101
|
Biophysical and Lipidomic Biomarkers of Cardiac Remodeling Post-Myocardial Infarction in Humans. Biomolecules 2020; 10:biom10111471. [PMID: 33105904 PMCID: PMC7690619 DOI: 10.3390/biom10111471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Few studies have analyzed the potential of biophysical parameters as markers of cardiac remodeling post-myocardial infarction (MI), particularly in human hearts. Fourier transform infrared spectroscopy (FTIR) illustrates the overall changes in proteins, nucleic acids and lipids in a single signature. The aim of this work was to define the FTIR and lipidomic pattern for human left ventricular remodeling post-MI. A total of nine explanted hearts from ischemic cardiomyopathy patients were collected. Samples from the right ventricle (RV), left ventricle (LV) and infarcted left ventricle (LV INF) were subjected to biophysical (FTIR and differential scanning calorimetry, DSC) and lipidomic (liquid chromatography-high-resolution mass spectrometry, LC-HRMS) studies. FTIR evidenced deep alterations in the myofibers, extracellular matrix proteins, and the hydric response of the LV INF compared to the RV or LV from the same subject. The lipid and esterified lipid FTIR bands were enhanced in LV INF, and both lipid indicators were tightly and positively correlated with remodeling markers such as collagen, lactate, polysaccharides, and glycogen in these samples. Lipidomic analysis revealed an increase in several species of sphingomyelin (SM), hexosylceramide (HexCer), and cholesteryl esters combined with a decrease in glycerophospholipids in the infarcted tissue. Our results validate FTIR indicators and several species of lipids as useful markers of left ventricular remodeling post-MI in humans.
Collapse
|
102
|
Maul JT, Maul LV, Kägi M, Cheng P, Anzengruber F, von Laue M, Chen Y, Kägi M, Navarini A. Skin Recovery After Discontinuation of Long-Term Moisturizer Application: A Split-Face Comparison Pilot Study. Dermatol Ther (Heidelb) 2020; 10:1371-1382. [PMID: 33026578 PMCID: PMC7649173 DOI: 10.1007/s13555-020-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction Facial moisturizers are commonly used by healthy women and increasingly men of all age groups. This study aimed to investigate the effects of moisturizer discontinuation and the subsequent evolution of symptoms. Methods Two prospective observational split-face comparison pilot studies were performed in Switzerland and enrolled (I) 20 healthy women aged 17–25 years in winter and (II) 36 female subjects 15–20 and 40–55 years of age in summer. Moisturizers were stopped on the investigational half of the face. On the control side, the usual skin care regimen was continued. Daily subjective (I/II) and objective (I) skin assessments for the occurrence of typical symptoms of dry skin (dryness, itching, scales, redness, wrinkles) were collected. Results In the winter study (cohort I) in both the subjective and objective assessment, all skin changes increased significantly within 1 day after discontinuation. On day 7, dryness (p < 0.001), itching (p < 0.025), redness (p < 0.001) and scales (p < 0.049) were significantly different in the subjective assessment and redness (p < 0.004) and scales (p < 0.001) in the objective assessment. Skin dryness reverted to baseline levels after 6 days in the objective assessment and 10 days in the subjective assessment. The control side’s condition was reached after 6 days. In the summer study (II), only among the 15–20-year-olds was dryness significantly higher on the intervention side from day 1 (p < 0.028) to day 14 (p < 0.009). Their recovery time was 11 days until dryness intensity scores comparable to baseline were reached, and 21 days until the control side’s values were matched. Over a 7-day period, the overall mean dryness score was significantly different between the interventional and control sides for both young and old participants. Conclusions Both healthy young and aging female subjects react with typical symptoms of temporary dryness to a sudden stop of a previous long-term moisturizer treatment but regain normal levels quickly without continuation of moisturizers. The skin recovery time for skin dehydration is 1–3 weeks in young female subjects with varying intensities depending on the season. Electronic supplementary material The online version of this article (10.1007/s13555-020-00453-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia-Tatjana Maul
- Department of Dermatology, University Hospital of Zürich, Zurich, Switzerland.
| | - Lara Valeska Maul
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Marc Kägi
- Faculty of Medicine, University of Zürich, Zurich, Switzerland.,Hautzentrum, Zürich AG, Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital of Zürich, Zurich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital of Zürich, Zurich, Switzerland
| | | | - Yuki Chen
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Martin Kägi
- Faculty of Medicine, University of Zürich, Zurich, Switzerland.,Hautzentrum, Zürich AG, Zurich, Switzerland
| | - Alexander Navarini
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
103
|
Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest 2020; 43:1373-1389. [PMID: 32358737 PMCID: PMC7481162 DOI: 10.1007/s40618-020-01255-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
AIM Over the last decades, the shift in age distribution towards older ages and the progressive ageing which has occurred in most populations have been paralleled by a global epidemic of obesity and its related metabolic disorders, primarily, type 2 diabetes (T2D). Dysfunction of the adipose tissue (AT) is widely recognized as a significant hallmark of the ageing process that, in turn, results in systemic metabolic alterations. These include insulin resistance, accumulation of ectopic lipids and chronic inflammation, which are responsible for an elevated risk of obesity and T2D onset associated to ageing. On the other hand, obesity and T2D, the paradigms of AT dysfunction, share many physiological characteristics with the ageing process, such as an increased burden of senescent cells and epigenetic alterations. Thus, these chronic metabolic disorders may represent a state of accelerated ageing. MATERIALS AND METHODS A more precise explanation of the fundamental ageing mechanisms that occur in AT and a deeper understanding of their role in the interplay between accelerated ageing and AT dysfunction can be a fundamental leap towards novel therapies that address the causes, not just the symptoms, of obesity and T2D, utilizing strategies that target either senescent cells or DNA methylation. RESULTS In this review, we summarize the current knowledge of the pathways that lead to AT dysfunction in the chronological ageing process as well as the pathophysiology of obesity and T2D, emphasizing the critical role of cellular senescence and DNA methylation. CONCLUSION Finally, we highlight the need for further research focused on targeting these mechanisms.
Collapse
Affiliation(s)
- R Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - L Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - M Longo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - P Florese
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - A Desiderio
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Zatterale
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - C Miele
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - G Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy.
| |
Collapse
|
104
|
Jové M, Mota-Martorell N, Pradas I, Galo-Licona JD, Martín-Gari M, Obis È, Sol J, Pamplona R. The Lipidome Fingerprint of Longevity. Molecules 2020; 25:molecules25184343. [PMID: 32971886 PMCID: PMC7570520 DOI: 10.3390/molecules25184343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Lipids were determinants in the appearance and evolution of life. Recent studies disclose the existence of a link between lipids and animal longevity. Findings from both comparative studies and genetics and nutritional interventions in invertebrates, vertebrates, and exceptionally long-lived animal species—humans included—demonstrate that both the cell membrane fatty acid profile and lipidome are a species-specific optimized evolutionary adaptation and traits associated with longevity. All these emerging observations point to lipids as a key target to study the molecular mechanisms underlying differences in longevity and suggest the existence of a lipidome profile of long life.
Collapse
|
105
|
In Vivo Anti-Inflammatory Effects and Related Mechanisms of Processed Egg Yolk, a Potential Anti-Inflammaging Dietary Supplement. Nutrients 2020; 12:nu12092699. [PMID: 32899660 PMCID: PMC7551027 DOI: 10.3390/nu12092699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Egg-yolk based supplements have demonstrated biological effects. We have developed a novel processed egg-yolk (PEY) complement, and we have tested whether it has inflammation modulatory properties. These were evaluated in a lipopolysaccharide (LPS)-challenge in 1-month male rats by in vivo circulating cytokine profiles measured by multiplexing techniques. Cell culture was used to explore ex vivo properties of derived serum samples. We explored growth factor composition, and mass-spectrometry metabolome and lipidome analyses of PEY to characterize it. PEY significantly prevented LPS-induced increase in IL-1 β, TNF-α, and MCP-1. Further, serum from PEY-treated animals abrogated LPS-induced iNOS build-up of the Raw 264.7 macrophage-like cell line. Immunochemical analyses demonstrated increased concentrations of insulin-like growth factor 1 (IGF-1), connective tissue growth factor (CTGF), and platelet-derived growth factor (PDGF) in the extract. PEY vs. egg-yolk comparative metabolomic analyses showed significative differences in the concentrations of at least 140 molecules, and in 357 in the lipidomic analyses, demonstrating the complexity of PEY. Globally, PEY acts as an orally-bioavailable immunomodulatory extract that may be of interest in those conditions associated with disarranged inflammation, such as inflammaging.
Collapse
|
106
|
Millner A, Atilla-Gokcumen GE. Lipid Players of Cellular Senescence. Metabolites 2020; 10:metabo10090339. [PMID: 32839400 PMCID: PMC7570155 DOI: 10.3390/metabo10090339] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Lipids are emerging as key players of senescence. Here, we review the exciting new findings on the diverse roles of lipids in cellular senescence, most of which are enabled by the advancements in omics approaches. Senescence is a cellular process in which the cell undergoes growth arrest while retaining metabolic activity. At the organismal level, senescence contributes to organismal aging and has been linked to numerous diseases. Current research has documented that senescent cells exhibit global alterations in lipid composition, leading to extensive morphological changes through membrane remodeling. Moreover, senescent cells adopt a secretory phenotype, releasing various components to their environment that can affect the surrounding tissue and induce an inflammatory response. All of these changes are membrane and, thus, lipid related. Our work, and that of others, has revealed that fatty acids, sphingolipids, and glycerolipids are involved in the initiation and maintenance of senescence and its associated inflammatory components. These studies opened up an exciting frontier to investigate the deeper mechanistic understanding of the regulation and function of these lipids in senescence. In this review, we will provide a comprehensive snapshot of the current state of the field and share our enthusiasm for the prospect of potential lipid-related protein targets for small-molecule therapy in pathologies involving senescence and its related inflammatory phenotypes.
Collapse
|
107
|
Pulakat L, Chen HH. Pro-Senescence and Anti-Senescence Mechanisms of Cardiovascular Aging: Cardiac MicroRNA Regulation of Longevity Drug-Induced Autophagy. Front Pharmacol 2020; 11:774. [PMID: 32528294 PMCID: PMC7264109 DOI: 10.3389/fphar.2020.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronological aging as well as biological aging accelerated by various pathologies such as diabetes and obesity contribute to cardiovascular aging, and structural and functional tissue damage of the heart and vasculature. Cardiovascular aging in humans is characterized by structural pathologic remodeling including cardiac and vascular fibrosis, hypertrophy, stiffness, micro- and macro-circulatory impairment, left ventricular diastolic dysfunction precipitating heart failure with either reduced or preserved ejection fraction, and cardiovascular cell death. Cellular senescence, an important hallmark of aging, is a critical factor that impairs repair and regeneration of damaged cells in cardiovascular tissues whereas autophagy, an intracellular catabolic process is an essential inherent mechanism that removes senescent cells throughout life time in all tissues. Several recent reviews have highlighted the fact that all longevity treatment paradigms to mitigate progression of aging-related pathologies converge in induction of autophagy, activation of AMP kinase (AMPK) and Sirtuin pathway, and inhibition of mechanistic target of rapamycin (mTOR). These longevity treatments include health style changes such as caloric restriction, and drug treatments using rapamycin, the first FDA-approved longevity drug, as well as other experimental longevity drugs such as metformin, rapamycin, aspirin, and resveratrol. However, in the heart tissue, autophagy induction has to be tightly regulated since evidence show excessive autophagy results in cardiomyopathy and heart failure. Here we discuss emerging evidence for microRNA-mediated tight regulation of autophagy in the heart in response to treatment with rapamycin, and novel approaches to monitor autophagy progression in a temporal manner to diagnose and regulate autophagy induction by longevity treatments.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
108
|
Millner A, Lizardo DY, Atilla‐Gokcumen GE. Untargeted Lipidomics Highlight the Depletion of Deoxyceramides during Therapy‐Induced Senescence. Proteomics 2020; 20:e2000013. [DOI: 10.1002/pmic.202000013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Alec Millner
- Department of Chemistry University at Buffalo The State University of New York (SUNY) Buffalo NY 14260 USA
| | - Darleny Y. Lizardo
- Department of Chemistry University at Buffalo The State University of New York (SUNY) Buffalo NY 14260 USA
| | - Gunes Ekin Atilla‐Gokcumen
- Department of Chemistry University at Buffalo The State University of New York (SUNY) Buffalo NY 14260 USA
| |
Collapse
|
109
|
Zhu QF, Yan JW, Ni J, Feng YQ. FAHFA footprint in the visceral fat of mice across their lifespan. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158639. [DOI: 10.1016/j.bbalip.2020.158639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
|
110
|
Mishra SK, Gao YG, Zou X, Stephenson DJ, Malinina L, Hinchcliffe EH, Chalfant CE, Brown RE. Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death. Prog Lipid Res 2020; 78:101031. [PMID: 32339554 DOI: 10.1016/j.plipres.2020.101031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Glycolipid transfer proteins (GLTPs) were first identified over three decades ago as ~24kDa, soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. Upon discovery that GLTPs use a unique, all-α-helical, two-layer 'sandwich' architecture (GLTP-fold) to bind glycosphingolipids (GSLs), a new protein superfamily was born. Structure/function studies have provided exquisite insights defining features responsible for lipid headgroup selectivity and hydrophobic 'pocket' adaptability for accommodating hydrocarbon chains of differing length and unsaturation. In humans, evolutionarily-modified GLTP-folds have been identified with altered sphingolipid specificity, e. g. ceramide-1-phosphate transfer protein (CPTP), phosphatidylinositol 4-phosphate adaptor protein-2 (FAPP2) which harbors a GLTP-domain and GLTPD2. Despite the wealth of structural data (>40 Protein Data Bank deposits), insights into the in vivo functional roles of GLTP superfamily members have emerged slowly. In this review, recent advances are presented and discussed implicating human GLTP superfamily members as important regulators of: i) pro-inflammatory eicosanoid production associated with Group-IV cytoplasmic phospholipase A2; ii) autophagy and inflammasome assembly that drive surveillance cell release of interleukin-1β and interleukin-18 inflammatory cytokines; iii) cell cycle arrest and necroptosis induction in certain colon cancer cell lines. The effects exerted by GLTP superfamily members appear linked to their ability to regulate sphingolipid homeostasis by acting in either transporter and/or sensor capacities. These timely findings are opening new avenues for future cross-disciplinary, translational medical research involving GLTP-fold proteins in human health and disease. Such avenues include targeted regulation of specific GLTP superfamily members to alter sphingolipid levels as a therapeutic means for combating viral infection, neurodegenerative conditions and circumventing chemo-resistance during cancer treatment.
Collapse
Affiliation(s)
- Shrawan K Mishra
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xianqiong Zou
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lucy Malinina
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; The Moffitt Cancer Center, Tampa, FL 33620, USA
| | | |
Collapse
|
111
|
Markowski AR, Błachnio-Zabielska AU, Guzińska-Ustymowicz K, Markowska A, Pogodzińska K, Roszczyc K, Zińczuk J, Zabielski P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules 2020; 10:E632. [PMID: 32325909 PMCID: PMC7225954 DOI: 10.3390/biom10040632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Much attention is paid to different sphingolipid pathways because of their possible use in diagnostics and treatment. However, the activity status and significance of ceramide pathways in colorectal cancer are still unclear. We analyzed colorectal cancer patients to evaluate sphingolipid profiles in the blood, colorectal cancer (CRC) tissues, and healthy surrounding colorectal tissues of the same patient, simultaneously, using liquid chromatography coupled with triple quadrupole mass spectrometry. Furthermore, we measured protein expression of de novo ceramide synthesis enzymes and mitochondrial markers in tissues using western blot. We confirmed the different sphingolipid contents in colorectal cancer tissue compared to healthy surrounding tissues. Furthermore, we showed changed amounts of several ceramides in more advanced colorectal cancer tissue and found a prominently higher circulating level of several of them. Moreover, we observed a relationship between the amounts of some ceramide species in colorectal cancer tissue and plasma depending on the stage of colorectal cancer according to TNM (tumors, nodes, metastasis) classification. We think that the combined measurement of several ceramide concentrations in plasma can help distinguish early-stage lesions from advanced colorectal cancer and can help produce a screening test to detect early colorectal cancer.
Collapse
Affiliation(s)
- Adam R. Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Agnieszka U. Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, 13 Jerzy Waszyngton Street, 15-269 Bialystok, Poland
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, 2A Adam Mickiewicz Street, 15-222 Bialystok, Poland;
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Kamila Roszczyc
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzy Waszyngton Street, 15-269 Bialystok, Poland;
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| |
Collapse
|
112
|
Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Sci Rep 2020; 10:5576. [PMID: 32221338 PMCID: PMC7101400 DOI: 10.1038/s41598-020-62476-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lipids play a significant role in regulation of health and disease. To enhance our understanding of the role of lipids in regulation of lifespan and healthspan additional studies are required. Here, UHPLC-MS/MS lipidomics was used to measure dynamic changes in lipid composition as a function of age and gender in genetically identical male and female Daphnia magna with different average lifespans. We demonstrate statistically significant age-related changes in triglycerides (TG), diglycerides (DG), phosphatidylcholine, phosphatidylethanolamine, ceramide and sphingomyelin lipid groups, for example, in males, 17.04% of TG lipid species decline with age whilst 37.86% increase in relative intensity with age. In females, 23.16% decrease and 25.31% increase in relative intensity with age. Most interestingly, the rate and direction of change can differ between genetically identical female and male Daphnia magna, which could be the cause and/or the consequence of the different average lifespans between the two genetically identical genders. This study provides a benchmark dataset to understand how lipids alter as a function of age in genetically identical female and male species with different average lifespan and ageing rate.
Collapse
|
113
|
Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:149-195. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.
Collapse
Affiliation(s)
- Elisabetta Iessi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
114
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
115
|
Taniguchi M, Ueda Y, Matsushita M, Nagaya S, Hashizume C, Arai K, Kabayama K, Fukase K, Watanabe K, Wardhani LO, Hayashi K, Okazaki T. Deficiency of sphingomyelin synthase 2 prolongs survival by the inhibition of lymphoma infiltration through ICAM-1 reduction. FASEB J 2020; 34:3838-3854. [PMID: 31970839 DOI: 10.1096/fj.201901783rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
The tumor microenvironment (TME) formation involving host cells and cancer cells through cell adhesion molecules (CAMs) is essential for the multiple steps of cancer metastasis and growth. Sphingomyelin synthase 2 (SMS2) is involved in inflammatory diseases such as obesity and diabetes mellitus by regulation of the SM/ceramide balance. However, the involvement of SMS2 in TME formation and metastasis is largely unknown. Here, we report that SMS2-deficient (SMS2-KO) mice show suppressed the EL4 cell infiltration to liver and prolonged survival time. ICAM-1 was identified as a candidate for the inhibition of TME formation in immortalized mouse embryonic fibroblasts (tMEFs) from mRNA array analysis for CAMs. Reduced SM/ceramide balance in SMS2-KO tMEFs suppressed the attachment of EL4 cells through transcriptional reduction of ICAM-1 by the inhibition of NF-κB activation. TNF-α-induced NF-κB activation and subsequent induction of ICAM-1 were suppressed in SMS2-KO tMEFs but restored by SMS2 re-introduction. In the EL4 cell infiltration mouse model, EL4 injection increased ICAM-1 expression in WT liver but not in SMS2-KO mouse liver. Therefore, inhibition of SMS2 may be a therapeutic target to suppress the infiltration of malignant lymphoma.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Yoshibumi Ueda
- Faculty of Medicine, Department of Hematology and Immunology, Kanazawa Medical University, Kahoku, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Michiko Matsushita
- Department of Pathobiological Science and Technology, School of Health Science, University of Tottori, Tottori, Japan
| | - Shingo Nagaya
- Faculty of Medicine, Department of Hematology and Immunology, Kanazawa Medical University, Kahoku, Japan
| | - Chieko Hashizume
- Faculty of Medicine, Department of Hematology and Immunology, Kanazawa Medical University, Kahoku, Japan
| | - Kenta Arai
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan.,Project Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan.,Project Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ken Watanabe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Lusi Oka Wardhani
- Division of Molecular Pathology, Faculty of Medicine, Department of Microbiology and Pathology, Tottori University, Tottori, Japan
| | - Kazuhiko Hayashi
- Division of Molecular Pathology, Faculty of Medicine, Department of Microbiology and Pathology, Tottori University, Tottori, Japan
| | - Toshiro Okazaki
- Faculty of Medicine, Department of Hematology and Immunology, Kanazawa Medical University, Kahoku, Japan.,Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| |
Collapse
|
116
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
117
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
118
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
119
|
Kihara Y. Introduction: Druggable Lipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:1-4. [PMID: 32894504 DOI: 10.1007/978-3-030-50621-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipids are essential for life. They store energy, constitute cellular membranes, serve as signaling molecules, and modify proteins. In the long history of lipid research, many drugs targeting lipid receptors and enzymes that are responsible for lipid metabolism and function have been developed and applied to a variety of diseases. For example, non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed medications for fever, pain, and inflammation. The NSAIDs block prostaglandin production by inhibiting cyclooxygenases. A recent innovative breakthrough in drug discovery for the lipid biology field was the development of the sphingosine 1-phosphate receptor modulators (fingolimod, siponimod and ozanimod) for the treatment of multiple sclerosis, which were approved by the United States Food and Drug Administration in 2010, 2019 and 2020, respectively. This review series of "Druggable Lipid Signaling Pathways" provides 9 outstanding reviews that summarize the currently available drugs that target lipid signaling pathways and also outlines future directions for drug discovery. The review chapters include lipid signaling pathways (prostanoids, leukotrienes, epoxy fatty acids, sphingolipids, lysophospholipids, endocannabinoids, and phosphoinositides) and lipid signaling proteins (lysophospholipid acyltransferases, phosphoinositide 3-kinase, and G protein-coupled receptors (GPCRs)). Drugs targeting lipid signaling pathways promise to be life changing magic for the future of human health and well-being.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
120
|
Wan J, Li J, Bandyopadhyay S, Kelly SL, Xiang Y, Zhang J, Merrill AH, Duan J. Analysis of 1-Deoxysphingoid Bases and Their N-Acyl Metabolites and Exploration of Their Occurrence in Some Food Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12953-12961. [PMID: 31638789 DOI: 10.1021/acs.jafc.9b05708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most common sphingolipids are comprised of "typical" sphingoid bases (sphinganine, sphingosine, and structurally related compounds) and are produced via the condensation of l-serine with a fatty acyl-CoA by serine palmitoyltransferase. Some organisms, including mammals, also produce "atypical" sphingoid bases that lack a 1-hydroxyl group as a result of the utilization of l-alanine or glycine instead of l-serine, resulting in the formation of 1-deoxy- or 1-desoxymethylsphingoid bases, respectively. Elevated production of "atypical" sphingolipids has been associated with human disease, but 1-deoxysphingoid bases have also been found to have potential as anticancer compounds, hence, the importance of knowing more about the occurrence of these compounds in food. Most of the "typical" and "atypical" sphingoid bases are found as the N-acyl metabolites (e.g., ceramides and 1-deoxyceramides) in mammals, but this has not been uniformly assessed in previous studies nor determined in consumed food. Therefore, we developed a method for the quantitative analysis of "typical" and "atypical" sphingoid bases and their N-acyl derivatives by reverse-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. On the basis of these analyses, there was considerable variability in the amounts and molecular subspecies of atypical sphingoid bases and their N-acyl metabolites found in different edible sources. These findings demonstrate that a broader assessment of the types of sphingolipids in foods is needed because some diets might contain sufficient amounts of atypical as well as typical sphingolipids that could have beneficial or possibly deleterious effects on human health.
Collapse
Affiliation(s)
| | - Jian Li
- College of Pharmaceutical Sciences , Ganan Medical University , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Sibali Bandyopadhyay
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Samuel L Kelly
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | | | | | - Alfred H Merrill
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jingjing Duan
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
121
|
Griese M, Bonella F, Costabel U, de Blic J, Tran NB, Liebisch G. Quantitative Lipidomics in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2019; 200:881-887. [DOI: 10.1164/rccm.201901-0086oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Matthias Griese
- German Center for Lung Research, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Ruhrlandklinik University Hospital, Essen, Germany
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Ruhrlandklinik University Hospital, Essen, Germany
| | | | - Nguyen-Binh Tran
- German Center for Lung Research, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
122
|
Lai M, La Rocca V, Amato R, Freer G, Pistello M. Sphingolipid/Ceramide Pathways and Autophagy in the Onset and Progression of Melanoma: Novel Therapeutic Targets and Opportunities. Int J Mol Sci 2019; 20:ijms20143436. [PMID: 31336922 PMCID: PMC6678284 DOI: 10.3390/ijms20143436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a malignant tumor deriving from neoplastic transformation of melanocytes. The incidence of melanoma has increased dramatically over the last 50 years. It accounts for most cases of skin cancer deaths. Early diagnosis leads to remission in 90% of cases of melanoma; conversely, for melanoma at more advanced stages, prognosis becomes more unfavorable also because dvanced melanoma is often resistant to pharmacological and radiological therapies due to genetic plasticity, presence of cancer stem cells that regenerate the tumor, and efficient elimination of drugs. This review illustrates the role of autophagy in tumor progression and resistance to therapy, focusing on molecular targets for future drugs.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Veronica La Rocca
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Rachele Amato
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy.
- Virology Unit, Pisa University Hospital, 56127 Pisa, Italy.
| |
Collapse
|
123
|
Kim MK, Lee W, Yoon GH, Chang EJ, Choi SC, Kim SW. Links between accelerated replicative cellular senescence and down-regulation of SPHK1 transcription. BMB Rep 2019. [PMID: 30885289 PMCID: PMC6476483 DOI: 10.5483/bmbrep.2019.52.3.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adipose-derived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin B1, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division.
Collapse
Affiliation(s)
- Min Kyung Kim
- Departments of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Wooseong Lee
- Departments of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gang-Ho Yoon
- Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Ju Chang
- Departments of Biochemistry and Molecular Biology and Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sun-Cheol Choi
- Departments of Biochemistry and Molecular Biology and Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seong Who Kim
- Departments of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
124
|
Simón MV, Prado Spalm FH, Vera MS, Rotstein NP. Sphingolipids as Emerging Mediators in Retina Degeneration. Front Cell Neurosci 2019; 13:246. [PMID: 31244608 PMCID: PMC6581011 DOI: 10.3389/fncel.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
125
|
Naviaux RK. Incomplete Healing as a Cause of Aging: The Role of Mitochondria and the Cell Danger Response. BIOLOGY 2019; 8:biology8020027. [PMID: 31083530 PMCID: PMC6627909 DOI: 10.3390/biology8020027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
The rate of biological aging varies cyclically and episodically in response to changing environmental conditions and the developmentally-controlled biological systems that sense and respond to those changes. Mitochondria and metabolism are fundamental regulators, and the cell is the fundamental unit of aging. However, aging occurs at all anatomical levels. At levels above the cell, aging in different tissues is qualitatively, quantitatively, and chronologically distinct. For example, the heart can age faster and differently than the kidney and vice versa. Two multicellular features of aging that are universal are: (1) a decrease in physiologic reserve capacity, and (2) a decline in the functional communication between cells and organ systems, leading to death. Decreases in reserve capacity and communication impose kinetic limits on the rate of healing after new injuries, resulting in dyssynchronous and incomplete healing. Exercise mitigates against these losses, but recovery times continue to increase with age. Reinjury before complete healing results in the stacking of incomplete cycles of healing. Developmentally delayed and arrested cells accumulate in the three stages of the cell danger response (CDR1, 2, and 3) that make up the healing cycle. Cells stuck in the CDR create physical and metabolic separation—buffer zones of reduced communication—between previously adjoining, synergistic, and metabolically interdependent cells. Mis-repairs and senescent cells accumulate, and repeated iterations of incomplete cycles of healing lead to progressively dysfunctional cellular mosaics in aging tissues. Metabolic cross-talk between mitochondria and the nucleus, and between neighboring and distant cells via signaling molecules called metabokines regulates the completeness of healing. Purinergic signaling and sphingolipids play key roles in this process. When viewed against the backdrop of the molecular features of the healing cycle, the incomplete healing model provides a new framework for understanding the hallmarks of aging and generates a number of testable hypotheses for new treatments.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, Pathology, University of California, San Diego School of Medicine, San Diego, CA 92103, USA.
| |
Collapse
|
126
|
Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease. J Lipid Res 2019; 60:913-918. [PMID: 30846529 PMCID: PMC6495170 DOI: 10.1194/jlr.s092874] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a critical bioactive lipid involved in diverse cellular processes. It has been proposed to regulate cellular processes by influencing membrane properties and by directly interacting with effector proteins. Advances over the past decade have improved our understanding of ceramide as a bioactive lipid. Generation and characterization of ceramide-metabolizing enzyme KO mice, development of specific inhibitors and ceramide-specific antibodies, use of advanced microscopy and mass spectrometry, and design of synthetic ceramide derivatives have all provided insight into the signaling mechanisms of ceramide and its implications in disease. As a result, the role of ceramide in biological functions and disease are now better understood, with promise for development of therapeutic strategies to treat ceramide-regulated diseases.
Collapse
Affiliation(s)
- Jeffrey L Stith
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794
| | - Fabiola N Velazquez
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794; Northport Veterans Affairs Medical Center Northport, NY 11768.
| |
Collapse
|
127
|
RethnaPriya E, Ravichandran S, Gobinath T, Tilvi S, Devi SP. Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni. Chem Phys Lipids 2019; 221:73-82. [PMID: 30922836 DOI: 10.1016/j.chemphyslip.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Sphingolipids have been considered for many years only as structural components of membranes. It is now acknowledged that they are also involved in controlling cellular processes such as proliferation.The present work was designed to find the anticancer activity of the crab Dromia dehanni hemolymph in in-vivo and in vitro with special reference to the anticancer compound sphingolipids isolation and characterization. The active fraction of the purified hemolymph was subjected to NMR and ESI-MS/MS analysis. The ESI-MS/MS spectrum exhibited intense signals for sodiated molecular ions [M + Na]+ of sphingomyelins (SM) identified as N-2-O-Acetyl-12 pentadecenoyl sphingosine phosphorylcholine, N-9-eicosenoyl- sphinganine phosphocholine and the corresponding dehydro sphingomyelin, N-9-eicosenoyl- dehydro- sphinganine phosphocholine along with the ions at m/z 147, 184 characteristic of phosphocholine. The present study revealed D. dehaani might be a great source for the novel anti-cancer compounds which can be used for human benefits.
Collapse
Affiliation(s)
- Elangovan RethnaPriya
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India.
| | - Thilagar Gobinath
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Supriya Tilvi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| | - S Prabha Devi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| |
Collapse
|
128
|
|
129
|
Cogolludo A, Villamor E, Perez-Vizcaino F, Moreno L. Ceramide and Regulation of Vascular Tone. Int J Mol Sci 2019; 20:ijms20020411. [PMID: 30669371 PMCID: PMC6359388 DOI: 10.3390/ijms20020411] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
In addition to playing a role as a structural component of cellular membranes, ceramide is now clearly recognized as a bioactive lipid implicated in a variety of physiological functions. This review aims to provide updated information on the role of ceramide in the regulation of vascular tone. Ceramide may induce vasodilator or vasoconstrictor effects by interacting with several signaling pathways in endothelial and smooth muscle cells. There is a clear, albeit complex, interaction between ceramide and redox signaling. In fact, reactive oxygen species (ROS) activate different ceramide generating pathways and, conversely, ceramide is known to increase ROS production. In recent years, ceramide has emerged as a novel key player in oxygen sensing in vascular cells and mediating vascular responses of crucial physiological relevance such as hypoxic pulmonary vasoconstriction (HPV) or normoxic ductus arteriosus constriction. Likewise, a growing body of evidence over the last years suggests that exaggerated production of vascular ceramide may have detrimental effects in a number of pathological processes including cardiovascular and lung diseases.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), 6202 AZ Maastricht, The Netherlands.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
130
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
131
|
Ravichandran S, Finlin BS, Kern PA, Özcan S. Sphk2 -/- mice are protected from obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1865:570-576. [PMID: 30593892 DOI: 10.1016/j.bbadis.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
Sphingosine kinases phosphorylate sphingosine to sphingosine 1‑phosphate (S1P), which functions as a signaling molecule. We have previously shown that sphingosine kinase 2 (Sphk2) is important for insulin secretion. To obtain a better understanding of the role of Sphk2 in glucose and lipid metabolism, we have characterized 20- and 52-week old Sphk2-/- mice using glucose and insulin tolerance tests and by analyzing metabolic gene expression in adipose tissue. A detailed metabolic characterization of these mice revealed that aging Sphk2-/- mice are protected from metabolic decline and obesity compared to WT mice. Specifically, we found that 52-week old male Sphk2-/- mice had decreased weight and fat mass, and increased glucose tolerance and insulin sensitivity compared to control mice. Indirect calorimetry studies demonstrated an increased energy expenditure and food intake in 52-week old male Sphk2-/- versus control mice. Furthermore, expression of adiponectin gene in adipose tissue was increased and the plasma levels of adiponectin elevated in aged Sphk2-/- mice compared to WT. Analysis of lipid metabolic gene expression in adipose tissue showed increased expression of the Atgl gene, which was associated with increased Atgl protein levels. Atgl encodes for the adipocyte triglyceride lipase, which catalyzes the rate-limiting step of lipolysis. In summary, these data suggest that mice lacking the Sphk2 gene are protected from obesity and insulin resistance during aging. The beneficial metabolic effects observed in aged Sphk2-/- mice may be in part due to enhanced lipolysis by Atgl and increased levels of adiponectin, which has lipid- and glucose-lowering effects.
Collapse
Affiliation(s)
- Shwetha Ravichandran
- Department of Molecular and Cellular Biochemistry, Barnstable Brown Diabetes and Obesity Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Brian S Finlin
- Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Sabire Özcan
- Department of Molecular and Cellular Biochemistry, Barnstable Brown Diabetes and Obesity Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
132
|
Walters RO, Arias E, Diaz A, Burgos ES, Guan F, Tiano S, Mao K, Green CL, Qiu Y, Shah H, Wang D, Hudgins AD, Tabrizian T, Tosti V, Shechter D, Fontana L, Kurland IJ, Barzilai N, Cuervo AM, Promislow DEL, Huffman DM. Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. Cell Rep 2018; 25:663-676.e6. [PMID: 30332646 PMCID: PMC6280974 DOI: 10.1016/j.celrep.2018.09.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
A hallmark of aging is a decline in metabolic homeostasis, which is attenuated by dietary restriction (DR). However, the interaction of aging and DR with the metabolome is not well understood. We report that DR is a stronger modulator of the rat metabolome than age in plasma and tissues. A comparative metabolomic screen in rodents and humans identified circulating sarcosine as being similarly reduced with aging and increased by DR, while sarcosine is also elevated in long-lived Ames dwarf mice. Pathway analysis in aged sarcosine-replete rats identify this biogenic amine as an integral node in the metabolome network. Finally, we show that sarcosine can activate autophagy in cultured cells and enhances autophagic flux in vivo, suggesting a potential role in autophagy induction by DR. Thus, these data identify circulating sarcosine as a biomarker of aging and DR in mammalians and may contribute to age-related alterations in the metabolome and in proteostasis.
Collapse
Affiliation(s)
- Ryan O Walters
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Esperanza Arias
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fangxia Guan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simoni Tiano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Yungping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein-Mount Sinai Diabetes Research Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hardik Shah
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein-Mount Sinai Diabetes Research Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Donghai Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam D Hudgins
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tahmineh Tabrizian
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Valeria Tosti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; Central Clinical School, The University of Sydney, NSW 2006, Australia; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Sciences, Brescia University Medical School, Brescia, Italy
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein-Mount Sinai Diabetes Research Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA, USA; Department of Biology, University of Washington, Seattle, WA, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|