101
|
Wang Z, Wang Z, Li B, Wang S, Chen T, Ye Z. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. Front Immunol 2019; 10:1114. [PMID: 31156651 PMCID: PMC6531991 DOI: 10.3389/fimmu.2019.01114] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced, recurrent, or metastasized osteosarcomas remain challenging to cure or even alleviate. Therefore, the development of novel therapeutic strategies is urgently needed. Cancer immunotherapy has greatly improved in recent years, with options including adoptive cellular therapy, vaccination, and checkpoint inhibitors. As such, immunotherapy is becoming a potential strategy for the treatment of osteosarcoma. Innate immunocytes, the first line of defense in the immune system and the bridge to adaptive immunity, are one of the vital effector cell subpopulations in cancer immunotherapy. Innate immune cell-based therapy has shown potent antitumor activity against hematologic malignancies and some solid tumors, including osteosarcoma. Importantly, some immune checkpoints are expressed on both innate and adaptive immune cells, modulating their functions in tumor immunity. Therefore, blocking or activating immune checkpoint-mediated downstream signaling pathways can improve the therapeutic effects of innate immune cell-based therapy. In this review, we summarize the current status and future prospects of innate immune cell-based therapy for the treatment of osteosarcoma, with a focus on the potential synergistic effects of combination therapy involving innate immunotherapy and immune checkpoint inhibitors/oncolytic viruses.
Collapse
Affiliation(s)
- Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
102
|
de Lourdes Mora-García M, López-Cisneros S, Gutiérrez-Serrano V, García-Rocha R, Weiss-Steider B, Hernández-Montes J, Sánchez-Peña HI, Ávila-Ibarra LR, Don-López CA, Muñóz-Godínez R, Pineda DBT, Chacón-Salinas R, Vallejo-Castillo L, Pérez-Tapia SM, Monroy-García A. HPV-16 Infection Is Associated with a High Content of CD39 and CD73 Ectonucleotidases in Cervical Samples from Patients with CIN-1. Mediators Inflamm 2019; 2019:4651627. [PMID: 31205451 PMCID: PMC6530152 DOI: 10.1155/2019/4651627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Abstract
The development of cervical cancer (CeCa) is associated with high-risk human papilloma virus (HR-HPV) infections, mainly HPV-16, which is present in more than 50% of cases. The presence of immunosuppressive factors in the early stages of the disease is also strongly linked to CeCa progression. In this context, it is unknown whether ectonucleotidases CD39 and CD73, which are involved in the production of adenosine (Ado) that suppresses the specific antitumor immune response, are present in precursor lesions of CeCa. In this pilot study, we analyzed the presence of CD39 and CD73 and their capacity to generate Ado in 25 cervical samples from patients with grade 1 cervical intraepithelial neoplasms (CIN-1) and 25 samples from normal donors (NDs) free of HPV infection. Cells obtained from cervical samples of CIN-1 patients positive for HPV-16 showed higher CD39 and CD73 contents compared to samples obtained from CIN-1 patients negative for HPV-16 and NDs. Interestingly, solubilized cervical mucus from these patients also showed higher contents of soluble CD39 and CD73, which were associated with a greater capacity to produce Ado from the hydrolysis of adenosine triphosphate (ATP) and adenosine monophosphate (AMP). In addition, serum samples of these patients showed higher levels of TGF-β than those of CIN-1 patients negative for HPV-16 and ND. These results suggest that persistent infection with HR-HPV, mostly HPV-16, in CIN-1 patients may promote the expression of CD39 and CD73 through the production of TGF-β in precursor lesions to generate an immunosuppressive microenvironment and allow its progression to CeCa.
Collapse
Affiliation(s)
| | - Sofía López-Cisneros
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Vianey Gutiérrez-Serrano
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | | | - Luis Roberto Ávila-Ibarra
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
- Programa de Posgrado en Ciencias Biológicas, UNAM, Ciudad de México, Mexico
| | | | - Ricardo Muñóz-Godínez
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
- Programa de Posgrado en Ciencias Biológicas, UNAM, Ciudad de México, Mexico
| | - Daniela Berenice Torres Pineda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
- Programa de Posgrado en Ciencias Biológicas, UNAM, Ciudad de México, Mexico
| | - Rommel Chacón-Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional (ENCB-IPN), Ciudad de México, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional, Ciudad de México, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Ciudad de México, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional (ENCB-IPN), Ciudad de México, Mexico
| | - Alberto Monroy-García
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| |
Collapse
|
103
|
Huang Y, Gu Z, Fan Y, Zhai G, Zhao X, Sun Q, Shi Y, Lin G. Inhibition of the adenosinergic pathway: the indispensable part of oncological therapy in the future. Purinergic Signal 2019; 15:53-67. [PMID: 30809739 PMCID: PMC6439062 DOI: 10.1007/s11302-018-9641-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years, immunotherapy has produced many unexpected breakthroughs in oncological therapy; however, it still has many deficiencies. For example, the number of patients who are unresponsive to anti-programmed death-ligand 1 (PD-L1), anti-cytotoxic T-like antigen-4 (CTLA4), and anti-programmed death-1 (PD1) therapies cannot be ignored, and the search for an undiscovered immunosuppressive pathway is imminent. Five decades ago, researchers found that activation of the adenosinergic pathway was negatively correlated with prognosis in many cancers. This review describes the entire process of the adenosinergic pathway in the tumor microenvironment and the mechanism of immunosuppression, which promotes tumor metastasis and drug resistance. Additionally, the review explores factors that regulate this pathway, including signaling factors secreted by the tumor microenvironment and certain anti-tumor drugs. Additionally, the combination of adenosinergic pathway inhibitors with chemotherapy, checkpoint blockade therapy, and immune cell-based therapy is summarized. Finally, certain issues regarding treatment via inhibition of this pathway and the use of targeted nanoparticles to reduce adverse reactions in patients are put forward in this review. Graphical Abstract The inhibitors of adenosinergic pathway loaded nanoparticles enter tumor tissue through EPR effect, and inhibit adenosinergic pathway to enhance or restore the effect of immune checkpoint blockade therapy, chemotherapies and immune cell-based therapy. Note: EPR means enhanced penetration and retention, × means blockade.
Collapse
Affiliation(s)
- Yi Huang
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Zili Gu
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yang Fan
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Guangxi Zhai
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, Second Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Qifeng Sun
- Department of Thoracic Surgery, Second Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
104
|
Abstract
Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.
Collapse
|
105
|
Chen S, Fan J, Zhang M, Qin L, Dominguez D, Long A, Wang G, Ma R, Li H, Zhang Y, Fang D, Sosman J, Zhang B. CD73 expression on effector T cells sustained by TGF-β facilitates tumor resistance to anti-4-1BB/CD137 therapy. Nat Commun 2019; 10:150. [PMID: 30635578 PMCID: PMC6329764 DOI: 10.1038/s41467-018-08123-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
Agonist antibodies (Ab) directed against costimulatory molecules on the surface of antigen-primed T cells are in various stages of pre-clinical and clinical trials, albeit with limited therapeutic benefit as single agents. The underlying mechanisms of action remain incompletely understood. Here, we demonstrate an inhibitory role of ecto-enzyme CD73 for agonistic anti-4-1BB/CD137 Ab therapy. In particular, anti-4-1BB treatment preferentially drives CD73− effector T cell response for tumor inhibition. Anti-CD73 neutralizing Ab further improves anti-4-1BB therapy associated with enhanced anti-tumor T cell immunity. However, the TGF-β-rich tumor milieu confers resistance to anti-4-1BB therapy by sustaining CD73 expression primarily on infiltrating CD8+ T cells across several tumor models. TGF-β blockade results in downregulation of CD73 expression on infiltrating T cells and sensitizes resistant tumors to agonistic anti-4-1BB therapy. Thus, our findings identify a mechanism of action for more effective clinical targeting of 4-1BB or likely other costimulatory molecules. Targeting the immune-stimulatory receptor 4-1BB has only yielded modest benefit in cancer treatment. In this study, the authors show that CD73 expression on effector T cells sustained by TGF-β drives tumor resistance to anti-4-1BB therapy and therefore TGF- β blockade can be used to overcome such resistance.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jie Fan
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Minghui Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Lei Qin
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Donye Dominguez
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alan Long
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gaoxiang Wang
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Renqiang Ma
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Department of Allergy Center, Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Huabin Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, 200031, Shanghai, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey Sosman
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bin Zhang
- Department of Medicine-Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
106
|
The Adaptive Complexity of Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2018:5837235. [PMID: 30627563 PMCID: PMC6304530 DOI: 10.1155/2018/5837235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Cancer treatment options are expanding to the benefit of significant segments of patients. However, their therapeutic power is not equally realized for all cancer patients due to drug toxicity and disease resistance. Overcoming these therapeutic challenges would require a better understanding of the adaptive survival mechanisms of cancer. In this respect, an integrated view of the disease as a complex adaptive system is proposed as a framework to explain the dynamic coupling between the various drivers underlying tumor growth and cancer resistance to therapy. In light of this system view of cancer, the immune system is in principal the most appropriate and naturally available therapeutic instrument that can thwart the adaptive survival mechanisms of cancer. In this respect, new cancer therapies should aim at restoring immunosurveillance by priming the induction of an effective immune response through a judicious targeting of immunosuppression, inflammation, and the tumor nutritional lifeline extended by the tumor microenvironment.
Collapse
|
107
|
Wang J, Lupo KB, Chambers AM, Matosevic S. Purinergic targeting enhances immunotherapy of CD73 + solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer 2018; 6:136. [PMID: 30514403 PMCID: PMC6278070 DOI: 10.1186/s40425-018-0441-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The anti-tumor immunity of natural killer (NK) cells can be paralyzed by the CD73-induced generation of immunosuppressive adenosine from precursor ATP within the hypoxic microenvironment of solid tumors. In an effort to redirect purinergic immunosuppression of NK cell anti-tumor function, we showed, for the first time, that immunometabolic combination treatment with NKG2D-engineered CAR-NK cells alongside blockade of CD73 ectonucleotidase activity can result in significant anti-tumor responses in vivo. METHODS NK cells were engineered non-virally with NKG2D.CAR-presenting vectors based on the piggyBac transposon system with DAP10 and CD3ζ co-signaling domains. The anti-tumor immunity of NKG2D.CAR.NK cells in combination with CD73 targeting was evaluated against multiple solid tumor targets in vitro and humanized mouse xenografts in immunodeficient tumor-bearing mice in vivo. Intratumoral migration was evaluated via immunohistochemical staining, while degranulation capacity and IFN-γ production of NK cells were measured in response to solid tumor targets. RESULTS Our results showed that CD73 blockade can mediate effective purinergic reprogramming and enhance anti-tumor cytotoxicity both in vitro and in vivo by enhancing the killing ability of CAR-engineered NK cells against CD73+ solid tumor targets via mechanisms that might imply alleviation from adenosinergic immunometabolic suppression. CD73 blockade improved the intratumoral homing of CD56+ CAR-NK cells in vivo. These engineered NK cells showed synergistic therapeutic efficacy in combination with CD73 targeting against CD73+ human lung cancer xenograft models. Interestingly, CD73 blockade could inhibit tumor growth in vivo independently of adaptive immune cells, innate immunity or NK cell-mediated ADCC. CONCLUSIONS Immunotherapies targeting the adenosinergic signaling cascade, which act by neutralizing CD73 ectoenzymatic activity, had thus far not been evaluated in humanized tumor models, nor had the implication of innate immunity been investigated. Taken together, our pre-clinical efficacy data demonstrate, for the first time, the potential of targeting CD73 to modulate purinergic signaling and enhance adoptive NK cell immunotherapy via mechanisms that could implicate autocrine tumor control as well as by mediating adenosinergic signaling.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA
| | - Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA
| | - Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
108
|
Chambers AM, Lupo KB, Matosevic S. Tumor Microenvironment-Induced Immunometabolic Reprogramming of Natural Killer Cells. Front Immunol 2018; 9:2517. [PMID: 30467503 PMCID: PMC6235907 DOI: 10.3389/fimmu.2018.02517] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Energy metabolism is key to the promotion of tumor growth, development, and metastasis. At the same time, cellular metabolism also mediates immune cell survival, proliferation and cytotoxic responses within the tumor microenvironment. The ability of natural killer cells to eradicate tumors relies on their ability to functionally persist for the duration of their anti-tumor effector activity. However, a tumor's altered metabolic requirements lead to compromised functional responses of cytokine-activated natural killer cells, which result in decreased effectiveness of adoptive cell-based immunotherapies. Tumors exert these immunosuppressive effects through a number of mechanisms, a key driver of which is hypoxia. Hypoxia also fuels the generation of adenosine from the cancer-associated ectoenzymes CD39 and CD73. Adenosine's immunosuppression manifests in decreased proliferation and impaired anti-tumor function, with adenosinergic signaling emerging as an immunometabolic checkpoint blockade target. Understanding such immunometabolic suppression is critical in directing the engineering of a new generation of natural killer cell-based immunotherapies that have the ability to more effectively target difficult-to-treat solid tumors.
Collapse
Affiliation(s)
- Andrea M. Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Kyle B. Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
109
|
Curtis VF, Cartwright IM, Lee JS, Wang RX, Kao DJ, Lanis JM, Burney KM, Welch N, Hall CHT, Goldberg MS, Campbell EL, Colgan SP. Neutrophils as sources of dinucleotide polyphosphates and metabolism by epithelial ENPP1 to influence barrier function via adenosine signaling. Mol Biol Cell 2018; 29:2687-2699. [PMID: 30188771 PMCID: PMC6249842 DOI: 10.1091/mbc.e18-06-0377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Extracellular adenosine signaling is established as a protective component in mucosal inflammatory responses. The sources of extracellular adenosine include enzymatic processing from nucleotides, such as ATP and AMP, that can be liberated from a variety of cell types, including infiltrating leukocytes. Here we demonstrate that activated human neutrophils are a source of diadenosine triphosphate (Ap3A), providing an additional source of nucleotides during inflammation. Profiling murine enteroids and intestinal epithelial cell lines revealed that intestinal epithelia prominently express apical and lateral ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), a member of the ENPP family of enzymes that metabolize diadenosine phosphates, especially Ap3A. Extensions of these studies demonstrated that intestinal epithelia metabolize Ap3A to ADP and AMP, which are further metabolized to adenosine and made available to activate surface adenosine receptors. Using loss and gain of ENPP1 approaches, we revealed that ENPP1 coordinates epithelial barrier formation and promotes epithelial wound healing responses. These studies demonstrate the cooperative metabolism between Ap3A and ENPP1 function to provide a significant source of adenosine, subserving its role in inflammatory resolution.
Collapse
Affiliation(s)
- Valerie F. Curtis
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ian M. Cartwright
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - J. Scott Lee
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ruth X. Wang
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Daniel J. Kao
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jordi M. Lanis
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Krista M. Burney
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nichole Welch
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Caroline H. T. Hall
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew S. Goldberg
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric L. Campbell
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Sean P. Colgan
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Rocky Mountain Veterans Affairs Hospital, Denver, CO 80220
| |
Collapse
|
110
|
The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018; 7:cells7100156. [PMID: 30287799 PMCID: PMC6211135 DOI: 10.3390/cells7100156] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important metabolite involved in most of the redox metabolism reactions and processes of the cells. H2O2 is recognized as one of the main molecules in the sensing, modulation and signaling of redox metabolism, and it is acting as a second messenger together with hydrogen sulfide (H2S) and nitric oxide (NO). These second messengers activate in turn a cascade of downstream proteins via specific oxidations leading to a metabolic response of the cell. This metabolic response can determine proliferation, survival or death of the cell depending on which downstream pathways (homeostatic, pathological, or protective) have been activated. The cells have several sources of H2O2 and cellular systems strictly control its concentration in different subcellular compartments. This review summarizes research on the role played by H2O2 in signaling pathways of eukaryotic cells and how this signaling leads to homeostatic or pathological responses.
Collapse
|
111
|
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, Chen Y, Donde H, Wang R, Jala VR, Barve S, Chen SY, Zhang X, Chen Y, McClain CJ, Feng W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 2018; 69:886-895. [PMID: 29803899 PMCID: PMC6615474 DOI: 10.1016/j.jhep.2018.05.021] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA,College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Limimg Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yuhua Wang
- College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Hridgandh Donde
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rui Wang
- First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yongping Chen
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Robley Rex Louisville VAMC, Louisville, KY, USA,Corresponding authors: Department of Medicine, University of Louisville, 505 S. Hancock Street CTR517, Louisville, KY, United State, 40202. Tel.: +1 502 852 2912; fax: +1 502 852 8927; , or or
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
112
|
The ecto-enzymes CD73 and adenosine deaminase modulate 5'-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signal 2018; 14:409-421. [PMID: 30269308 DOI: 10.1007/s11302-018-9623-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5'-nucleotidase (CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5'-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5'-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5'-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5'-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.
Collapse
|
113
|
Tokunaga R, Cao S, Naseem M, Lo JH, Battaglin F, Puccini A, Berger MD, Soni S, Millstein J, Zhang W, Stintzing S, Loupakis F, Cremolini C, Heinemann V, Falcone A, Lenz HJ. Prognostic Effect of Adenosine-related Genetic Variants in Metastatic Colorectal Cancer Treated With Bevacizumab-based Chemotherapy. Clin Colorectal Cancer 2018; 18:e8-e19. [PMID: 30293873 DOI: 10.1016/j.clcc.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adenosine has an immunosuppressive and angiogenic modulation of the tumor microenvironment. The present study explored the efficacy of single nucleotide polymorphisms (SNPs) in adenosine-related molecules for patients with metastatic colorectal cancer treated with bevacizumab-based chemotherapy. PATIENTS AND METHODS We analyzed genomic DNA extracted from 451 samples from 3 independent cohorts: a discovery cohort of 107 patients treated with FOLFIRI (5-fluorouracil, leucovorin, oxaliplatin, irinotecan) plus bevacizumab in FIRE-3 (ClinicalTrials.gov identifier, NCT00433927); a validation cohort of 215 patients with FOLFIRI plus bevacizumab in TRIBE (ClinicalTrials.gov identifier, NCT00719797); and a control cohort of 129 patients treated with FOLFIRI plus cetuximab in FIRE-3. The relationship between the selected SNPs and clinical outcomes was analyzed. RESULTS In the discovery cohort, patients with any C allele in CD39 rs11188513 had significantly shorter median progression-free survival compared with those with the T/T variant (11.3 vs. 13.1 months; hazard ratio [HR], 1.70; 95% confidence interval [CI], 1.04-2.77; P = .022) on univariate analysis. Also, their overall survival (OS) was shorter (27.4 vs. 49.9 months; HR, 2.10; 95% CI, 1.07-4.10; P = .031) on univariate and multivariable analyses. The significant association between CD39 rs11188513 and OS was confirmed in the validation cohort (25.8 vs. 31.6 months; HR, 1.53; 95% CI, 1.09-2.15; P = .013). CD73 rs2229523 and A2BR rs2015353 in the discovery cohort and CD39 rs2226163 in the validation cohort showed significant correlations with OS on univariate and multivariable analyses. None of SNPs were significant in the cetuximab control cohort. CONCLUSION Selected SNPs in the adenosine pathway could affect the clinical outcomes of patients with metastatic colorectal cancer treated with FOLFIRI plus bevacizumab.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Scientific Institute for Research and Healthcare, Padua, Italy
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sebastian Stintzing
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Fotios Loupakis
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Scientific Institute for Research and Healthcare, Padua, Italy
| | | | - Volker Heinemann
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Medical Oncology, University of Pisa, Pisa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
114
|
Hassan S, Channar PA, Larik FA, Saeed A, Shah HS, Lecka J, Sévigny J, Iqbal J. Synthesis of novel ( E)-1-(2-(2-(4(dimethylamino) benzylidene) hydrazinyl)-4-methylthiazol-5-yl)ethanone derivatives as ecto-5'-nucleotidase inhibitors. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180837. [PMID: 30839737 PMCID: PMC6170555 DOI: 10.1098/rsos.180837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
Ecto-5'-nucleotidase (e5'NT), a membrane-bound enzyme and an essential member of ecto-nucleotidases which regulates extracellular purinergic signalling. Their upregulation results in various disease conditions, for example, inflammation, hypoxia and cancer. Therefore, efforts have been made to synthesize potent and selective inhibitors of e5'NT. Here we have synthesized, characterized and evaluated six thiazole derivatives (3a-3f) as potent e5'NT inhibitors. Among all derivatives, the compound (E)-1-(4-methyl-2-(2-(pyridin-3-ylmethylene)hydrazinyl) thiazol-5-yl)ethanone (3a) exhibited maximum inhibition towards both human and rat enzymes. However, their potency against h-e5'NT was 24-fold higher than r-e5'NT. Only two compounds exhibited inhibitory behaviour towards r-e5'NT. The molecular structures of these derivatives were confirmed with the help of solid-state characterization through NMR (1H and 13C), FTIR and elemental analysis. Additionally, molecular docking was also implemented to explain putative bonding interaction between the active site of an enzyme and potent inhibitors.
Collapse
Affiliation(s)
- Sidra Hassan
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | | | - Fayaz Ali Larik
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Hamid Saeed Shah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d′immunologie, Faculté de Médecine, Université Laval, Québec, CanadaG1V 0A6
- Centre de Recherche du CHU de Québec, Université Laval, Québec, CanadaG1V 4G2
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d′immunologie, Faculté de Médecine, Université Laval, Québec, CanadaG1V 0A6
- Centre de Recherche du CHU de Québec, Université Laval, Québec, CanadaG1V 4G2
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
115
|
Singer K, Cheng WC, Kreutz M, Ho PC, Siska PJ. Immunometabolism in cancer at a glance. Dis Model Mech 2018; 11:11/8/dmm034272. [PMID: 30076128 PMCID: PMC6124550 DOI: 10.1242/dmm.034272] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The scientific knowledge about tumor metabolism has grown at a fascinating rate in recent decades. We now know that tumors are highly active both in their metabolism of available nutrients and in the secretion of metabolic by-products. However, cancer cells can modulate metabolic pathways and thus adapt to specific nutrients. Unlike tumor cells, immune cells are not subject to a ‘micro-evolution’ that would allow them to adapt to progressing tumors that continuously develop new mechanisms of immune escape. Consequently, immune cells are often irreversibly affected and may allow or even support cancer progression. The mechanisms of how tumors change immune cell function are not sufficiently explored. It is, however, clear that commonly shared features of tumor metabolism, such as local nutrient depletion or production of metabolic ‘waste’ can broadly affect immune cells and contribute to immune evasion. Moreover, immune cells utilize different metabolic programs based on their subtype and function, and these immunometabolic pathways can be modified in the tumor microenvironment. In this review and accompanying poster, we identify and describe the common mechanisms by which tumors metabolically affect the tumor-infiltrating cells of native and adaptive immunity, and discuss how these mechanisms may lead to novel therapeutic opportunities. Summary: This ‘At a Glance’ review and accompanying poster address how tumors can negatively affect immune cells through depletion of critical nutrients or through production of toxic metabolic products.
Collapse
Affiliation(s)
- Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Wan-Chen Cheng
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, CH-1066 Epalinges, Vaud, Switzerland.,Ludwig Lausanne Branch, CH-1066 Epalinges, Vaud, Switzerland
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, CH-1066 Epalinges, Vaud, Switzerland.,Ludwig Lausanne Branch, CH-1066 Epalinges, Vaud, Switzerland
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
116
|
Lee T, Huang Y, Lu Y, Yeh Y, Yu LC. Hypoxia-induced intestinal barrier changes in balloon-assisted enteroscopy. J Physiol 2018; 596:3411-3424. [PMID: 29178568 PMCID: PMC6068115 DOI: 10.1113/jp275277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Balloon-assisted enteroscopy (BAE) is an emerging standard procedure by utilizing distensible balloons to facilitate deep endoscopy in the small and large intestine. Sporadic cases of bacteraemia were found after BAE. Balloon distension by BAE caused gut tissue hypoxia. The impact of balloon distension-induced hypoxia on intestinal barriers remains unclear. Murine models of BAE by colonic balloon distension showed that short- and long-term hypoxia evoked opposite effects on epithelial tight junctions (TJs). Short-term hypoxia fortified TJ integrity, whereas long-term hypoxia caused damage to barrier function. Our data showed for the first time the molecular mechanisms and signalling pathways of epithelial barrier fortification and TJ reorganization by short-term hypoxia for the maintenance of gut homeostasis. The findings suggest avoiding prolonged balloon distension during BAE to reduce the risk of hypoxia-induced gut barrier dysfunction. ABSTRACT Balloon-assisted enteroscopy (BAE) is an emerging standard procedure that uses distensible balloons to facilitate deep endoscopy. Intestines are known to harbour an abundant microflora. Whether balloon distension causes perturbation of blood flow and gut barrier dysfunction, and elicits risk of bacterial translocation remains unknown. Our aims were to (1) conduct a prospective study to gather microbiological and molecular evidence of bacterial translocation by BAE in patients, (2) establish a murine model of colonic balloon distension to investigate tissue hypoxia and intestinal barrier, and (3) assess the effect of short- and long-term hypoxia on epithelial permeability using cell lines. Thirteen patients were enrolled for BAE procedures, and blood samples were obtained before and after BAE for paired comparison. Four of the 13 patients (30.8%) had positive bacterial DNA in blood after BAE. Post-BAE endotoxaemia was higher than the pre-BAE level. Nevertheless, no clinical symptom of sepsis or fever was reported. To mimic clinical BAE, mice were subjected to colonic balloon distension. Local tissue hypoxia was observed during balloon inflation, and reoxygenation after deflation. A trend of increased gut permeability was seen after long-term distension, whereas a significant reduction of permeability was observed by short-term distension in the proximal colon. Human colonic epithelial Caco-2 cells exposed to hypoxia for 5-20 min exhibited increased tight junctional assembly, while those exposed to longer hypoxia displayed barrier disruption. In conclusion, sporadic cases of bacteraemia were found after BAE, without septic symptoms. Short-term hypoxia by balloon distension yielded a protective effect whereas long-term hypoxia caused damage to the gut barrier.
Collapse
Affiliation(s)
- Tsung‐Chun Lee
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwanROC
| | - Yi‐Chen Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yen‐Zhen Lu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yu‐Chang Yeh
- Department of AnesthesiologyNational Taiwan University HospitalTaipeiTaiwanROC
| | - Linda Chia‐Hui Yu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| |
Collapse
|
117
|
Wang J, Matosevic S. Adenosinergic signaling as a target for natural killer cell immunotherapy. J Mol Med (Berl) 2018; 96:903-913. [PMID: 30069747 DOI: 10.1007/s00109-018-1679-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023]
Abstract
Purinergic signaling through adenosine plays a key role in immune regulation. Hypoxia-driven accumulation of extracellular adenosine results in the generation of an immunosuppressive niche that fuels tumor development. Such immunometabolic modulation has shown to be a promising therapeutic target through blockade of adenosine receptors which mediate adenosine's immunosuppressive function, or cancer-associated ectonucleotidases CD39 and CD73 that catalyze the synthesis of adenosine. Adenosinergic signaling heavily implicates natural killer cells through both direct and indirect effects on their cytolytic activity, expression of cytotoxic granules, interferon-γ, and activating receptors. Continuing work has uncovered multiple checkpoints linked to adenosine within the purinergic signaling cascade as contributing to immune evasion from NK cell effector function. Here, we discuss these checkpoints and the recent body of work that focuses on adenosinergic signaling as a target for natural killer cell of cancer.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
118
|
Li Y, Patel SP, Roszik J, Qin Y. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment: New Approaches for Combinational Immunotherapy. Front Immunol 2018; 9:1591. [PMID: 30061885 PMCID: PMC6054965 DOI: 10.3389/fimmu.2018.01591] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is not only a prominent contributor to the heterogeneity of solid tumors but also a crucial stressor in the microenvironment to drive adaptations for tumors to evade immunosurveillance. Herein, we discuss the potential role of hypoxia within the microenvironment contributing to immune resistance and immune suppression of tumor cells. We outline recent discoveries of hypoxia-driven adaptive mechanisms that diminish immune cell response via skewing the expression of important immune checkpoint molecules (e.g., cluster of differentiation 47, programmed death ligand 1, and human leukocyte antigen G), altered metabolism and metabolites, and pH regulation. Importantly, inhibition of hypoxic stress-relevant pathways can collectively enhance T-cell-mediated tumor cell killing. Furthermore, we discuss how manipulation of hypoxia stress may pose a promising new strategy for a combinational therapeutic intervention to enhance immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Yiliang Li
- Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Sapna Pradyuman Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
119
|
Cellular Stress Responses and Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7192646. [PMID: 30026758 PMCID: PMC6031203 DOI: 10.1155/2018/7192646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Progresses in the past two decades have greatly expanded our understanding of inflammatory bowel disease (IBD), an incurable disease with multifaceted and challenging clinical manifestations. The pathogenesis of IBD involves multiple processes on the cellular level, which include the stress response signaling such as endoplasmic reticulum (ER) stress, oxidative stress, and hypoxia. Under physiological conditions, the stress responses play key roles in cell survival, mucosal barrier integrity, and immunomodulation. However, they can also cause energy depletion, trigger cell death and tissue injury, promote inflammatory response, and drive the progression of clinical disease. In recent years, gut microflora has emerged as an essential pathogenic factor and therapeutic target for IBD. Altered compositional and metabolic profiles of gut microbiota, termed dysbiosis, are associated with IBD. Recent studies, although limited, have shed light on how ER stress, oxidative stress, and hypoxic stress interact with gut microorganisms, a potential source of stress in the microenvironment of gastrointestinal tract. Our knowledge of cellular stress responses in intestinal homeostasis as well as their cross-talks with gut microbiome will further our understanding of the pathogenesis of inflammatory bowel disease and probably open avenues for new therapies.
Collapse
|
120
|
Mertens TCJ, Hanmandlu A, Tu L, Phan C, Collum SD, Chen NY, Weng T, Davies J, Liu C, Eltzschig HK, Jyothula SSK, Rajagopal K, Xia Y, Guha A, Bruckner BA, Blackburn MR, Guignabert C, Karmouty-Quintana H. Switching-Off Adora2b in Vascular Smooth Muscle Cells Halts the Development of Pulmonary Hypertension. Front Physiol 2018; 9:555. [PMID: 29910735 PMCID: PMC5992271 DOI: 10.3389/fphys.2018.00555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is a devastating and progressive disease characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and remodeling of the lung vasculature. Adenosine signaling through the ADORA2B receptor has previously been implicated in disease progression and tissue remodeling in chronic lung disease. In experimental models of PH associated with chronic lung injury, pharmacological or genetic inhibition of ADORA2B improved markers of chronic lung injury and hallmarks of PH. However, the contribution of ADORA2B expression in the PASMC was not fully evaluated. Hypothesis: We hypothesized that adenosine signaling through the ADORA2B receptor in PASMC mediates the development of PH. Methods: PASMCs from controls and patients with idiopathic pulmonary arterial hypertension (iPAH) were characterized for expression levels of all adenosine receptors. Next, we evaluated the development of PH in ADORA2Bf/f-Transgelin (Tagln)cre mice. These mice or adequate controls were exposed to a combination of SUGEN (SU5416, 20 mg/kg/b.w. IP) and hypoxia (10% O2) for 28 days (HX-SU) or to chronic low doses of bleomycin (BLM, 0.035U/kg/b.w. IP). Cardiovascular readouts including right ventricle systolic pressures (RVSPs), Fulton indices and vascular remodeling were determined. Using PASMCs we identified ADORA2B-dependent mediators involved in vascular remodeling. These mediators: IL-6, hyaluronan synthase 2 (HAS2) and tissue transglutaminase (Tgm2) were determined by RT-PCR and validated in our HX-SU and BLM models. Results: Increased levels of ADORA2B were observed in PASMC from iPAH patients. ADORA2Bf/f-Taglncre mice were protected from the development of PH following HX-SU or BLM exposure. In the BLM model of PH, ADORA2Bf/f- Taglncre mice were not protected from the development of fibrosis. Increased expression of IL-6, HAS2 and Tgm2 was observed in PASMC in an ADORA2B-dependent manner. These mediators were also reduced in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Conclusions: Our studies revealed ADORA2B-dependent increased levels of IL-6, hyaluronan and Tgm2 in PASMC, consistent with reduced levels in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Taken together, our data indicates that ADORA2B on PASMC mediates the development of PH through the induction of IL-6, hyaluronan and Tgm2. These studies point at ADORA2B as a therapeutic target to treat PH.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ankit Hanmandlu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ly Tu
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Carole Phan
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jonathan Davies
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keshava Rajagopal
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ashrith Guha
- Methodist Debakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| | - Brian A Bruckner
- Methodist Debakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe Guignabert
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
121
|
Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2018; 280:220-230. [PMID: 29027232 DOI: 10.1111/imr.12568] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Sophia Bornstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
122
|
Haskó G, Antonioli L, Cronstein BN. Adenosine metabolism, immunity and joint health. Biochem Pharmacol 2018; 151:307-313. [PMID: 29427624 PMCID: PMC5899962 DOI: 10.1016/j.bcp.2018.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
The purine nucleoside adenosine is a present in most body fluids where it regulates a wide variety of physiologic and pharmacologic processes. Adenosine mediates its effects through activating 4 G protein-coupled receptors expressed on the cell membrane: A1, A2A, A2B, and A3. The adenosine receptors are widely distributed in the body, and tissues with high expression include immune tissues, cartilage, bone, heart, and brain. Here we review the source and metabolism of adenosine and the role of adenosine in regulating immunity and cartilage biology.
Collapse
Affiliation(s)
- György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
123
|
Lee JS, Wang RX, Alexeev EE, Lanis JM, Battista KD, Glover LE, Colgan SP. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem 2018; 293:6039-6051. [PMID: 29487135 PMCID: PMC5912467 DOI: 10.1074/jbc.ra117.000269] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function.
Collapse
Affiliation(s)
- J Scott Lee
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Ruth X Wang
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Erica E Alexeev
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Jordi M Lanis
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Kayla D Battista
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Louise E Glover
- the School of Medicine, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| |
Collapse
|
124
|
Kordaß T, Osen W, Eichmüller SB. Controlling the Immune Suppressor: Transcription Factors and MicroRNAs Regulating CD73/NT5E. Front Immunol 2018; 9:813. [PMID: 29720980 PMCID: PMC5915482 DOI: 10.3389/fimmu.2018.00813] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023] Open
Abstract
The NT5E (CD73) molecule represents an ecto-5′-nucleotidase expressed on the cell surface of various cell types. Hydrolyzing extracellular adenosine monophosphate into adenosine and inorganic phosphate, NT5E performs numerous homeostatic functions in healthy organs and tissues. Importantly, NT5E can act as inhibitory immune checkpoint molecule, since free adenosine generated by NT5E inhibits cellular immune responses, thereby promoting immune escape of tumor cells. MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression on posttranscriptional level through binding to mRNAs, resulting in translational repression or degradation of the targeted mRNA molecule. In tumor cells, miRNA expression patterns are often altered which in turn might affect NT5E surface expression and eventually influence the efficacy of antitumor immune responses. This review describes the diverse roles of NT5E, summarizes current knowledge about transcription factors controlling NT5E expression, and highlights the significance of miRNAs involved in the posttranscriptional regulation of NT5E expression.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
125
|
Vaisitti T, Arruga F, Deaglio S. Targeting the Adenosinergic Axis in Chronic Lymphocytic Leukemia: A Way to Disrupt the Tumor Niche? Int J Mol Sci 2018; 19:ijms19041167. [PMID: 29649100 PMCID: PMC5979564 DOI: 10.3390/ijms19041167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Targeting adenosine triphosphate (ATP) metabolism and adenosinergic signaling in cancer is gaining momentum, as increasing evidence is showing their relevance in tumor immunology and biology. Chronic lymphocytic leukemia (CLL) results from the expansion of a population of mature B cells that progressively occupies the bone marrow (BM), the blood, and peripheral lymphoid organs. Notwithstanding significant progress in the treatment of these patients, the cure remains an unmet clinical need, suggesting that novel drugs or drug combinations are needed. A unique feature of CLL is its reliance on micro-environmental signals for proliferation and cell survival. We and others have shown that the lymphoid niche, an area of intense interactions between leukemic and bystander non-tumor cells, is a typically hypoxic environment. Here adenosine is generated by leukemic cells, as well as by cells of myeloid origin, acting through autocrine and paracrine mechanisms, ultimately affecting tumor growth, limiting drug responses, and skewing the immune cells towards a tolerant phenotype. Hence, understanding the mechanisms through which this complex network of enzymes, receptors, and metabolites functions in CLL, will pave the way to the use of pharmacological agents targeting the system, which, in combination with drugs targeting leukemic cells, may get us one step closer to curing these patients.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Regulatory Networks/drug effects
- Humans
- Hypoxia
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy/methods
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
126
|
Infant cardiopulmonary bypass: CD73 kinetics, association with clinical outcomes, and influence on serum adenosine production capacity. Pediatr Res 2018; 83:858-865. [PMID: 29278640 PMCID: PMC5935543 DOI: 10.1038/pr.2017.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
BackgroundExtracellular adenine nucleotides contribute to ischemia-reperfusion injury following infant cardiopulmonary bypass (CPB), whereas conversion to adenosine may be protective. Alkaline phosphatase (AP), a key enzyme responsible for this conversion, decreases after infant CPB. Indirect evidence suggests that soluble CD73 may simultaneously increase and partially offset this loss of AP. We sought to measure CD73 levels in infants undergoing CPB and determine its association with adenosine production capacity and postoperative support requirements.MethodsA prospective cohort study of infants ≤120 days of age undergoing CPB. CD73 was measured before CPB and during rewarming. Multivariable modeling evaluated the contributions of CD73/AP to adenosine production capacity and postoperative support requirements.ResultsSerum samples from 85 subjects were analyzed. The median CD73 concentration increased following CPB (95.2 vs. 179.8 ng/ml; P<0.0001). Rewarming CD73 was independently inversely associated with vasoactive inotropic support (P<0.005) and length of intensive care unit stay (P<0.005). Combined AP activity and CD73 concentration predicted adenosine production capacity (P<0.0001).ConclusionsSerum CD73 increases following infant CPB. Low rewarming CD73 is independently associated with increased postoperative support requirements. CD73 and AP together predict serum adenosine production capacity and may represent potential therapeutic targets to clear extracellular adenine nucleotides and improve outcomes following infant CPB.
Collapse
|
127
|
Song L, Ye W, Cui Y, Lu J, Zhang Y, Ding N, Hu W, Pei H, Yue Z, Zhou G. Ecto-5'-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget 2018; 8:31977-31992. [PMID: 28404888 PMCID: PMC5458263 DOI: 10.18632/oncotarget.16667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Identification of a specific biomarker for cancer stem cells (CSCs) is of potential applications in the development of effective therapeutic strategies for renal cell carcinoma (RCC). In this study, both the RCC cell line 786-O and surgically removed clear cell RCC (ccRCC) tissues were implemented to grew as spheroids in serum-free medium supplemented with mitogens. This subpopulation possessed key characteristics defining CSCs. We also identified that surgically removed ccRCC tissues were heterogenic and there was a subpopulation of cells that was highly stained with rhodamine-123. Based on membrane-proteomic analyses, CD73 was identified as a candidate biomarker. We further found that CD73high cells were highly tumorigenic. As few as 100 CD73high cells were capable of forming xenograft tumors in non obese diabetic/severe combined immunodeficiency disease mice, whereas 1 × 105 CD73low cells did not initiate tumor formation. During successive culture, the CD73high population regenerated both CD73high and CD73low cells, whereas the CD73low population remained low expression level of CD73. Furthermore, the CD73high cells were more resistant to radiation and DNA-damaging agents than the CD73low cells, and expressed a panel of 'stemness' genes at a higher level than the CD73low cells. These findings suggest that a high level of CD73 expression is a bona fide biomarker of ccRCC stem-like cells. Future research will aim at the elucidation of the underlying mechanisms of CD73 in RCC development and the distinct aspects of ccRCC stem-like cells from other tumor types.
Collapse
Affiliation(s)
- Lei Song
- Medical College, Northwest Minzu University, Lanzhou 730030, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenling Ye
- Medical College, Henan University, Kaifeng 475001, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Cui
- Department of Urology Surgery, Shuyang Hospital of Traditional Chinese Medicine, Suqian 223600, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianzhong Lu
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanan Zhang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhongjin Yue
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
128
|
Adzic M, Nedeljkovic N. Unveiling the Role of Ecto-5'-Nucleotidase/CD73 in Astrocyte Migration by Using Pharmacological Tools. Front Pharmacol 2018; 9:153. [PMID: 29545748 PMCID: PMC5837971 DOI: 10.3389/fphar.2018.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/13/2018] [Indexed: 01/25/2023] Open
Abstract
CD73 is a bifunctional glycosylphosphatidylinositol (GPI)-anchored membrane protein which functions as ecto-5′-nucleotidase and a membrane receptor for extracellular matrix protein (ECM). A large body of evidence demonstrates a critical involvement of altered purine metabolism and particularly, increased expression of CD73 in a number of human disorders, including cancer and immunodeficiency. Massive up-regulation of CD73 was also found in reactive astrocytes in several experimental models of human neuropathologies. In all the pathological contexts studied so far, the increased expression of CD73 has been associated with the altered ability of cells to adhere and/or migrate. Thus, we hypothesized that increased expression of CD73 in reactive astrocytes has a role in the process of astrocyte adhesion and migration. In the present study, the involvement of CD73 in astrocyte migration was investigated in the scratch wound assay (SW), using primary astrocyte culture prepared from neonatal rat cortex. The cultures were treated with one of the following pharmacological inhibitors which preferentially target individual functions of CD73: (a) α,β-methylene ADP (APCP), which inhibits the catalytic activity of CD73 (b) polyclonal anti-CD73 antibodies, which bind to the internal epitope of CD73 molecule and mask their surface exposure and (c) small interfering CD73-RNA (siCD73), which silences the expression of CD73 gene. It was concluded that approaches that reduce surface expression of CD73 increase migration velocity and promote wound closure in the scratch wound assay, while inhibition of the enzyme activity by APCP induces redistribution of CD73 molecules at the cell surface, thus indirectly affecting cell adhesion and migration. Application of anti-CD73 antibodies induces a decrease in CD73 activity and membrane expression, through CD73 molecules shedding and their release to the culture media. In addition, all applied pharmacological inhibitors differentially affect other aspects of astrocyte function in vitro, including reduced cell proliferation, altered expression of adenosine receptors and increased expression of ERK1/2. Altogether these data imply that CD73 participates in cell adhesion/migration and transmits extracellular signals through interactions with ECM.
Collapse
Affiliation(s)
- Marija Adzic
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Centre for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
129
|
Inoue Y, Yoshimura K, Kurabe N, Kahyo T, Kawase A, Tanahashi M, Ogawa H, Inui N, Funai K, Shinmura K, Niwa H, Suda T, Sugimura H. Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer. Oncotarget 2018; 8:8738-8751. [PMID: 28060732 PMCID: PMC5352437 DOI: 10.18632/oncotarget.14434] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 12/26/2022] Open
Abstract
In immune cells, CD73 dephosphorylates and converts extracellular AMP into adenosine, which binds the A2A adenosine receptor (A2AR). Blockade of this interaction, which induces an immunosuppressed niche in the tumor microenvironment, represents a potential novel treatment strategy. The clinical significance of CD73 and A2AR expression in non-small-cell lung cancer (NSCLC), however, has yet to be thoroughly investigated. Here we evaluated CD73 and A2AR protein expression levels using immunohistochemistry in tissue microarrays containing 642 resected NSCLC specimens. Furthermore, we compared the expression profiles of 133 paired primary tumors and lymph node metastases. CD73 and A2AR expression levels were significantly higher in females than in males, in never smokers than in ever smokers, and in adenocarcinomas than in squamous cell carcinomas. Among adenocarcinomas, significantly higher CD73 and A2AR expression was observed in TTF-1-positive and mutant EGFR-positive tumors than in their counterparts. Compared with CD73, A2AR expression was more inconsistent between primary tumors and lymph node metastases. Among NSCLC patients, high CD73 expression was an independent indicator of poor prognosis in multivariate Cox regression analyses for overall survival [hazard ratio (HR), 2.18; 95% confidence interval (CI), 1.38–3.46] and recurrence-free survival (HR, 2.05; 95% CI, 1.42–2.95). In contrast, high A2AR expression was an independent predictor of favorable prognosis for overall survival (HR, 0.70; 95% CI, 0.50–0.98) and recurrence-free survival (HR, 0.74; 95% CI, 0.56–0.97). Together, these findings indicate that CD73 and A2AR have opposing prognostic effects, although cases involving CD73 or A2AR expression share some clinicopathological features.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nobuya Kurabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Niwa
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
130
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
131
|
Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, Zhang C, Yue D, Qin G, Zhang T, Li F, Chen X, Ping Y, Wang D, Gao Q, He Q, Huang L, Li H, Huang J, Zhao X, Xue W, Sun Z, Lu J, Yu JJ, Zhao J, Zhang B, Zhang Y. Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Res 2018; 78:1779-1791. [PMID: 29374065 DOI: 10.1158/0008-5472.can-17-2460] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Metformin is a broadly prescribed drug for type 2 diabetes that exerts antitumor activity, yet the mechanisms underlying this activity remain unclear. We show here that metformin treatment blocks the suppressive function of myeloid-derived suppressor cells (MDSC) in patients with ovarian cancer by downregulating the expression and ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets. Metformin triggered activation of AMP-activated protein kinase α and subsequently suppressed hypoxia-inducible factor α, which was critical for induction of CD39/CD73 expression in MDSC. Furthermore, metformin treatment correlated with longer overall survival in diabetic patients with ovarian cancer, which was accompanied by a metformin-induced reduction in the frequency of circulating CD39+CD73+ MDSC and a concomitant increase in the antitumor activities of circulating CD8+ T cells. Our results highlight a direct effect of metformin on MDSC and suggest that metformin may yield clinical benefit through improvement of antitumor T-cell immunity by dampening CD39/CD73-dependent MDSC immunosuppression in ovarian cancer patients.Significance: The antitumor activity of an antidiabetes drug is attributable to reduced immunosuppressive activity of myeloid-derived tumor suppressor cells. Cancer Res; 78(7); 1779-91. ©2018 AACR.
Collapse
Affiliation(s)
- Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jieyao Li
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhirui Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Dongli Yue
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tengfei Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Qianyi He
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hong Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jianmin Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jane J Yu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
132
|
Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis 2018; 7:10. [PMID: 29362402 PMCID: PMC5833859 DOI: 10.1038/s41389-017-0011-9] [Citation(s) in RCA: 695] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxia-inducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology, the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process. Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment, and we summarise their role in cancer development and progression.
Collapse
Affiliation(s)
- Varvara Petrova
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| |
Collapse
|
133
|
Chemotherapy induces enrichment of CD47 +/CD73 +/PDL1 + immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci U S A 2018; 115:E1239-E1248. [PMID: 29367423 DOI: 10.1073/pnas.1718197115] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is treated with cytotoxic chemotherapy and is often characterized by early relapse and metastasis. To form a secondary (recurrent and/or metastatic) tumor, a breast cancer cell must evade the innate and adaptive immune systems. CD47 enables cancer cells to evade killing by macrophages, whereas CD73 and PDL1 mediate independent mechanisms of evasion of cytotoxic T lymphocytes. Here, we report that treatment of human or murine TNBC cells with carboplatin, doxorubicin, gemcitabine, or paclitaxel induces the coordinate transcriptional induction of CD47, CD73, and PDL1 mRNA and protein expression, leading to a marked increase in the percentage of CD47+CD73+PDL1+ breast cancer cells. Genetic or pharmacological inhibition of hypoxia-inducible factors (HIFs) blocked chemotherapy-induced enrichment of CD47+CD73+PDL1+ TNBC cells, which were also enriched in the absence of chemotherapy by incubation under hypoxic conditions, leading to T cell anergy or death. Treatment of mice with cytotoxic chemotherapy markedly increased the intratumoral ratio of regulatory/effector T cells, an effect that was abrogated by HIF inhibition. Our results delineate an HIF-dependent transcriptional mechanism contributing to TNBC progression and suggest that combining chemotherapy with an HIF inhibitor may prevent countertherapeutic induction of proteins that mediate evasion of innate and adaptive antitumor immunity.
Collapse
|
134
|
Song X, Zhang Y, Zhang L, Song W, Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget 2018; 9:11572-11580. [PMID: 29545920 PMCID: PMC5837754 DOI: 10.18632/oncotarget.24098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-associated metabolic reprogramming modulates the biological functions of many immune and non-immune cells, and affects immune response types and intensities. Adenosine and indoleamine 2,3-dioxygenase (IDO) are known immunosuppressors, and adenosine is a hypoxia-associated product. We investigated the impact of hypoxia on IDO production in dendritic cells (DCs). We found that hypoxia (1% O2) enhances IDO production in DCs, and this increase was dependent on the adenosine A3 receptor (A3R), but not A2aR or A2bR. A3R blockade during hypoxia inhibited IDO production in DCs, while A2bR blockade further enhanced IDO production. Activating A2aR had no effect on IDO production. Hypoxia (1% O2) upregulated CD86, CD274, HLA-DR, and CD54, and downregulated CD40 and CD83 in DCs as compared to normoxia (21% O2). IDO inhibition in hypoxia-conditioned DCs reversed MHC-II, CD86, CD54, and CD274 upregulation, but further downregulated CD40 and CD83. Our findings offer guidance for pharmacological administration of adenosine receptor agonists or antagonists with the goal of achieving immune tolerance or controlling insulin resistance and other metabolic disorders via IDO modulation.
Collapse
Affiliation(s)
- Xiang Song
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li Zhang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Wengang Song
- Institute of Immunology, Taishan Medical University, Tai'an 271000, China
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
135
|
Yuan X, Lee JW, Bowser JL, Neudecker V, Sridhar S, Eltzschig HK. Targeting Hypoxia Signaling for Perioperative Organ Injury. Anesth Analg 2018; 126:308-321. [PMID: 28759485 PMCID: PMC5735013 DOI: 10.1213/ane.0000000000002288] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perioperative organ injury has a significant impact on surgical outcomes and presents a leading cause of death in the United States. Recent research has pointed out an important role of hypoxia signaling in the protection from organ injury, including for example myocardial infarction, acute respiratory distress syndrome, acute kidney, or gut injury. Hypoxia induces the stabilization of hypoxia-inducible factors (HIFs), thereby leading to the induction of HIF target genes, which facilitates adaptive responses to low oxygen. In this review, we focus on current therapeutic strategies targeting hypoxia signaling in various organ injury models and emphasize potential clinical approaches to integrate these findings into the care of surgical patients. Conceptually, there are 2 options to target the HIF pathway for organ protection. First, drugs became recently available that promote the stabilization of HIFs, most prominently via inhibition of prolyl hydroxylase. These compounds are currently trialed in patients, for example, for anemia treatment or prevention of ischemia and reperfusion injury. Second, HIF target genes (such as adenosine receptors) could be activated directly. We hope that some of these approaches may lead to novel pharmacologic strategies to prevent or treat organ injury in surgical patients.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jae W. Lee
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jessica L. Bowser
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Viola Neudecker
- Department of Anesthesiology, Clinic of the University of Munich, Munich, Germany
| | - Srikanth Sridhar
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
136
|
Abstract
Despite the success of anti-programmed cell death protein 1 (PD1), anti-PD1 ligand 1 (PDL1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) therapies in advanced cancer, a considerable proportion of patients remain unresponsive to these treatments (known as innate resistance). In addition, one-third of patients relapse after initial response (known as adaptive resistance), which suggests that multiple non-redundant immunosuppressive mechanisms coexist within the tumour microenvironment. A major immunosuppressive mechanism is the adenosinergic pathway, which now represents an attractive new therapeutic target for cancer therapy. Activation of this pathway occurs within hypoxic tumours, where extracellular adenosine exerts local suppression through tumour-intrinsic and host-mediated mechanisms. Preclinical studies in mice with adenosine receptor antagonists and antibodies have reported favourable antitumour immune responses with some definition of the mechanism of action. Currently, agents targeting the adenosinergic pathway are undergoing first-in-human clinical trials as single agents and in combination with anti-PD1 or anti-PDL1 therapies. In this Review, we describe the complex interplay of adenosine and adenosine receptors in the development of primary tumours and metastases and discuss the merits of targeting one or more components that compose the adenosinergic pathway. We also review the early clinical data relating to therapeutic agents inhibiting the adenosinergic pathway.
Collapse
Affiliation(s)
- Dipti Vijayan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia
| | - Arabella Young
- Diabetes Center, University of California, San Francisco, California 94143, USA
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia
| |
Collapse
|
137
|
Fausther M, Lavoie EG, Goree JR, Dranoff JA. An Elf2-like transcription factor acts as repressor of the mouse ecto-5'-nucleotidase gene expression in hepatic myofibroblasts. Purinergic Signal 2017; 13:417-428. [PMID: 28667437 PMCID: PMC5714833 DOI: 10.1007/s11302-017-9570-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/12/2017] [Indexed: 01/20/2023] Open
Abstract
Hepatic fibrosis represents a pathological wound healing and tissue repair process triggered in response to chronic liver injury. A heterogeneous population of activated non-parenchymal liver cells, known as liver myofibroblasts, functions as the effector cells in hepatic fibrosis. Upon activation, liver myofibroblasts become fibrogenic, acquiring contractile properties and increasing collagen production capacity, while developing enhanced sensitivity to endogenous molecules and factors released in the local microenvironment. Hepatic extracellular adenosine is a bioactive small molecule, increasingly recognized as an important regulator of liver myofibroblast functions, and an important mediator in the pathogenesis of liver fibrosis overall. Remarkably, ecto-5'-nucleotidase/Nt5e/Cd73 enzyme, which accounts for the dominant adenosine-generating activity in the extracellular medium, is expressed by activated liver myofibroblasts. However, the molecular signals regulating Nt5e gene expression in liver myofibroblasts remain poorly understood. Here, we show that activated mouse liver myofibroblasts express Nt5e gene products and characterize the putative Nt5e minimal promoter in the mouse species. We describe the existence of an enhancer sequence upstream of the mouse Nt5e minimal promoter and establish that the mouse Nt5e minimal promoter transcriptional activity is negatively regulated by an Elf2-like Ets-related transcription factor in activated mouse liver myofibroblasts.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA.
| | - Elise G Lavoie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jessica R Goree
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| |
Collapse
|
138
|
MicroRNA in gastrointestinal cell signalling. Inflammopharmacology 2017; 26:1-14. [PMID: 29110118 DOI: 10.1007/s10787-017-0414-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Our gut forms an important organ and its formation, functioning and homeostasis are maintained by several factors including cell signalling pathways and commensal microflora. These factors affect pathological, physiological and immunological parameters to maintain gut health and prevent its inflammation. Among these, different intracellular signalling pathways play an important role in regulating gut homeostasis. These pathways are in turn regulated by various microRNAs that play a key role in maintaining the balance between tolerance and inflammation. This review highlights the importance of various cell signalling pathways in modulating gut homeostasis and the role specific miRNAs play in their regulation.
Collapse
|
139
|
Xie C, Yagai T, Luo Y, Liang X, Chen T, Wang Q, Sun D, Zhao J, Ramakrishnan SK, Sun L, Jiang C, Xue X, Tian Y, Krausz KW, Patterson AD, Shah YM, Wu Y, Jiang C, Gonzalez FJ. Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis. Nat Med 2017; 23:1298-1308. [PMID: 29035368 PMCID: PMC6410352 DOI: 10.1038/nm.4412] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is becoming the most common chronic liver disease in Western countries, and limited therapeutic options are available. Here we uncovered a role for intestinal hypoxia-inducible factor (HIF) in hepatic steatosis. Human-intestine biopsies from individuals with or without obesity revealed that intestinal HIF-2α signaling was positively correlated with body-mass index and hepatic toxicity. The causality of this correlation was verified in mice with an intestine-specific disruption of Hif2a, in which high-fat-diet-induced hepatic steatosis and obesity were substantially lower as compared to control mice. PT2385, a HIF-2α-specific inhibitor, had preventive and therapeutic effects on metabolic disorders that were dependent on intestine HIF-2α. Intestine HIF-2α inhibition markedly reduced intestine and serum ceramide levels. Mechanistically, intestine HIF-2α regulates ceramide metabolism mainly from the salvage pathway, by positively regulating the expression of Neu3, the gene encoding neuraminidase 3. These results suggest that intestinal HIF-2α could be a viable target for hepatic steatosis therapy.
Collapse
Affiliation(s)
- Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xianyi Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Tao Chen
- Department of Internal Medicine, Key Laboratory of Environment and Genes Related to Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiong Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dongxue Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jie Zhao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sadeesh K Ramakrishnan
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chunmei Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiang Xue
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yatrik M Shah
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yue Wu
- Department of Internal Medicine, Key Laboratory of Environment and Genes Related to Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- These authors jointly directed this work
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- These authors jointly directed this work
| |
Collapse
|
140
|
Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? SCIENCE CHINA-LIFE SCIENCES 2017; 60:1114-1124. [PMID: 29039125 DOI: 10.1007/s11427-017-9178-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
Hypoxia acts as an important regulator of physiological and pathological processes. Hypoxia inducible factors (HIFs) are the central players involved in the cellular adaptation to hypoxia and are regulated by oxygen sensing EGLN prolyl hydroxylases. Hypoxia affects many aspects of cellular growth through both redox effects and through the stabilization of HIFs. The HIF isoforms likely have differential effects on tumor growth via alteration of metabolism, growth, and self-renewal and are likely highly context-dependent. In some tumors such as renal cell carcinoma, the EGLN/HIF axis appears to drive tumorigenesis, while in many others HIF1 and HIF2 may actually have a tumor suppressive role. An emerging role of HIF biology is its effects on the tumor microenvironment. The EGLN/HIF axis plays a key role in regulating the function of the various components of the tumor microenvironment, which include cancer-associated fibroblasts, endothelial cells, immune cells, and the extracellular matrix (ECM). Here, we discuss hypoxia and the diverse roles of HIFs in the setting of tumorigenesis and the maintenance of the tumor microenvironment as well as possible future directions of the field.
Collapse
|
141
|
Van Welden S, Selfridge AC, Hindryckx P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 2017; 14:596-611. [PMID: 28853446 DOI: 10.1038/nrgastro.2017.101] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-κB (NF-κB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-κB and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD.
Collapse
Affiliation(s)
- Sophie Van Welden
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| | - Andrew C Selfridge
- Robarts Clinical Trials West, 4350 Executive Drive 210, San Diego, California 92121, USA
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| |
Collapse
|
142
|
Intestinal Epithelial Ecto-5'-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infect Immun 2017; 85:IAI.01022-16. [PMID: 28717030 DOI: 10.1128/iai.01022-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is expressed abundantly on the apical surface of intestinal epithelial cells (IECs) and functions as the terminal enzyme in the generation of extracellular adenosine. Previous work demonstrated that adenosine signaling in IECs results in a number of tissue-protective effects during inflammation; however, a rationale for its apical expression has been lacking. We hypothesized that the highly polarized expression of CD73 is indicative of an important role for extracellular adenosine as a mediator of host-microbe interactions. We show that adenosine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shared by the related purine metabolite 5'-AMP, inosine, or hypoxanthine. Analysis of Salmonella colonization in IEC-specific CD73 knockout mice (CD73f/fVillinCre ) revealed a nearly 10-fold increase in colonization compared to that in controls. Despite the increased luminal colonization by Salmonella, CD73f/fVillinCre mice were protected against Salmonella colitis and showed reduced Salmonella burdens in viscera, suggesting that adenosine promotes dissemination. The knockdown of CD73 expression in cultured IECs resulted in dramatic defects in intraepithelial localization and replication as well as defective transepithelial translocation by Salmonella In conclusion, we define a novel antimicrobial activity of adenosine in the gastrointestinal tract and unveil an important role for adenosine as a regulator of host-microbe interactions. These findings have broad implications for the development of new therapeutic agents for infectious disease.
Collapse
|
143
|
Changes in CD73, CD39 and CD26 expression on T-lymphocytes of ANCA-associated vasculitis patients suggest impairment in adenosine generation and turn-over. Sci Rep 2017; 7:11683. [PMID: 28916770 PMCID: PMC5601951 DOI: 10.1038/s41598-017-12011-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
Extracellular adenosine, generated via the concerted action of CD39 and CD73, contributes to T-cell differentiation and function. Adenosine concentrations are furthermore influenced by adenosine deaminase binding protein CD26. Because aberrant T-cell phenotypes had been reported in anti-neutrophil cytoplasmic auto-antibody (ANCA)-associated vasculitis (AAV) patients, an impaired expression of these molecules on T-cells of AAV patients was hypothesized in the present study. While in AAV patients (n = 29) CD26 was increased on CD4+ lymphocytes, CD39 and CD73 were generally reduced on patients’ T-cells. In CD4+ cells significant differences in CD73 expression were confined to memory CD45RA- cells, while in CD4- lymphocytes differences were significant in both naïve CD45RA+ and memory CD45RA- cells. The percentage of CD4-CD73+ cells correlated with micro-RNA (miR)−31 expression, a putative regulator of factor inhibiting hypoxia-inducible factor 1 alpha (FIH-1), inversely with serum C-reactive protein (CRP) and positively with estimated glomerular filtration rate (eGFR). No correlation with disease activity, duration, and ANCA profile was found. It remains to be assessed if a decreased CD73 and CD39 expression underlies functional impairment of lymphocytes in AAV patients. Likewise, the relations between frequencies of CD4-CD73+ cells and serum CRP or eGFR require further functional elucidation.
Collapse
|
144
|
Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII. Sci Rep 2017; 7:10121. [PMID: 28860539 PMCID: PMC5578998 DOI: 10.1038/s41598-017-09549-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023] Open
Abstract
Hypoxia is a phenomenon often arising in solid tumours, linked to aggressive malignancy, bad prognosis and resistance to therapy. Hypoxia-inducible factor-1 has been identified as a key mediator of cell and tissue adaptation to hypoxic conditions through transcriptional activation of many genes involved in glucose metabolism and other cancer-related processes, such as angiogenesis, cell survival and cell invasion. Cyclic adenosine 3′5′-monophosphate is one of the most ancient and evolutionarily conserved signalling molecules and the cAMP/PKA signalling pathway plays an important role in cellular adaptation to hypoxia. We have investigated possible new mechanisms behind hypoxic activation of the cAMP/PKA pathway. For the first time, we have shown that hypoxia induces transcriptional up-regulation of the system of adenylyl cyclases, enzymes responsible for cAMP production, in a panel of carcinoma cell lines of various origin. Our data prove functional relevance of the hypoxic increase of adenylyl cyclases VI and VII at least partially mediated by HIF-1 transcription factor. We have identified adenylyl cyclase VI and VII isoforms as mediators of cellular response to hypoxia, which led to the elevation of cAMP levels and enhanced PKA activity, with an impact on cell migration and pH regulation.
Collapse
|
145
|
Li H, Karmouty-Quintana H, Chen NY, Mills T, Molina J, Blackburn MR, Davies J. Loss of CD73-mediated extracellular adenosine production exacerbates inflammation and abnormal alveolar development in newborn mice exposed to prolonged hyperoxia. Pediatr Res 2017; 82:pr2017176. [PMID: 28832580 DOI: 10.1038/pr.2017.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
BackgroundHyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response and it disrupts normal alveolarization in the developing newborn lung. Adenosine is a signaling molecule that is generated extracellularly by ecto-5'-nucleotidase (CD73) in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to have a protective role in acute injury situations; however, chronic elevations have been associated with detrimental changes in chronic lung diseases. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which are detrimental to the newborn lung.MethodsC57Bl/6 and CD73-/- mice were exposed to 95% oxygen, 70% oxygen, or room air. Adenosine concentration and markers of pulmonary inflammation and lung development were measured.ResultsExposure to hyperoxia caused pulmonary inflammation and disrupted normal alveolar development in association with increased pulmonary adenosine levels. Loss of CD73-mediated extracellular adenosine production led to decreased survival with exposure to 95% oxygen, and exacerbated pulmonary inflammation and worsened lung development with 70% oxygen exposure.ConclusionExposure to hyperoxia causes lung injury associated with an increase in adenosine concentration, and loss of CD73-mediated adenosine production leads to worsening of hyperoxic lung injury.Pediatric Research advance online publication, 23 August 2017; doi:10.1038/pr.2017.176.
Collapse
Affiliation(s)
- Huiling Li
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
146
|
Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. J Appl Physiol (1985) 2017; 123:1303-1320. [PMID: 28798196 DOI: 10.1152/japplphysiol.00101.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
147
|
McClendon J, Jansing NL, Redente EF, Gandjeva A, Ito Y, Colgan SP, Ahmad A, Riches DWH, Chapman HA, Mason RJ, Tuder RM, Zemans RL. Hypoxia-Inducible Factor 1α Signaling Promotes Repair of the Alveolar Epithelium after Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1772-1786. [PMID: 28618253 PMCID: PMC5530913 DOI: 10.1016/j.ajpath.2017.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/20/2017] [Indexed: 01/09/2023]
Abstract
During the acute respiratory distress syndrome, epithelial cells, primarily alveolar type (AT) I cells, die and slough off, resulting in enhanced permeability. ATII cells proliferate and spread onto the denuded basement membrane to reseal the barrier. Repair of the alveolar epithelium is critical for clinical recovery; however, mechanisms underlying ATII cell proliferation and spreading are not well understood. We hypothesized that hypoxia-inducible factor (HIF)1α promotes proliferation and spreading of ATII cells during repair after lung injury. Mice were treated with lipopolysaccharide or hydrochloric acid. HIF activation in ATII cells after injury was demonstrated by increased luciferase activity in oxygen degradation domain-Luc (HIF reporter) mice and expression of the HIF1α target gene GLUT1. ATII cell proliferation during repair was attenuated in ATII cell-specific HIF1α knockout (SftpcCreERT2+/-;HIF1αf/f) mice. The HIF target vascular endothelial growth factor promoted ATII cell proliferation in vitro and after lung injury in vivo. In the scratch wound assay of cell spreading, HIF stabilization accelerated, whereas HIF1α shRNA delayed wound closure. SDF1 and its receptor, CXCR4, were found to be HIF1α-regulated genes in ATII cells and were up-regulated during lung injury. Stromal cell-derived factor 1/CXCR4 inhibition impaired cell spreading and delayed the resolution of permeability after lung injury. We conclude that HIF1α is activated in ATII cells after lung injury and promotes proliferation and spreading during repair.
Collapse
Affiliation(s)
- Jazalle McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Nicole L Jansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Department of Research, Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Aneta Gandjeva
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yoko Ito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Integrated Department of Immunology, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David W H Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California
| | - Robert J Mason
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
148
|
Hall CH, Campbell EL, Colgan SP. Neutrophils as Components of Mucosal Homeostasis. Cell Mol Gastroenterol Hepatol 2017; 4:329-337. [PMID: 28884136 PMCID: PMC5581871 DOI: 10.1016/j.jcmgh.2017.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Inflammatory responses in the intestinal mucosa inevitably result in the recruitment of neutrophils (polymorphonuclear leukocytes [PMNs]). Epithelial cells that line the mucosa play an integral role in the recruitment, maintenance, and clearance of PMNs at sites of inflammation. The consequences of such PMN-epithelial interactions often determine tissue responses and, ultimately, organ function. For this reason, there is significant interest in understanding how PMNs function in the mucosa during inflammation. Recent studies have shown that PMNs play a more significant role in molding of the immune response than previously thought. Here, we review the recent literature regarding the contribution of PMNs to the development and resolution of inflammation, with an emphasis on the role of the tissue microenvironment and pathways for promoting epithelial restitution. These studies highlight the complex nature of inflammatory pathways and provide important insight into the difficulties of treating mucosal inflammation.
Collapse
Key Words
- ATP, adenosine triphosphatase
- CGD, chronic granulomatous disease
- DMOG, dimethyloxalylglycine
- Epithelium
- GI, gastrointestinal
- HIF, hypoxia-inducible factor
- Hypoxia-Inducible Factor
- IBD, inflammatory bowel disease
- ICAM-1, intracellular adhesion molecule-1
- IL, interleukin
- Inflammation
- Metabolism
- Microbiota
- NADPH, reduced nicotinamide adenine dinucleotide phosphate
- PHD, prolyl-hydroxylase
- PMN, polymorphonuclear leukocyte
- SIRPα, signal-regulatory protein-α
Collapse
Affiliation(s)
- Caroline H.T. Hall
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Eric L. Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,Centre for Experimental Medicine, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Sean P. Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,Correspondence Address correspondence to: Sean P. Colgan, PhD, University of Colorado School of Medicine, 12700 East 19th Avenue, Room 10025, Aurora, Colorado 80045. fax: (303) 724-7243.University of Colorado School of Medicine12700 East 19th AvenueRoom 10025AuroraColorado 80045
| |
Collapse
|
149
|
Campbell EL, Kao DJ, Colgan SP. Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunol Rev 2017; 273:112-20. [PMID: 27558331 DOI: 10.1111/imr.12456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in the discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.
Collapse
Affiliation(s)
- Eric L Campbell
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel J Kao
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P Colgan
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
150
|
Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and Mucosal Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:77-100. [PMID: 27193451 DOI: 10.1146/annurev-pathol-012615-044231] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called "inflammatory hypoxia," which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Eric L Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|