activity, and vitamin D status, whereas unhealthy lifestyles, illnesses, and certain medications (eg, glucocorticoids) are detrimental. Hormonal status is another important determinant of skeletal health, with sex steroid concentrations, particularly estrogen, having major effects on bone remodeling. Aging exacerbates bone loss in both sexes and results in imbalanced bone resorption relative to formation; it is associated with increased marrow adiposity, osteoblast/osteocyte apoptosis, and accumulation of senescent cells. The mechanisms underlying skeletal aging are as diverse as the factors that determine the strength (and thus fragility) of bone. This review updates our current understanding of the epidemiology, pathophysiology, and treatment of osteoporosis and provides an overview of the underlying hallmark mechanisms that drive skeletal aging.
Collapse
Affiliation(s)
- Jad G Sfeir
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Matthew T Drake
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN.
| |
Collapse
|
110
|
Marcadet L, Bouredji Z, Argaw A, Frenette J. The Roles of RANK/RANKL/OPG in Cardiac, Skeletal, and Smooth Muscles in Health and Disease. Front Cell Dev Biol 2022; 10:903657. [PMID: 35693934 PMCID: PMC9181319 DOI: 10.3389/fcell.2022.903657] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Although their physiology and functions are very different, bones, skeletal and smooth muscles, as well as the heart have the same embryonic origin. Skeletal muscles and bones interact with each other to enable breathing, kinesis, and the maintenance of posture. Often, muscle and bone tissues degenerate synchronously under various conditions such as cancers, space travel, aging, prolonged bed rest, and neuromuscular diseases. In addition, bone tissue, skeletal and smooth muscles, and the heart share common signaling pathways. The RANK/RANKL/OPG pathway, which is essential for bone homeostasis, is also implicated in various physiological processes such as sarcopenia, atherosclerosis, and cardiovascular diseases. Several studies have reported bone-skeletal muscle crosstalk through the RANK/RANKL/OPG pathway. This review will summarize the current evidence indicating that the RANK/RANKL/OPG pathway is involved in muscle function. First, we will briefly discuss the role this pathway plays in bone homeostasis. Then, we will present results from various sources indicating that it plays a physiopathological role in skeletal, smooth muscle, and cardiac functions. Understanding how the RANK/RANKL/OPG pathway interferes in several physiological disorders may lead to new therapeutic approaches aimed at protecting bones and other tissues with a single treatment.
Collapse
Affiliation(s)
- Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Jérôme Frenette,
| |
Collapse
|
111
|
Polito A, Barnaba L, Ciarapica D, Azzini E. Osteosarcopenia: A Narrative Review on Clinical Studies. Int J Mol Sci 2022; 23:ijms23105591. [PMID: 35628399 PMCID: PMC9147376 DOI: 10.3390/ijms23105591] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosarcopenia (OS) is defined by the concurrent presence of osteopenia/osteoporosis and sarcopenia. The pathogenesis and etiology of OS involve genetic, biochemical, mechanical, and lifestyle factors. Moreover, an inadequate nutritional status, such as low intake of protein, vitamin D, and calcium, and a reduction in physical activity are key risk factors for OS. This review aims to increase knowledge about diagnosis, incidence, etiology, and treatment of OS through clinical studies that treat OS as a single disease. Clinical studies show the relationship between OS and the risk of frailty, falls, and fractures and some association with Non-communicable diseases (NCDs) pathologies such as diabetes, obesity, and cardiovascular disease. In some cases, the importance of deepening the related mechanisms is emphasized. Physical exercise with adequate nutrition and nutritional supplementations such as proteins, Vitamin D, or calcium, represent a significant strategy for breaking OS. In addition, pharmacological interventions may confer benefits on muscle and bone health. Both non-pharmacological and pharmacological interventions require additional randomized controlled trials (RCT) in humans to deepen the synergistic effect of exercise, nutritional interventions, and drug compounds in osteosarcopenia.
Collapse
|
112
|
Preoperative Osteopenia Is Associated with Significantly Shorter Survival in Patients with Perihilar Cholangiocarcinoma. Cancers (Basel) 2022; 14:cancers14092213. [PMID: 35565342 PMCID: PMC9103099 DOI: 10.3390/cancers14092213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Osteopenia is defined as low bone mineral density (BMD) and has been shown to be associated with outcomes of patients with various cancers. The association between osteopenia and perihilar cholangiocarcinoma is unknown. The aim of this study was to evaluate osteopenia as a prognostic factor in patients with perihilar cholangiocarcinoma. Methods: A total of 58 patients who underwent surgery for perihilar cholangiocarcinoma were retrospectively analyzed. The BMD at the 11th thoracic vertebra was measured using computed tomography scan within one month of surgery. Patients with a BMD < 160 HU were considered to have osteopenia and b BMD ≥ 160 did not have osteopenia. The log-rank test was performed for survival using the Kaplan−Meier method. After adjusting for confounding factors, overall survival was assessed by Cox′s proportional-hazards model. Results: The osteopenia group had 27 (47%) more females than the non-osteopenia group (p = 0.036). Median survival in the osteopenia group was 37 months and in the non-osteopenia group was 61 months (p = 0.034). In multivariable analysis, osteopenia was a significant independent risk factor associated with overall survival in patients with perihilar cholangiocarcinoma (hazard ratio 3.54, 95% confidence interval 1.09−11.54, p = 0.036), along with primary tumor stage. Conclusions: Osteopenia is associated with significantly shorter survival in patients with perihilar cholangiocarcinoma.
Collapse
|
113
|
Yamada S, Tsuruya K, Kitazono T, Nakano T. Emerging cross-talks between chronic kidney disease-mineral and bone disorder (CKD-MBD) and malnutrition-inflammation complex syndrome (MICS) in patients receiving dialysis. Clin Exp Nephrol 2022; 26:613-629. [PMID: 35353283 PMCID: PMC9203392 DOI: 10.1007/s10157-022-02216-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease–mineral and bone disorder (CKD–MBD) is a systemic disorder that affects multiple organs and systems and increases the risk of morbidity and mortality in patients with CKD, especially those receiving dialysis therapy. CKD–MBD is highly prevalent in CKD patients, and its treatment is gaining attention from healthcare providers who manage these patients. Additional important pathologies often observed in CKD patients are chronic inflammation and malnutrition/protein-energy wasting (PEW). These two pathologies coexist to form a vicious cycle that accelerates the progression of various other pathologies in CKD patients. This concept is integrated into the term “malnutrition–inflammation–atherosclerosis syndrome” or “malnutrition–inflammation complex syndrome (MICS)”. Recent basic and clinical studies have shown that CKD–MBD directly induces inflammation as well as malnutrition/PEW. Indeed, higher circulating levels of inorganic phosphate, fibroblast growth factor 23, parathyroid hormone, and calciprotein particles, as markers for critical components and effectors of CKD–MBD, were shown to directly induce inflammatory responses, thereby leading to malnutrition/PEW, cardiovascular diseases, and clinically relevant complications. In this short review, we discuss the close interplay between CKD–MBD and MICS and emphasize the significance of simultaneous control of these two seemingly distinct pathologies in patients with CKD, especially those receiving dialysis therapy, for better management of the CKD/hemodialysis population.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| |
Collapse
|
114
|
Wang YL, Bai L, Shi XR, Zhu H, Du LJ, Liu Y, Ma XX, Lin WZ, Liu T, Sun JY, Liu Y, Guo XG, Zhou LJ, Chen BY, Shao S, Meng XQ, Li YL, Li RG, Duan SZ. Osteoblast MR deficiency protects against adverse ventricular remodeling after myocardial infarction. J Mol Cell Cardiol 2022; 167:40-51. [PMID: 35314145 DOI: 10.1016/j.yjmcc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Mineralocorticoid receptor (MR) antagonists have been clinically used to treat heart failure. However, the underlying cellular and molecular mechanisms remain incompletely understood. METHODS AND RESULTS Using osteoblast MR knockout (MRobko) mouse in combination with myocardial infarction (MI) model, we demonstrated that MR deficiency in osteoblasts significantly improved cardiac function, promoted myocardial healing, as well as attenuated cardiac hypertrophy, fibrosis and inflammatory response after MI. Gene expression profiling using RNA sequencing revealed suppressed expression of osteocalcin (OCN) in calvaria from MRobko mice compared to littermate control (MRfl/fl) mice with or without MI. Plasma levels of undercarboxylated OCN (ucOCN) were also markedly decreased in MRobko mice compared to MRfl/fl mice. Administration of ucOCN abolished the protective effects of osteoblast MR deficiency on infarcted hearts. Mechanistically, ucOCN treatment promoted proliferation and inflammatory cytokine secretion in macrophages. Spironolactone, an MR antagonist, significantly inhibited the expression and secretion of OCN in post-MI mice. More importantly, spironolactone decreased plasma levels of ucOCN and inflammatory cytokines in heart failure patients. CONCLUSIONS MR deficiency in osteoblasts alleviates pathological ventricular remodeling after MI, likely through its regulation on OCN. Spironolactone may work through osteoblast MR/OCN axis to exert its therapeutic effects on pathological ventricular remodeling and heart failure in mice and human patients.
Collapse
Affiliation(s)
- Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China; Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xue-Rui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xiao-Xin Ma
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
115
|
Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol 2022; 123:4-13. [PMID: 34756783 PMCID: PMC8840962 DOI: 10.1016/j.semcdb.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Bone remodeling consists of resorption by osteoclasts (OCs) and formation by osteoblasts (OBs). Precise coordination of these activities is required for the resorbed bone to be replaced with an equal amount of new bone in order to maintain skeletal mass throughout the lifespan. This coordination of remodeling processes is referred to as the "coupling" of resorption to bone formation. In this review, we discuss the essential role for OCs in coupling resorption to bone formation, mechanisms for this coupling, and how coupling becomes less efficient or disrupted in conditions of bone loss. Lastly, we provide perspectives on targeting coupling to treat human bone disease.
Collapse
Affiliation(s)
- Margaret M. Durdan
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth D. Azaria
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan M. Weivoda
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA,Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
116
|
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF, Bonetto A. RANKL Blockade Reduces Cachexia and Bone Loss Induced by Non-Metastatic Ovarian Cancer in Mice. J Bone Miner Res 2022; 37:381-396. [PMID: 34904285 PMCID: PMC8940654 DOI: 10.1002/jbmr.4480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander J Jones
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
117
|
Phosphorylation of BCL2 at the Ser70 site mediates RANKL-induced osteoclast precursor autophagy and osteoclastogenesis. Mol Med 2022; 28:22. [PMID: 35183115 PMCID: PMC8858497 DOI: 10.1186/s10020-022-00449-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Phosphorylation modification of BCL2 is involved in receptor activator of nuclear factor-κB ligand (RANKL)-induced autophagy of osteoclast precursors (OCPs) and osteoclastogenesis. As an antiapoptotic molecule, the role of BCL2 phosphorylation in osteoclastogenesis is unknown. This study aimed to explore how BCL2 phosphorylation at specific sites regulates osteoclastogenesis.
Methods We first examined the effects of RANKL on BCL2 phosphorylation at different sites (Ser70 and Ser87) in OCPs. In vivo, transgenic mice overexpressing RANKL (Tg-hRANKL mice) were used to observe the effects of RANKL on phosphorylated BCL2 at different sites in OCPs of trabecular bone. Subsequently, using site-directed mutagenesis, we observed the respective effect of BCL2 mutations at different phosphorylation sites in OCPs on osteoclastogenesis, apoptosis, autophagy and the affinity between BCL2 and Beclin1/BAX under RANKL intervention. Results RANKL promoted BCL2 phosphorylation at the Ser70 (S70) site, but not the Ser87 (S87) site, in OCPs. Moreover, Tg-hRANKL mice had stronger BCL2 phosphorylation capacity at S70, not S87, in the OCPs of trabecular bone than wild-type mice in the same nest. Furthermore, BCL2 mutation at S70, not S87, inhibited RANKL-induced osteoclast differentiation and bone resorption activity. In addition, BCL2 mutation at S70 promoted OCP apoptosis, while BCL2 mutation at S87 showed the opposite effect. Remarkably, the BCL2 mutation at S70, not S87, inhibited OCP autophagic activity. Furthermore, BCL2 mutation at S70 enhanced the coimmunoprecipitation of BCL2 and Beclin1, whereas BCL2 mutation at S87 enhanced the coimmunoprecipitation of BCL2 and BAX in OCPs. More importantly, OCP autophagy, osteoclast differentiation and resorption pits inhibited by BCL2 mutation at S70 could be reversed by Beclin1 upregulation with TAT-Beclin1. Conclusion RANKL activates OCP autophagy through BCL2 phosphorylation at S70, thereby promoting osteoclastogenesis, which indicates that the inactivation of BCL2 at S70 in OCPs may be a therapeutic strategy for pathological bone loss. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00449-w.
Collapse
|
118
|
Stefanaki C, Paltoglou G, Mastorakos G, Chrousos GP. Chronic Stress and Steatosis of Muscles, Bones, Liver, and Pancreas: A Review. Horm Res Paediatr 2022; 96:66-73. [PMID: 35144259 DOI: 10.1159/000522540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic stress is a recognized risk factor for poor health, body composition disequilibrium, impaired mental health, and deterioration of quality of life. Chronic stress-related cortisol oversecretion and circadian dysregulation and associated systemic low grade, injurious inflammation ("para-inflammation") contribute to steatosis in various metabolically active solid organs, affecting both their structure and function. The aim of this review was to summarize current knowledge on the impact of chronic stress and associated para-inflammation on skeletal muscle, bone, liver, and pancreas, leading to their steatosis. Current management of these maladaptive conditions is also included and underscored in this review. SUMMARY Steatosis of metabolically active solid organs is involved in various metabolic processes and considered a risk factor for chronic noncommunicable diseases, yet its role in chronic stress physiology and pathophysiology has been overlooked. KEY MESSAGES Chronic stress-associated steatosis of several solid organs is generally disregarded in current clinical practice. Physicians should be alert for these steatoses and should address them adequately so as to provide appropriate medical care. New guidelines generated by learned societies are needed, along with large observational studies, to offer novel solutions to this old problem.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Unit of Endocrinology, Diabetes Mellitus, and Metabolism, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Paltoglou
- Unit of Endocrinology, Diabetes Mellitus, and Metabolism, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus, and Metabolism, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
119
|
Laskou F, Patel HP, Cooper C, Dennison E. A pas de deux of osteoporosis and sarcopenia: osteosarcopenia. Climacteric 2022; 25:88-95. [PMID: 34308725 DOI: 10.1080/13697137.2021.1951204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
The musculoskeletal conditions osteoporosis and sarcopenia are highly prevalent in older adults. Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone, whereas sarcopenia is identified by the loss of muscle strength, function and mass. Osteoporosis represents a major health problem contributing to millions of fractures worldwide on an annual basis, whereas sarcopenia is associated with a range of adverse physical and metabolic outcomes. They both affect physical and social function, confidence and quality of life as well as contributing to high health-care costs worldwide. Osteosarcopenia is the term given when both conditions occur concomitantly and it has been suggested that interactions between these two conditions may accelerate individual disease progression as co-existence of osteoporosis and sarcopenia is associated with higher morbidity from falls, fracture, disability as well as mortality. In this review, we will outline the epidemiology, pathogenesis and clinical consequences of osteosarcopenia and discuss available management strategies.
Collapse
Affiliation(s)
- F Laskou
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - H P Patel
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - E Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
120
|
He B, Zhao J, Zhang M, Yin L, Quan Z, Ou Y, Huang W. Causal roles of circulating adiponectin in osteoporosis and cancers. Bone 2022; 155:116266. [PMID: 34844025 DOI: 10.1016/j.bone.2021.116266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023]
Abstract
Circulating adiponectin has some association with the risk of osteoporosis and cancers, but their causal relationships remains elusive. Mendelian randomization (MR) study was used to explore the causal roles of circulating adiponectin in osteoporosis and cancers by using genome-wide association studies (GWASs) associated with circulating adiponectin, osteoporosis and cancers. Fifteen single nucleotide polymorphisms (SNPs) were used as instrumental variables for circulating adiponectin. Genetic predisposition to high circulating adiponectin was strongly associated with low femoral neck bone mineral density (FN-BMD, beta-estimate: -0.015, 95% CI: -0.023 to -0.006, SE: 0.004, P-value = 0.001), low forearm BMD (FA-BMD, beta-estimate: -0.027, 95% CI: -0.050 to -0.004, SE: 0.012, P-value = 0.023) and increased risk of breast cancer (beta-estimate: 0.011, 95% CI: 0.001 to 0.022, SE: 0.005, P-value = 0.031). There was limited evidence of the associations between circulating adiponectin and other outcomes (i.e. lumbar spine BMD [LS-BMD], colorectal cancer, liver cancer, lung cancer, bone cancer and prostate cancer). This study provides robust evidence that high circulating adiponectin is causally associated with low FN-BMD, low FA-BMD and increased risk of breast cancer, which may provide new insight to prevent and treat osteoporosis and breast cancer.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinqiu Zhao
- Department of Infectious diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lifeng Yin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
121
|
Viggers R, Al-Mashhadi Z, Starup-Linde J, Vestergaard P. The Efficacy of Alendronate Versus Denosumab on Major Osteoporotic Fracture Risk in Elderly Patients With Diabetes Mellitus: A Danish Retrospective Cohort Study. Front Endocrinol (Lausanne) 2022; 12:826997. [PMID: 35154013 PMCID: PMC8825412 DOI: 10.3389/fendo.2021.826997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Patients with diabetes mellitus have an increased risk of fractures; however, the underlying mechanism is largely unknown. We aimed to investigate whether the risk of major osteoporotic fractures in diabetes patients differs between subjects initiated with alendronate and denosumab, respectively. Methods and Research Design We conducted a retrospective nationwide cohort study through access to all discharge diagnoses (ICD-10 system) from the National Danish Patient Registry along with all redeemed drug prescriptions (ATC classification system) from the Health Service Prescription Registry. We identified all subjects with a diabetes diagnosis between 2000 and 2018 and collected data on the first new prescription of anti-osteoporotic treatment between 2011 and 2018. Exposure was defined as either alendronate or denosumab treatment initiated after diabetes diagnosis. Outcome information was collected by identification of all major osteoporotic fracture (MOF) diagnoses, i.e., hip, spine, forearm, and humerus, from exposure until 2018 or censoring by emigration or death. The risk of fracture was calculated as hazard ratios (HR) using multiply adjusted Cox proportional models with death as a competing risk. Results We included 8,745 subjects initiated with either alendronate (n = 8,255) or denosumab (n = 490). The cohort consisted of subjects with a mean age of 73.62 (SD ± 9.27) years, primarily females (69%) and suffering mainly from type 2 diabetes (98.22%) with a median diabetes duration at baseline of 5.45 years (IQR 2.41-9.19). Those in the denosumab group were older (mean 75.60 [SD ± 9.72] versus 73.51 [SD ± 9.23] years), had a higher proportion of women (81% versus 68%, RR 1.18 [95% CI 1.13-1.24], and were more comorbid (mean CCI 2.68 [95% CI 2.47-2.88] versus 1.98 [95% CI 1.93-2.02]) compared to alendronate initiators. In addition, denosumab users had a higher prevalence of previous fractures (64% versus 46%, RR 1.38 [95% CI 1.28-1.48]). The adjusted HR for any MOF after treatment initiation with denosumab was 0.89 (95% CI 0.78-1.02) compared to initiation with alendronate. Conclusion The risk of incident MOF among subjects with diabetes was similar between those initially treated with alendronate and denosumab. These findings indicate that the two treatment strategies are equally effective in preventing osteoporotic fractures in subjects with diabetes.
Collapse
Affiliation(s)
- Rikke Viggers
- Steno Diabetes Center North Jutland, Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Zheer Al-Mashhadi
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Starup-Linde
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
122
|
Okayama A, Nakayama N, Kashiwa K, Horinouchi Y, Fukusaki H, Nakamura H, Katayama S. Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare (Basel) 2022; 10:healthcare10020192. [PMID: 35206807 PMCID: PMC8872599 DOI: 10.3390/healthcare10020192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
In this cross-sectional analysis of 61 postmenopausal osteoporosis patients who regularly visited an osteoporosis outpatient clinic, we aimed to clarify the prevalence of sarcopenia and its related clinical factors. Of 61 patients (mean age 77.6 ± 8.1 years), 24 (39.3%) had osteosarcopenia and 37 (60.7%) had osteoporosis alone. Age, nutritional status, and the number of prescribed drugs were associated with the presence of sarcopenia (p = 0.002, <0.001, and 0.001, respectively), while bone mineral density (BMD) and % young adult mean BMD were not (p = 0.119 and 0.119, respectively). Moreover, patients with osteosarcopenia had lower quality of life (QOL) scores, greater postural instability, and a higher incidence of falls in the past year than patients with osteoporosis alone. In contrast, BMD status showed no correlation with the nutritional status, QOL score, postural instability, or incidence of falls in the past year. In conclusion, the incidence of sarcopenia was relatively high among postmenopausal osteoporosis female patients in an osteoporosis outpatient clinic. Our results suggest that in addition to routine BMD evaluation, assessment and management of sarcopenia may be promoted at osteoporosis outpatient clinics to limit the risk of falls and prevent consequent fragility fractures in osteoporosis patients.
Collapse
Affiliation(s)
- Akira Okayama
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
| | - Naomi Nakayama
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
- Faculty of Health and Nutrition, The University of Shimane, Izumo 693-8550, Japan
- Correspondence: ; Tel.: +81-(79)-5527534
| | - Kaori Kashiwa
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
| | - Yutaka Horinouchi
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
| | - Hayato Fukusaki
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
| | - Hirosuke Nakamura
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
| | - Satoru Katayama
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo College of Medicine, Sasayama Medical Center, Tanbasasayama 669-2321, Japan; (A.O.); (K.K.); (Y.H.); (H.F.); (H.N.); (S.K.)
| |
Collapse
|
123
|
Li Y, Yang C, Jia K, Wang J, Wang J, Ming R, Xu T, Su X, Jing Y, Miao Y, Liu C, Lin N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114602. [PMID: 34492323 DOI: 10.1016/j.jep.2021.114602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone destruction plays a key role in damaging the joint function of rheumatoid arthritis (RA). Fengshi Qutong capsule (FSQTC) consisting of 19 traditional Chinese medicines has been used for treating RA in China for many years. Preliminary studies show that FSQTC has analgesic activity and inhibits synovial angiogenesis of collagen-induced arthritis (CIA), but its role on bone destruction of RA is still unclear. AIM OF THE STUDY To explore the effect of FSQTC on bone destruction of RA and the possible mechanism of osteoclastogenesis in vivo and in vitro. MATERIALS AND METHODS LC-MS system was used to detect the quality control components of FSQTC. The anti-arthritic effect of FSQTC on CIA rats was evaluated by arthritis score, arthritis incidence and histopathology evaluation of inflamed joints. The effect of treatment with FSQTC on bone destruction of joint tissues was determined with X-ray and micro-CT quantification, and on bone resorption marker CTX-I and formation marker osteocalcin in sera were detected by ELISA. Then, osteoclast differentiation and mature were evaluated by TRAP staining, actin ring immunofluorescence and bone resorption assay both in joints and RANKL-induced RAW264.7 cells. In addition, RANKL, OPG, IL-1β and TNFα in sera were evaluated by ELISA. The molecular mechanisms of the inhibitions were elucidated by analyzing the protein and gene expression of osteoclastic markers CTSK, MMP-9 and β3-Integrin, transcriptional factors c-Fos and NFATc1, as well as phosphorylation of ERK1/2, JNK and P38 in joints and in RANKL-induced RAW264.7 cells using western blot and/or qPCR. RESULTS In this study, 12 major quality control components were identified. Our data showed that FSQTC significantly increased bone mineral density, volume fraction, trabecular thickness, and decreased trabecular separation of inflamed joints both at periarticular and extra-articular locations in CIA rats. FSQTC also diminished the level of CTX-I and simultaneously increased osteocalcin in sera of CIA rats. The effects were accompanied by reductions of osteoclast differentiation, bone resorption, and expression of osteoclastic markers (CTSK, MMP-9 and β3-Integrin) in joints. Interestingly, FSQTC treatment could reduce the protein level of RANKL, increase the expression of OPG, and decrease the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. In addition, FSQTC inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as IL-1β and TNFα in sera. When RAW264.7 cells were treated with RANKL, FSQTC inhibited the formation of TRAP + multinucleated cells, actin ring and the bone-resorbing activity in dose-dependent manners. Furthermore, FSQTC reduced the RANKL-induced expression of osteoclastic genes and proteins and transcriptional factors (c-Fos and NFATc1), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). CONCLUSION FSQTC may inhibit bone destruction of RA by its anti-osteoclastogenic activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Jing
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Yandong Miao
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
124
|
Kirk B, Lieu N, Vogrin S, Sales M, Pasco JA, Duque G. Serum levels of C-terminal telopeptide (CTX) are associated with muscle function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 2022; 77:2085-2092. [PMID: 35018430 DOI: 10.1093/gerona/glac008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Markers of bone metabolism have been associated with muscle mass and function. Whether serum cross-linked C-terminal telopeptides of type I collagen (CTX) is also associated with these measures in older adults remains unknown. METHODS In community-dwelling older adults at high risk of falls and fractures, serum CTX (biochemical immunoassays) was used as the exposure, while appendicular lean mass (dual-energy x-ray absorptiometry) and muscle function (grip strength [hydraulic dynamometer], short physical performance battery [SPPB], gait speed, sit to stand, balance, Timed Up and Go [TUG]) were used as outcomes. Potential covariates including demographic, lifestyle and clinical factors were considered in statistical models. Areas under the ROC curves were calculated for significant outcomes. RESULTS 299 older adults (median age: 79 years, IQR: 73, 84; 75.6% women) were included. In multivariable models, CTX was negatively associated with SPPB (β = 0.95, 95% CI: 0.92, 0.98) and balance (β = 0.92, 0.86, 0.99) scores, and positively associated with sit to stand (β = 1.02, 95% CI: 1.00, 1.05) and TUG (β = 1.03, 95% CI: 1.00, 1.05). Trend line for gait speed (β = 0.99, 95% CI: 0.98, 1.01) was in the hypothesized direction but did not reach significance. AUC curves showed low diagnostic power (<0.7) of CTX in identifying poor muscle function (SPPB: 0.63; sit to stand: 0.64; TUG: 0.61). CONCLUSION In older adults, higher CTX levels were associated with poorer lower-limb muscle function (but showed poor diagnostic power for these measures). These clinical data build on the biomedical link between bone and muscle.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Nicky Lieu
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Sara Vogrin
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Myrla Sales
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Julie A Pasco
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| |
Collapse
|
125
|
Trivedi T, Guise TA. Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 2022; 154:116245. [PMID: 34718221 DOI: 10.1016/j.bone.2021.116245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Skeletal tissue is dynamic, undergoing constant remodeling to maintain musculoskeletal integrity and balance in the human body. Recent evidence shows that apart from maintaining homeostasis in the local microenvironment, the skeleton systemically affects other tissues. Several cancer-associated and noncancer-associated bone disorders can disrupt the physiological homeostasis locally in the bone microenvironment and indirectly contribute to dysregulation of systemic body function. The systemic effects of bone on the regulation of distant organ function have not been widely explored. Recent evidence suggests that bone can interact with skeletal muscle, pancreas, and brain by releasing factors from mineralized bone matrix. Currently available bone-targeting therapies such as bisphosphonates and denosumab inhibit bone resorption, decrease morbidity associated with bone destruction, and improve survival. Bisphosphonates have been a standard treatment for bone metastases, osteoporosis, and cancer treatment-induced bone diseases. The extraskeletal effects of bisphosphonates on inhibition of tumor growth are known. However, our knowledge of the effects of bisphosphonates on muscle weakness, hyperglycemia, and cognitive defects is currently evolving. To be able to identify the molecular link between bone and distant organs during abnormal bone resorption and then treat these abnormalities and prevent their systemic effects could improve survival benefits. The current review highlights the link between bone resorption and its systemic effects on muscle, pancreas, and brain.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
126
|
Ballato E, Deepika F, Prado M, Russo V, Fuenmayor V, Bathina S, Villareal DT, Qualls C, Armamento-Villareal R. Circulating osteogenic progenitors and osteoclast precursors are associated with long-term glycemic control, sex steroids, and visceral adipose tissue in men with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:936159. [PMID: 36171900 PMCID: PMC9511027 DOI: 10.3389/fendo.2022.936159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is well-known to be associated with normal bone density but, concurrently, low bone turnover and increased risk for fracture. One of the proposed mechanisms is possible derangement in bone precursor cells, which could be represented by deficiencies in circulating osteogenic progenitor (COP) cells and osteoclast precursors (OCP). The objective of our study is to understand whether extent of glycemic control has an impact on these cells, and to identify other factors that may as well. METHODS This was a secondary analysis of baseline data from 51 male participants, aged 37-65 in an ongoing clinical trial at Michael E. DeBakey VA Medical Center, Houston, Texas, USA. At study entry serum Hemoglobin A1c was measured by high-performance liquid chromatography osteocalcin (OCN) and C-terminal telopeptide of type 1 collagen (CTx) were measured by ELISA, and testosterone and estradiol by liquid-chromatography/mass-spectrometry. Areal bone mineral density (BMD), trabecular bone score and body composition were measured by dual energy x-ray absorptiometry, while COP and OCP were measured by flow cytometry. RESULTS When adjusted for serum testosterone, parathyroid hormone, and 25-hydroxyvitamin D, those with poor long-term glycemic control had significantly higher percentage of COP (p = 0.04). COP correlated positively with visceral adipose tissue (VAT) volume (r = 0.37, p = 0.01) and negatively with free testosterone (r = -0.28, p = 0.05) and OCN (r = -0.28, p = 0.07), although only borderline for the latter. OCP correlated positively with age, FSH, lumbar spine BMD, and COP levels, and negatively with glucose, triglycerides, and free estradiol. Multivariable regression analyses revealed that, in addition to being predictors for each other, another independent predictor for COP was VAT volume while age, glucose, and vitamin D for OCP. CONCLUSION Our results suggest that high COP could be a marker of poor metabolic control. However, given the complex nature and the multitude of factors influencing osteoblastogenesis/adipogenesis, it is possible that the increase in COP is a physiologic response of the bone marrow to increased osteoblast apoptosis from poor glycemic control. Alternatively, it is also likely that a metabolically unhealthy profile may retard the development of osteogenic precursors to fully mature osteoblastic cells.
Collapse
Affiliation(s)
- Elliot Ballato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Mia Prado
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Vittoria Russo
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Virginia Fuenmayor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Dennis T. Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Clifford Qualls
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States
- Research Service Line, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
127
|
Gilani M, Shepherd S, Nichols B, Gerasimidis K, Choong Wong S, Mason A. Evaluation of Body Composition in Paediatric Osteogenesis Imperfecta. J Clin Densitom 2022; 25:81-88. [PMID: 33582031 DOI: 10.1016/j.jocd.2021.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Osteogenesis Imperfecta (OI) is a skeletal disorder characterised by a predisposition to recurrent fractures and bone deformities. Clinically OI is defined by features such as short stature, however, less is known regarding body composition. Assess body composition, both lean mass and fat mass, in a paediatric OI population. Children with OI attending the Bone service at the Royal Hospital for Children Glasgow were included; who had a dual-energy x-ray absorptiometry (DXA) scan performed 2015-2018. Height and body-mass-index (BMI) were converted to standard-deviation scores (SDS) using UK population references. DXA-derived lean mass and fat mass were used to generate lean-mass-index (LMI) and fat-mass-index (FMI) by dividing the covariates by height squared. LMI and FMI were converted to age-and-gender-adjusted SDS using DXA data from 198 local healthy children. Thirty-eight children (20 males) with median age 11.95 (range: 4.8, 18.3) years were included. Median height SDS was -1.08 (-3.64, 1.62) and was significantly lower than the healthy population (p<0.0001). Median BMI SDS was -0.10 (-2.31, 2.95), and not significantly different from the healthy population (p = 0.53). Median LMI SDS was -2.52 (-6.94, 0.77), and significantly lower than healthy controls (p<0.0001); 61% (23/38) had an SDS below -2.0. Median FMI SDS was 0.69 (-0.45, 2.72), significantly higher than healthy controls (p < 0.0001). BMI SDS cut-offs of -0.15 and 1.33, from ROC analysis, identified children with LMI SDS <-2, with a positive predictive value of 95% and a negative predictive value of 70%; and FMI SDS >2 with a positive predictive value of 44% and a negative predictive value of 100%. A contemporary population of children with ranging severities of OI present with significant reduction in height and lean mass, and relatively high fat mass. Standard BMI SDS cut-offs for identifying children with malnutrition and obesity have poor prognostic validity in OI.
Collapse
Affiliation(s)
- Misha Gilani
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheila Shepherd
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Ben Nichols
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Sze Choong Wong
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Avril Mason
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom.
| |
Collapse
|
128
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
129
|
Haeri N, Perera S, Greenspan S. Does Zoledronic Acid Improve Appendicular Lean Mass in Older Women with Osteoporosis? A Sub-Analysis of a Randomized Clinical Trial. J Frailty Aging 2022; 11:420-425. [PMID: 36346729 PMCID: PMC9851771 DOI: 10.14283/jfa.2022.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Coexistence of osteoporosis and sarcopenia (osteosarcopenia), is associated with increased risk for fractures, falls, and mortality. Although there are multiple medications for management of osteoporosis, there are no approved pharmacotherapy for sarcopenia. OBJECTIVES We examined the effect of zoledronic acid on muscle mass indices including ALM (Appendicular Lean Mass) and ALM/Height2 in a cohort of older women with osteoporosis who were residents of Long-Term Care Communities (LTCCs). DESIGN A secondary analysis of a 2-year double-blind, randomized, placebo-controlled clinical trial. SETTING Residents of LTCCs. PARTICIPANTS Sixty-two postmenopausal women with osteoporosis. INTERVENTION Participants either received 5 mg infusion of zoledronic acid or placebo, once at the start of the study. MEASUREMENTS Participant's ALM/Height2, ALM, total hip BMD (Bone Mineral Density) and spine BMD were measured in 6, 12 and 24 months. RESULTS On average, participants were 86.7 years old and had a BMI of 27.4 kg/m2. There was no significant difference in change from baseline (mean ± SE) between the treatment group and the placebo group in ALM/Height2: (-0.15 vs -0.02, p = 0.541) and (-0.17 vs 0.001, p = 0.315) and (-0.29 vs -0.19, p = 0.646) or ALM: (-0.38 vs -0.09, p = 0.455) and (-0.45 vs -0.005, p = 0.216) and (-0.70 vs -0.48, p = 0.553) at 6, 12, and 24 months respectively. In addition, after adjusting for a possible confounding, the ALM/Height2 or ALM did not have significant improvements from baseline at 6 months, 12 months, and 24 months either in the treatment group or in the placebo group. However, there were significant improvements in the BMD at the total hip and the spine in the treatment group compared with the placebo group at all three time points. CONCLUSIONS Among older women residing in LTCCs, a single dose of zoledronic acid did not increase ALM/Height2 and ALM, despite improving the BMD at the total hip and the spine at the 2-year follow-up.
Collapse
Affiliation(s)
- N.S. Haeri
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - S. Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - S.L. Greenspan
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
130
|
Dionyssiotis Y, Prokopidis K, Vorniotakis P, Bakas E. Osteosarcopenia School. J Frailty Sarcopenia Falls 2021; 6:231-240. [PMID: 34950814 PMCID: PMC8649862 DOI: 10.22540/jfsf-06-231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcopenia has been proposed as a syndrome in a subset of frail individuals at higher risk of falls, fractures and institutionalization. In this paper, we will go over the translational aspects of sarcopenia and osteoporosis research and highlight outcomes from different interventions. In addition, preventative measures and therapeutic interventions that can benefit both muscle and bone simultaneously will be analysed also. A new holistic concept called Osteosarcopenia School will be presented. This new concept is based on counselling and education of patients as part of a rehabilitation program, aiming to reduce the risk of social isolation, falls and fractures, and subsequent disability through muscle strengthening and balance training. In this patient group, the combination of pharmaceutical treatments and specific exercise programmes are essential to counteract the consequences of osteosarcopenia. Finally, educational programmes targeting patient functionality through social reintegration may have a substantial impact on their daily living activities and overall quality of life.
Collapse
Affiliation(s)
- Yannis Dionyssiotis
- Spinal Cord Injury Rehabilitation Clinic, University of Patras, Rio Patras, Greece
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Eleftherios Bakas
- Physical Medicine and Rehabilitation Department, KAT Hospital, Kifissia, Greece
| |
Collapse
|
131
|
Karava V, Dotis J, Christoforidis A, Kondou A, Printza N. Muscle-bone axis in children with chronic kidney disease: current knowledge and future perspectives. Pediatr Nephrol 2021; 36:3813-3827. [PMID: 33534001 DOI: 10.1007/s00467-021-04936-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Bone and muscle tissue are developed hand-in-hand during childhood and adolescence and interact through mechanical loads and biochemical pathways forming the musculoskeletal system. Chronic kidney disease (CKD) is widely considered as both a bone and muscle-weakening disease, eventually leading to frailty phenotype, with detrimental effects on overall morbidity. CKD also interferes in the biomechanical communication between two tissues. Pathogenetic mechanisms including systemic inflammation, anorexia, physical inactivity, vitamin D deficiency and secondary hyperparathyroidism, metabolic acidosis, impaired growth hormone/insulin growth factor 1 axis, insulin resistance, and activation of renin-angiotensin system are incriminated for longitudinal uncoordinated loss of bone mineral content, bone strength, muscle mass, and muscle strength, leading to mechanical impairment of the functional muscle-bone unit. At the same time, CKD may also interfere in the biochemical crosstalk between the two organs, through inhibiting or stimulating the expression of certain osteokines and myokines. This review focuses on presenting current knowledge, according to in vitro, in vivo, and clinical studies, concerning the pathogenetic pathways involved in the muscle-bone axis, and suggests approaches aimed at preventing bone loss and muscle wasting in the pediatric population. Novel therapeutic targets for preserving musculoskeletal health in the context of CKD are also discussed.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece.
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Athanasios Christoforidis
- Pediatric Endocrinology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| |
Collapse
|
132
|
Verbrugge SAJ, Alhusen JA, Kempin S, Pillon NJ, Rozman J, Wackerhage H, Kleinert M. Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. J Cell Biochem 2021; 123:202-214. [PMID: 34812516 DOI: 10.1002/jcb.30179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
Exercise improves the insulin sensitivity of glucose uptake in skeletal muscle. Due to that, exercise has become a cornerstone treatment for type 2 diabetes mellitus (T2DM). The mechanisms by which exercise improves skeletal muscle insulin sensitivity are, however, incompletely understood. We conducted a systematic review to identify all genes whose gain or loss of function alters skeletal muscle glucose uptake. We subsequently cross-referenced these genes with recently generated data sets on exercise-induced gene expression and signaling. Our search revealed 176 muscle glucose-uptake genes, meaning that their genetic manipulation altered glucose uptake in skeletal muscle. Notably, exercise regulates the expression or phosphorylation of more than 50% of the glucose-uptake genes or their protein products. This included many genes that previously have not been associated with exercise-induced insulin sensitivity. Interestingly, endurance and resistance exercise triggered some common but mostly unique changes in expression and phosphorylation of glucose-uptake genes or their protein products. Collectively, our work provides a resource of potentially new molecular effectors that play a role in the incompletely understood regulation of muscle insulin sensitivity by exercise.
Collapse
Affiliation(s)
- Sander A J Verbrugge
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany.,Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Julia A Alhusen
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum Munich, Helmholtz Diabetes Center (HMGU), Munich, Germany
| | - Shimon Kempin
- Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Henning Wackerhage
- Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam - Rehbrücke, Nuthetal, Germany.,Department of Nutrition, Exercise and Sports, Faculty of Science, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
133
|
Xu H, Liu S, Wang Y, Wu R, Yi T, Wang T, Zhu Y, Fang J, Xie Y, Zhao Q, Song X, Chen J, Rajagopaplan S, Brook RD, Li J, Cao J, Huang W. The mediating role of vascular inflammation in traffic-related air pollution associated changes in insulin resistance in healthy adults. Int J Hyg Environ Health 2021; 239:113878. [PMID: 34757311 DOI: 10.1016/j.ijheh.2021.113878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
AIM The precise pathophysiologic pathway linking traffic-related air pollution (TRAP) to diabetes mellitus is not well elucidated. We aimed to investigate whether activation of vascular inflammation can be a mechanistic linkage between ambient TRAP and insulin resistance. METHODS Study outcomes were determined by assessing a series of circulating biomarkers indicative of insulin resistance and vascular inflammation among 73 healthy adults who underwent repeated clinical visits in Beijing, China, 2014-2016. Concomitantly, concentrations of ambient TRAP indices, including particulate matter in diameter <2.5 μm (PM2.5), particles in size fractions of 5-560 nm, black carbon, carbon monoxide, nitrogen dioxide, and oxides of nitrogen, were continuously monitored. RESULTS Participants experienced extremely high levels of TRAP exposures, with mean (standard deviation) PM2.5 concentrations of 91.8 (48.3) μg/m3, throughout the study. We found that interquartile range increases in exposure to moving average concentrations of various TRAP indices at prior up to 7 days were associated with significant elevations of 8.9-49.6% in insulin levels. Higher pollutant levels were also related to worsening metrics of insulin resistance (soluble insulin receptor ectodomain, adipokines, and homeostasis model assessment of insulin resistance) and heightened vascular inflammatory responses, particularly disruptions of the receptor activator of nuclear factor κB ligand/osteoprotegerin system balance and elevations of monocyte/macrophage and T cell activation markers. Mediation analyses showed that activation of vascular inflammation could explain up to 66% of the alterations in metrics of insulin resistance attributable to air pollution. CONCLUSION Our results suggest that ambient traffic pollution exposure was capable of promoting insulin resistance possibly via generating vascular inflammation.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Shengcong Liu
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Yang Wang
- Department of Prevention and Health Care, Hospital of Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Tieci Yi
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Jie Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Institute for Risk Assessment Sciences, University Medical Centre Utrecht, University of Utrecht, the Netherlands
| | - Sanjay Rajagopaplan
- Division of Cardiovascular Medicine, Case Western Reserve University, Ohio, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Michigan, USA
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Junji Cao
- Institute of Atmospheric Physics Chinese Academy of Sciences, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China.
| |
Collapse
|
134
|
Pacheco-Soto BT, Elguezabal-Rodelo RG, Porchia LM, Torres-Rasgado E, Pérez-Fuentes R, Gonzalez-Mejia ME. Denosumab improves glucose parameters in patients with impaired glucose tolerance: a systematic review and meta-analysis. J Drug Assess 2021; 10:97-105. [PMID: 34676131 PMCID: PMC8525927 DOI: 10.1080/21556660.2021.1989194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective Receptor activator of NF-κβ ligand (RANKL) is crucial for the development of hepatic insulin resistance and poor glucose uptake; therefore, inhibiting RANKL with Denosumab could improve fasting plasma glucose (FPG) and insulin (FPI). Methods A systematic review was conducted to evaluate the effects of Denosumab on glycemic parameters. PubMed, SCOPUS, EBSCO, and LILACS databases were searched for studies that investigated the effect of Denosumab on FPG, glycated hemoglobin (HbA1c), FPI, and Homeostatic Model Assessment for Insulin Resistance (HOMA1-IR). The pooled standard difference in means (SDM) and 95% confidence intervals (95%CI) were calculated. The results were stratified into (1) Normal Glucose Tolerance (NGT) and (2) Impaired Glucose Tolerance (IGT). Results Six publications (1203 participants) were included. There was a significant association between Denosumab and FPG (SDM = -0.388, 95%CI: -0.705 to -0.070, p = .017) and with HOMA1-IR (SDM = -0.223, 95%CI: -0.388 to -0.058, p = .008), but not for HbA1c and FPI. When stratified by glucose tolerance, the association between Denosumab and FPG, HbA1c, and HOMA1-IR was present for the IGT group. Lastly, Denosumab had a time-dependent effect on HbA1c (slope = -0.037, 95%CI: -0.059 to -0.015, p < .005). Conclusions Denosumab significantly improved glycemic parameters. This outcome was more prominent for subjects with compromised glucose tolerance, positing that Denosumab can be used as a treatment to improve glucose metabolism for persons with pre-diabetes and diabetes.
Collapse
Affiliation(s)
| | | | - Leonardo M Porchia
- Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
| | | | - Ricardo Pérez-Fuentes
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
| | | |
Collapse
|
135
|
Serum vitamin D status inversely associates with a prevalence of severe sarcopenia among female patients with rheumatoid arthritis. Sci Rep 2021; 11:20485. [PMID: 34650186 PMCID: PMC8516961 DOI: 10.1038/s41598-021-99894-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is an age-related disease with an increased risk of mortality. It is emerging that low serum 25-hydroxyvitamin D [25(OH)D] affects the sarcopenic state in general, but in rheumatoid arthritis (RA), these associations are not understood although the prevalence of vitamin D insufficiency is high in RA. We conducted a cross-sectional study of older female outpatients from our cohort (KURAMA) database. We measured skeletal muscle mass, handgrip strength, and gait-speed to diagnose severe sarcopenia. The serum 25(OH)D concentration was measured using electrochemiluminescence immunoassay. A total of 156 female patients with RA (sarcopenia:44.9%, severe sarcopenia: 29.5%, and without sarcopenia: 25.6%) were enrolled. Classification of vitamin D status at a cutoff point of median 25(OH)D concentration revealed that low 25(OH)D status was associated with a high prevalence of severe sarcopenia and with low measured values of muscle mass, handgrip, and gait speed. Furthermore, multivariable logistic regression analysis identified that low 25(OH)D status was associated with a high prevalence of severe sarcopenia (OR 6.00; 95% CI 1.99-18.08).The same association was observed when the cut-off value was set at 20 ng/ml. In components of sarcopenia, both low physical performance and muscle mass were associated with low 25(OH)D status. In conclusion, vitamin D status was inversely associated with severe sarcopenia, low physical performance, and low skeletal muscle mass. Modification of vitamin D status including vitamin D supplementation should be investigated as a therapeutic strategy for sarcopenic patients with RA.
Collapse
|
136
|
Ma J, Ye M, Li Y, Chai S, Huang H, Lian X, Huang H. Zhuanggu Zhitong Capsule alleviates osteosarcopenia in rats by up-regulating PI3K/Akt/Bcl2 signaling pathway. Biomed Pharmacother 2021; 142:111939. [PMID: 34311171 DOI: 10.1016/j.biopha.2021.111939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Osteosarcopenia (OS), characterized by the coexistence of osteoporosis (OP) and sarcopenia (SP), is associated with high morbidity and mortality in the elderly. Nevertheless, its pathogenesis and treatment remain unclear. The aim of this study was to investigate the effect and mechanism of Zhuanggu Zhitong Capsule (ZGZT) in OS rats. METHODS All the related targets of OS, corresponding targets for bioactive ingredients of ZGZT, intersection targets of ZGZT against OS, and signaling pathways were predicted and analyzed by network pharmacology. Next, a rat OS model was established by ovariectomy (OVX) and injection of dexamethasone (DXM). Rats were then randomly divided into a Control group, a Sham operation group, an OS model group, an OS+ZGZT group, and an OS+E2 group. The drug was given for 12 weeks. During treatment, body weight, forelimb grip and body composition were measured. In addition, bone mineral density (BMD) and micro CT were used to assess the left femur. After treatment, the left femur, left gastrocnemius, and left soleus, as well as uterus, liver, and kidney, were separated and analyzed using Histomorphology, Western blot, and quantitative real-time PCR (qRT-PCR). RESULTS ZGZT could effectively improve the phenotypes of OS by increasing forelimb grip strength, percentage lean mass of the whole body (SMI) or appendicular lean (RSMI), BMD, levels of bone formation markers, improving the microstructure of femur, and decreasing apoptotic rate in femur and gastrocnemius in OS rats by up-regulating PI3K/Akt/Bcl2 signal pathway. CONCLUSIONS ZGZT may be a new treatment option for the prevention and treatment of OS.
Collapse
Affiliation(s)
- Jiangtao Ma
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan provincial Orthopedic Hospital), Zhengzhou 450046, China; Laboratory of Orthopaedics and Traumatology of Chinese Medicine of Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Maolin Ye
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan provincial Orthopedic Hospital), Zhengzhou 450046, China
| | - Ying Li
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510375, China
| | - Shuang Chai
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan provincial Orthopedic Hospital), Zhengzhou 450046, China
| | - Hong Huang
- College of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaohang Lian
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Laboratory of Orthopaedics and Traumatology of Chinese Medicine of Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hongxing Huang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510375, China.
| |
Collapse
|
137
|
Sfeir JG, Pignolo RJ. Pharmacologic Interventions for Fracture Risk Reduction in the Oldest Old: What Is the Evidence? JBMR Plus 2021; 5:e10538. [PMID: 34693190 PMCID: PMC8520064 DOI: 10.1002/jbm4.10538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
With an increasingly older population, the proportion of patients 85 years or older seeking interventions to protect their musculoskeletal health is growing. Osteoporosis in the geriatric population presents unique diagnostic and therapeutic challenges. Multimorbidity, frailty, falls, polypharmacy, and other neurobehavioral factors influence our approach to fracture prevention in this population. The vast majority of the evidence from clinical trials establish pharmacologic fracture efficacy in postmenopausal women. The evidence is scarce for the oldest old men and women, a population also at risk for adverse events and mortality. Most studies show continued efficacy of pharmacologic interventions in this age group, although they are largely limited by small sample sizes. We herein review the available evidence of pharmacologic interventions for fracture risk reduction in this population and explore the emerging senotherapeutic interventions in the pipeline. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jad G Sfeir
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
- Division of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo ClinicRochesterMNUSA
- Division of Geriatric Medicine and GerontologyMayo ClinicRochesterMNUSA
| | - Robert J Pignolo
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
- Division of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo ClinicRochesterMNUSA
- Division of Geriatric Medicine and GerontologyMayo ClinicRochesterMNUSA
| |
Collapse
|
138
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
139
|
Mamedova E, Kolodkina A, Vasilyev EV, Petrov V, Belaya Z, Tiulpakov A. Successful Use of Denosumab for Life-Threatening Hypercalcemia in a Pediatric Patient with Primary Hyperparathyroidism. Horm Res Paediatr 2021; 93:272-278. [PMID: 32998142 DOI: 10.1159/000510625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Primary hyperparathyroidism (PHPT) is rare and usually symptomatic in children. There is no approved medication to lower serum calcium levels in this patient group. Denosumab is used in adult patients with osteoporosis and hyperparathyroidism. To our knowledge, only 1 case of denosumab treatment in a child with severe PHPT has been reported to date. CASE PRESENTATION A 16-year-old female was referred to our clinic with symptoms including pathologic fractures, nausea, emesis, and progressive weight loss. At admission, her serum total calcium was 4.17 mmol/L (reference range 2.15-2.55), parathyroid hormone 2,151 pg/mL (15-65), and phosphate 1.07 mmol/L (1.45-1.78). Due to potentially life-threatening hypercalcemia, denosumab 60 mg subcutaneously was administered after obtaining informed consent. Serum calcium levels were reduced within 12 h of injection and the patient's condition rapidly improved, which allowed genetic testing to be done prior to surgery. A heterozygous mutation in the CDC73 gene was revealed, and a parathyroidectomy was performed on day 22 after denosumab administration. Morphological examination revealed solitary parathyroid adenoma. After surgery, hypocalcemia developed requiring high doses of alfacalcidol and calcium supplements. CONCLUSION Our case supports the previous observations in adults that denosumab can be safely and effectively used as a preoperative treatment in patients with PHPT and severe hypercalcemia and shows that it may be used in pediatric patients.
Collapse
Affiliation(s)
- Elizaveta Mamedova
- Department of Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russian Federation
| | - Anna Kolodkina
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russian Federation
| | - Evgeny V Vasilyev
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russian Federation
| | - Vasiliy Petrov
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russian Federation
| | - Zhanna Belaya
- Department of Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russian Federation
| | - Anatoly Tiulpakov
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russian Federation,
| |
Collapse
|
140
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
141
|
Bonnet N, Douni E, Perréard Lopreno G, Besse M, Biver E, Ferrari S. RANKL-Induced Increase in Cathepsin K Levels Restricts Cortical Expansion in a Periostin-Dependent Fashion: A Potential New Mechanism of Bone Fragility. J Bone Miner Res 2021; 36:1636-1645. [PMID: 33856714 DOI: 10.1002/jbmr.4307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Receptor activator of nuclear factor-κΒ ligand (RANKL) is necessary and sufficient to promote osteoclastogenesis and a key pathogenic factor in osteoporosis. Failure of periosteal apposition to compensate for bone loss due to endosteal resorption further contributes to bone fragility. Whether these two processes are biologically related, however, remains unknown. Using high-resolution peripheral quantitative computed tomography (HR-pQCT), we first examined cortical bone parameters at distal radius and tibia in postmenopausal women (PMW) as well as in cadaveric human adult humeri. Increases in medullary area were negatively correlated with cortical bone volume but positively with total bone volume, and this relationship was stronger in the dominant arm, suggesting a mechanically driven process. To investigate the role of RANKL in this dual process, we used mice overexpressing huRANKL (huRANKLTg+ ). Trabecular and cortical bone volume (Ct.BV) are reduced in these mice, whereas cortical total volume (Ct.TV) is increased. In these bones, Sost mRNA levels are downregulated and periostin (Postn) mRNA levels upregulated, hence providing a positive message for periosteal bone formation. In turn, genetic deletion of Postn in huRANKLTg+ mice prevented the increase in Ct.TV and aggravated bone fragility. In contrast, cathepsin K (Ctsk) ablation improved Ct.TV in both huRANKLTg+ and wild-type (WT) mice and stimulated periosteal bone formation, while augmenting Postn protein levels. Therefore, bone strength in huRANKLTg+ /Ctsk-/- mice was restored to WT levels. These findings suggest that high levels of RANKL not only induce endosteal bone loss but may somewhat restrict periosteal bone formation by triggering periostin degradation through cathepsin K, hence providing a biological mechanism for the observed limited increase in cortical area in postmenopausal women. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Iera Odos, Athens, Greece.,Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Geneviève Perréard Lopreno
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Department, Section of Earth and Environmental Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Marie Besse
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Department, Section of Earth and Environmental Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
142
|
Xiong J, Le Y, Rao Y, Zhou L, Hu Y, Guo S, Sun Y. RANKL Mediates Muscle Atrophy and Dysfunction in a Cigarette Smoke-induced Model of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2021; 64:617-628. [PMID: 33689672 DOI: 10.1165/rcmb.2020-0449oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle dysfunction is one of the important comorbidities of chronic obstructive pulmonary disease (COPD); however, the underlying mechanisms remain largely unknown. RANKL (receptor activator of nuclear factor κB ligand), a key mediator in osteoclast differentiation, was also found to play a role in skeletal muscle pathogenesis. Whether RANKL is involved in COPD-related skeletal muscle dysfunction is as-of-yet unknown. We examined the expression of RANKL/RANK in skeletal muscles from mice exposed to cigarette smoke (CS) for 24 weeks. Grip strength and exercise capacity as well as muscular morphology were evaluated in CS-exposed mice with or without anti-RANKL treatment. The expressions of protein synthesis- or muscle growth-related molecules (IGF-1, myogenin, and myostatin), muscle-specific ubiquitin E3 ligases (MuRF1 and atrogin-1), and the NF-κb inflammatory pathway were also evaluated in skeletal muscles. The effect of CS extract on RANKL/RANK expression and that of exogenous RANKL on the ubiquitin-proteasome pathway in C2C12 myotubes were investigated in vitro. Long-term CS exposure induced skeletal muscle dysfunction and atrophy together with upregulation of RANKL/RANK expression in a well-established mouse model of COPD. RANKL neutralization prevented skeletal muscle dysfunction and atrophy. RANKL inhibition decreased expressions of myostatin and MuRF1/Atrogin1 and suppressed the NF-κb pathway in skeletal muscles from CS-exposed mice. In in vitro experiments with C2C12 myotubes, CS extract induced expression of RANKL/RANK, and exogenous RANKL induced activation of the ubiquitin-proteasome pathway and NF-κb pathway via RANK. Our results revealed an important role of the RANKL/RANK pathway in muscle atrophy induced by CS exposure, suggesting that RANKL may be a potential therapeutic target in COPD-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Lu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Yuhan Hu
- Department of Respiratory Medicine, and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Suliang Guo
- Department of Respiratory Medicine, and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| |
Collapse
|
143
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
144
|
Huang J, Li Y, He C. Melatonin as a Trigger of Therapeutic Bone Regenerating Capacity in Biomaterials. Curr Pharm Biotechnol 2021; 23:707-718. [PMID: 34250874 DOI: 10.2174/1389201022666210709145347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Bone defects are usually treated with bone grafting. Several synthetic biomaterials have emerged to replace autologous and allogeneic bone grafts, but there are still shortcomings in bone regeneration. Melatonin has demonstrated a beneficial effect on bone metabolism with the potential to treat fractures, bone defects, and osteoporosis. The hormone promoted osteogenesis, inhibited osteoclastogenesis, stimulated angiogenesis, and reduced peri-implantitis around the graft. Recently, a growing number of studies showed beneficial effects of melatonin to treat bone defects. However, cellular and molecular mechanisms involved in bone healing are still poorly understood. In this review, we recapitulate the potential mechanisms of melatonin, providing a new horizon to the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
145
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis. Food Funct 2021; 12:5703-5718. [PMID: 34048514 DOI: 10.1039/d0fo03468a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
146
|
Tencerova M, Ferencakova M, Kassem M. Bone marrow adipose tissue: Role in bone remodeling and energy metabolism. Best Pract Res Clin Endocrinol Metab 2021; 35:101545. [PMID: 33966979 DOI: 10.1016/j.beem.2021.101545] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow adipose tissue (BMAT) has been considered for several decades as a silent bystander that fills empty space left in bone marrow following age-related decrease in hematopoiesis. However, recently new discoveries revealed BMAT as a secretory and metabolically active organ contributing to bone and whole-body energy metabolism. BMAT exhibits metabolic functions distinct from extramedullary adipose depots, relevant to its role in regulation of energy metabolism and its contribution to fracture risk observed in metabolic bone diseases. This review discusses novel insights of BMAT with particular emphasis on its contribution to the regulation of bone homeostasis. We also discuss the role of BMAT in regulation of fuel utilization and energy use that affect skeletal stem cell functions.
Collapse
Affiliation(s)
- Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Michaela Ferencakova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital and Institute of Clinical Research, University of Southern Denmark, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
147
|
Zhong X, Zhang F, Yin X, Cao H, Wang X, Liu D, Chen J, Chen X. Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways. J Microbiol Biotechnol 2021; 31:765-774. [PMID: 34176870 PMCID: PMC9705830 DOI: 10.4014/jmb.2104.04016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Cao
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xuesong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Xue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-15861589177 E-mail:
| |
Collapse
|
148
|
Mastorakos G, Maliopoulos D, Kasioni S, Bargiota A, Barber TM, Skevaki C, Papassotiriou I, Vrachnis N, Farmakides G, Vlahos NF, Kumar S, Valsamakis G. Relationship Between Maternal Bone Biomarkers and Fetal Adiposity Through Normal Pregnancy. J Clin Endocrinol Metab 2021; 106:e2647-e2655. [PMID: 33710302 DOI: 10.1210/clinem/dgab152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE To examine the association of maternal bone markers [sclerostin, soluble receptor activator of nuclear factor-κB ligand (sRANKL), osteocalcin, 25-hydroxyvitamin D3] with fetal intra-abdominal and subcutaneous adipose tissue deposition and birthweight during normal pregnancy. METHODS One hundred pregnant women (aged 30.4 ± 5.6 years, mean ± SD) with prepregnancy body mass index = 24.1 ± 4.6 kg/m2 were seen prospectively during each trimester. At each visit they were submitted to anthropometric measurements, a fasting blood sampling, a 75-g oral glucose tolerance test, and a fetal ultrasonogram. At birth, neonates had birth weight measurement. RESULTS In the second trimester, maternal sclerostin concentrations correlated positively with fetal abdominal circumference and birth weight; maternal sRANKL concentrations correlated positively with fetal abdominal subcutaneous fat thickness, sagittal abdominal diameter, and abdominal circumference. Fetuses born to mothers with greater (>254 ng/mL), compared to fetuses born to mothers with lower (≤254ng/mL), sRANKL concentrations had greater abdominal circumference, sagittal diameter, and abdominal subcutaneous fat thickness. Maternal serum sclerostin concentrations were the best positive predictors of birth weight. In the third trimester maternal sclerostin concentrations correlated positively with fetal sagittal abdominal diameter; maternal sRANKL concentrations positively correlated with fetal abdominal circumference and fetal abdominal sagittal diameter. CONCLUSIONS Maternal bone markers sclerostin and sRANKL may relate to fetal intra-abdominal adipose tissue deposition through as yet unknown direct or indirect mechanisms, thus contributing to birthweight.
Collapse
Affiliation(s)
- George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimosthenis Maliopoulos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridoula Kasioni
- Department Obstetrics and Gynecology, Helena Venizelou General District Hospital, Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Disorders, Medical School of Larissa, University of Thessaly, Larissa, Greece
| | | | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nikos Vrachnis
- Third Department of Obstetrics and Gynecology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Farmakides
- Department Obstetrics and Gynecology, Helena Venizelou General District Hospital, Athens, Greece
| | - Nikos F Vlahos
- Second Department of Obstetrics and Gynecology Department, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Endocrinology and Metabolic Disorders, Medical School of Larissa, University of Thessaly, Larissa, Greece
- Warwick Medical School, Coventry, UK
- Second Department of Obstetrics and Gynecology Department, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
149
|
Hamoudi D, Bouredji Z, Marcadet L, Yagita H, Landry LB, Argaw A, Frenette J. Muscle weakness and selective muscle atrophy in osteoprotegerin-deficient mice. Hum Mol Genet 2021; 29:483-494. [PMID: 31943048 DOI: 10.1093/hmg/ddz312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 12/07/2019] [Indexed: 01/07/2023] Open
Abstract
Bone and muscle are tightly coupled and form a functional unit under normal conditions. The receptor-activator of nuclear factor κB/receptor-activator of nuclear factor κB ligand/osteoprotegerin (RANK/RANKL/OPG) triad plays a crucial role in bone remodeling. RANKL inhibition by OPG prevents osteoporosis. In contrast, the absence of OPG results in elevated serum RANKL and early onset osteoporosis. However, the impacts of OPG deletion on muscle structure and function are unknown. Our results showed that 1-, 3- and 5-month-old Opg-/- mice have reduced tibial and femoral bone biomechanical properties and higher levels of circulating RANKL. OPG-deficient mice displayed reduced locomotor activity and signs of muscle weakness at 5 months of age. Furthermore, OPG deficiency did not affect the skeletal muscles in 1- and 3-month-old mice. However, it impaired fast-twitch EDL but not slow-twitch Sol muscles in 5-month-old Opg-/- mice. Moreover, 5-month-old Opg-/- mice exhibited selective atrophy of fast-twitch-type IIb myofibers, with increased expression of atrophic proteins such as NF-kB, atrogin-1 and MuRF-1. We used an in vitro model to show that RANKL-stimulated C2C12 myotubes significantly increased the expression of NF-kB, atrogin-1 and MuRF-1. A 2-month anti-RANKL treatment starting at 3 months of age in Opg-/- mice improved voluntary activity, the ex vivo maximum specific force (sP0) of EDL muscles, and whole limb grip force performance and rescued the biomechanical properties of bone. In conclusion, the deletion of OPG and the disruption of the RANKL/OPG balance induced osteoporosis as well as the selective weakness and atrophy of the powerful fast-twitch IIb myofibers, which was partly alleviated by an anti-RANKL treatment.
Collapse
Affiliation(s)
- Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Louis-Bénédict Landry
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada.,Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
150
|
Pizzonia M, Casabella A, Natali M, Petrocchi L, Carmisciano L, Nencioni A, Molfetta L, Giannotti C, Bianchi G, Giusti A, Santolini F, Monacelli F. Osteosarcopenia in Very Old Age Adults After Hip Fracture: A Real-World Therapeutic Standpoint. Front Med (Lausanne) 2021; 8:612506. [PMID: 34095158 PMCID: PMC8172785 DOI: 10.3389/fmed.2021.612506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Loss of bone and muscle mass and strength (i. e., osteosarcopenia) is a highly prevalent clinical condition in older adults, associated with an increased risk of fragility fractures and unfavorable clinical outcomes. Although sarcopenia is a potential risk factor for osteoporosis and subsequent fracture, and the management of this hazardous duet is the key to preventing osteoporotic fracture, evidence pertaining to the treatment of sarcopenia for the purpose of preventing fragile fractures remains insufficient. Given this scenario we aimed at prospectively compare the long-term effectiveness of bisphosphonates vs. denosumab, on bone and muscle, in a cohort of old age hip fractured patients by virtue of a timely osteo-metabolic and sarcopenic assessment. Ninety-eight patients consecutively enrolled at the IRCCS Hospital San martino, Genoa, Italy, received at baseline comprehensive geriatric assessment and Bone Densitometry (DXA) with the quantitative and quantitative bone analysis and evaluation of relative skeletal muscle index (RSMI) and longitudinally after 1 year form hip surgery. The results showed a slightly and non-significant osteo-metabolic improvement in the Alendronate group compared to the Denosumab group, and a positive trend of RSMI measurements in the Denosumab group. Although preliminary in nature, this is the first report to longitudinally analyze osteosarcopenia in a real-world cohort of very old age patients after hip fracture and moved a step forward in the understanding of the best osteo-metabolic therapy for long- term treatment, exploring as well the potential dual role of denousumab as antiresorptive and muscle strength specific drug for osteosarcopenia in this vulnerable population.
Collapse
Affiliation(s)
- Monica Pizzonia
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Casabella
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Marta Natali
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Lorena Petrocchi
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Luca Carmisciano
- DISSAL, Department of Health Science, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Luigi Molfetta
- DISC, Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Chiara Giannotti
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Gerolamo Bianchi
- Rheumatology Unit, Department of Musculoskeletal Sciences, Local Health Trust 3, La Colletta Hospital, Genoa, Italy
| | - Andrea Giusti
- Rheumatology Unit, Department of Musculoskeletal Sciences, Local Health Trust 3, La Colletta Hospital, Genoa, Italy
| | - Federico Santolini
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| |
Collapse
|