101
|
Spear TT, Wang Y, Foley KC, Murray DC, Scurti GM, Simms PE, Garrett-Mayer E, Hellman LM, Baker BM, Nishimura MI. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells. Cancer Immunol Immunother 2017; 66:1411-1424. [PMID: 28634816 PMCID: PMC5647210 DOI: 10.1007/s00262-017-2032-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.
| | - Yuan Wang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Office of Research Services, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29415, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| |
Collapse
|
102
|
Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood 2017; 131:108-120. [PMID: 29051183 DOI: 10.1182/blood-2017-07-791608] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022] Open
Abstract
Leukemia relapse remains the major cause of allogeneic hematopoietic stem cell transplantation (HCT) failure, and the prognosis for patients with post-HCT relapse is poor. There is compelling evidence that potent selective antileukemic effects can be delivered by donor T cells specific for particular minor histocompatibility (H) antigens. Thus, T-cell receptors (TCRs) isolated from minor H antigen-specific T cells represent an untapped resource for developing targeted T-cell immunotherapy to manage post-HCT leukemic relapse. Recognizing that several elements may be crucial to the efficacy and safety of engineered T-cell immunotherapy, we developed a therapeutic transgene with 4 components: (1) a TCR specific for the hematopoietic-restricted, leukemia-associated minor H antigen, HA-1; (2) a CD8 coreceptor to promote function of the class I-restricted TCR in CD4+ T cells; (3) an inducible caspase 9 safety switch to enable elimination of the HA-1 TCR T cells in case of toxicity; and (4) a CD34-CD20 epitope to facilitate selection of the engineered cell product and tracking of transferred HA-1 TCR T cells. The T-cell product includes HA-1 TCR CD4+ T cells to augment the persistence and function of the HA-1 TCR CD8+ T cells and includes only memory T cells; naive T cells are excluded to limit the potential for alloreactivity mediated by native TCR coexpressed by HA-1 TCR T cells. We describe the development of this unique immunotherapy and demonstrate functional responses to primary leukemia by CD4+ and CD8+ T cells transduced with a lentiviral vector incorporating the HA-1 TCR transgene construct.
Collapse
|
103
|
Abstract
Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation. However, TCRs depend on heavy signalling machinery only present in T cells which restricts the type of eligible therapeutic cells. Hence, an introduced therapeutic TCR will compete with the endogenous TCR for the signalling proteins and carries the potential risk of mixed dimer formation giving rise to a new TCR with unpredictable specificity. We have fused a soluble TCR construct to a CAR-signalling tail and named the final product TCR-CAR. We here show that, if expressed, the TCR-CAR conserved the specificity and the functionality of the original TCR. In addition, we demonstrate that TCR-CAR redirection was not restricted to T cells. Indeed, after transduction, the NK cell line NK-92 became TCR positive and reacted against pMHC target. This opens therapeutic avenues combing the killing efficiency of NK cells with the diversified target recognition of TCRs.
Collapse
|
104
|
Foley KC, Spear TT, Murray DC, Nagato K, Garrett-Mayer E, Nishimura MI. HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:105-115. [PMID: 28573185 PMCID: PMC5447397 DOI: 10.1016/j.omto.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/13/2017] [Indexed: 12/21/2022]
Abstract
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
Collapse
Affiliation(s)
- Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kaoru Nagato
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29415, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29415, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
105
|
Hull CM, Nickolay LE, Estorninho M, Richardson MW, Riley JL, Peakman M, Maher J, Tree TI. Generation of human islet-specific regulatory T cells by TCR gene transfer. J Autoimmun 2017; 79:63-73. [DOI: 10.1016/j.jaut.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
106
|
Abstract
PURPOSE OF REVIEW Alternative approaches to conventional drug-based cancer treatments have seen T cell therapies deployed more widely over the last decade. This is largely due to their ability to target and kill specific cell types based on receptor recognition. Introduction of recombinant T cell receptors (TCRs) using viral vectors and HLA-independent T cell therapies using chimeric antigen receptors (CARs) are discussed. This article reviews the tools used for genome editing, with particular emphasis on the applications of site-specific DNA nuclease mediated editing for T cell therapies. RECENT FINDINGS Genetic engineering of T cells using TCRs and CARs with redirected antigen-targeting specificity has resulted in clinical success of several immunotherapies. In conjunction, the application of genome editing technologies has resulted in the generation of HLA-independent universal T cells for allogeneic transplantation, improved T cell sustainability through knockout of the checkpoint inhibitor, programmed cell death protein-1 (PD-1), and has shown efficacy as an antiviral therapy through direct targeting of viral genomic sequences and entry receptors. SUMMARY The combined use of engineered antigen-targeting moieties and innovative genome editing technologies have recently shown success in a small number of clinical trials targeting HIV and hematological malignancies and are now being incorporated into existing strategies for other immunotherapies.
Collapse
Affiliation(s)
- Juliette M. K. M. Delhove
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London (UCL), 30 Guilford Street, London, WC1N 1EH UK
| | - Waseem Qasim
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London (UCL), 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
107
|
Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C, Schmidt M, Gabriel R. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:213-224. [PMID: 28345006 PMCID: PMC5363317 DOI: 10.1016/j.omtm.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
In T cells with transgenic high-avidity T cell receptors (TCRs), endogenous and transferred TCR chains compete for surface expression and may pair inappropriately, potentially causing autoimmunity. To knock out endogenous TCR expression, we assembled 12 transcription activator-like effector nucleases (TALENs) and five guide RNAs (gRNAs) from the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Using TALEN mRNA, TCR knockout was successful in up to 81% of T cells. Additionally, we were able to verify targeted gene addition of a GFP gene by homology-directed repair at the TALEN target site, using a donor suitable for replacement of the reporter transgene with therapeutic TCR chains. Remarkably, analysis of TALEN and CRISPR/Cas9 specificity using integrase-defective lentiviral vector capture revealed only one off-target site for one of the gRNAs and three off-target sites for both of the TALENs, indicating a high level of specificity. Collectively, our work shows highly efficient and specific nucleases for T cell engineering.
Collapse
Affiliation(s)
- Friederike Knipping
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, Seoul 05505, Republic of Korea
| | - Karl Petri
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, Seoul 05505, Republic of Korea
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
108
|
Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, Bonte S, Taghon T, Leclercq G, Kerre T, Debets R, Vermijlen D, Abken H, Vandekerckhove B. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology 2017; 6:e1283460. [PMID: 28405508 PMCID: PMC5384408 DOI: 10.1080/2162402x.2017.1283460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/25/2022] Open
Abstract
Recent clinical studies indicate that adoptive T-cell therapy and especially chimeric antigen receptor (CAR) T-cell therapy is a very potent and potentially curative treatment for B-lineage hematologic malignancies. Currently, autologous peripheral blood T cells are used for adoptive T-cell therapy. Adoptive T cells derived from healthy allogeneic donors may have several advantages; however, the expected occurrence of graft versus host disease (GvHD) as a consequence of the diverse allogeneic T-cell receptor (TCR) repertoire expressed by these cells compromises this approach. Here, we generated T cells from cord blood hematopoietic progenitor cells (HPCs) that were transduced to express an antigen receptor (AR): either a CAR or a TCR with or without built-in CD28 co-stimulatory domains. These AR-transgenic HPCs were culture-expanded on an OP9-DL1 feeder layer and subsequently differentiated to CD5+CD7+ T-lineage precursors, to CD4+ CD8+ double positive cells and finally to mature AR+ T cells. The AR+ T cells were largely naive CD45RA+CD62L+ T cells. These T cells had mostly germline TCRα and TCRβ loci and therefore lacked surface-expressed CD3/TCRαβ complexes. The CD3- AR-transgenic cells were mono-specific, functional T cells as they displayed specific cytotoxic activity. Cytokine production, including IL-2, was prominent in those cells bearing ARs with built-in CD28 domains. Data sustain the concept that cord blood HPC derived, in vitro generated allogeneic CD3- AR+ T cells can be used to more effectively eliminate malignant cells, while at the same time limiting the occurrence of GvHD.
Collapse
Affiliation(s)
- Yasmine Van Caeneghem
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Stijn De Munter
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Paola Tieppo
- Department of Biopharmacy and Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | - Glenn Goetgeluk
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Karin Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Greet Verstichel
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Sarah Bonte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Tessa Kerre
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Immunology, Erasmus MC Cancer Center , Rotterdam, the Netherlands
| | - David Vermijlen
- Department of Biopharmacy and Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC) and Department of Internal Medicine, University of Cologne , Cologne, Germany
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| |
Collapse
|
109
|
Song J. Stem Cell-Derived Regulatory T Cells for Therapeutic Use in Arthritis. ACTA ACUST UNITED AC 2017; 2. [PMID: 28042612 PMCID: PMC5193373 DOI: 10.16966/2470-1025.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy regulatory T cells (Tregs) to treat autoimmune arthritis as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain unknown. An ongoing project will determine the mechanisms underlying the Ag-specific PSC-Treg treatments that aim to modulate tolerance in autoimmune arthritis. The knowledge gained from these studies will provide new insights into cell-based therapies in autoimmune arthritis, and advance the understanding of fundamental mechanisms underlying Treg differentiation.
Collapse
Affiliation(s)
- Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
110
|
Hu Z, Xia J, Fan W, Wargo J, Yang YG. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice. Oncotarget 2016; 7:6448-59. [PMID: 26824989 PMCID: PMC4872726 DOI: 10.18632/oncotarget.7044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy.
Collapse
Affiliation(s)
- Zheng Hu
- The First Bethune Hospital and Institute of Immunology, Jilin University, Changchun, China.,Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jinxing Xia
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Wei Fan
- The First Bethune Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Jennifer Wargo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yong-Guang Yang
- The First Bethune Hospital and Institute of Immunology, Jilin University, Changchun, China.,Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
111
|
Ando M, Nakauchi H. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 2016; 47:2-12. [PMID: 27826124 DOI: 10.1016/j.exphem.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Adoptive T-cell therapy to target and kill tumor cells shows promise and induces durable remissions in selected malignancies. However, for most cancers, clinical utility is limited. Cytotoxic T lymphocytes continuously exposed to viral or tumor antigens, with long-term expansion, may become unable to proliferate ("exhausted"). To exploit fully rejuvenated induced pluripotent stem cell (iPSC)-derived antigen-specific cytotoxic T lymphocytes is a potentially powerful approach. We review recent progress in engineering iPSC-derived T cells and prospects for clinical translation. We also describe the importance of introducing a suicide gene safeguard system into adoptive T-cell therapy, including iPSC-derived T-cell therapy, to protect from unexpected events in first-in-humans clinical trials.
Collapse
Affiliation(s)
- Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
112
|
Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy 2016; 18:1382-1392. [DOI: 10.1016/j.jcyt.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023]
|
113
|
Song J. Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy. Immune Netw 2016; 16:281-285. [PMID: 27799873 PMCID: PMC5086452 DOI: 10.4110/in.2016.16.5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.
Collapse
Affiliation(s)
- Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
114
|
Abstract
Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs) that contain antibody variable domains (single-chain fragments variable) and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens) serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
115
|
Abstract
This review describes the toxicities associated with the therapeutic administration of cultured immune cells for the treatment of cancer by review of the literature. The toxicities seen are of 4 types: infection associated with preparative host immunosuppression with chemotherapy prior to cell administration, acute cytokine release by the infused cells, autoimmune complications from attacking "self-antigens" also expressed by some normal tissues, and off-target toxicities where antigens, other than the intended, are attacked. Complications from immunosuppression and cytokine release are often short-lived and currently best addressed by supportive care. Autoimmunity, either "on target, off tumor" or "off target," is the result of the selection of imperfect target antigens. In some cases, this can be tolerated because the benefits outweigh the costs. In other cases, alternative target antigens must be found. New strategies targeting viral antigens for virally induced cancers and antigens encoded by tumor-specific mutations seem to have promise as safe and potentially effective targets for adoptive cell transfer.
Collapse
|
116
|
Wang Z, Li B, Ren Y, Ye Z. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities. Front Immunol 2016; 7:353. [PMID: 27683579 PMCID: PMC5021687 DOI: 10.3389/fimmu.2016.00353] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Even though combining surgery with chemotherapy has significantly improved the prognosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are often non-responsive to chemotherapy, making development of novel efficient therapeutic methods an urgent need. Adoptive immunotherapy has the potential to be a useful non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, including immunotherapies using naturally occurring or genetically modified T cells, have been found to hold promise in the treatment of hematologic malignancies and solid tumors. In this review, we will discuss possible T-cell-based therapies against osteosarcoma with a special emphasis on combination strategies to improve the effectiveness of adoptive T cell transfer and, thus, to provide a rationale for the clinical development of immunotherapies.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Binghao Li
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Yingqing Ren
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Zhaoming Ye
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
117
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
118
|
Gill S. Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies. Curr Hematol Malig Rep 2016; 11:318-25. [PMID: 27136938 PMCID: PMC5018307 DOI: 10.1007/s11899-016-0330-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hematologic oncologists now have at their disposal (or a referral away) a myriad of new options to get from point A (a patient with relapsed or poor-risk disease) to point B (potential tumor eradication and long-term disease-free survival). In this perspective piece, we discuss the putative mechanisms of action and the relative strengths and weaknesses of currently available cellular therapy approaches. Notably, while many of these approaches have been published in high impact journals, with the exception of allogeneic stem cell transplantation and of checkpoint inhibitors (PD1/PDL1 or CTLA4 blockade), the published clinical trials have mostly been early phase, uncontrolled studies. Therefore, many of the new cellular therapy approaches have yet to demonstrate incontrovertible evidence of enhanced overall survival compared with controls. Nonetheless, the science behind these is sure to advance our understanding of cancer immunology and ultimately to bring us closer to our goal of curing cancer.
Collapse
Affiliation(s)
- Saar Gill
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
119
|
Mensali N, Ying F, Sheng VOY, Yang W, Walseng E, Kumari S, Fallang LE, Kolstad A, Uckert W, Malmberg KJ, Wälchli S, Olweus J. Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncoimmunology 2016; 5:e1138199. [PMID: 27467957 DOI: 10.1080/2162402x.2016.1138199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeted to CD19 are effective in treatment of B-lymphoid malignancies. However, CARs recognize all CD19 positive (pos) cells, and durable responses are linked to profound depletion of normal B cells. Here, we designed a strategy to specifically target patient B cells by utilizing the fact that T-cell receptors (TCRs), in contrast to CARs, are restricted by HLA. Two TCRs recognizing a peptide from CD20 (SLFLGILSV) in the context of foreign HLA-A*02:01 (CD20p/HLA-A2) were expressed as 2A-bicistronic constructs. T cells re-directed with the A23 and A94 TCR constructs efficiently recognized malignant HLA-A2(pos) B cells endogenously expressing CD20, including patient-derived follicular lymphoma and chronic lymphocytic leukemia (CLL) cells. In contrast, a wide range of HLA-A2(pos)CD20(neg) cells representing different tissue origins, and HLA-A2(neg)CD20(pos) cells, were not recognized. Cytotoxic T cells re-directed with CD20p/HLA-A2-specific TCRs or CD19 CARs responded with similar potencies to cells endogenously expressing comparable levels of CD20 and CD19. The CD20p/HLA-A2-specific TCRs recognized CD20p bound to HLA-A2 with high functional avidity. The results show that T cells expressing CD20p/HLA-A2-specific TCRs efficiently and specifically target B cells. When used in context of an HLA-haploidentical allogeneic stem cell transplantation where the donor is HLA-A2(neg) and the patient HLA-A2(pos), these T cells would selectively kill patient-derived B cells and allow reconstitution of the B-cell compartment with HLA-A2(neg) donor cells. These results should pave the way for clinical testing of T cells genetically engineered to target malignant B cells without permanent depletion of normal B cells.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fan Ying
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Oei Yi Sheng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Even Walseng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Shraddha Kumari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars-Egil Fallang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Arne Kolstad
- K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine and Institute of Biology, Humboldt University , Berlin, Germany
| | - Karl Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Cell Therapy, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
120
|
Casey NP, Fujiwara H, Tanimoto K, Okamoto S, Mineno J, Kuzushima K, Shiku H, Yasukawa M. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy. PLoS One 2016; 11:e0156896. [PMID: 27271876 PMCID: PMC4896450 DOI: 10.1371/journal.pone.0156896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/21/2016] [Indexed: 11/23/2022] Open
Abstract
Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient’s own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this ‘siTCR’ vector. We then compared the activity of this vector against the original, ‘conventional’ vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene-transfer will be crucial for clinical applications of this technology.
Collapse
Affiliation(s)
- Nicholas Paul Casey
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | - Hiroshi Shiku
- Department of Cancer Vaccine and Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
121
|
Vu BT, Tan Le D, Van Pham P. Synergistic effect of chimeric antigen receptors and cytokineinduced killer cells: An innovative combination for cancer therapy. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
122
|
Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood 2016; 127:3305-11. [PMID: 27207802 DOI: 10.1182/blood-2015-11-629071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients.
Collapse
|
123
|
Sebestyen Z, Scheper W, Vyborova A, Gu S, Rychnavska Z, Schiffler M, Cleven A, Chéneau C, van Noorden M, Peigné CM, Olive D, Lebbink RJ, Oostvogels R, Mutis T, Schuurhuis GJ, Adams EJ, Scotet E, Kuball J. RhoB Mediates Phosphoantigen Recognition by Vγ9Vδ2 T Cell Receptor. Cell Rep 2016; 15:1973-85. [PMID: 27210746 DOI: 10.1016/j.celrep.2016.04.081] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/09/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
Human Vγ9Vδ2 T cells respond to tumor cells by sensing elevated levels of phosphorylated intermediates of the dysregulated mevalonate pathway, which is translated into activating signals by the ubiquitously expressed butyrophilin A1 (BTN3A1) through yet unknown mechanisms. Here, we developed an unbiased, genome-wide screening method that identified RhoB as a critical mediator of Vγ9Vδ2 TCR activation in tumor cells. Our results show that Vγ9Vδ2 TCR activation is modulated by the GTPase activity of RhoB and its redistribution to BTN3A1. This is associated with cytoskeletal changes that directly stabilize BTN3A1 in the membrane, and the subsequent dissociation of RhoB from BTN3A1. Furthermore, phosphoantigen accumulation induces a conformational change in BTN3A1, rendering its extracellular domains recognizable by Vγ9Vδ2 TCRs. These complementary events provide further evidence for inside-out signaling as an essential step in the recognition of tumor cells by a Vγ9Vδ2 TCR.
Collapse
Affiliation(s)
- Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Wouter Scheper
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Anna Vyborova
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Siyi Gu
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht 3508 GA, the Netherlands
| | - Zuzana Rychnavska
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Marleen Schiffler
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Astrid Cleven
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Coraline Chéneau
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Martje van Noorden
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Cassie-Marie Peigné
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, 44000 Nantes, France; University of Nantes, 44000 Nantes, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, 44000 Nantes, France
| | - Daniel Olive
- INSERM, Centre de Recherche en Cancérologie Marseille, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584, the Netherlands
| | - Rimke Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht 3508 GA, the Netherlands
| | - Tuna Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht 3508 GA, the Netherlands
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center, Amsterdam 1081, the Netherlands
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57(th) Street, Chicago, IL 60615, USA
| | - Emmanuel Scotet
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, 44000 Nantes, France; University of Nantes, 44000 Nantes, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, 44000 Nantes, France
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands.
| |
Collapse
|
124
|
Fousek K, Ahmed N. The Evolution of T-cell Therapies for Solid Malignancies. Clin Cancer Res 2016; 21:3384-92. [PMID: 26240290 DOI: 10.1158/1078-0432.ccr-14-2675] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Primary resistant, recurrent, and relapsed solid tumors are often nonresponsive to conventional antineoplastic therapies. Moreover, in responsive tumors, the therapeutic-to-toxic range of these interventions remains quite narrow, such that side effects of therapy are substantial. Targeted therapies, such as adoptive T-cell transfer, not only spare normal tissues but also use alternative killing mechanisms to which the tumor cells are usually not immune. Adoptive T-cell transfer for solid tumors faces unique challenges because of the inherent heterogeneity of tumor parenchyma, the complexity of the tumor microenvironment, and tumor occurrence in areas with limited therapeutic accessibility. In this review, we examine the recent evolution of various T-cell-based immunotherapeutics, the mechanisms of action behind their antitumor activity, their increasing complexity, and the prospect of building on previous successes in the treatment of solid tumors.
Collapse
Affiliation(s)
- Kristen Fousek
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas. Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas. Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| | - Nabil Ahmed
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas. Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas. Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
125
|
Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 2016; 65:631-49. [PMID: 27138532 DOI: 10.1007/s00262-016-1842-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
Immunotherapy is one of the most promising and innovative approaches to treat cancer, viral infections, and other immune-modulated diseases. Adoptive immunotherapy using gene-modified T cells is an exciting and rapidly evolving field. Exploiting knowledge of basic T cell biology and immune cell receptor function has fostered innovative approaches to modify immune cell function. Highly translatable clinical technologies have been developed to redirect T cell specificity by introducing designed receptors. The ability to engineer T cells to manifest desired phenotypes and functions is now a thrilling reality. In this review, we focus on outlining different varieties of genetically engineered T cells, their respective advantages and disadvantages as tools for immunotherapy, and their promise and drawbacks in the clinic.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.
| | - Kaoru Nagato
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| |
Collapse
|
126
|
WANG CHUNYAN, YU PEIFA, HE XIAOBING, FANG YONGXIANG, CHENG WENYU, JING ZHIZHONG. αβ T-cell receptor bias in disease and therapy (Review). Int J Oncol 2016; 48:2247-56. [DOI: 10.3892/ijo.2016.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
|
127
|
Holler A, Zech M, Ghorashian S, Pike R, Hotblack A, Veliça P, Xue SA, Chakraverty R, Morris EC, Stauss HJ. Expression of a dominant T-cell receptor can reduce toxicity and enhance tumor protection of allogeneic T-cell therapy. Haematologica 2016; 101:482-90. [PMID: 26802053 PMCID: PMC5004405 DOI: 10.3324/haematol.2015.132712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Due to the lack of specificity for tumor antigens, allogeneic T-cell therapy is associated with graft-versus-host disease. Enhancing the anti-tumor specificity while reducing the graft-versus-host disease risk of allogeneic T cells has remained a research focus. In this study, we demonstrate that the introduction of 'dominant' T-cell receptors into primary murine T cells can suppress the expression of endogenous T-cell receptors in a large proportion of the gene-modified T cells. Adoptive transfer of allogeneic T cells expressing a 'dominant' T-cell receptor significantly reduced the graft-versus-host toxicity in recipient mice. Using two bone marrow transplant models, enhanced anti-tumor activity was observed in the presence of reduced graft-versus-host disease. However, although transfer of T-cell receptor gene-modified allogeneic T cells resulted in the elimination of antigen-positive tumor cells and improved the survival of treated mice, it was associated with accumulation of T cells expressing endogenous T-cell receptors and the development of delayed graft-versus-host disease. The in-vivo deletion of the engineered T cells, mediated by endogenous mouse mammary tumor virus MTV8 and MTV9, abolished graft-versus-host disease while retaining significant anti-tumor activity of adoptively transferred T cells. Together, this study shows that the in-vitro selection of allogeneic T cells expressing high levels of a 'dominant' T-cell receptor can lower acute graft-versus-host disease and enhance anti-tumor activity of adoptive cell therapy, while the in-vivo outgrowth of T cells expressing endogenous T-cell receptors remains a risk factor for the delayed onset of graft-versus-host disease.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/methods
- Cell Line, Tumor
- Female
- Gene Expression
- Genes, Dominant
- Genetic Vectors/immunology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Graft vs Host Disease/prevention & control
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Depletion/methods
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transgenes
- Transplantation, Homologous
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Angelika Holler
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Mathias Zech
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Sara Ghorashian
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Rebecca Pike
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Alastair Hotblack
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Pedro Veliça
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Shao-An Xue
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Ronjon Chakraverty
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London Department of Haematology, Cancer Institute, University College London, UK
| | - Emma C Morris
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Hans J Stauss
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| |
Collapse
|
128
|
Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell SR. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol 2016; 34:430-4. [PMID: 26900664 PMCID: PMC4940167 DOI: 10.1038/nbt.3461] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
The tactical introduction of Strep-tag II into synthetic antigen
receptors provides engineered T cells with a marker for identification and rapid
purification, and a functional element for selective antibody coated
microbead-driven large-scale expansion. Such receptor designs can be applied to
chimeric antigen receptors of different ligand specificities and costimulatory
domains, and to T cell receptors to facilitate cGMP manufacturing of adoptive T
cell therapies to treat cancer and other diseases.
Collapse
Affiliation(s)
- Lingfeng Liu
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel Sommermeyer
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra Cabanov
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paula Kosasih
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tyler Hill
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Institute for Advanced Study, Technical University of Munich, Munich, Germany
| |
Collapse
|
129
|
Haque M, Song J, Fino K, Sandhu P, Wang Y, Ni B, Fang D, Song J. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplant 2016; 25:811-27. [PMID: 26777320 DOI: 10.3727/096368916x690467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Genetic engineering of T lymphocytes is an appealing strategy to confer and enhance new antitumor specificities to generate effective anticancer cell products for adoptive immunotherapy. The two main approaches are based either on transgenic tumor-antigen specific T cell receptors (TCR) or chimeric antigen receptors (CAR). Initial clinical trials reported important results against selected diseases, along with relevant warnings. Ongoing research challenges are directed toward a widespread application of this approach enhancing the range of possible target antigens, antitumor activity and safety, but also addressing logistic issues regarding cost/effectiveness, up-scaled/automated production and compliance with regulations.
Collapse
Affiliation(s)
- Dario Sangiolo
- a Department of Oncology , University of Turin , Turin , Italy.,b Laboratory of Experimental Cell Therapy , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Torino , Italy
| |
Collapse
|
131
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
132
|
Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies. Clin Cancer Res 2015; 21:5191-7. [PMID: 26463711 DOI: 10.1158/1078-0432.ccr-15-0860] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022]
Abstract
The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion.
Collapse
Affiliation(s)
- Thomas M Schmitt
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ingunn M Stromnes
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington
| | - Aude G Chapuis
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington. Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
133
|
Zheng Y, Parsonage G, Zhuang X, Machado LR, James CH, Salman A, Searle PF, Hui EP, Chan ATC, Lee SP. Human Leukocyte Antigen (HLA) A*1101-Restricted Epstein-Barr Virus-Specific T-cell Receptor Gene Transfer to Target Nasopharyngeal Carcinoma. Cancer Immunol Res 2015; 3:1138-47. [PMID: 25711537 PMCID: PMC4456157 DOI: 10.1158/2326-6066.cir-14-0203-t] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/12/2015] [Indexed: 02/02/2023]
Abstract
Infusing virus-specific T cells is effective treatment for rare Epstein-Barr virus (EBV)-associated posttransplant lymphomas, and more limited success has been reported using this approach to treat a far more common EBV-associated malignancy, nasopharyngeal carcinoma (NPC). However, current approaches using EBV-transformed lymphoblastoid cell lines to reactivate EBV-specific T cells for infusion take 2 to 3 months of in vitro culture and favor outgrowth of T cells targeting viral antigens expressed within EBV(+) lymphomas, but not in NPC. Here, we explore T-cell receptor (TCR) gene transfer to rapidly and reliably generate T cells specific for the NPC-associated viral protein LMP2. We cloned a human leukocyte antigen (HLA) A*1101-restricted TCR, which would be widely applicable because 40% of NPC patients carry this HLA allele. Studying both the wild-type and modified forms, we have optimized expression of the TCR and demonstrated high-avidity antigen-specific function (proliferation, cytotoxicity, and cytokine release) in both CD8(+) and CD4(+) T cells. The engineered T cells also inhibited LMP2(+) epithelial tumor growth in a mouse model. Furthermore, transduced T cells from patients with advanced NPC lysed LMP2-expressing NPC cell lines. Using this approach, within a few days large numbers of high-avidity LMP2-specific T cells can be generated reliably to treat NPC, thus providing an ideal clinical setting to test TCR gene transfer without the risk of autoimmunity through targeting self-antigens.
Collapse
Affiliation(s)
- Yong Zheng
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Greg Parsonage
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiaodong Zhuang
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lee R Machado
- School of Health, University of Northampton, Boughton Green Road, Northampton, United Kingdom
| | - Christine H James
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Asmaa Salman
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Peter F Searle
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Edwin P Hui
- Partner State Key Laboratory of Oncology in South China, Sir Y.K. Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
| | - Anthony T C Chan
- Partner State Key Laboratory of Oncology in South China, Sir Y.K. Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
| | - Steven P Lee
- School of Cancer Sciences, Cancer Immunology & Immunotherapy Centre (CIIC), University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
134
|
Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol 2015; 67:46-57. [DOI: 10.1016/j.molimm.2014.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023]
|
135
|
Stauss HJ, Morris EC, Abken H. Cancer gene therapy with T cell receptors and chimeric antigen receptors. Curr Opin Pharmacol 2015; 24:113-8. [PMID: 26342910 DOI: 10.1016/j.coph.2015.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Viral and non-viral gene transfer technologies have been used to efficiently generate therapeutic T cells with desired cancer-specificity. Chimeric antigen receptors (CARs) redirect T cell specificity toward antibody-recognized antigens expressed on the surface of cancer cells, while T cell receptors (TCRs) extend the range of targets to include intracellular tumor antigens. CAR redirected T cells specific for the B cell differentiation antigen CD19 have shown dramatic efficacy in the treatment of B cell malignancies, while TCR-redirected T cells have shown benefits in patients suffering from solid cancer. In this review we will present strategies to optimize CAR and TCR function, and discuss the importance of target antigen selection to enhance tumor specificity, while reducing on-target and off-target toxicity.
Collapse
Affiliation(s)
- Hans J Stauss
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | - Emma C Morris
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Clinic I for Internal Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
136
|
Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol 2015; 37:799-806. [PMID: 26250457 DOI: 10.1007/s13277-015-3845-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022] Open
Abstract
Alpha-fetoprotein (AFP) is overexpressed in hepatocellular carcinoma (HCC) and could serve as a tumor-associated antigen (TAA) and potential target for adoptive immunotherapy. However, low frequency and severe functional impairment of AFP-specific T cells in vivo hamper adoptive infusion. TAA-specific T cell receptor (TCR) gene transfer could be an efficient and reliable alternation to generate AFP-specific cytotoxic T lymphocytes (CTLs). Autologous dendritic cells (DC) pulsed with AFP158-166 peptides were used to stimulate AFP-specific CTLs. TCR α/β chain genes of AFP-specific CTLs were cloned and linked by 2A peptide to form full-length TCR coding sequence synthesized into a lentiviral vector. Nonspecific activated T cells were engineered by lentivirus infection. Transgenetic CTLs were evaluated for transfection efficiency, expression of AFP158-166-specific TCR, interferon (IFN)-γ secretion, and specific cytotoxicity toward AFP+ HCC cells in vitro and in vivo. Flow cytometry revealed the AFP158-166-MHC-Pentamer positive transgenetic CTLs was 9.86 %. The number of IFN-γ secretion T cells and the specific cytotoxicity toward HpeG2 in vitro and in tumor-bearing NOD/SCID mice were significantly raised in transgenetic CTLs than that of AFP158-166-specific CTLs obtained by peptide-pulsed DCs or control group. TCR gene transfer is a promising strategy to generate AFP158-166-specific CTLs for the treatment of HCC.
Collapse
|
137
|
Straetemans T, Gründer C, Heijhuurs S, Hol S, Slaper-Cortenbach I, Bönig H, Sebestyen Z, Kuball J. Untouched GMP-Ready Purified Engineered Immune Cells to Treat Cancer. Clin Cancer Res 2015; 21:3957-68. [PMID: 25991821 DOI: 10.1158/1078-0432.ccr-14-2860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Engineering T cells with receptors to redirect the immune system against cancer has most recently been described as a scientific breakthrough. However, a main challenge remains the GMP-grade purification of immune cells selectively expressing the introduced receptor in order to reduce potential side effects due to poorly or nonengineered cells. EXPERIMENTAL DESIGN In order to test a novel purification strategy, we took advantage of a model γδT cell receptor (TCR), naturally interfering with endogenous TCR expression and designed the optimal retroviral expression cassette to achieve maximal interference with endogenous TCR chains. Following retroviral transduction, nonengineered and poorly engineered immune cells characterized by a high endogenous αβTCR expression were efficiently depleted with GMP-grade anti-αβTCR beads. Next, the engineered immune cells were validated for TCR expression, function against a panel of tumor cell lines and primary tumors and potential allo-reactivity. Engineered immune cells were further validated in two humanized mouse tumor models. RESULTS The untouched enrichment of engineered immune cells translated into highly purified receptor-engineered cells with strong antitumor reactivity both in vitro and in vivo. Importantly, this approach eliminated residual allo-reactivity of engineered immune cells. Our data demonstrate that even with long-term suboptimal interference with endogenous TCR chains such as in resting cells, allo-reactivity remained absent and tumor control preserved. CONCLUSIONS We present a novel enrichment method for the production of untouched engineered immune cells, ready to be translated into a GMP-grade method and potentially applicable to all receptor-modified cells even if interference with endogenous TCR chains is far from complete.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cordula Gründer
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sabine Heijhuurs
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Samantha Hol
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University, Frankfurt, Germany
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
138
|
Case Report of a Fatal Serious Adverse Event Upon Administration of T Cells Transduced With a MART-1-specific T-cell Receptor. Mol Ther 2015; 23:1541-50. [PMID: 25896248 DOI: 10.1038/mt.2015.60] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
Here, we describe a fatal serious adverse event observed in a patient infused with autologous T-cell receptor (TCR) transduced T cells. This TCR, originally obtained from a melanoma patient, recognizes the well-described HLA-A*0201 restricted 26-35 epitope of MART-1, and was not affinity enhanced. Patient 1 with metastatic melanoma experienced a cerebral hemorrhage, epileptic seizures, and a witnessed cardiac arrest 6 days after cell infusion. Three days later, the patient died from multiple organ failure and irreversible neurologic damage. After T-cell infusion, levels of IL-6, IFN-γ, C-reactive protein (CRP), and procalcitonin increased to extreme levels, indicative of a cytokine release syndrome or T-cell-mediated inflammatory response. Infused T cells could be recovered from blood, broncho-alveolar lavage, ascites, and after autopsy from tumor sites and heart tissue. High levels of NT-proBNP indicate semi-acute heart failure. No cross reactivity of the modified T cells toward a beating cardiomyocyte culture was observed. Together, these observations suggest that high levels of inflammatory cytokines alone or in combination with semi-acute heart failure and epileptic seizure may have contributed substantially to the occurrence of the acute and lethal event. Protocol modifications to limit the risk of T-cell activation-induced toxicity are discussed.
Collapse
|
139
|
Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 2015; 8:337-50. [PMID: 26035842 PMCID: PMC4381333 DOI: 10.1242/dmm.018036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.
Collapse
Affiliation(s)
- Michaela Sharpe
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalie Mount
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
140
|
Obenaus M, Leitão C, Leisegang M, Chen X, Gavvovidis I, van der Bruggen P, Uckert W, Schendel DJ, Blankenstein T. Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nat Biotechnol 2015; 33:402-7. [PMID: 25774714 DOI: 10.1038/nbt.3147] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
Identifying T-cell receptors (TCRs) that bind tumor-associated antigens (TAAs) with optimal affinity is a key bottleneck in the development of adoptive T-cell therapy of cancer. TAAs are unmutated self proteins, and T cells bearing high-affinity TCRs specific for such antigens are commonly deleted in the thymus. To identify optimal-affinity TCRs, we generated antigen-negative humanized mice with a diverse human TCR repertoire restricted to the human leukocyte antigen (HLA) A*02:01 (ref. 3). These mice were immunized with human TAAs, for which they are not tolerant, allowing induction of CD8⁺ T cells with optimal-affinity TCRs. We isolate TCRs specific for the cancer/testis (CT) antigen MAGE-A1 (ref. 4) and show that two of them have an anti-tumor effect in vivo. By comparison, human-derived TCRs have lower affinity and do not mediate substantial therapeutic effects. We also identify optimal-affinity TCRs specific for the CT antigen NY-ESO. Our humanized mouse model provides a useful tool for the generation of optimal-affinity TCRs for T-cell therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Chen
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Pierre van der Bruggen
- 1] Ludwig Institute for Cancer Research and WELBIO, Brussels, Belgium. [2] De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang Uckert
- 1] Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. [2] Institute of Biology, Humboldt University, Berlin, Germany
| | | | - Thomas Blankenstein
- 1] Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. [2] Institute of Immunology, Charité Campus Buch, Berlin, Germany
| |
Collapse
|
141
|
Nakatsugawa M, Yamashita Y, Ochi T, Tanaka S, Chamoto K, Guo T, Butler MO, Hirano N. Specific roles of each TCR hemichain in generating functional chain-centric TCR. THE JOURNAL OF IMMUNOLOGY 2015; 194:3487-500. [PMID: 25710913 DOI: 10.4049/jimmunol.1401717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TCRα- and β-chains cooperatively recognize peptide-MHC complexes. It has been shown that a "chain-centric" TCR hemichain can, by itself, dictate MHC-restricted Ag specificity without requiring major contributions from the paired TCR counterchain. Little is known, however, regarding the relative contributions and roles of chain-centric and its counter, non-chain-centric, hemichains in determining T cell avidity. We comprehensively analyzed a thymically unselected T cell repertoire generated by transducing the α-chain-centric HLA-A*02:01(A2)/MART127-35 TCRα, clone SIG35α, into A2-matched and unmatched postthymic T cells. Regardless of their HLA-A2 positivity, a substantial subset of peripheral T cells transduced with SIG35α gained reactivity for A2/MART127-35. Although the generated A2/MART127-35-specific T cells used various TRBV genes, TRBV27 predominated with >10(2) highly diverse and unique clonotypic CDR3β sequences. T cells individually reconstituted with various A2/MART127-35 TRBV27 TCRβ genes along with SIG35α possessed a wide range (>2 log orders) of avidity. Approximately half possessed avidity higher than T cells expressing clone DMF5, a naturally occurring A2/MART127-35 TCR with one of the highest affinities. Importantly, similar findings were recapitulated with other self-Ags. Our results indicate that, although a chain-centric TCR hemichain determines Ag specificity, the paired counterchain can regulate avidity over a broad range (>2 log orders) without compromising Ag specificity. TCR chain centricity can be exploited to generate a thymically unselected Ag-specific T cell repertoire, which can be used to isolate high-avidity antitumor T cells and their uniquely encoded TCRs rarely found in the periphery because of tolerance.
Collapse
Affiliation(s)
- Munehide Nakatsugawa
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Yuki Yamashita
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Toshiki Ochi
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Shinya Tanaka
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Takara Bio, Inc., Otsu, Shiga 520-2193, Japan
| | - Kenji Chamoto
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tingxi Guo
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Marcus O Butler
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
142
|
Casucci M, Hawkins RE, Dotti G, Bondanza A. Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol Immunother 2015; 64:123-30. [PMID: 25488419 PMCID: PMC11028535 DOI: 10.1007/s00262-014-1641-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023]
Abstract
The recent successes of clinical trials with T cells genetically modified with either clonal T cell receptors or chimeric antigen receptors have also highlighted their potential toxicities. The aim of this focused review was to describe the adverse events observed in these clinical trials and to link them to the complex biology of genetically targeted T cells. Finally, strategies to overcome these toxicities will be proposed and discussed, including the use of suicide genes and other innovative gene therapy strategies.
Collapse
Affiliation(s)
- Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Robert E. Hawkins
- Cancer Research UK, Department of Medical Oncology, University of Manchester and Christie Hospital NHS Foundation Trust, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, 6621 Fannin St. MC 3-3320, Houston, TX 77030 USA
| | - Attilio Bondanza
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
143
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
144
|
Abstract
Current therapy for sarcomas, though effective in treating local disease, is often ineffective for patients with recurrent or metastatic disease. To improve outcomes, novel approaches are needed and cell therapy has the potential to meet this need since it does not rely on the cytotoxic mechanisms of conventional therapies. The recent successes of T-cell therapies for hematological malignancies have led to renewed interest in exploring cell therapies for solid tumors such as sarcomas. In this review, we will discuss current cell therapies for sarcoma with special emphasis on genetic approaches to improve the effector function of adoptively transferred cells.
Collapse
Affiliation(s)
- Melinda Mata
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Stephen Gottschalk
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
145
|
Xue SA, Gao L, Ahmadi M, Ghorashian S, Barros RD, Pospori C, Holler A, Wright G, Thomas S, Topp M, Morris EC, Stauss HJ. Human MHC Class I-restricted high avidity CD4 + T cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo. Oncoimmunology 2014; 2:e22590. [PMID: 23483821 PMCID: PMC3583927 DOI: 10.4161/onci.22590] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, we generated human MHC Class I-restricted CD4+ T cells specific for Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two herpesviridae associated with lymphoma, nasopharyngeal carcinoma and medulloblastoma, respectively. Retroviral transfer of virus-specific, HLA-A2-restricted TCR-coding genes generated CD4+ T cells that recognized HLA-A2/peptide multimers and produced cytokines when stimulated with MHC Class II-deficient cells presenting the relevant viral peptides in the context of HLA-A2. Peptide titration revealed that CD4+ T cells had a 10-fold lower avidity than CD8+ T cells expressing the same TCR. The impaired avidity of CD4+ T cells was corrected by simultaneously transferring TCR- and CD8-coding genes. The CD8 co-receptor did not alter the cytokine signature of CD4+ T cells, which remained distinct from that of CD8+ T cells. Using the xenogeneic NOD/SCID mouse model, we demonstrated that human CD4+ T cells expressing a specific TCR and CD8 can confer efficient protection against the growth of tumors expressing the EBV or CMV antigens recognized by the TCR. In summary, we describe a robust approach for generating therapeutic CD4+ T cells capable of providing MHC Class I-restricted immunity against MHC Class II-negative tumors in vivo.
Collapse
Affiliation(s)
- Shao-An Xue
- Department of Immunology; University College London; Royal Free Hospital; London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Gomez-Eerland R, Nuijen B, Heemskerk B, van Rooij N, van den Berg JH, Beijnen JH, Uckert W, Kvistborg P, Schumacher TN, Haanen JBAG, Jorritsma A. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype. Hum Gene Ther Methods 2014; 25:277-87. [PMID: 25143008 DOI: 10.1089/hgtb.2014.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.
Collapse
Affiliation(s)
- Raquel Gomez-Eerland
- 1 Division of Immunology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065 DOI: 10.1186/2052-8426-2-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 01/15/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
148
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 11/21/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- />Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
149
|
Stone JD, Harris DT, Soto CM, Chervin AS, Aggen DH, Roy EJ, Kranz DM. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control. Cancer Immunol Immunother 2014; 63:1163-76. [PMID: 25082071 DOI: 10.1007/s00262-014-1586-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: (1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or (2) introduction of a chimeric antigen receptor, including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vα-linker-Vβ) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen-loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.
Collapse
Affiliation(s)
- Marco Ruella
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|