101
|
Llorente-Cortes V, Casani L, Cal R, Llenas A, Juan-Babot O, Camino-López S, Sendra J, Badimon L. Cholesterol-lowering strategies reduce vascular LRP1 overexpression induced by hypercholesterolaemia. Eur J Clin Invest 2011; 41:1087-97. [PMID: 21434892 DOI: 10.1111/j.1365-2362.2011.02513.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Low density lipoprotein receptor-related protein (LRP1) plays a key role on vascular functionality and is upregulated by hypercholesterolemia and hypertension. To investigate the effect of cholesterol-lowering interventions on vascular LRP1 over expression and whether simvastatin influences LRP1 expression. MATERIAL AND METHODS Male New Zealand rabbits were recruited into various groups, one group was fed a normal chow diet for 28 days (control group, n = 6), other group (n = 24) was fed a hypercholesterolemic diet (HC), six rabbits were euthanized at day 28 to test the capacity of HC diet to induce early atherosclerosis and the rest at day 60 (n = 18) after receiving either HC diet (HC group, n = 6), HC diet with simvastatin (2·5 mg/kg.day) (HC+simv group, n = 6), or a normal chow diet (NC group, n = 6) for the last 32 days. RESULTS High-cholesterol diet raised vascular LRP1 concomitantly with increased lipid, VSMC and macrophage content in the arterial intima. Simvastatin and return to normocholesterolemic diet significantly reduced systemic cholesterol levels and vascular lipid content. Interestingly, these interventions also downregulate LRP1 overexpression in the vascular wall although to a different extent (HC+simv: 75 ± 3·6%vs NC: 50 ± 3·5% versus, P = 0·002). Immunohistochemistry studies showed that LRP1 diminushion was associated to a reduction in the number of intimal VSMC in HC+simv.group. Simvastatin per se did not exert any significant effect on LRP1 expression in rabbit aortic smooth muscle cells (rSMC). CONCLUSIONS Our results demonstrate that cholesterol-lowering interventions exerted down regulatory effects on vascular LRP1 over expression induced by hypercholesterolemia and that simvastatin did not influence LRP1 expression beyond its cholesterol-lowering effects.
Collapse
Affiliation(s)
- Vicenta Llorente-Cortes
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Clemente-Postigo M, Queipo-Ortuño MI, Fernandez-Garcia D, Gomez-Huelgas R, Tinahones FJ, Cardona F. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One 2011; 6:e24783. [PMID: 21966368 PMCID: PMC3178563 DOI: 10.1371/journal.pone.0024783] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/17/2011] [Indexed: 12/03/2022] Open
Abstract
Background Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). Methods and Principal Findings VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. Conclusions Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Laboratorio de Investigaciones Biomédicas del Hospital Virgen de la Victoria, Málaga (Fundación IMABIS), Spain
| | - Maria Isabel Queipo-Ortuño
- Laboratorio de Investigaciones Biomédicas del Hospital Virgen de la Victoria, Málaga (Fundación IMABIS), Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
| | - Diego Fernandez-Garcia
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- Servicio Endocrinología y Nutrición del Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Ricardo Gomez-Huelgas
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- Servicio de Medicina Interna del Hospital Regional Carlos Haya, Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- Servicio Endocrinología y Nutrición del Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Fernando Cardona
- Laboratorio de Investigaciones Biomédicas del Hospital Virgen de la Victoria, Málaga (Fundación IMABIS), Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- * E-mail:
| |
Collapse
|
103
|
Karavia EA, Papachristou DJ, Kotsikogianni I, Giopanou I, Kypreos KE. Deficiency in apolipoprotein E has a protective effect on diet-induced nonalcoholic fatty liver disease in mice. FEBS J 2011; 278:3119-29. [PMID: 21740524 DOI: 10.1111/j.1742-4658.2011.08238.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Apolipoprotein E (apoE) mediates the efficient catabolism of the chylomicron remnants very low-density lipoprotein and low-density lipoprotein from the circulation, and the de novo biogenesis of high-density lipoprotein. Lipid-bound apoE is the natural ligand for the low-density lipoprotein receptor (LDLr), LDLr-related protein 1 and other scavenger receptors. Recently, we have established that deficiency in apoE renders mice resistant to diet-induced obesity. In the light of these well-documented properties of apoE, we sought to investigate its role in the development of diet-induced nonalcoholic fatty liver disease (NAFLD). apoE-deficient, LDLr-deficient and control C57BL/6 mice were fed a western-type diet (17.3% protein, 48.5% carbohydrate, 21.2% fat, 0.2% cholesterol, 4.5 kcal·g(-)) for 24 weeks and their sensitivity to NAFLD was assessed by histological and biochemical methods. apoE-deficient mice were less sensitive than control C57BL/6 mice to diet-induced NAFLD. In an attempt to identify the molecular basis for this phenomenon, biochemical and kinetic analyses revealed that apoE-deficient mice displayed a significantly delayed post-prandial triglyceride clearance from their plasma. In contrast with apoE-deficient mice, LDLr-deficient mice fed a western-type diet for 24 weeks developed significant accumulation of hepatic triglycerides and NAFLD, suggesting that apoE-mediated hepatic triglyceride accumulation in mice is independent of LDLr. Our findings suggest a new role of apoE as a key peripheral contributor to hepatic lipid homeostasis and the development of diet-induced NAFLD.
Collapse
Affiliation(s)
- Eleni A Karavia
- Department of Medicine, Pharmacology Unit, University of Patras School of Health Sciences, Rio-Achaias, Greece
| | | | | | | | | |
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW The increasing incidence of obesity and diabetes worldwide are critical risk factors for the development of cardiovascular disease. Although the role of the central nervous system (CNS) in the control of fat mass and glucose metabolism has been studied in detail, less is known about the contribution of neural-derived signals in the development of systemic dyslipidemia. In this review we summarize and analyze evidence suggesting a specific role of the CNS in the control of systemic cholesterol metabolism and circulating plasma lipids levels. RECENT FINDINGS Although early reports based in lesions or electrical stimulation suggested a role for CNS-derived signals in the development of dyslipidemia, more recent findings have confirmed the involvement of specific neural pathways critical for the neuroendocrine control of cholesterol metabolism and plasma lipid levels. SUMMARY The identification of the pathways targeted by the CNS to control plasma lipid levels could offer alternative targets to create efficient novel therapies for the treatment of several metabolic syndrome components including dyslipidemia.
Collapse
Affiliation(s)
- Diego Perez-Tilve
- Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati. Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
105
|
Basford JE, Wancata L, Hofmann SM, Silva RAGD, Davidson WS, Howles PN, Hui DY. Hepatic deficiency of low density lipoprotein receptor-related protein-1 reduces high density lipoprotein secretion and plasma levels in mice. J Biol Chem 2011; 286:13079-87. [PMID: 21343303 DOI: 10.1074/jbc.m111.229369] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The low density lipoprotein receptor-related protein-1 (LRP1) is known to serve as a chylomicron remnant receptor in the liver responsible for the binding and plasma clearance of apolipoprotein E-containing lipoproteins. Previous in vitro studies have provided evidence to suggest that LRP1 expression may also influence high density lipoprotein (HDL) metabolism. The current study showed that liver-specific LRP1 knock-out (hLrp1(-/-)) mice displayed lower fasting plasma HDL cholesterol levels when compared with hLrp1(+/+) mice. Lecithin:cholesterol acyl transferase and hepatic lipase activities in plasma of hLrp1(-/-) mice were comparable with those observed in hLrp1(+/+) mice, indicating that hepatic LRP1 inactivation does not influence plasma HDL remodeling. Plasma clearance of HDL particles and HDL-associated cholesteryl esters was also similar between hLrp1(+/+) and hLrp1(-/-) mice. In contrast, HDL secretion from primary hepatocytes isolated from hLrp1(-/-) mice was significantly reduced when compared with that observed with hLrp1(+/+) hepatocytes. Biotinylation of cell surface proteins revealed decreased surface localization of the ATP-binding cassette, subfamily A, member 1 (ABCA1) protein, but total cellular ABCA1 level was not changed in hLrp1(-/-) hepatocytes. Finally, hLrp1(-/-) hepatocytes displayed reduced binding capacity for extracellular cathepsin D, resulting in lower intracellular cathepsin D content and impairment of prosaposin activation, a process that is required for membrane translocation of ABCA1 to facilitate cholesterol efflux and HDL secretion. Taken together, these results documented that hepatic LRP1 participates in cellular activation of lysosomal enzymes and through this mechanism, indirectly modulates the production and plasma levels of HDL.
Collapse
Affiliation(s)
- Joshua E Basford
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Dieckmann M, Dietrich MF, Herz J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol Chem 2011; 391:1341-63. [PMID: 20868222 DOI: 10.1515/bc.2010.129] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evolutionarily ancient low-density lipoprotein (LDL) receptor gene family represents a class of widely expressed cell surface receptors. Since the dawn of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors have evolved. In accordance with the now obsolete 'one-gene-one-function' hypothesis, these cell surface receptors were originally perceived as mere transporters of lipoproteins, lipids, and nutrients or as scavenger receptors, which remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular environment and the cell surface. This picture has since undergone a fundamental change. Experimental evidence has replaced the perception that these receptors serve merely as cargo transporters. Instead it is now clear that the transport of macromolecules is inseparably intertwined with the molecular machinery by which cells communicate with each other. Lipoprotein receptors are essentially sensors of the extracellular environment that participate in a wide range of physiological processes by physically interacting and coevolving with primary signal transducers as co-regulators. Furthermore, lipoprotein receptors modulate cellular trafficking and localization of the amyloid precursor protein (APP) and the β-amyloid peptide (Aβ), suggesting a role in the pathogenesis of Alzheimer's disease. Moreover, compelling evidence shows that LDL receptor family members are involved in tumor development and progression.
Collapse
Affiliation(s)
- Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA
| | | | | |
Collapse
|
107
|
Liu Q, Zhang J, Zerbinatti C, Zhan Y, Kolber BJ, Herz J, Muglia LJ, Bu G. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system. PLoS Biol 2011; 9:e1000575. [PMID: 21264353 PMCID: PMC3019112 DOI: 10.1371/journal.pbio.1000575] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/24/2010] [Indexed: 12/12/2022] Open
Abstract
Lipoprotein receptor LRP1 play critical roles in lipid metabolism, and this study reveals a novel role for LRP1 in controlling food intake and obesity in the central nervous system of the adult mouse. Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system. The World Health Organization estimates that at least 1 in 10 adults worldwide are obese, and in some western countries, a far greater percentage (25% or more) is affected. Obesity is a serious concern because it increases the risk of cardiovascular disease, type 2 diabetes, and some cancers, among other health problems. Despite recent advances in understanding the disease mechanism, effective treatments are still lacking. Lipoprotein receptors play critical roles in lipid metabolism, but their potential roles in controlling food intake and obesity in the central nervous system have not been examined. Here we show that deletion of LRP1, a member of the LDL (low density lipoprotein) receptor family, in the adult mouse brain results in obese phenotype characterized by increased food intake, decreased energy consumption and decreased leptin signaling. We further show that deletion of the Lrp1 gene specifically in the hypothalamus (a region of the brain) by using Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results present a novel function of LRP1: the direct regulation of leptin signaling and energy balance in the adult central nervous system. Hence, LRP1 represents a very promising new therapeutic target for the design of innovative and more effective therapies for obesity.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Juan Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Celina Zerbinatti
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yan Zhan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Benedict J. Kolber
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Louis J. Muglia
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guojun Bu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Institute for Biomedical Research, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
108
|
Ngai YF, Quong WL, Glier MB, Glavas MM, Babich SL, Innis SM, Kieffer TJ, Gibson WT. Ldlr-/- mice display decreased susceptibility to Western-type diet-induced obesity due to increased thermogenesis. Endocrinology 2010; 151:5226-36. [PMID: 20881250 DOI: 10.1210/en.2010-0496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-density lipoprotein receptor (Ldlr) is a key molecule involved with lipid clearance. The Ldlr(-/-) mouse has been used extensively as a model for studying atherosclerosis. This study sought to characterize the energy balance phenotype of Ldlr(-/-) mice with respect to weight gain, body composition, energy expenditure (EE), glucose homeostasis, and leptin sensitivity. Adult Ldlr(-/-) mice and Ldlr(+/+) controls on a C57Bl/6J background were fed either a chow or a high-fat, high-sucrose Western-type diet (WTD) for eight wk. Physiological studies of food intake, EE, activity, insulin sensitivity, and leptin responsiveness were performed. The effect of these diet interventions on circulating leptin and on leptin gene expression was also examined. On the chow diet, Ldlr(-/-) mice had lower EE and higher activity levels relative to controls. On the WTD, Ldlr(-/-) mice gained less weight relative to Ldlr(+/+) mice, specifically gaining less fat mass. Increased thermogenesis in Ldlr(-/-) mice fed the WTD was detected. Additionally, leptin responsiveness was blunted in chow-fed Ldlr(-/-) mice, suggesting a novel role for the Ldlr pathway that extends to leptin's regulation of energy balance. In addition to its known role in lipid transport, these results demonstrate the importance of the Ldlr in energy homeostasis and suggest a direct physiological link between altered lipid transport and energy balance.
Collapse
Affiliation(s)
- Ying Fai Ngai
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
MOTIVATION Genome-wide association studies (GWAS) involving half a million or more single nucleotide polymorphisms (SNPs) allow genetic dissection of complex diseases in a holistic manner. The common practice of analyzing one SNP at a time does not fully realize the potential of GWAS to identify multiple causal variants and to predict risk of disease. Existing methods for joint analysis of GWAS data tend to miss causal SNPs that are marginally uncorrelated with disease and have high false discovery rates (FDRs). RESULTS We introduce GWASelect, a statistically powerful and computationally efficient variable selection method designed to tackle the unique challenges of GWAS data. This method searches iteratively over the potential SNPs conditional on previously selected SNPs and is thus capable of capturing causal SNPs that are marginally correlated with disease as well as those that are marginally uncorrelated with disease. A special resampling mechanism is built into the method to reduce false positive findings. Simulation studies demonstrate that the GWASelect performs well under a wide spectrum of linkage disequilibrium patterns and can be substantially more powerful than existing methods in capturing causal variants while having a lower FDR. In addition, the regression models based on the GWASelect tend to yield more accurate prediction of disease risk than existing methods. The advantages of the GWASelect are illustrated with the Wellcome Trust Case-Control Consortium (WTCCC) data. AVAILABILITY The software implementing GWASelect is available at http://www.bios.unc.edu/~lin. Access to WTCCC data: http://www.wtccc.org.uk/.
Collapse
Affiliation(s)
- Qianchuan He
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
110
|
Effects of pepsin and trypsin on the anti-adipogenic action of lactoferrin against pre-adipocytes derived from rat mesenteric fat. Br J Nutr 2010; 105:200-11. [PMID: 20854698 DOI: 10.1017/s0007114510003259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lactoferrin (LF) is a multifunctional glycoprotein in mammalian milk. In a previous report, we showed that enteric-coated bovine LF tablets can decrease visceral fat accumulation, hypothesising that the enteric coating is critical to the functional peptides reaching the visceral fat tissue and exerting their anti-adipogenic activity. The aim of the present study was to assess whether ingested LF can retain its anti-adipogenic activity. We therefore investigated the effects of LF and LF treated with digestive enzymes (the stomach enzyme pepsin and the small intestine enzyme trypsin) on lipid accumulation in pre-adipocytes derived from the mesenteric fat tissue of male Sprague-Dawley rats. Lipid accumulation in pre-adipocytes was significantly reduced by LF in a dose-dependent manner and was associated with reduction in gene expression of CCAAT/enhancer binding protein delta, CCAAT/enhancer binding protein alpha and PPARγ as revealed by DNA microarray analysis. Trypsin-treated LF continued to show anti-adipogenic action, whereas pepsin-treated LF abrogated the activity. When an LF solution (1000 mg bovine LF) was administered by gastric intubation to Sprague-Dawley rats, immunoreactive LF determined by ELISA could be detected in mesenteric fat tissue at a concentration of 14·4 μg/g fat after 15 min. The overall results point to the importance of enteric coating for action of LF as a visceral fat-reducing agent when administered in oral form.
Collapse
|
111
|
Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Br J Nutr 2010; 104:1688-95. [PMID: 20691130 DOI: 10.1017/s0007114510002734] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactoferrin (LF), a multifunctional glycoprotein in mammalian milk, is reported to exert a modulatory effect on lipid metabolism. The aim of the present study was to elucidate whether enteric-coated LF (eLF) might improve visceral fat-type obesity, an underlying cause of the metabolic syndrome. Using a double-blind, placebo-controlled design, Japanese men and women (n 26; aged 22-60 years) with abdominal obesity (BMI>25 kg/m2, and visceral fat area (VFA)>100 cm2) consumed eLF (300 mg/d as bovine LF) or placebo tablets for 8 weeks. Measurement of the total fat area, VFA and subcutaneous fat area from computed tomography images revealed a significant reduction in VFA ( - 14.6 cm2) in the eLF group, as compared with the placebo controls ( - 1.8 cm2; P = 0.009 by ANCOVA). Decreases in body weight, BMI and hip circumference in the eLF group ( - 1.5 kg, - 0.6 kg/m2, - 2.6 cm) were also found to be significantly greater than with the placebo (+1.0 kg, +0.3 kg/m2, - 0.2 cm; P = 0.032, 0.013, 0.041, respectively). There was also a tendency for a reduction in waist circumference in the eLF group ( - 4.4 cm) as compared with the placebo group ( - 0.9 cm; P = 0.073). No adverse effects of the eLF treatment were found with regard to blood lipid or biochemical parameters. From these results, eLF appears to be a promising agent for the control of visceral fat accumulation.
Collapse
|
112
|
Shitaye HS, Terkhorn SP, Combs JA, Hankenson KD. Thrombospondin-2 is an endogenous adipocyte inhibitor. Matrix Biol 2010; 29:549-56. [PMID: 20561899 DOI: 10.1016/j.matbio.2010.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 12/26/2022]
Abstract
The matricellular protein thrombospondin-2 (TSP2) inhibits proliferation and enhances osteoblastogenesis of multipotent mesenchymal progenitor cells (MPC). Osteoblastogenesis and adipogenesis are reciprocally regulated, thus we hypothesized that TSP2 could be an inhibitor of adipogenesis. TSP2 gene expression is up-regulated during MPC osteoblast differentiation and down-regulated during adipogenic differentiation through a cAMP-PKA pathway, relative to control cells. Next, the importance of TSP2 in adipogenesis was studied by comparing gene-targeted knockout mice that lack TSP2 protein (TSP2-null) and control wild-type mice. TSP2-null marrow-derived MPC show 25% increased adipocytes. Similarly, TSP2-null adipose-derived MPC show increased adipocytes (25-50%) and proliferation (2-fold) relative to wild-type cells. However, the increase in TSP2-null adipocytes is not due to an increase in MPC number, because the percentage of adipocytes relative to total MPC is still significantly increased. Surprisingly, there are only minor alterations in the adipogenic transcriptional program (PPARγ and C/EBPα expression). Weight gain over time was evaluated in TSP2-null and control wild-type mice fed normal and high-fat diets. Female TSP2-null mice are 30% heavier than wild-type controls due to an increase in non-visceral adipose tissue, measured by dual-energy X-ray absorptiometry (DEXA) and direct weighing of fat pads. These results show that TSP2 is an endogenous matricellular protein produced by MPC that in addition to enhancing osteoblastogenesis, inhibits adipocytes and decreases subcutaneous adiposity.
Collapse
Affiliation(s)
- Hailu S Shitaye
- Medical Scientist Training Program, School of Medicine, University of Michigan, Michigan, USA
| | | | | | | |
Collapse
|
113
|
La Merrill M, Harper R, Birnbaum LS, Cardiff RD, Threadgill DW. Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:596-601. [PMID: 20435547 PMCID: PMC2866672 DOI: 10.1289/ehp.0901047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 12/09/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND RESULTS from previous studies have suggested that breast cancer risk correlates with total lifetime exposure to estrogens and that early-life 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or diets high in fat can also increase cancer risk. OBJECTIVES Because both TCDD and diet affect the estrogen pathway, we examined how TCDD and a high-fat diet (HFD) interact to alter breast cancer susceptibility. METHODS We exposed pregnant female FVB/NJ mice (12.5 days postcoitus) to 1 microg/kg TCDD or vehicle; at parturition, the dams were randomly assigned to a low-fat diet (LFD) or a high-fat diet (HFD). Female offspring were maintained on the same diets after weaning and were exposed to 7,12-dimethylbenz[a]anthracene on postnatal days (PNDs) 35, 49, and 63 to initiate mammary tumors. A second cohort of females was treated identically until PND35 or PND49, when mammary gland morphology was examined, or PND50, when mammary gland mRNA was analyzed. RESULTS We found that maternal TCDD exposure doubled mammary tumor incidence only in mice fed the HFD. Among HFD-fed mice, maternal TCDD exposure caused rapid mammary development with increased Cyp1b1 (cytochrome P450 1B1) expression and decreased Comt (catechol-O-methyltransferase) expression in mammary tissue. Maternal TCDD exposure also increased mammary tumor Cyp1b1 expression. CONCLUSIONS Our data suggest that the HFD increases sensitivity to maternal TCDD exposure, resulting in increased breast cancer incidence, by changing metabolism capability. These results provide a mechanism to explain epidemiological data linking early-life TCDD exposure and diets high in fat to increased risk for breast cancer in humans.
Collapse
Affiliation(s)
- Michele La Merrill
- Curriculum in Toxicology, Department of Genetics, Center for Environmental and Health Susceptibility, Lineberger Cancer Center, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel Harper
- Curriculum in Toxicology, Department of Genetics, Center for Environmental and Health Susceptibility, Lineberger Cancer Center, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Linda S. Birnbaum
- Experimental Toxicology Division, U.S. Environmental Protection Agency, Office of Research and Development/National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, USA
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Robert D. Cardiff
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, University of California–Davis, Davis, California, USA
| | - David W. Threadgill
- Curriculum in Toxicology, Department of Genetics, Center for Environmental and Health Susceptibility, Lineberger Cancer Center, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
114
|
Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms. Biochem J 2010; 428:47-54. [PMID: 20218969 DOI: 10.1042/bj20100016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that apoE (apolipoprotein E) expression in macrophages suppresses inflammatory responses; however, whether endogenously synthesized apoE acts intracellularly or after its secretion in suppressing macrophage inflammation remains unclear. The present study used the murine monocyte macrophage cell line RAW 264.7 to examine the influence of exogenous apoE on macrophage inflammatory responses induced by TLR (Toll-like receptor)-4 and TLR-3 agonists LPS (lipopolysaccharide) and poly(I-C) respectively. Results showed that exogenously added apoE suppressed the LPS and poly(I-C) induction of IL (interleukin)-6, IL-1beta and TNF-alpha (tumour necrosis factor-alpha) secretion by RAW 264.7 cells. The mechanism was related to apoE suppression of TLR-agonist-induced phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun. A peptide containing the tandem repeat sequence of the receptor-binding domain of apoE, apoE-(141-155)2, was similarly effective in inhibiting LPS- and poly(I-C)-induced macrophage inflammatory responses. Reductive methylation of lysine residues in apoE, which abolished its receptor-binding capability without affecting its ability to interact with HSPGs (heparin sulfate proteoglycans), inhibited the ability of apoE to suppress macrophage responses to LPS, but had no effect on apoE suppression of poly(I-C)-induced macrophage activation. The ability of apoE to suppress poly(I-C)-induced pro-inflammatory cytokine production was abolished by heparinase treatment of RAW 264.7 cells to remove cell-surface HSPGs. Taken together, these results indicate that exogenous apoE inhibits macrophage inflammatory responses to TLR-4 and TLR-3 agonists through distinct mechanisms related to receptor and HSPG binding respectively, and that these inhibitory effects converged on suppression of JNK and c-Jun activation which are necessary for macrophage activation.
Collapse
|
115
|
Labonté ED, Pfluger PT, Cash JG, Kuhel DG, Roja JC, Magness DP, Jandacek RJ, Tschöp MH, Hui DY. Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A2 and diet-induced obesity. FASEB J 2010; 24:2516-24. [PMID: 20215528 DOI: 10.1096/fj.09-144436] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Decrease in fat catabolic rate on consuming a high-fat diet contributes to diet-induced obesity. This study used group 1B phospholipase A(2) (Pla2g1b)-deficient mice, which are resistant to hyperglycemia, to test the hypothesis that Pla2g1b and its lipolytic product lysophospholipid suppress hepatic fat utilization and energy metabolism in promoting diet-induced obesity. The metabolic consequences of hypercaloric diet, including body weight gain, energy expenditure, and fatty acid oxidation, were compared between Pla2g1b(+/+) and Pla2g1b(-/-) mice. The Pla2g1b(-/-) mice displayed normal energy balance when fed chow, but were resistant to obesity when challenged with a hypercaloric diet. Obesity resistance in Pla2g1b(-/-) mice is due to their ability to maintain elevated energy expenditure and core body temperature when subjected to hypercaloric diet, which was not observed in Pla2g1b(+/+) mice. The Pla2g1b(-/-) mice also displayed increased postprandial hepatic fat utilization due to increased expression of peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-delta, PPAR-gamma, cd36/Fat, and Ucp2, which coincided with reduced postprandial plasma lysophospholipid levels. Lysophospholipids produced by Pla2g1b hydrolysis suppress hepatic fat utilization and down-regulate energy expenditure, thereby preventing metabolically beneficial adaptation to a high-fat diet exposure in promoting diet-induced obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Eric D Labonté
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2120 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Butler AA, Kozak LP. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 2010; 59:323-9. [PMID: 20103710 PMCID: PMC2809965 DOI: 10.2337/db09-1471] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrew A. Butler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Leslie P. Kozak
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Corresponding author: Leslie Kozak,
| |
Collapse
|
117
|
Kajiwara Y, Franciosi S, Takahashi N, Krug L, Schmeidler J, Taddei K, Haroutunian V, Fried U, Ehrlich M, Martins RN, Gandy S, Buxbaum JD. Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease. Mol Neurodegener 2010; 5:1. [PMID: 20205790 PMCID: PMC2823744 DOI: 10.1186/1750-1326-5-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/14/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. RESULTS We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. CONCLUSIONS These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Tao H, Aakula S, Abumrad NN, Hajri T. Peroxisome proliferator-activated receptor-gamma regulates the expression and function of very-low-density lipoprotein receptor. Am J Physiol Endocrinol Metab 2010; 298:E68-79. [PMID: 19861583 PMCID: PMC2806108 DOI: 10.1152/ajpendo.00367.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Very-low-density lipoprotein receptor (VLDLR) is a member of the low-density receptor family, highly expressed in adipose tissue, heart, and skeletal muscle. It binds apolipoprotein E-triglyceride-rich lipoproteins and plays a significant role in triglyceride metabolism. PPARgamma is a primary regulator of lipid metabolism in adipocytes and controls the expression of an array of genes involved in lipid trafficking in adipocytes. However, it is not known whether VLDLR is also under the control of PPARgamma. In this study, we investigated the role of PPARgamma in the regulation of VLDLR expression and function in vivo and in vitro. During the differentiation of 3T3-L1 preadipocytes, the levels of VLDLR protein and mRNA increased in parallel with the induction of PPARgamma expression and reached maximum in mature adipocytes. Treatment of differentiated adipocytes with PPARgamma agonist pioglitazone upregulated VLDLR expression in dose- and time-dependent manners. In contrast, specific inhibition of PPARgamma significantly downregulated the protein level of VLDLR. Induction of VLDLR is also demonstrated in vivo in adipose tissue of wild-type (WT) mice treated with pioglitazone. In addition, pioglitazone increased plasma triglyceride-rich lipoprotein clearance and increased epididymal fat mass in WT mice but failed to induce similar effects in vldlr(-/-) mice. These results were further corroborated by the finding that pioglitazone treatment enhanced adipogenesis and lipid deposition in preadipocytes of WT mice, while its effect in VLDLR-null preadipocytes was significantly blunted. These findings provide direct evidence that VLDLR expression is regulated by PPARgamma and contributes in lipid uptake and adipogenesis.
Collapse
Affiliation(s)
- Huan Tao
- Department of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
119
|
Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Jung DY, Ko HJ, Ong H, Kim JK, Mynatt R, Martin RJ, Keenan M, Gao Z, Ye J. Uncoupling of inflammation and insulin resistance by NF-kappaB in transgenic mice through elevated energy expenditure. J Biol Chem 2009; 285:4637-44. [PMID: 20018865 DOI: 10.1074/jbc.m109.068007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To study the metabolic activity of NF-kappaB, we investigated phenotypes of two different mouse models with elevated NF-kappaB activities. The transcriptional activity of NF-kappaB is enhanced either by overexpression of NF-kappaB p65 (RelA) in aP2-p65 mice or inactivation of NF-kappaB p50 (NF-kappaB1) through gene knock-out. In these models, energy expenditure was elevated in day and night time without a change in locomotion. The mice were resistant to adulthood obesity and diet-induced obesity without reduction in food intake. The adipose tissue growth and adipogenesis were inhibited by the elevated NF-kappaB activity. Peroxisome proliferator-activator receptor gamma expression was reduced by NF-kappaB at the transcriptional level. The two models exhibited elevated inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) in adipose tissue and serum. However, insulin sensitivity was not reduced by the inflammation in the mice on a chow diet. On a high fat diet, the mice were protected from insulin resistance. The glucose infusion rate was increased more than 30% in the hyperinsulinemic-euglycemic clamp test. Our data suggest that the transcription factor NF-kappaB promotes energy expenditure and inhibits adipose tissue growth. The two effects lead to prevention of adulthood obesity and dietary obesity. The energy expenditure may lead to disassociation of inflammation with insulin resistance. The study indicates that inflammation may prevent insulin resistance by eliminating lipid accumulation.
Collapse
Affiliation(s)
- Tianyi Tang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Jedrychowski MP, Gartner CA, Gygi SP, Zhou L, Herz J, Kandror KV, Pilch PF. Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. J Biol Chem 2009; 285:104-14. [PMID: 19864425 DOI: 10.1074/jbc.m109.040428] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Insulin stimulates the translocation of intracellular GLUT4 to the plasma membrane where it functions in adipose and muscle tissue to clear glucose from circulation. The pathway and regulation of GLUT4 trafficking are complicated and incompletely understood and are likely to be contingent upon the various proteins other than GLUT4 that comprise and interact with GLUT4-containing vesicles. Moreover, not all GLUT4 intracellular pools are insulin-responsive as some represent precursor compartments, thus posing a biochemical challenge to the purification and characterization of their content. To address these issues, we immunodepleted precursor GLUT4-rich vesicles and then immunopurified GLUT4 storage vesicle (GSVs) from primary rat adipocytes and subjected them to semi-quantitative and quantitative proteomic analysis. The purified vesicles translocate to the cell surface almost completely in response to insulin, the expected behavior for bona fide GSVs. In total, over 100 proteins were identified, about 50 of which are novel in this experimental context. LRP1 (low density lipoprotein receptor-related protein 1) was identified as a major constituent of GSVs, and we show it interacts with the lumenal domains of GLUT4 and other GSV constituents. Its cytoplasmic tail interacts with the insulin-signaling pathway target, AS160 (Akt substrate of 160 kDa). Depletion of LRP1 from 3T3-L1 adipocytes reduces GLUT4 expression and correspondingly results in decreased insulin-stimulated 2-[(3)H]deoxyglucose uptake. Furthermore, adipose-specific LRP1 knock-out mice also exhibit decreased GLUT4 expression. These findings suggest LRP1 is an important component of GSVs, and its expression is needed for the formation of fully functional GSVs.
Collapse
Affiliation(s)
- Mark P Jedrychowski
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
LRP1 receptor controls adipogenesis and is up-regulated in human and mouse obese adipose tissue. PLoS One 2009; 4:e7422. [PMID: 19823686 PMCID: PMC2758584 DOI: 10.1371/journal.pone.0007422] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022] Open
Abstract
The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARgamma, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity.
Collapse
|
122
|
Huang ZH, Minshall RD, Mazzone T. Mechanism for endogenously expressed ApoE modulation of adipocyte very low density lipoprotein metabolism: role in endocytic and lipase-mediated metabolic pathways. J Biol Chem 2009; 284:31512-22. [PMID: 19767394 DOI: 10.1074/jbc.m109.004754] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triglyceride-rich lipoproteins distribute energy in the form of fatty acids to peripheral tissues. We have previously shown that the absence of endogenous adipocyte apoE expression impairs adipocyte triglyceride acquisition from apoE-containing triglyceride-rich lipoproteins in vitro and in vivo. Studies were performed to evaluate the mechanism(s) for this impairment. We excluded a role for secreted apoE in accounting for the difference in very low density lipoprotein (VLDL)-induced adipocyte triglyceride accumulation using cross-incubation studies to show that secreted apoE did not enhance triglyceride synthesis in apoE knockout (EKO) adipocytes incubated with apoE-containing VLDL. Subsequent experiments established that both endocytic and lipase-mediated pathways for lipid acquisition from VLDL were impaired in EKO adipocytes. Binding and internalization of VLDL to EKO adipocytes were significantly lower due to decreased expression or redistribution of low density lipoprotein receptor family proteins. An important role for the VLDL receptor for contributing to differences in VLDL binding between wild-type and EKO adipocytes was identified. Lipoprotein lipase-dependent adipocyte lipogenesis was also significantly decreased in EKO adipocytes even though they secreted as much or more lipolytic activity. This decrease was related to impaired fatty acid internalization in EKO cells. Evaluation of potential mechanisms revealed reduced caveolin-1 and plasma membrane raft expression in EKO adipocytes. Increasing caveolin expression in EKO adipocytes increased fatty acid internalization. Our results establish a role for endogenous adipocyte apoE in VLDL-induced adipocyte lipogenesis by impacting both endocytic and lipoprotein lipase-mediated metabolic pathways. Reduced adipocyte apoE expression, for example that accompanying obesity, will suppress adipocyte acquisition of lipid from apoE-containing VLDL.
Collapse
Affiliation(s)
- Zhi Hua Huang
- Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
123
|
Kypreos KE, Karagiannides I, Fotiadou EH, Karavia EA, Brinkmeier MS, Giakoumi SM, Tsompanidi EM. Mechanisms of obesity and related pathologies: role of apolipoprotein E in the development of obesity. FEBS J 2009; 276:5720-8. [PMID: 19754875 DOI: 10.1111/j.1742-4658.2009.07301.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apolipoprotein E is a polymorphic glycoprotein in humans with a molecular mass of 34.5 kDa. It is a component of chylomicron remnants, very low density lipoprotein, low density lipoprotein and high density lipoprotein, and is primarily responsible for maintaining plasma lipid homeostasis. In addition to these well-documented functions, recent studies in experimental mouse models, as well as population studies, show that apolipoprotein E also plays an important role in the development of obesity and insulin resistance. It is widely accepted that disruption in homeostasis between food intake and energy expenditure, and the subsequent deposition of excess fatty acids into fat cells in the form of triglycerides, leads to the development of obesity. Despite the pivotal role of obesity and dyslipidemia in the development of the metabolic syndrome and heart disease, the functional interactions between adipose tissue and components of the lipoprotein transport system have not yet been investigated thoroughly. In this minireview, we focus on the current literature pertinent to the involvement of apolipoprotein E in the development of pathologies associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- Department of Medicine, Pharmacology Unit, University of Patras Medical School, Rio, Greece.
| | | | | | | | | | | | | |
Collapse
|
124
|
Zhou L, Choi HY, Li WP, Xu F, Herz J. LRP1 controls cPLA2 phosphorylation, ABCA1 expression and cellular cholesterol export. PLoS One 2009; 4:e6853. [PMID: 19718435 PMCID: PMC2729921 DOI: 10.1371/journal.pone.0006853] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/04/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND ATP-binding cassette transporter A1 mediates apolipoprotein AI-dependent efflux of cholesterol and thereby removes cholesterol from peripheral tissues. ABCA1 expression is tightly regulated and deficiency of this cholesterol transporter results in cholesterol accumulation within cells. Low-density lipoprotein receptor-related protein 1 (LRP1) participates in lipid metabolism and energy homeostasis by endocytosis of apolipoprotein E-containing lipoproteins and modulation of cellular proliferation signals. METHODS AND PRINCIPAL FINDINGS In the present study, we demonstrate a new role for LRP1 in reverse cholesterol transport. Absence of LRP1 expression results in increased PDGFRbeta signaling and sequential activation of the mitogen-activated protein kinase signaling pathway, which increases phosphorylation of cytosolic phospholipase A(2) (cPLA(2)). Phosphorylated and activated cPLA(2) releases arachidonic acid from the phospholipid pool. Overproduction of arachidonic acid suppresses the activation of LXR/RXR heterodimers bound to the promoter of LXR regulated genes such as ABCA1, resulting in greatly reduced ABCA1 expression. CONCLUSIONS AND SIGNIFICANCE LRP1 regulates LXR-mediated gene transcription and participates in reverse cholesterol transport by controlling cPLA(2) activation and ABCA1 expression. LRP1 thus functions as a physiological integrator of cellular lipid homeostasis with signals that regulate cellular proliferation and vascular wall integrity.
Collapse
Affiliation(s)
- Li Zhou
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hong Y. Choi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wei-Ping Li
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Fang Xu
- Department of Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
125
|
Gordts PLSM, Reekmans S, Lauwers A, Van Dongen A, Verbeek L, Roebroek AJM. Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29:1258-64. [PMID: 19667105 DOI: 10.1161/atvbaha.109.192211] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the significance of the intracellular NPxYxxL motif of LRP1 for the atheroprotective role of this multifunctional receptor. METHODS AND RESULTS LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with LDLR-deficient mice, a model for atherosclerosis. In this LDLR(-/-) background the mutated mice showed a more atherogenic lipoprotein profile, which was associated with a decreased clearance of postprandial lipids because of a compromised endocytosis rate and reduced lipase activity. On an atherogenic diet LRP1 mutant mice revealed a 50% increased development of atherosclerosis. This aggravation was accompanied by an increase in smooth muscle cell (SMC) and collagen content and apoptotic cells in the lesions. The mutation showed, however, a limited impact on basal PDGFR-beta expression and signaling and the antimigratory property of apoE on PDGF-BB-stimulated SMCs. Additionally, levels of LRP1 atherogenic ligands, like MMP2, t-PA, FVIII, and the inflammatory ligand TNF-alpha showed to be significantly elevated. CONCLUSIONS These findings demonstrate that the NPxYxxL motif is essential for the atheroprotective role of LRP1. This motif is relevant for normal control of lipid metabolism and of atherogenic and inflammatory ligands, but has no pronounced effect on regulating PDGF-BB/PDGFR-beta signaling in SMCs.
Collapse
|
126
|
Ceschin DG, Sánchez MC, Chiabrando GA. Insulin induces the low density lipoprotein receptor-related protein 1 (LRP1) degradation by the proteasomal system in J774 macrophage-derived cells. J Cell Biochem 2009; 106:372-80. [PMID: 19115269 DOI: 10.1002/jcb.22014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor, which binds and internalizes diverse ligands such as activated alpha(2)-macroglobulin (alpha(2)M*). LRP1 promotes intracellular signaling, which downstream mediates cellular proliferation and migration of different types of cells, including macrophages. Unlike the LDL receptor, LRP1 expression is not sensitive to cellular cholesterol levels but appears to be responsive to insulin. It has been previously demonstrated that insulin increases the cell surface presentation of LRP1 in adipocytes and hepatocytes, which is mediated by the intracellular PI(3)K/Akt signaling activation. The LRP1 protein distribution is similar to other insulin-regulated cell surface proteins, including transferring receptor (Tfr). However, in macrophages, the insulin effect on the LRP1 distribution and expression is not well characterized. Considering that macrophages play a central role in the pathogenesis of atherosclerosis, herein we evaluate the effect of insulin on the cellular expression of LRP1 in J774 macrophages-derived cells using Western blot and immunofluorescence microscopy. Our data demonstrate that insulin induces a significant decrease in the LRP1 protein content, without changing the specific mRNA level of this receptor. Moreover, insulin specifically affected the protein expression of LRP1 but not Tfr. The insulin-induced protein degradation of LRP1 in J774 cells was mediated by the activation of the PI(3)K/Akt pathway and proteasomal system by an enhanced ubiquitin-receptor conjugation. The decreased content of LRP1 induced by insulin affected the cellular internalization of alpha(2)M*. Thus, we propose that the protein degradation of LRP-1 induced by insulin in macrophages could have important effects on the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Danilo G Ceschin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
127
|
Scazzocchio B, Varì R, D'Archivio M, Santangelo C, Filesi C, Giovannini C, Masella R. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases. J Lipid Res 2009; 50:832-45. [PMID: 19136667 DOI: 10.1194/jlr.m800402-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (-40%) through reduced glucose transporter 4 (GLUT4) recruitment to the plasma membrane (-70%), without affecting GLUT4 gene expression. These findings were associated to the impairment of insulin signaling. Specifically, in oxLDL-treated cells insulin receptor (IR) substrate-1 (IRS-1) was highly degraded likely because of the enhanced Ser(307)phosphorylation. This process was largely mediated by the activation of the inhibitor of kappaB-kinase beta (IKKbeta) and the c-Jun NH(2)-terminal kinase (JNK). Moreover, the activation of IKKbeta positively regulated the nuclear content of nuclear factor kappaB (NF-kappaB), by inactivating the inhibitor of NF-kappaB (IkappaBalpha). The activated NF-kappaB further impaired per se GLUT4 functionality. Specific inhibitors of IKKbeta, JNK, and NF-kappaB restored insulin sensitivity in adipocytes treated with oxLDL. These data provide the first evidence that oxLDL, by activating serine/threonine kinases, impaired adipocyte response to insulin affecting pathways involved in the recruitment of GLUT4 to plasma membranes (PM). This suggests that oxLDL might participate in the development of insulin resistance.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
128
|
Williams KJ. Molecular processes that handle -- and mishandle -- dietary lipids. J Clin Invest 2008; 118:3247-59. [PMID: 18830418 DOI: 10.1172/jci35206] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Overconsumption of lipid-rich diets, in conjunction with physical inactivity, disables and kills staggering numbers of people worldwide. Recent advances in our molecular understanding of cholesterol and triglyceride transport from the small intestine to the rest of the body provide a detailed picture of the fed/fasted and active/sedentary states. Key surprises include the unexpected nature of many pivotal molecular mediators, as well as their dysregulation - but possible reversibility - in obesity, diabetes, inactivity, and related conditions. These mechanistic insights provide new opportunities to correct dyslipoproteinemia, accelerated atherosclerosis, insulin resistance, and other deadly sequelae of overnutrition and underexertion.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5005, USA.
| |
Collapse
|
129
|
Terrand J, Bruban V, Zhou L, Gong W, El Asmar Z, May P, Zurhove K, Haffner P, Philippe C, Woldt E, Matz RL, Gracia C, Metzger D, Auwerx J, Herz J, Boucher P. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem 2008; 284:381-388. [PMID: 18990694 DOI: 10.1074/jbc.m806538200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low-density lipoprotein receptor-related protein LRP1 is a cell surface receptor with functions in diverse physiological pathways, including lipid metabolism. Here we show that LRP1-deficient fibroblasts accumulate high levels of intracellular cholesterol and cholesteryl-ester when stimulated for adipocyte differentiation. We demonstrate that LRP1 stimulates a canonical Wnt5a signaling pathway that prevents cholesterol accumulation. Moreover, we show that LRP1 is required for lipolysis and stimulates fatty acid synthesis independently of the noradrenergic pathway, through inhibition of GSK3beta and its previously unknown target acetyl-CoA carboxylase (ACC). As a result of ACC inhibition, mature LRP1-deficient adipocytes of adult mice are hypotrophic, and lower uptake of fatty acids into adipose tissue leads to their redistribution to the liver. These results establish LRP1 as a novel integrator of adipogenic differentiation and fat storage signals.
Collapse
Affiliation(s)
- Járome Terrand
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Váronique Bruban
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Li Zhou
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Wanfeng Gong
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Zeina El Asmar
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Petra May
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Kai Zurhove
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Philipp Haffner
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Claude Philippe
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Estelle Woldt
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Rachel L Matz
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Cáline Gracia
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Daniel Metzger
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Johan Auwerx
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Joachim Herz
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046.
| | - Philippe Boucher
- CNRS, UMR7175, Universitá de Strasbourg, Illkirch, F-67401 France, the Zentrum fu¨r Neurowissenschaften, Universita¨t Freiburg, 79104 Freiburg Germany, the Department of Functional Genomics, IGBMC (Institut de Gánátique et de Biologie Moláculaire et Cellulaire), Illkirch, F-67400 France, the Institut Clinique de la souris, Universitá Louis Pasteur, Illkirch, F-67000 France, and the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046.
| |
Collapse
|
130
|
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88:887-918. [PMID: 18626063 DOI: 10.1152/physrev.00033.2007] [Citation(s) in RCA: 528] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases.
Collapse
Affiliation(s)
- Anna P Lillis
- Center for Vascular and Inflammatory Diseases and Department of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
131
|
Karagiannides I, Abdou R, Tzortzopoulou A, Voshol PJ, Kypreos KE. Apolipoprotein E predisposes to obesity and related metabolic dysfunctions in mice. FEBS J 2008; 275:4796-809. [PMID: 18754772 DOI: 10.1111/j.1742-4658.2008.06619.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obesity is a central feature of the metabolic syndrome and is associated with increased risk for insulin resistance and typeII diabetes. Here, we investigated the contribution of human apoliproteinE3 and mouse apoliproteinE to the development of diet-induced obesity in response to western-type diet. Our data show that apolipoproteinE contributes to the development of obesity and other related metabolic disorders, and that human apolipoproteinE3 is more potent than mouse apolipoproteinE in promoting obesity in response to western-type diet. Specifically, we found that apolipoproteinE3 knock-in mice fed western-type diet for 24 weeks became obese and developed hyperglycemia, hyperinsulinemia, hyperleptinemia, glucose intolerance and insulin resistance that were more severe than in C57BL/6 mice. In contrast, apolipoproteinE-deficient mice fed western-type diet for the same period were resistant to diet-induced obesity, had normal plasma glucose, leptin and insulin levels, and exhibited normal responses to glucose tolerance and insulin resistance tests. Furthermore, low-density lipoprotein receptor-deficient mice were more sensitive to the development of diet-induced obesity and insulin resistance than apolipoprotein E-deficient mice, but were still more resistant than C57BL/6 mice, raising the possibility that low-density lipoprotein receptor mediates, at least in part, the effects of apolipoproteinE on obesity. Taken together, our findings suggest that, in addition to other previously identified mechanisms of obesity, apolipoproteinE and possibly the chylomicron pathway are also important contributors to the development of obesity and related metabolic dysfunctions in mice.
Collapse
|
132
|
Yen FT, Roitel O, Bonnard L, Notet V, Pratte D, Stenger C, Magueur E, Bihain BE. Lipolysis stimulated lipoprotein receptor: a novel molecular link between hyperlipidemia, weight gain, and atherosclerosis in mice. J Biol Chem 2008; 283:25650-25659. [PMID: 18644789 DOI: 10.1074/jbc.m801027200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipolysis-stimulated lipoprotein receptor, LSR, is a multimeric protein complex in the liver that undergoes conformational changes upon binding of free fatty acids, thereby revealing a binding site (s) that recognizes both apoB and apoE. Complete inactivation of the LSR gene is embryonic lethal in mice. Here we show that removal of a single LSR allele (LSR(-/+)) caused statistically significant increases in both plasma triglyceride and cholesterol levels, a 2-fold increase in plasma triglyceride changes during the post-prandial phase, and delayed clearance of lipid emulsions or a high fat meal. The longer postprandial lipoprotein clearance time observed in LSR(-/+) mice was further increased in LSR(-/+) mice lacking functional low density lipoprotein (LDL) receptors. LSR(-/+) mice placed on a Western-type diet displayed higher plasma triglycerides and cholesterol levels, increased triglyceride-rich lipoproteins and LDL, and increased aorta lipid content, as compared with control mice on the same diet. Furthermore, a direct correlation was observed between the hyperlipidemia and weight gain but only in the LSR(-/+) mice. Knockdown of LSR expression by small interfering RNA in mouse Hepa1-6 cells led to decreased internalization of both DiI-labeled cyclohexanedione-LDL and very low density lipoprotein in the presence of oleate. These data led us to conclude that LSR contributes to the physiological clearance of atherogenic triglyceride-rich lipoproteins and LDL. We propose that LSR cooperates with the LDL receptor in the final hepatic processing of apoB-containing lipoproteins and represents a novel therapeutic target for the treatment of hyperlipidemia associated with obesity and atherosclerosis.
Collapse
Affiliation(s)
- Frances T Yen
- Lipidomix (JE2482), Institut National Polytechnique de Lorraine, Nancy University.
| | | | | | | | | | - Christophe Stenger
- Lipidomix (JE2482), Institut National Polytechnique de Lorraine, Nancy University
| | | | | |
Collapse
|