101
|
Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Rep 2020; 28:1729-1743.e5. [PMID: 31412243 DOI: 10.1016/j.celrep.2019.07.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
Microbial exposures can define an individual's basal immune state. Cohousing specific pathogen-free (SPF) mice with pet store mice, which harbor numerous infectious microbes, results in global changes to the immune system, including increased circulating phagocytes and elevated inflammatory cytokines. How these differences in the basal immune state influence the acute response to systemic infection is unclear. Cohoused mice exhibit enhanced protection from virulent Listeria monocytogenes (LM) infection, but increased morbidity and mortality to polymicrobial sepsis. Cohoused mice have more TLR2+ and TLR4+ phagocytes, enhancing recognition of microbes through pattern-recognition receptors. However, the response to a TLR2 ligand is muted in cohoused mice, whereas the response to a TLR4 ligand is greatly amplified, suggesting a basis for the distinct response to Listeria monocytogenes and sepsis. Our data illustrate how microbial exposure can enhance the immune response to unrelated challenges but also increase the risk of immunopathology from a severe cytokine storm.
Collapse
|
102
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
103
|
Martin MD, Badovinac VP, Griffith TS. CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Front Immunol 2020; 11:1364. [PMID: 32733454 PMCID: PMC7358556 DOI: 10.3389/fimmu.2020.01364] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains a major cause of death in the United States and worldwide, and costs associated with treating septic patients place a large burden on the healthcare industry. Patients who survive the acute phase of sepsis display long-term impairments in immune function due to reductions in numbers and function of many immune cell populations. This state of chronic immunoparalysis renders sepsis survivors increasingly susceptible to infection with newly or previously encountered infections. CD4 T cells play important roles in the development of cellular and humoral immune responses following infection. Understanding how sepsis impacts the CD4 T cell compartment is critical for informing efforts to develop treatments intended to restore immune system homeostasis following sepsis. This review will focus on the current understanding of how sepsis impacts the CD4 T cell responses, including numerical representation, repertoire diversity, phenotype and effector functionality, subset representation (e.g., Th1 and Treg frequency), and therapeutic efforts to restore CD4 T cell numbers and function following sepsis. Additionally, we will discuss recent efforts to model the acute sepsis phase and resulting immune dysfunction using mice that have previously encountered infection, which more accurately reflects the immune system of humans with a history of repeated infection throughout life. A thorough understanding of how sepsis impacts CD4 T cells based on previous studies and new models that accurately reflect the human immune system may improve translational value of research aimed at restoring CD4 T cell-mediated immunity, and overall immune fitness following sepsis.
Collapse
Affiliation(s)
- Matthew D. Martin
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Minneapolis VA Healthcare System, Minneapolis, MN, United States
| |
Collapse
|
104
|
Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother 2020; 70:61-73. [PMID: 32632663 PMCID: PMC7838139 DOI: 10.1007/s00262-020-02653-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Romidepsin (FK228), a histone deacetylase inhibitor (HDACi), has anti-tumor effects against several types of solid tumors. Studies have suggested that HDACi could upregulate PD-L1 expression in tumor cells and change the state of anti-tumor immune responses in vivo. However, the influence of enhanced PD-L1 expression in tumor cells induced by romidepsin on anti-tumor immune responses is still under debate. So, the purpose of this study was to explore the anti-tumor effects and influence on immune responses of romidepsin in colon cancer. The results indicated that romidepsin inhibited proliferation, induced G0/G1 cell cycle arrest and increased apoptosis in CT26 and MC38 cells. Romidepsin treatment increased PD-L1 expression in vivo and in vitro via increasing the acetylation levels of histones H3 and H4 and regulating the transcription factor BRD4. In subcutaneous transplant tumor mice and colitis-associated cancer (CAC) mice, romidepsin increased the percentage of FOXP3+ regulatory T cells (Tregs), decreased the ratio of Th1/Th2 cells and the percentage of IFN-γ+ CD8+ T cells in the peripheral blood and the tumor microenvironment. Upon combination with an anti-PD-1 antibody, the anti-tumor effects of romidepsin were enhanced and the influence on CD4+ and CD8+ T cells was partially reversed. Therefore, the combination of romidepsin and anti-PD-1 immunotherapy provides a more potential treatment for colon cancer.
Collapse
|
105
|
Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol 2020; 8:402. [PMID: 32582698 PMCID: PMC7283917 DOI: 10.3389/fcell.2020.00402] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-based immunotherapy is a promising field in the cancer treatment, since cytokines, as proteins of the immune system, are able to modulate the host immune response toward cancer cell, as well as directly induce tumor cell death. Since a low dose monotherapy with some cytokines has no significant therapeutic results and a high dose treatment leads to a number of side effects caused by the pleiotropic effect of cytokines, the problem of understanding the influence of cytokines on the immune cells involved in the pro- and anti-tumor immune response remains a pressing one. Immune system cells carry CD makers on their surface which can be used to identify various populations of cells of the immune system that play different roles in pro- and anti-tumor immune responses. This review discusses the functions and specific CD markers of various immune cell populations which are reported to participate in the regulation of the immune response against the tumor. The results of research studies and clinical trials investigating the effect of cytokine therapy on the regulation of immune cell populations and their surface markers are also discussed. Current trends in the development of cancer immunotherapy, as well as the role of cytokines in combination with other therapeutic agents, are also discussed.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
106
|
Okimoto T, Kotani H, Iida Y, Koyanagi A, Tanino R, Tsubata Y, Isobe T, Harada M. Pemetrexed sensitizes human lung cancer cells to cytotoxic immune cells. Cancer Sci 2020; 111:1910-1920. [PMID: 32232903 PMCID: PMC7293070 DOI: 10.1111/cas.14401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pemetrexed (PEM) is a useful drug that can be combined with immune checkpoint blockade therapy for treatment of patients with advanced non–small‐cell lung cancer (NSCLC). However, its effects on anti–cancer immunity, especially the sensitivity of NSCLC cells to cytotoxic immune cells, have not been fully investigated. In this study, we examined the effects of PEM on the sensitivity of human NSCLC cells to two different types of cytotoxic immune cells. Pre‐treatment with PEM increased the sensitivity of two NSCLC cell lines, PC9 and A549, to activated T cells and natural killer (NK) cells, and decreased the expression of anti–apoptotic proteins, including XIAP and Mcl‐1. In addition, PEM treatment increased the cell surface expression of programmed death‐ligand 1 (PD‐L1) on PC9 cells. PEM‐induced upregulation of PD‐L1 on PC9 cells was at least partially ascribed to activation of ERK and the NFκB pathway. In contrast, PEM treatment increased the expression of UL16‐binding proteins (ULBP), ligands for the NKG2D NK receptor, on PC9 and A549 cells, as well as the induction of senescence. Although the addition of anti–programmed cell death 1 antibody showed no effect on the sensitivity of PEM‐treated PC9 and A549 cells to activated T cells, that of anti–NKG2D antibody decreased the enhanced sensitivity of PEM‐treated A549 cells to NK cells. These results indicate that PEM can effectively sensitize human NSCLC cells to cytotoxic immune cells while modulating the expression of immune‐regulatory molecules.
Collapse
Affiliation(s)
- Tamio Okimoto
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Hitoshi Kotani
- Department of Immunology, Shimane University, Shimane, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University, Shimane, Japan
| | - Akira Koyanagi
- Department of Immunology, Shimane University, Shimane, Japan
| | - Ryosuke Tanino
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University, Shimane, Japan
| |
Collapse
|
107
|
Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2020; 42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Overcoming exhaustion-associated dysfunctions and generating antigen-specific CD8 T cells with the ability to persist in the host and mediate effective long-term anti-tumor immunity is the final aim of cancer immunotherapy. To achieve this goal, immuno-modulatory properties of the common gamma-chain (γc) family of cytokines, that includes IL-2, IL-7, IL-15 and IL-21, have been used to fine-tune and/or complement current immunotherapeutic protocols. These agents potentiate CD8 T cell expansion and functions particularly in the context of immune checkpoint (IC) blockade, shape their differentiation, improve their persistence in vivo and alternatively, influence distinct aspects of the T cell exhaustion program. Despite these properties, the intrinsic impact of cytokines on CD8 T cell exhaustion has remained largely unexplored impeding optimal therapeutic use of these agents. In this review, we will discuss current knowledge regarding the influence of relevant γc cytokines on CD8 T cell differentiation and function based on clinical data and preclinical studies in murine models of cancer and chronic viral infection. We will restate the place of these agents in current immunotherapeutic regimens such as IC checkpoint blockade and adoptive cell therapy. Finally, we will discuss how γc cytokine signaling pathways regulate T cell immunity during cancer and whether targeting these pathways may sustain an effective and durable T cell response in patients.
Collapse
Affiliation(s)
- Mitra Shourian
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
108
|
Balkhi MY. Receptor signaling, transcriptional, and metabolic regulation of T cell exhaustion. Oncoimmunology 2020; 9:1747349. [PMID: 32363117 PMCID: PMC7185212 DOI: 10.1080/2162402x.2020.1747349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Exhaustion cripples T cell effector responses against metastatic cancers and chronic infections alike. There has been considerable interest in understanding the molecular and cellular mechanisms driving T cell exhaustion in human cancers fueled by the success of immunotherapy drugs especially the checkpoint receptor blockade (CRB) inhibitory antibodies that reverses T cell functional exhaustion. The current understanding of molecular mechanism of T cell exhaustion has been elucidated from the studies utilizing murine models of chronic viral infections. These studies have formed the basis for much of our understanding of the process of exhaustion and proven vital to developing anti-exhaustion therapies against human cancers. In this review, we discuss the T cell exhaustion differentiation pathway in cancers and chronic viral infections and explore how the transcription factors expression dynamics play role in T cell exhaustion fate choices and maturation. Finally, we summarize the role of some of the most important transcription factors involved in T cell functional exhaustion and construct exhaustion specific signaling pathway maps.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA.,Division of Hematology/Oncology Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.,Immune Therapy Bio, Nest.Bio Labs, Vassar St. Cambridge, MA, USA
| |
Collapse
|
109
|
Beck JD, Birtel M, Haefner E, Keil IS, Reidenbach D, Salomon N, Yildiz IG, Diken M. CIMT 2019: report on the 17th Annual Meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2020; 16:808-815. [PMID: 31584850 PMCID: PMC7227697 DOI: 10.1080/21645515.2019.1675459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jan David Beck
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Matthias Birtel
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Erik Haefner
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Isabell Sofia Keil
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Daniel Reidenbach
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Nadja Salomon
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Ikra Gizem Yildiz
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| |
Collapse
|
110
|
Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw 2020; 20:e2. [PMID: 32158590 PMCID: PMC7049579 DOI: 10.4110/in.2020.20.e2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Acute viral infection or vaccination generates highly functional memory CD8 T cells following the Ag resolution. In contrast, persistent antigenic stimulation in chronic viral infection and cancer leads to a state of T-cell dysfunction termed T-cell exhaustion. We and other have recently identified a novel subset of exhausted CD8 T cells that act as stem cells for maintaining virus-specific CD8 T cells in a mouse model of chronic lymphocytic choriomeningitis virus infection. This stem cell-like CD8 T-cell subset has been also observed in both mouse and human tumor models. Most importantly, in both chronic viral infection and tumor models, the proliferative burst of Ag-specific CD8 T cells driven by PD-1-directed immunotherapy comes exclusively from this stem cell-like CD8 T-cell subset. Therefore, a better understanding of the mechanisms how CD8 T-cell subsets are regulated during chronic viral infection and cancer is required to improve the current immunotherapies that restore the function of exhausted CD8 T cells. In this review, we discuss the differentiation of virus-specific CD8 T cells during chronic viral infection, the characteristics and function of CD8 T-cell subsets, and the therapeutic intervention of PD-1-directed immunotherapy in cancer.
Collapse
Affiliation(s)
- Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA.,Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
111
|
PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc Natl Acad Sci U S A 2020; 117:4292-4299. [PMID: 32034098 DOI: 10.1073/pnas.1917298117] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The migratory patterns of virus-specific CD8 T cells during chronic viral infection are not well understood. To address this issue, we have done parabiosis experiments during chronic lymphocytic choriomeningitis virus (LCMV) infection of mice. We found that despite the high frequency of virus-specific CD8 T cells in both lymphoid and nonlymphoid tissues there was minimal migration of virus-specific CD8 T cells between the chronically infected conjoined parabiont mice. This was in contrast to parabionts between mice that had undergone an acute LCMV infection where virus-specific CD8 T cells established equilibrium demonstrating circulation of memory T cells generated after viral clearance. We have identified a population of PD-1+ TCF1+CXCR5+Tim-3- stemlike virus-specific CD8 T cells that reside in lymphoid tissues and act as resource cells for maintaining the T cell response during chronic infection. These are the cells that proliferate and give rise to the more terminally differentiated PD-1+ CXCR5-Tim-3+ CD8 T cells. Both the stemlike CD8 T cells and their terminally differentiated progeny showed minimal migration during chronic infection and the few LCMV-specific CD8 T cells that were present in circulation were the recently emerging progeny from the stemlike CD8 T cells. The PD-1+ TCF1+CXCR5+ stemlike CD8 T cells were truly resident in lymphoid tissues and did not circulate in the blood. We propose that this residency in specialized niches within lymphoid tissues is a key aspect of their biology and is essential for maintaining their quiescence and stemlike program under conditions of a chronic viral infection.
Collapse
|
112
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|
113
|
Rahimi Kalateh Shah Mohammad G, Ghahremanloo A, Soltani A, Fathi E, Hashemy SI. Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J Cell Physiol 2020; 235:5449-5460. [PMID: 31970790 DOI: 10.1002/jcp.29491] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has caused a paradigm shift in the treatment of several malignancies, particularly the blockade of programmed death-1 (PD-1) and its specific receptor/ligand PD-L1 that have revolutionized the treatment of a variety of malignancies, but significant durable responses only occur in a small percentage of patients, and other patients failed to respond to the treatment. Even those who initially respond can ultimately relapse despite maintenance treatment, there is considerable potential for synergistic combinations of immunotherapy and chemotherapy agents with immune checkpoint inhibitors into conventional cancer treatments. The clinical experience in the use of cytokines in the clinical setting indicated the efficiency of cytokine therapy in cancer immunotherapy. Combinational approaches to enhancing PD-L1/PD-1 pathways blockade efficacy with several cytokines such as interleukin (IL)-2, IL-15, IL-21, IL-12, IL-10, and interferon-α (IFN-α) may result in additional benefits. In this review, the current state of knowledge about PD-1/PD-L1 inhibitors, the date in the literature to ascertain the combination of anti-PD-1/PD-L1 antibodies with cytokines is discussed. Finally, it is noteworthy that novel therapeutic approaches based on the efficient combination of recombinant cytokines with the PD-L1/PD-1 blockade therapy can enhance antitumor immune responses against various malignancies.
Collapse
Affiliation(s)
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmat Fathi
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
114
|
Tang L, Chen C, Gao X, Zhang W, Yan X, Zhou Y, Guo L, Zheng X, Wang W, Yang F, Liu G, Sun J, Hou J, Li Y. Interleukin 21 Reinvigorates the Antiviral Activity of Hepatitis B Virus (HBV)-Specific CD8+ T Cells in Chronic HBV Infection. J Infect Dis 2019; 219:750-759. [PMID: 30260401 DOI: 10.1093/infdis/jiy576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Strategies that target functional recovery of exhausted hepatitis B virus (HBV)-specific CD8+ T cells are beneficial for viral control, but the potential for interleukin 21 (IL-21) to rescue CD8+ T-cell function is not well understood. METHODS We investigated the effect of IL-21 on CD8+ T-cell responses by phenotypic and functional analysis of samples from patients with chronic HBV infection and a mouse model with HBV expression. RESULTS IL-21 promoted the proliferative capacity of HBV-specific CD8+ T cells and down-regulated expression of the inhibitory receptors programmed death 1 and T-cell immunoglobulin domain and mucin domain 3. Additionally, IL-21 boosted the production of interferon-γ, granzyme B, and CD107a in HBV-specific CD8+ T cells and enhanced the cytolytic activity of CD8+ T cells against HepG2.2.15 cells. Notably, an HBV mouse model established from IL-21 receptor knockout mice showed significantly decreased frequency of HBV-specific CD8+ T cells and increased levels of serum hepatitis B surface antigen (HBsAg). Meanwhile, administration of recombinant mouse IL-21 in an HBV mouse model established from wild-type mice resulted in enhanced functionality of HBV-specific CD8+ T cells and accelerated HBsAg clearance. CONCLUSIONS IL-21 enhances the antiviral effect of HBV-specific CD8+ T cells, suggesting that it may contribute to viral clearance in chronic HBV infection.
Collapse
Affiliation(s)
- Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueping Gao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hepatology, Huizhou Municipal Central Hospital, Guangzhou, China
| | - Wanyue Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases and Hepatology Unit, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuqiang Yang
- Liver Disease Research Center, 458th Hospital of the Chinese People's Liberation Army, Guangzhou, China
| | - Guangze Liu
- Liver Disease Research Center, 458th Hospital of the Chinese People's Liberation Army, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
115
|
Ou W, Jiang L, Gu Y, Soe ZC, Kim BK, Gautam M, Poudel K, Pham LM, Phung CD, Chang JH, Kim JR, Ku SK, Yong CS, Kim JO. Regulatory T Cells Tailored with pH-Responsive Liposomes Shape an Immuno-Antitumor Milieu against Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36333-36346. [PMID: 31535550 DOI: 10.1021/acsami.9b11371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cell-based delivery platforms have received great interest in recent years and have been indicated as a promising strategy for cancer immunotherapy. Despite their wide applications in the clinical and preclinical stages, their concomitant viability and efficacy remain major issues. Herein, a strategy for harnessing regulatory T (Treg) cells is developed as an actively targeting drug-delivery system to transport drug-loaded liposomes to the desired tumor sites via conjugating liposomes on the surface of Treg cells. Under the guidance of tumor-oriented chemokines, liposome-anchored Treg cells can be leveraged to migrate and infiltrate the acidic tumor microenvironment, where pH-sensitive liposomes release the loaded cargos [comprising interleukin-2, programmed cell death ligand 1 antibody (PD-L1), and imiquimod], provoke dramatic dendritic cell maturation, block the PD-1/PD-L1 immune-checkpoint, elevate the frequency of infiltrating CD8+ effector T cells, and collectively contribute to potent inhibition of in situ and metastatic tumors. Here, the findings suggest a potential approach that offers a simple, robust, and safe insight into the tuning of Treg cells as an encouraging vector for augmenting cancer immunotherapy.
Collapse
Affiliation(s)
- Wenquan Ou
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Liyuan Jiang
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Ye Gu
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Zar Chi Soe
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Bo Kyun Kim
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Milan Gautam
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Le Minh Pham
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Jae Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu 42415 , Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine , Daegu Haany University , Gyeongsan 712-715 , Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy , Yeungnam University , 280, Daehak-ro , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
116
|
Liu X, Li F, Niu H, Ma L, Chen J, Zhang Y, Peng L, Gan C, Ma X, Zhu B. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimulation. Front Immunol 2019; 10:2350. [PMID: 31632413 PMCID: PMC6783502 DOI: 10.3389/fimmu.2019.02350] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a chronic disease mainly caused by Mycobacterium tuberculosis. The function of T cells usually decreased and even exhausted in severe TB such as multiple drug resistant TB (MDR-TB), which might lead to the failure of treatment in return. The mechanism of T cell dysfunction in TB is still not clear. In this study we set up a mouse model of T cell dysfunction by persistent M. tuberculosis antigen stimulation and investigated the therapeutic role of interleukin 2 (IL-2) in it. C57BL/6 mice were primed with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and boosted repeatedly with a combination of M. tuberculosis fusion proteins Mtb10.4-HspX (MH) plus ESAT6-Ag85B-MPT64 <190-198>-Mtb8.4-Rv2626c (LT70) or MH plus ESAT6 and CFP10 with adjuvant of N, N'-dimethyl-N, N'-dioctadecylammonium bromide (DDA) plus polyinosinic-polycytidylic acid (Poly I:C). Following persistent antigen stimulation, the mice were treated with IL-2 and the therapeutic effects were analyzed. The results showed that compared with the mice that received transient antigen stimulation (boost twice), persistent antigen stimulation (boost more than 10 times) resulted in decrease of antigen specific IFN-γ and IL-2 production, reduction of memory CD8+ T cells, over-expression of immune checkpoint programmed cell death protein 1 (PD-1), and impaired the protective immunity against bacterial challenge. Treating the T cell functionally exhausted mice with IL-2 restored antigen-specific T cell responses and protective efficacy. In conclusion, persistent stimulation with M. tuberculosis antigens induced T cell dysfunction, which could be restored by complement of IL-2.
Collapse
Affiliation(s)
- Xun Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Lan Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Jianzhu Chen
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Liang Peng
- Center of Life Science, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chao Gan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Xingming Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| |
Collapse
|
117
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
118
|
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2019; 18:648-659. [PMID: 30089912 DOI: 10.1038/s41577-018-0046-y] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-2 was first identified as a growth factor capable of driving the expansion of activated human T cell populations. In the more than 40 years since its discovery, a tremendous amount has been learned regarding the mechanisms that regulate the expression of both IL-2 and its cell surface receptor, its mechanisms of signalling and its range of biological actions. More recently, the mechanisms by which IL-2 regulates CD4+ T cell differentiation and function have been elucidated. IL-2 also regulates the effector and memory responses of CD8+ T cells, and the loss of IL-2 or responsiveness to IL-2 at least in part explains the exhausted phenotype that occurs during chronic viral infections and in tumour responses. These basic mechanistic studies have led to the therapeutic ability to manipulate the action of IL-2 on regulatory T (Treg) cells for the treatment of autoimmune disease and on CD8+ T cells for immunotherapy of cancer. IL-2 can have either positive or deleterious effects, and we discuss here recent ideas and approaches for manipulating the actions and overall net effects of IL-2 in disease settings, including cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
119
|
Ho CM, Chen HL, Hu RH, Lee PH. Harnessing immunotherapy for liver recipients with hepatocellular carcinoma: a review from a transplant oncology perspective. Ther Adv Med Oncol 2019; 11:1758835919843463. [PMID: 31065295 PMCID: PMC6487770 DOI: 10.1177/1758835919843463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Without stringent criteria, liver transplantation for hepatocellular carcinoma (HCC) can lead to high cancer recurrence and poor prognosis in the current treatment context. Checkpoint inhibitors can lead to long survival by targeting coinhibitory pathways and promoting T-cell activity; thus, they have great potential for cancer immunotherapy. Therapeutic modulation of cosignaling pathways may shift paradigms from surgical prevention of recurrence to oncological intervention. Herein, we review the available evidence from a therapeutic perspective and focus on immune microenvironment perturbation by immunosuppressants and checkpoint inhibitors. Partial and reversible interleukin-2 signaling blockade is the mainstream strategy of immunosuppression for graft protection. Programmed cell death protein 1 (PD-1) is abundantly expressed on human liver allograft-infiltrating T-cells, which proliferate considerably after programmed death-ligand 1 (PD-L1) blockade. Clinically, checkpoint inhibitors are used in heart, liver, and kidney recipients with various cancers. Rejection can occur after checkpoint inhibitor administration through acute T-cell-mediated, antibody-mediated, or chronic allograft rejection mechanisms. Nevertheless, liver recipients may demonstrate favorable responses to treatment for HCC recurrence without rejection. Pharmacodynamically, substantial degrees of receptor occupancy can be achieved with lower doses, with favorable clinical outcomes. Manipulation of the immune microenvironment is a therapeutic niche that balances seemingly conflicting anticancer and graft protection needs. Additional translational and clinical studies emphasizing the comparative effectiveness of signaling networks within the immune microenvironment and conducting overall assessment of the immune microenvironment may aid in creating a therapeutic window and benefiting future liver recipients with HCC recurrence.
Collapse
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan South Road, Taipei 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
120
|
Abstract
CD8+ T cells are important for the protective immunity against intracellular pathogens and tumor. In the case of chronic infection or cancer, CD8+ T cells are exposed to persistent antigen and/or inflammatory signals. This excessive amount of signals often leads CD8+ T cells to gradual deterioration of T cell function, a state called "exhaustion." Exhausted T cells are characterized by progressive loss of effector functions (cytokine production and killing function), expression of multiple inhibitory receptors (such as PD-1 and LAG3), dysregulated metabolism, poor memory recall response, and homeostatic proliferation. These altered functions are closely related with altered transcriptional program and epigenetic landscape that clearly distinguish exhausted T cells from normal effector and memory T cells. T cell exhaustion is often associated with inefficient control of persisting infections and cancers, but re-invigoration of exhausted T cells with inhibitory receptor blockade can promote improved immunity and disease outcome. Accumulating evidences support the therapeutic potential of targeting exhausted T cells. However, exhausted T cells comprise heterogenous cell population with distinct responsiveness to intervention. Understanding molecular mechanism of T cell exhaustion is essential to establish rational immunotherapeutic interventions.
Collapse
|
121
|
Buchbinder EI, Dutcher JP, Daniels GA, Curti BD, Patel SP, Holtan SG, Miletello GP, Fishman MN, Gonzalez R, Clark JI, Richart JM, Lao CD, Tykodi SS, Silk AW, McDermott DF. Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. J Immunother Cancer 2019; 7:49. [PMID: 30777131 PMCID: PMC6380045 DOI: 10.1186/s40425-019-0522-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Metastatic melanoma (mM) and renal cell carcinoma (mRCC) are often treated with anti-PD-1 based therapy, however not all patients respond and further therapies are needed. High dose interleukin-2 (HD IL-2) can lead to durable responses in a subset of mM and mRCC patients. The efficacy and toxicity of HD IL-2 therapy following anti-PD-1 or anti-PD-L1 therapy have not yet been explored. METHODS Reports on mM and mRCC patients who had received HD IL-2 after PD-1 or PD-L1 inhibition were queried from the PROCLAIMSM database. Patient characteristics, toxicity and efficacy were analyzed. RESULTS A total of 57 patients (40 mM, 17 mRCC) were treated with high dose IL-2 after PD-1 or PD-L1 inhibition and had data recorded in the PROCLAIM database. The best overall response rate to HD IL-2 was 22.5% for mM (4 complete response (CR), 5 partial responses (PRs)) and 24% for mRCC (2 CRs, 2 PRs). The toxicity related to HD IL-2 observed in these patients was similar to that observed in patients treated with HD IL-2 without prior checkpoint blockade. One patient who had received prior PD-L1 blockade developed drug induced pneumonitis with HD IL-2 requiring steroid therapy. CONCLUSION In this retrospective analysis, HD IL-2 therapy displayed durable antitumor activity in mM and mRCC patients who progressed following treatment with PD-1 and PD-L1 inhibition. The toxicities were generally manageable and consistent with expectations from HD IL-2 but physicians should watch for immune related toxicities such as pneumonitis. This analysis supports the development of randomized prospective trials to assess the proper sequencing and combination of immune checkpoint blockade and cytokine therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sapna P. Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | | | | | | | | | - Joseph I. Clark
- Loyola University Stritch School of Medicine, Maywood, IL USA
| | | | | | - Scott S. Tykodi
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Ann W. Silk
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ USA
| | | |
Collapse
|
122
|
Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP. Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 200:1543-1553. [PMID: 29463691 DOI: 10.4049/jimmunol.1701618] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Sepsis results in a deluge of pro- and anti-inflammatory cytokines, leading to lymphopenia and chronic immunoparalysis. Sepsis-induced long-lasting immunoparalysis is defined, in part, by impaired CD4 and CD8 αβ T cell responses in the postseptic environment. The dysfunction in T cell immunity affects naive, effector, and memory T cells and is not restricted to classical αβ T cells. Although sepsis-induced severe and transient lymphopenia is a contributory factor to diminished T cell immunity, T cell-intrinsic and -extrinsic factors/mechanisms also contribute to impaired T cell function. In this review, we summarize the current knowledge of how sepsis quantitatively and qualitatively impairs CD4 and CD8 T cell immunity of classical and nonclassical T cell subsets and discuss current therapeutic approaches being developed to boost the recovery of T cell immunity postsepsis induction.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Minneapolis VA Health Care System, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
123
|
Kahan SM, Zajac AJ. Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus. Viruses 2019; 11:E156. [PMID: 30781904 PMCID: PMC6410286 DOI: 10.3390/v11020156] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a paradigm-forming experimental system with a remarkable track record of contributing to the discovery of many of the fundamental concepts of modern immunology. The ability of LCMV to establish a chronic infection in immunocompetent adult mice was instrumental for identifying T cell exhaustion and this system has been invaluable for uncovering the complexity, regulators, and consequences of this state. These findings have been directly relevant for understanding why ineffective T cell responses commonly arise during many chronic infections including HIV and HCV, as well as during tumor outgrowth. The principal feature of exhausted T cells is the inability to elaborate the array of effector functions necessary to contain the underlying infection or tumor. Using LCMV to determine how to prevent and reverse T cell exhaustion has highlighted the potential of checkpoint blockade therapies, most notably PD-1 inhibition strategies, for improving cellular immunity under conditions of antigen persistence. Here, we discuss the discovery, properties, and regulators of exhausted T cells and highlight how LCMV has been at the forefront of advancing our understanding of these ineffective responses.
Collapse
Affiliation(s)
- Shannon M Kahan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
124
|
Clinical outcomes of advanced stage cancer patients treated with sequential immunotherapy in phase 1 clinical trials. Invest New Drugs 2019; 37:1198-1206. [PMID: 30725388 DOI: 10.1007/s10637-019-00736-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Background Given the increasing number of available immunotherapeutic agents, more patients are presenting after failing immunotherapy in need of new treatment options. In this study, we investigated the clinical outcomes of patients treated with sequential immunotherapy. Methods We performed a retrospective review of 90 advanced stage cancer patients treated on immunotherapy-based phase 1 clinical trials at Winship Cancer Institute from 2009 to 2017. We included 49 patients with an immune checkpoint inhibitor (ICI)-indicated histology. Patients were analyzed based on whether they had received prior ICI. Clinical outcomes were overall survival (OS), progression-free survival (PFS), and clinical benefit (best response of complete response, partial response, or stable disease). Univariate analysis (UVA) and multivariate analysis (MVA) were performed using Cox proportional hazard or logistic regression model. Covariates included age, liver metastases, number of prior lines of therapy, histology, and Royal Marsden Hospital (RMH) risk group. Results The most common histologies were melanoma (61%) and lung/head and neck cancers (37%). More than half of patients (n = 27, 55%) received at least one ICI prior to trial enrollment: ten received anti-PD-1, two received anti-CTLA-4, five received anti-PD-1/CTLA-4 combination, and ten received multiple ICI. In MVA, ICI-naïve patients had significantly longer OS (HR: 0.22, CI: 0.07-0.70, p = 0.010) and trended towards higher chance of CB (HR: 2.52, CI: 0.49-12.97, p = 0.268). Patients who received prior ICI had substantially shorter median OS (10.9 vs 24.3 months, p = 0.046) and PFS (2.8 vs. 5.1 months, p = 0.380) than ICI-naïve patients per Kaplan-Meier estimation. Within the ICI-naïve group, 78% (7 of 9) of patients who received prior interleukin (IL-2) or interferon gamma (IFNγ) experienced disease control for at least 6 months, compared to a disease control rate of 15% (2 of 13) in patients who had received chemotherapy, targeted therapy, or no prior treatment. Conclusions ICI-naïve patients may experience improved clinical outcomes on immunotherapy-based phase 1 clinical trials than patients who have received prior ICI. This may be particularly true for patients who received prior IL-2 or IFNγ. Further development of immunotherapy combination therapies is needed to improve clinical outcomes of these patients. These results should be validated in a larger study.
Collapse
|
125
|
Wang Y, Chung YR, Eitzinger S, Palacio N, Gregory S, Bhattacharyya M, Penaloza-MacMaster P. TLR4 signaling improves PD-1 blockade therapy during chronic viral infection. PLoS Pathog 2019; 15:e1007583. [PMID: 30726291 PMCID: PMC6380600 DOI: 10.1371/journal.ppat.1007583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/19/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022] Open
Abstract
CD8 T cells are necessary for the elimination of intracellular pathogens, but during chronic viral infections, CD8 T cells become exhausted and unable to control the persistent infection. Programmed cell death-1 (PD-1) blockade therapies have been shown to improve CD8 T cell responses during chronic viral infections. These therapies have been licensed to treat cancers in humans, but they have not yet been licensed to treat chronic viral infections because limited benefit is seen in pre-clinical animal models of chronic infection. In the present study, we investigated whether TLR4 triggering could improve PD-1 therapy during a chronic viral infection. Using the model of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, we show that TLR4 triggering with sublethal doses of lipopolysaccharide (LPS) followed by PD-1 blockade results in superior improvement in circulating virus-specific CD8 T cell responses, relative to PD-1 blockade alone. Moreover, we show that the synergy between LPS and PD-1 blockade is dependent on B7 costimulation and mediated by a dendritic cell (DC) intrinsic mechanism. Systemic LPS administration may have safety concerns, motivating us to devise a safer regimen. We show that ex vivo activation of DCs with LPS, followed by adoptive DC transfer, results in a similar potentiation of PD-1 therapy without inducing wasting disease. In summary, our data demonstrate a previously unidentified role for LPS/TLR4 signaling in modulating the host response to PD-1 therapy. These findings may be important for developing novel checkpoint therapies against chronic viral infection. Although PD-1 therapies have revolutionized cancer treatment, these therapies have not yet been licensed to treat chronic viral infections. This is because limited benefit is seen in pre-clinical models of chronic viral infection. Interestingly, recent reports in cancer models have suggested that certain microbes can affect the efficacy of PD-1 therapies, but the specific microbial products that modulate host responses to therapy remain unknown. We utilized a model of chronic viral infection to evaluate if bacterial lipopolysaccharide (LPS), a major constituent of the microbiome, influences the efficacy of PD-1 therapy. Interestingly, we demonstrate that TLR4 triggering with low doses of LPS combined with PD-1 blockade induced a synergistic rescue of exhausted virus-specific CD8 T cell responses. Moreover, we demonstrate that adoptive transfer of LPS-activated DCs also results in similar improvement of PD-1 therapy without inducing overt immunopathology. Mechanistically, the synergy was DC-intrinsic, IFN-I independent, and B7/CD28 dependent. Taken together, our data may be important for understanding how components of the microbiome modulate the efficacy of PD-1 therapy, and may result in novel combined regimens for treating chronic viral infections.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Young Rock Chung
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Simon Eitzinger
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Nicole Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Shana Gregory
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
126
|
Yajima T, Hoshino K, Muranushi R, Mogi A, Onozato R, Yamaki E, Kosaka T, Tanaka S, Shirabe K, Yoshikai Y, Kuwano H. Fas/FasL signaling is critical for the survival of exhausted antigen-specific CD8 + T cells during tumor immune response. Mol Immunol 2019; 107:97-105. [PMID: 30711908 DOI: 10.1016/j.molimm.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/30/2018] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
Antigen (Ag)-specific activated CD8+ T cells are critical for tumor elimination but become exhausted, and thus, dysfunctional during immune response against the tumor due to chronic antigen stimulation. The signaling of immune checkpoint receptors is known to be a critical component in this exhaustion; however, the fate of these exhausted CD8+ T cells remains unclear. Therefore, to elucidate this, we followed the fate of Ag-specific CD8+ T cells by directly visualizing them using MHC class I tetramers coupled with ovoalubumin257-264 in C57BL/6 mice inoculated with EG.7. We found that the number of generated Ag-specific activated CD8+ T cells decreased via apoptosis during a prolonged tumor immune response. However, the number of Ag-specific CD8+ T cells was significantly higher in Fas ligand (FasL)-dysfunctional gld mice than in control mice, resulting in suppressed tumor growth. In contrast, the enforced expression of Bcl-2 failed to rescue apoptosis of the exhausted CD8+ T cells following EG.7 inoculation. These results suggest that Fas/FasL signaling is critical for the survival of exhausted CD8+ T cells during the tumor immune response.
Collapse
Affiliation(s)
- Toshiki Yajima
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan.
| | - Kouki Hoshino
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ryo Muranushi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ryoichi Onozato
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ei Yamaki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Takayuki Kosaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Shigebumi Tanaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| |
Collapse
|
127
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
128
|
Caudana P, Núñez NG, De La Rochere P, Pinto A, Denizeau J, Alonso R, Niborski LL, Lantz O, Sedlik C, Piaggio E. IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation. Cancer Immunol Res 2019; 7:443-457. [PMID: 30651291 DOI: 10.1158/2326-6066.cir-18-0697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022]
Abstract
High-dose IL2 immunotherapy can induce long-lasting cancer regression but is toxic and insufficiently efficacious. Improvements are obtained with IL2/anti-IL2 complexes (IL2Cx), which redirect IL2 action to CD8+ T and natural killer (NK) cells. Here, we evaluated the efficacy of combining IL2Cx with blockade of inhibitory immune pathways. In an autochthonous lung adenocarcinoma model, we show that the IL2Cx/anti-PD-1 combination increases CD8+ T-cell infiltration of the lung and controls tumor growth. In the B16-OVA model, which is resistant to checkpoint inhibition, combination of IL2Cx with PD-1 or CTLA-4 pathway blockade reverses that resistance. Both combinations work by reinvigorating exhausted intratumoral CD8+ T cells and by increasing the breadth of tumor-specific T-cell responses. However, only the IL2Cx/anti-CTLA-4 combination is able to rescue NK cell antitumor function by modulating intratumoral regulatory T cells. Overall, association of IL2Cx with PD-1 or CTLA-4 pathway blockade acts by different cellular mechanisms, paving the way for the rational design of combinatorial antitumor therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Female
- Immunotherapy
- Interleukin-2/immunology
- Killer Cells, Natural/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Programmed Cell Death 1 Receptor/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Pamela Caudana
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | | | | | - Anaïs Pinto
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | - Jordan Denizeau
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | - Ruby Alonso
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | | | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
- Institut Curie, PSL Research University, Clinical Immunology Laboratory, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France.
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| |
Collapse
|
129
|
Wang X, Wu M, Cao Y, Zhang Z, Guo F, Li X, Zhang Y. Exploring the role of programmed cell death protein 1 and its ligand 1 in eye diseases. Crit Rev Clin Lab Sci 2019; 56:18-32. [PMID: 30602320 DOI: 10.1080/10408363.2018.1522292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed death receptor-1 (PD-1) and its ligand, PD-L1, as negative co-stimulatory molecules, are indispensable for regulating both physiological and pathological immune responses. The PD-1/PD-L1-mediated signaling pathway has been studied extensively in cancer research and has become a hotspot for biopharmaceuticals and immunotherapy. Furthermore, monoclonal antibodies to PD-1 have just been approved by the US Food and Drug Administration to treat certain types of malignancies. Recent research has unveiled a close association between the PD-1/PD-L1 system and eye diseases. This review describes the expression and physiological functions of PD-1 and its ligand in ocular tissues and summarizes the pathogenic, regulatory, and therapeutic roles of PD-1/PD-L1 system in eye diseases, including uveal melanoma, autoimmune uveitis, autoimmune dry eye, sympathetic ophthalmia, Graves' ophthalmopathy, diabetic retinopathy, herpes simplex keratitis, and trachoma, with the intent of highlighting the potential of PD-1/PD-L1 as novel therapeutic targets or biomarkers for these ocular diseases.
Collapse
Affiliation(s)
- Xiu Wang
- a Tianjin Medical University Eye Hospital , Tianjin Medical University Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University , Tianjin , China
| | - Mianmian Wu
- a Tianjin Medical University Eye Hospital , Tianjin Medical University Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University , Tianjin , China
| | - Yunshan Cao
- b Department of Cardiology , Gansu Provincial Hospital , Lanzhou , China.,c Department of Heart Failure, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China.,d Research Center for Translational Medicine, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China
| | - Zhi Zhang
- a Tianjin Medical University Eye Hospital , Tianjin Medical University Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University , Tianjin , China
| | - Fang Guo
- a Tianjin Medical University Eye Hospital , Tianjin Medical University Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University , Tianjin , China
| | - Xiaorong Li
- a Tianjin Medical University Eye Hospital , Tianjin Medical University Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University , Tianjin , China
| | - Yan Zhang
- a Tianjin Medical University Eye Hospital , Tianjin Medical University Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University , Tianjin , China
| |
Collapse
|
130
|
Hashimoto M, Im SJ, Araki K, Ahmed R. Cytokine-Mediated Regulation of CD8 T-Cell Responses During Acute and Chronic Viral Infection. Cold Spring Harb Perspect Biol 2019; 11:a028464. [PMID: 29101105 PMCID: PMC6314063 DOI: 10.1101/cshperspect.a028464] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The common γ-chain cytokines, interleukin (IL)-2, IL-7, and IL-15, regulate critical aspects of antiviral CD8 T-cell responses. During acute infections, IL-2 controls expansion and differentiation of antiviral CD8 T cells, whereas IL-7 and IL-15 are key cytokines to maintain memory CD8 T cells long term in an antigen-independent manner. On the other hand, during chronic infections, in which T-cell exhaustion is established, precise roles of these cytokines in regulation of antiviral CD8 T-cell responses are not well defined. Nonetheless, administration of IL-2, IL-7, or IL-15 can increase function of exhausted CD8 T cells, and thus can be an attractive therapeutic approach. A new subset of stem-cell-like CD8 T cells, which provides a proliferative burst after programmed cell death (PD)-1 therapy, has been recently described during chronic viral infection. Further understanding of cytokine-mediated regulation of this CD8 T-cell subset will improve cytokine therapies to treat chronic infections and cancer in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
131
|
Kalia V, Sarkar S. Regulation of Effector and Memory CD8 T Cell Differentiation by IL-2-A Balancing Act. Front Immunol 2018; 9:2987. [PMID: 30619342 PMCID: PMC6306427 DOI: 10.3389/fimmu.2018.02987] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Interleukin-2 (IL-2) regulates key aspects of CD8 T cell biology–signaling through distinct pathways IL-2 triggers critical metabolic and transcriptional changes that lead to a spectrum of physiological outcomes such as cell survival, proliferation, and effector differentiation. In addition to driving effector differentiation, IL-2 signals are also critical for formation of long-lived CD8 T cell memory. This review discusses a model of rheostatic control of CD8 T cell effector and memory differentiation by IL-2, wherein the timing, duration, dose, and source of IL-2 signals are considered in fine-tuning the balance of key transcriptional regulators of cell fate.
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States.,M3D Graduate Program, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
132
|
FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 2018; 564:130-135. [PMID: 30487606 DOI: 10.1038/s41586-018-0756-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Dysfunctional T cells in the tumour microenvironment have abnormally high expression of PD-1 and antibody inhibitors against PD-1 or its ligand (PD-L1) have become commonly used drugs to treat various types of cancer1-4. The clinical success of these inhibitors highlights the need to study the mechanisms by which PD-1 is regulated. Here we report a mechanism of PD-1 degradation and the importance of this mechanism in anti-tumour immunity in preclinical models. We show that surface PD-1 undergoes internalization, subsequent ubiquitination and proteasome degradation in activated T cells. FBXO38 is an E3 ligase of PD-1 that mediates Lys48-linked poly-ubiquitination and subsequent proteasome degradation. Conditional knockout of Fbxo38 in T cells did not affect T cell receptor and CD28 signalling, but led to faster tumour progression in mice owing to higher levels of PD-1 in tumour-infiltrating T cells. Anti-PD-1 therapy normalized the effect of FBXO38 deficiency on tumour growth in mice, which suggests that PD-1 is the primary target of FBXO38 in T cells. In human tumour tissues and a mouse cancer model, transcriptional levels of FBXO38 and Fbxo38, respectively, were downregulated in tumour-infiltrating T cells. However, IL-2 therapy rescued Fbxo38 transcription and therefore downregulated PD-1 levels in PD-1+ T cells in mice. These data indicate that FBXO38 regulates PD-1 expression and highlight an alternative method to block the PD-1 pathway.
Collapse
|
133
|
Barroso-Sousa R, Ott PA. Transformation of Old Concepts for a New Era of Cancer Immunotherapy: Cytokine Therapy and Cancer Vaccines as Combination Partners of PD1/PD-L1 Inhibitors. Curr Oncol Rep 2018; 21:1. [PMID: 30498900 DOI: 10.1007/s11912-018-0738-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICI) are only effective in a subset of patients. Here, we will review the rationale and data supporting the combination of PD-1 pathway inhibition with recombinant cytokines and neoantigen-based cancer vaccines that can potentially increase the number of patients who will benefit from immunotherapy. RECENT FINDINGS The safety and tolerability of new interleukin(IL)-2 formulations, IL-15 super agonist, and PEGylated IL-10 have been evaluated in early phase clinical trials with promising efficacy data, both as monotherapy and in combination with ICI. Larger studies focusing on the efficacy of these combinations are ongoing. Personalized neoantigen-based cancer vaccines, enabled by improvements in sequencing computational capabilities, have been proven to be feasible, safe, and able to trigger a consistent vaccine-specific immune response in cancer patients. New pharmacologically modified recombinant cytokines and personalized neoantigen-based vaccines may turn these approaches into powerful tools for effective combination immunotherapy.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2127, Boston, MA, 02215, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2127, Boston, MA, 02215, USA.
| |
Collapse
|
134
|
Pack AD, Collins MH, Rosenberg CS, Tarleton RL. Highly competent, non-exhausted CD8+ T cells continue to tightly control pathogen load throughout chronic Trypanosoma cruzi infection. PLoS Pathog 2018; 14:e1007410. [PMID: 30419010 PMCID: PMC6258465 DOI: 10.1371/journal.ppat.1007410] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection is characterized by chronic parasitism of non-lymphoid tissues and is rarely eliminated despite potent adaptive immune responses. This failure to cure has frequently been attributed to a loss or impairment of anti-T. cruzi T cell responses over time, analogous to the T cell dysfunction described for other persistent infections. In this study, we have evaluated the role of CD8+ T cells during chronic T. cruzi infection (>100 dpi), with a focus on sites of pathogen persistence. Consistent with repetitive antigen exposure during chronic infection, parasite-specific CD8+ T cells from multiple organs expressed high levels of KLRG1, but exhibit a preferential accumulation of CD69+ cells in skeletal muscle, indicating recent antigen encounter in a niche for T. cruzi persistence. A significant proportion of CD8+ T cells in the muscle also produced IFNγ, TNFα and granzyme B in situ, an indication of their detection of and functional response to T. cruzi in vivo. CD8+ T cell function was crucial for the control of parasite burden during chronic infection as exacerbation of parasite load was observed upon depletion of this population. Attempts to improve T cell function by blocking PD-1 or IL-10, potential negative regulators of T cells, failed to increase IFNγ and TNFα production or to enhance T. cruzi clearance. These results highlight the capacity of the CD8+ T cell population to retain essential in vivo function despite chronic antigen stimulation and support a model in which CD8+ T cell dysfunction plays a negligible role in the ability of Trypanosoma cruzi to persist in mice. The parasite Trypanosoma cruzi establishes lifelong infections in humans and other mammals, leading to severe cardiac and gastrointestinal complications known as Chagas disease. Although the factors that enable T. cruzi persistence remain undefined, in this and many other infection models, pathogen persistence has been attributed to the exhaustion of the immune system, particularly of CD8+ T cells. Here, we show that the inability of hosts to fully resolve T. cruzi infection is not a result of immune exhaustion and that in fact the T. cruzi-specific CD8+ T cell population remains highly competent and actively suppresses parasite outgrowth throughout the chronic infection. These results demonstrate that compromised immunity is not the eventual outcome of all chronic infections and suggest that T. cruzi, and perhaps other pathogens, may employ alternative strategies to subvert immune clearance in the presence of highly functional pathogen-specific effectors. These findings also suggest that interventions to inhibit immune regulatory pathways or to otherwise boost existing immune responses in such infections, will have limited benefit.
Collapse
Affiliation(s)
- Angela D. Pack
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Matthew H. Collins
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Charles S. Rosenberg
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
135
|
Cancer Vaccine Immunotherapy with RNA-Loaded Liposomes. Int J Mol Sci 2018; 19:ijms19102890. [PMID: 30249040 PMCID: PMC6213933 DOI: 10.3390/ijms19102890] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines may be harnessed to incite immunity against poorly immunogenic tumors, however they have failed in therapeutic settings. Poor antigenicity coupled with systemic and intratumoral immune suppression have been significant drawbacks. RNA encoding for tumor associated or specific epitopes can serve as a more immunogenic and expeditious trigger of anti-tumor immunity. RNA stimulates innate immunity through toll like receptor stimulation producing type I interferon, and it mediates potent adaptive responses. Since RNA is inherently unstable, delivery systems have been developed to protect and deliver it to intended targets in vivo. In this review, we discuss liposomes as RNA delivery vehicles and their role as cancer vaccines.
Collapse
|
136
|
Bae EA, Seo H, Kim BS, Choi J, Jeon I, Shin KS, Koh CH, Song B, Kim IK, Min BS, Han YD, Shin SJ, Kang CY. Activation of NKT Cells in an Anti-PD-1-Resistant Tumor Model Enhances Antitumor Immunity by Reinvigorating Exhausted CD8 T Cells. Cancer Res 2018; 78:5315-5326. [PMID: 30012672 DOI: 10.1158/0008-5472.can-18-0734] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/04/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
Abstract
PD-1-based cancer immunotherapy is a successful example of immune checkpoint blockade that provides long-term durable therapeutic effects in patients with cancer across a wide spectrum of cancer types. Accumulating evidence suggests that anti-PD-1 therapy enhances antitumor immunity by reversing the function of exhausted T cells in the tumor environment. However, the responsiveness rate of patients with cancer to anti-PD-1 therapy remains low, providing an urgent need for optimization and improvement. In this study, we designed an anti-PD-1-resistant mouse tumor model and showed that unresponsiveness to anti-PD-1 is associated with a gradual increase in CD8 T-cell exhaustion. We also found that invariant natural killer T cell stimulation by the synthetic ligand α-galactosylceramide (αGC) can enhance the antitumor effect in anti-PD-1-resistant tumors by restoring the effector function of tumor antigen-specific exhausted CD8 T cells. IL2 and IL12 were among the cytokines produced by αGC stimulation critical for reinvigorating exhausted CD8 T cells in tumor-bearing mice and patients with cancer. Furthermore, we observed a synergistic increase in the antitumor effect between αGC-loaded antigen-presenting cells and PD-1 blockade in a therapeutic murine tumor model. Our study suggests NKT cell stimulation as a promising therapeutic strategy for the treatment of patients with anti-PD-1-resistant cancer.Significance: These findings provide mechanistic insights into the application of NKT cell stimulation as a potent adjuvant for immunotherapy against advanced cancer. Cancer Res; 78(18); 5315-26. ©2018 AACR.
Collapse
Affiliation(s)
- Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeongwon Choi
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
137
|
Lin JX, Leonard WJ. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028449. [PMID: 29038115 DOI: 10.1101/cshperspect.a028449] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| |
Collapse
|
138
|
Shahbazi M, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M. T cell exhaustion implications during transplantation. Immunol Lett 2018; 202:52-58. [PMID: 30130559 DOI: 10.1016/j.imlet.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Exhaustion of lymphocyte function, particularly T cell exhaustion, due to prolonged exposure to a high load of foreign antigen is commonly seen during chronic viral infection as well as antitumor immune responses. This phenomenon has been associated with a determined molecular mechanism and phenotypic manifestations on the cell surface. In spite of investigation of exhaustion, mostly about CD8 responses toward viral infections, recent studies have reported that chronic exposure to antigen may develop exhaustion in CD4 + T cells, B cells, and NK cells. Little is known with respect to lymphocyte exhaustion during transplantation and its effect on aberrant anti-graft responses. Through a same mechanobiology observed during chronic exposure of foreign viral antigens, alloantigen persistence mediated by allograft could develop a favorable circumstance for exhaustion of T cells responding to allograft. However, to achieve better manipulation approaches of this event to reduce the complications during transplantation, we need to be armed with a bulk of knowledge with regard to quality and quantity of T cell exhaustion occurring in various allografts, the kinetics of exhaustion development, the impression of immunosuppressive agents on the exhaustion, and the influence of exhaustion on graft survival and immune tolerance.
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Soltanzadeh-Yamchi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
139
|
Li Z, Li B, Peng D, Xing H, Wang G, Li P, Wang J, Ye G, Chen J. Expression and clinical significance of PD‑1 in hepatocellular carcinoma tissues detected by a novel mouse anti-human PD‑1 monoclonal antibody. Int J Oncol 2018; 52:2079-2092. [PMID: 29620156 PMCID: PMC6929674 DOI: 10.3892/ijo.2018.4358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and causes of death worldwide. Research investigating novel therapeutic strategies for the treatment of HCC is urgently required. Monoclonal antibodies (mAbs) that target the programmed cell death‑1 (PD‑1/PDCD1)/programmed death-ligand 1 (PD-L1) immune checkpoint have demonstrated substantial clinical benefit for a variety of solid tumors; however, these mAbs have not been well studied in HCC. In the present study, Sp2/0-Ag14 myeloma cells and spleen cells derived from BALB/c mice immunized with the recombinant human PD‑1/PDCD1 protein were fused for the production of novel antibodies. The 9E11 mAb, which exhibited the highest specificity for PD‑1 in HCC tissues in western blot and immunohistochemical staining analyses, was used to investigate the clinical significance of PD‑1 expression in HCC tissues from 77 cases, which were collected and examined histologically. Overexpression of PD‑1 was identified in peritumoral tissues, primarily in the liver portal region. Importantly, by analyzing the clinical data from 77 HCC patients, the expression of PD‑1 was observed to be significantly correlated with larger tumor size (>5 cm) and poorly differentiated tumors. In addition, PD‑1 expression was moderately correlated with venous thrombosis, but not correlated with patient sex or age, liver cirrhosis, hepatitis B, tumor, node and metastasis (TNM) stage or tumor location. The results of the present study suggest that high-level PD‑1 expression may be an important factor associated with the immune checkpoint pathway in HCC. The results suggest that PD‑1 serves an important role in tumor immune evasion and may be a valuable immunodiagnostic marker. In addition, PD‑1 may serve as a therapeutic target for patients presenting with poorly differentiated HCC, thus indicating the potential application of a PD‑1 inhibitor for the treatment of HCC patients.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Bin Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Dan Peng
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Guanying Wang
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Pan Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jiming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - George Ye
- Yes Biotech Laboratories Ltd., Mississauga, ON L5S 1V6, Canada
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
140
|
Buchan SL, Fallatah M, Thirdborough SM, Taraban VY, Rogel A, Thomas LJ, Penfold CA, He LZ, Curran MA, Keler T, Al-Shamkhani A. PD-1 Blockade and CD27 Stimulation Activate Distinct Transcriptional Programs That Synergize for CD8 + T-Cell-Driven Antitumor Immunity. Clin Cancer Res 2018; 24:2383-2394. [PMID: 29514845 PMCID: PMC5959006 DOI: 10.1158/1078-0432.ccr-17-3057] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
Purpose: PD-1 checkpoint blockade has revolutionized the field of cancer immunotherapy, yet the frequency of responding patients is limited by inadequate T-cell priming secondary to a paucity of activatory dendritic cells (DC). DC signals can be bypassed by CD27 agonists, and we therefore investigated if the effectiveness of anti-PD-1/L1 could be improved by combining with agonist anti-CD27 monoclonal antibodies (mAb).Experimental Design: The efficacy of PD-1/L1 blockade or agonist anti-CD27 mAb was compared with a dual-therapy approach in multiple tumor models. Global transcriptional profiling and flow cytometry analysis were used to delineate mechanisms underpinning the observed synergy.Results: PD-1/PD-L1 blockade and agonist anti-CD27 mAb synergize for increased CD8+ T-cell expansion and effector function, exemplified by enhanced IFNγ, TNFα, granzyme B, and T-bet. Transcriptome analysis of CD8+ T cells revealed that combination therapy triggered a convergent program largely driven by IL2 and Myc. However, division of labor was also apparent such that anti-PD-1/L1 activates a cytotoxicity-gene expression program whereas anti-CD27 preferentially augments proliferation. In tumor models, either dependent on endogenous CD8+ T cells or adoptive transfer of transgenic T cells, anti-CD27 mAb synergized with PD-1/L1 blockade for antitumor immunity. Finally, we show that a clinically relevant anti-human CD27 mAb, varlilumab, similarly synergizes with PD-L1 blockade for protection against lymphoma in human-CD27 transgenic mice.Conclusions: Our findings suggest that suboptimal T-cell invigoration in cancer patients undergoing treatment with PD-1 checkpoint blockers will be improved by dual PD-1 blockade and CD27 agonism and provide mechanistic insight into how these approaches cooperate for CD8+ T-cell activation. Clin Cancer Res; 24(10); 2383-94. ©2018 AACR.
Collapse
Affiliation(s)
- Sarah L Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mohannad Fallatah
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Vadim Y Taraban
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Christine A Penfold
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Li-Zhen He
- Celldex Therapeutics Inc., Hampton, New Jersey
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tibor Keler
- Celldex Therapeutics Inc., Hampton, New Jersey
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
141
|
León K, García-Martínez K, Carmenate T, Rojas G. Combining computational and experimental biology to develop therapeutically valuable IL2 muteins. Semin Oncol 2018; 45:95-104. [PMID: 30318089 DOI: 10.1053/j.seminoncol.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/28/2018] [Accepted: 04/20/2018] [Indexed: 01/23/2023]
Abstract
High-dose IL2, first approved in 1992, has been used in the treatment of advanced renal cell carcinoma and melanoma. In these indications, IL2 induces long lasting objective responses in 5% to 20% of patients. However, toxicity and the unexpected expansion of regulatory T cells (Tregs) have limited its practical use and therapeutic impact, respectively. At the Center of Molecular Immunology in Havana, Cuba, a project was launched in 2005 to rationally design IL2 muteins that could be deployed in the therapy of cancer. The basic goal was to uncouple the pleiotropic effect of IL2 on different immune T cells, to obtain a mutein with a therapeutic index that was better than that achieved with wild type (wt) IL2. Using a combination of computational and experimental biology approaches, we predicted and developed two novel IL2 muteins with therapeutic potential. The first, designated no-alpha mutein, is an agonist of IL2R signaling with a reduced ability to expand Treg in vivo. In mice, the no-alpha mutein IL2 has higher antitumor activity and lower toxicity than wt IL2. It represents a potential best-in-class drug that has begun phase I/II clinical trials in solid tumors. The second, designated no-gamma mutein, is an antagonist of IL2R signaling, with some preferential affinity for Tregs. This mutein has antitumor activity in mice that likely derives from its ability to reduce Treg accumulation in vivo. It represents a first-in-class drug that offers a novel strategy to inhibit Treg activity in vivo.
Collapse
Affiliation(s)
- Kalet León
- Center of Molecular Immunology (CIM), Havana, Cuba.
| | | | | | | |
Collapse
|
142
|
Bhattacharyya M, Penaloza-MacMaster P. Dynamics of Lymphocyte Reconstitution After Hematopoietic Transplantation During Chronic Lymphocytic Choriomeningitis Virus Infection. AIDS Res Hum Retroviruses 2018; 34:430-438. [PMID: 29620933 DOI: 10.1089/aid.2017.0251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone marrow transplantation is a treatment for various cancers and genetic diseases, and the only case of a cured HIV infection involved the use of this clinical procedure, highlighting the potential use of this therapy for curing many chronic diseases. However, little is known about how chronic viral infection influences lymphocyte reconstitution after bone marrow transplantation. To address this, we infected mice with chronic lymphocytic choriomeningitis virus, and performed bone marrow transplantation to assess lymphocyte reconstitution. Interestingly, we observed that adoptively transferred marrow cells exhibited preferential B cell differentiation in chronically infected mice. Moreover, donor marrow cells that were adoptively transferred into chronically infected mice differentiated into virus-specific CD8 T cells that were able to expand after PD-L1 blockade. Taken together, our data show that chronic viral infection induces a biased differentiation of bone marrow stem cells into B cells, and that exhausted virus-specific CD8 T cells generated de novo in this setting are rescuable by PD-1 blockade. These data contribute to the understanding of how chronic viral infection impacts lymphocyte reconstitution, and may provide valuable information to improve current hematopoietic transplantation regimens in chronically infected hosts.
Collapse
Affiliation(s)
- Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
143
|
Cosma G, Eisenlohr L. CD8 + T-cell responses in vaccination: reconsidering targets and function in the context of chronic antigen stimulation. F1000Res 2018; 7. [PMID: 29770202 PMCID: PMC5931265 DOI: 10.12688/f1000research.14115.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic CD8 T cells play important roles in eliminating infected and transformed cells. Owing to their potential for therapeutic applications, significant efforts are dedicated toward developing CD8 T cell–based vaccines. Thus far, CD8 T-cell vaccination strategies have had limited success therapeutically in contrast to those targeting antibody-based immunity. However, if the current challenges and gaps in the understanding of T-cell biology are overcome, the full potential of rational CD8 T-cell vaccine design might be realized. Here, we review recent progress in this direction, focusing on target selection and maintenance of function in the settings of chronic infections and cancers.
Collapse
Affiliation(s)
- Gabriela Cosma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laurence Eisenlohr
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
144
|
Balkhi MY, Wittmann G, Xiong F, Junghans RP. YY1 Upregulates Checkpoint Receptors and Downregulates Type I Cytokines in Exhausted, Chronically Stimulated Human T Cells. iScience 2018; 2:105-122. [PMID: 30428369 PMCID: PMC6136936 DOI: 10.1016/j.isci.2018.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
T cells infiltrate affected organs in chronic infections and malignancy, but they may fail to eradicate virus-infected cells or tumor because of exhaustion. This report describes a Yin Yang-1 (YY1)-centered mechanism for diverse components that have been correlated with exhaustion. Utilizing an in vitro reconstruction of chronic T cell activation, YY1 is shown to positively regulate the checkpoint receptors PD1, Lag3, and Tim3 and to negatively regulate the type I cytokines interleukin-2 (IL-2) (in collaboration with Ezh2 histone methyltransferase) and interferon gamma (IFN-?). Other tests suggest that IL-2 failure drives a large component of cytotoxic functional decline rather than solely checkpoint receptor-ligand interactions that have been the focus of current anti-exhaustion therapies. Clinical evaluations confirm elevated YY1 and Ezh2 in melanoma tumor-infiltrating lymphocytes and in PD1+ T cells in patients with HIV. Exhaustion is revealed to be an active process as the culmination of repetitive two-signal stimulation in a feedback loop via CD3/CD28?p38MAPK/JNK?YY1? exhaustion.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Biotherapeutics Development Lab, Division of Hematology/Oncology, Department of Medicine, Tufts University School of Medicine, 800 Washington St, Boston, MA 02111, USA
| | - Gabor Wittmann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Fang Xiong
- Biotherapeutics Development Lab, Division of Hematology/Oncology, Department of Medicine, Tufts University School of Medicine, 800 Washington St, Boston, MA 02111, USA
| | - Richard P Junghans
- Biotherapeutics Development Lab, Division of Hematology/Oncology, Department of Medicine, Tufts University School of Medicine, 800 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
145
|
Carmenate T, Ortíz Y, Enamorado M, García-Martínez K, Avellanet J, Moreno E, Graça L, León K. Blocking IL-2 Signal In Vivo with an IL-2 Antagonist Reduces Tumor Growth through the Control of Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:3475-3484. [PMID: 29618524 DOI: 10.4049/jimmunol.1700433] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023]
Abstract
IL-2 is critical for peripheral tolerance mediated by regulatory T (Treg) cells, which represent an obstacle for effective cancer immunotherapy. Although IL-2 is important for effector (E) T cell function, it has been hypothesized that therapies blocking IL-2 signals weaken Treg cell activity, promoting immune responses. This hypothesis has been partially tested using anti-IL-2 or anti-IL-2R Abs with antitumor effects that cannot be exclusively attributed to lack of IL-2 signaling in vivo. In this work, we pursued an alternative strategy to block IL-2 signaling in vivo, taking advantage of the trimeric structure of the IL-2R. We designed an IL-2 mutant that conserves the capacity to bind to the αβ-chains of the IL-2R but not to the γc-chain, thus having a reduced signaling capacity. We show our IL-2 mutein inhibits IL-2 Treg cell-dependent differentiation and expansion. Moreover, treatment with IL-2 mutein reduces Treg cell numbers and impairs tumor growth in mice. A mathematical model was used to better understand the effect of the mutein on Treg and E T cells, suggesting suitable strategies to improve its design. Our results show that it is enough to transiently inhibit IL-2 signaling to bias E and Treg cell balance in vivo toward immunity.
Collapse
Affiliation(s)
| | - Yaquelín Ortíz
- Centro de Inmunología Molecular, 16040 Havana, Cuba; and
| | | | | | | | - Ernesto Moreno
- Centro de Inmunología Molecular, 16040 Havana, Cuba; and
| | - Luis Graça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Kalet León
- Centro de Inmunología Molecular, 16040 Havana, Cuba; and
| |
Collapse
|
146
|
Hubert A, Seddiki N. Regulatory T cells (Tregs): A major immune checkpoint to consider in combinatorial therapeutic HIV-1 vaccines. Hum Vaccin Immunother 2018; 14:1432-1437. [PMID: 29381418 DOI: 10.1080/21645515.2018.1434384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The field of immunotherapeutics is living an exceptional time as new antibodies that take brakes off T-cells and unleash them on tumours are being approved by the US-Food and Drug Administration (FDA). For the design and development of an HIV-1 therapeutic-vaccine, one would need preferably to shift the balance T-effectors/T-regulatory cells (Teff/Tregs) towards effectors to improve vaccine-specific immune-responses. Given the success with the new immune-checkpoint-blockers (ICB), it is an appropriate time for HIV-1 field to seize this opportunity and develop new therapeutic vaccine-strategies that take into consideration ICB and other immunomodulators such as cytokines. While the vaccine is important to stimulate HIV-1-specific T-cell responses, cytokines will support the expansion of the stimulated virus-specific T-cells and ICB will reverse exhaustion and unchain cytotoxic T-cells. In this commentary, we will spotlight Tregs as another major brake for T-cell immunity and address the main stumbling-blocks that often blurs HIV-1-specific-Tregs status with regards to their role (beneficial or detrimental) and we will recall some proof-of-concept studies where therapeutic immunization skewed the HIV-1-specific response from Tregs to Teffs which impacts on the magnitude of viral replication. We will also suggest some strategies to shift the balance towards Teffs and potentiate HIV-1-specific immune-responses.
Collapse
Affiliation(s)
- Audrey Hubert
- a Inserm, U955 , Créteil , France.,b Université Paris Est, Faculté de médecine , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Nabila Seddiki
- a Inserm, U955 , Créteil , France.,b Université Paris Est, Faculté de médecine , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| |
Collapse
|
147
|
Luft O, Khattar R, Farrokhi K, Ferri D, Yavorska N, Zhang J, Sadozai H, Adeyi O, Chruscinski A, Levy GA, Selzner N. Inhibition of the Fibrinogen-Like Protein 2:FcγRIIB/RIII immunosuppressive pathway enhances antiviral T-cell and B-cell responses leading to clearance of lymphocytic choriomeningitis virus clone 13. Immunology 2018; 154:476-489. [PMID: 29341118 DOI: 10.1111/imm.12897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Persistent viruses evade immune detection by interfering with virus-specific innate and adaptive antiviral immune responses. Fibrinogen-like protein-2 (FGL2) is a potent effector molecule of CD4+ CD25+ FoxP3+ regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone-13 (LCMV cl-13) was assessed in this study. Chronically infected fgl2+/+ mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC-II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2-/- mice or fgl2+/+ mice that had been pre-treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl-13 developed a robust CD4+ and CD8+ antiviral T-cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus-specific CD4+ and CD8+ T cells with reduced total and virus-specific T-cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.
Collapse
Affiliation(s)
- Olga Luft
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Ramzi Khattar
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Kaveh Farrokhi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dario Ferri
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nataliya Yavorska
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Jianhua Zhang
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Hassan Sadozai
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Oyedele Adeyi
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Gary A Levy
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nazia Selzner
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| |
Collapse
|
148
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
149
|
Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annu Rev Med 2018; 69:301-318. [PMID: 29414259 DOI: 10.1146/annurev-med-012017-043208] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antigen-specific CD8 T cells are central to the control of chronic infections and cancer, but persistent antigen stimulation results in T cell exhaustion. Exhausted CD8 T cells have decreased effector function and proliferative capacity, partly caused by overexpression of inhibitory receptors such as programmed cell death (PD)-1. Blockade of the PD-1 pathway has opened a new therapeutic avenue for reinvigorating T cell responses, with positive outcomes especially for patients with cancer. Other strategies to restore function in exhausted CD8 T cells are currently under evaluation-many in combination with PD-1-targeted therapy. Exhausted CD8 T cells comprise heterogeneous cell populations with unique differentiation and functional states. A subset of stem cell-like PD-1+ CD8 T cells responsible for the proliferative burst after PD-1 therapy has been recently described. A greater understanding of T cell exhaustion is imperative to establish rational immunotherapeutic interventions.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Alice O Kamphorst
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Haydn T Kissick
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Rathi N Pillai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA; ,
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA; ,
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| |
Collapse
|
150
|
Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection. J Virol 2017; 91:JVI.01263-17. [PMID: 28904197 DOI: 10.1128/jvi.01263-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 has shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with, gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially affected cytokine production by cells in response to staphylococcal enterotoxin B stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, interleukin-2 (IL-2), and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together, these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cells being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important for limiting damage by the immune system during acute infections. In chronic infections, however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their influence on CD4 T cells remains unclear. We assessed the expression of inhibitory receptors on HIV-specific CD4 T cells and their relationship with T cell functionality. We uncovered differences in inhibitory receptor expression depending on the CD4 T cell function. We also found differences in functionality of CD4 T cells following blocking of different inhibitory receptors, and we confirmed our results in a Friend virus retroviral model of infection in mice. Our results show that inhibitory receptor expression on CD4 T cells is linked to CD4 T cell functionality and could be sculpted by blockade of specific inhibitory receptors. These data reveal exciting possibilities for the development of novel treatments and immunotherapeutics.
Collapse
|