101
|
Tian Z, Wong W, Wu Q, Zhou J, Yan K, Chen J, Zhang Z. Elevated Expressions of BTN3A1 and RhoB in Psoriasis Vulgaris Lesions by an Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2022; 30:119-125. [PMID: 34545848 DOI: 10.1097/pai.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is a chronic, immune-mediated inflammatory disease which pathogenesis is closely linked to γδ T cells. Recently, a critical role for butyrophilin 3A1 (BTN3A1) in mediating the activation of Vγ9Vδ2 T cells, which are reported to redistribute from blood to the perturbed skin lesions in psoriasis, has been proposed. Additional molecular partners, including RhoB and periplakin, have also been speculated to interact with BTN3A1 in modulating Vγ9Vδ2 T-cell activation. Immunohistochemical staining was performed to examine the expressions of BTN3A1, RhoB, and the plakin family members, including periplakin, epiplakin, and envoplakin in the psoriasis vulgaris lesions as compared with the normal control. The expressions of BTN3A1 and RhoB were found significantly upregulated in the psoriatic lesions. Besides, a downregulation of periplakin and an upregulation of epiplakin were noticed in the psoriasis vulgaris lesions. Our data suggest that BTN3A1 and RhoB might participate in the pathogenesis of psoriasis through Vγ9Vδ2 T-cell responses. In addition, a potential involvement of the plakin protein family, especially periplakin and epiplakin, in psoriasis pathology was proposed.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Wenghong Wong
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Qiong Wu
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jiaqing Zhou
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Jia Chen
- Department of Dermatopathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| |
Collapse
|
102
|
Serrano R, Lettau M, Zarobkiewicz M, Wesch D, Peters C, Kabelitz D. Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncoimmunology 2022; 11:2030021. [PMID: 35127253 PMCID: PMC8812774 DOI: 10.1080/2162402x.2022.2030021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Ligands for Stimulator of Interferon Genes (STING) receptor are under investigation as adjuvants in cancer therapy. Multiple effects have been described, including induction of immunogenic cell death and enhancement of CD8 T-cell mediated anti-tumor immunity. However, the potential effects of STING ligands on activation and effector functions of tumor-reactive human γδ T cells have not yet been investigated. We observed that cyclic dinucleotide as well as novel non-dinucleotide STING ligands diABZI and MSA-2 co-stimulated cytokine induction in Vδ2 T cells within peripheral blood mononuclear cells but simultaneously inhibited their proliferative expansion in response to the aminobisphosphonate Zoledronate and to γδ T-cell specific phosphoantigen. In purified γδ T cells, STING ligands co-stimulated cytokine induction but required the presence of monocytes. STING ligands strongly stimulated IL-1β and TNF-α secretion in monocytes and co-stimulated cytokine induction in short-term expanded Vδ2 γδ T-cell lines. Simultaneously, massive cell death was triggered in both cell populations. Activation of STING as revealed by TBK1/IRF3 phosphorylation and IP-10 secretion varied among STING-expressing tumor cells. STING ligands modulated tumor cell killing by Vδ2 T cells as analyzed in Real-Time Cell Analyzer to variable degree, depending on the tumor target and time course kinetics. Our study reveals complex regulatory effects of STING ligands on human γδ T cells in vitro. These results help to define conditions where STING ligands might boost the efficacy of γδ T cell immunotherapy in vivo.
Collapse
Affiliation(s)
- Ruben Serrano
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, Medical University Hannover, Hannover, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Hematology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Daniela Wesch
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
103
|
Murray MP, Crosby CM, Marcovecchio P, Hartmann N, Chandra S, Zhao M, Khurana A, Zahner SP, Clausen BE, Coleman FT, Mizgerd JP, Mikulski Z, Kronenberg M. Stimulation of a subset of natural killer T cells by CD103 + DC is required for GM-CSF and protection from pneumococcal infection. Cell Rep 2022; 38:110209. [PMID: 35021099 DOI: 10.1016/j.celrep.2021.110209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Innate-like T cells, including invariant natural killer T cells, mucosal-associated invariant T cells, and γδ T cells, are present in various barrier tissues, including the lung, where they carry out protective responses during infections. Here, we investigate their roles during pulmonary pneumococcal infection. Following infection, innate-like T cells rapidly increase in lung tissue, in part through recruitment, but T cell antigen receptor activation and cytokine production occur mostly in interleukin-17-producing NKT17 and γδ T cells. NKT17 cells are preferentially located within lung tissue prior to infection, as are CD103+ dendritic cells, which are important both for antigen presentation to NKT17 cells and γδ T cell activation. Whereas interleukin-17-producing γδ T cells are numerous, granulocyte-macrophage colony-stimulating factor is exclusive to NKT17 cells and is required for optimal protection. These studies demonstrate how particular cellular interactions and responses of functional subsets of innate-like T cells contribute to protection from pathogenic lung infection.
Collapse
Affiliation(s)
- Mallory Paynich Murray
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine M Crosby
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sonja P Zahner
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fadie T Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
104
|
Liu C, Skorupinska-Tudek K, Eriksson SG, Parmryd I. Potentiating Vγ9Vδ2 T cell proliferation and assessing their cytotoxicity towards adherent cancer cells at the single cell level. Biol Open 2022; 11:274281. [PMID: 34994391 PMCID: PMC8822357 DOI: 10.1242/bio.059049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.
Collapse
Affiliation(s)
- Chenxiao Liu
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sven-Göran Eriksson
- Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
105
|
Hsiao CHC, Nguyen K, Jin Y, Vinogradova O, Wiemer AJ. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem Biol 2022; 29:985-995.e5. [DOI: 10.1016/j.chembiol.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022]
|
106
|
Jhita N, Raikar SS. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. EXPLORATION OF IMMUNOLOGY 2022; 2:334-350. [PMID: 35783107 PMCID: PMC9249101 DOI: 10.37349/ei.2022.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Collapse
Affiliation(s)
| | - Sunil S. Raikar
- Correspondence: Sunil S. Raikar, Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA.
| |
Collapse
|
107
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
108
|
Recognition of the antigen-presenting molecule MR1 by a Vδ3 + γδ T cell receptor. Proc Natl Acad Sci U S A 2021; 118:2110288118. [PMID: 34845016 DOI: 10.1073/pnas.2110288118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Unlike conventional αβ T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I-related protein, MR1, presents vitamin B metabolites to αβ T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2- γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.
Collapse
|
109
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
110
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
111
|
Keane JT, Posey AD. Chimeric Antigen Receptors Expand the Repertoire of Antigenic Macromolecules for Cellular Immunity. Cells 2021; 10:cells10123356. [PMID: 34943864 PMCID: PMC8699116 DOI: 10.3390/cells10123356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
T-cell therapies have made significant improvements in cancer treatment over the last decade. One cellular therapy utilizing T-cells involves the use of a chimeric MHC-independent antigen-recognition receptor, typically referred to as a chimeric antigen receptor (CAR). CAR molecules, while mostly limited to the recognition of antigens on the surface of tumor cells, can also be utilized to exploit the diverse repertoire of macromolecules targetable by antibodies, which are incorporated into the CAR design. Leaning into this expansion of target macromolecules will enhance the diversity of antigens T-cells can target and may improve the tumor-specificity of CAR T-cell therapy. This review explores the types of macromolecules targetable by T-cells through endogenous and synthetic antigen-specific receptors.
Collapse
Affiliation(s)
- John T. Keane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Avery D. Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
112
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
113
|
van Diest E, Hernández López P, Meringa AD, Vyborova A, Karaiskaki F, Heijhuurs S, Gumathi Bormin J, van Dooremalen S, Nicolasen MJT, Gatti LCDE, Johanna I, Straetemans T, Sebestyén Z, Beringer DX, Kuball J. Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J Immunother Cancer 2021; 9:jitc-2021-003850. [PMID: 34815357 PMCID: PMC8611453 DOI: 10.1136/jitc-2021-003850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Background γ9δ2 T cells hold great promise as cancer therapeutics because of their unique capability of reacting to metabolic changes with tumor cells. However, it has proven very difficult to translate this promise into clinical success. Methods In order to better utilize the tumor reactivity of γ9δ2T cells and combine this with the great potential of T cell engager molecules, we developed a novel bispecific molecule by linking the extracellular domains of tumor-reactive γ9δ2TCRs to a CD3-binding moiety, creating gamma delta TCR anti-CD3 bispecific molecules (GABs). GABs were tested in vitro and in vivo for ability to redirect T lymphocytes to a variety of tumor cell lines and primary patient material. Results GABs utilizing naturally occurring high affinity γ9δ2TCRs efficiently induced αβT cell mediated phosphoantigen-dependent recognition of tumor cells. Reactivity was substantially modulated by variations in the Vδ2 CDR3-region and the BTN2A1-binding HV4-region between CDR2 and CDR3 of the γ-chain was crucial for functionality. GABs redirected αβT cells against a broad range of hematopoietic and solid tumor cell lines and primary acute myeloid leukemia. Furthermore, they enhanced infiltration of immune cells in a 3D bone marrow niche and left healthy tissues intact, while eradicating primary multiple myeloma cells. Lastly, GABs constructed from natural high affinity γ9δ2TCR sequences significantly reduced tumor growth in vivo in a subcutaneous myeloma xenograft model. Conclusions We conclude that GABs allow for the introduction of metabolic targeting of cancer cells to the field of T cell engagers.
Collapse
Affiliation(s)
- Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Patricia Hernández López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Angelo D Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Vyborova
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Heijhuurs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Gumathi Bormin
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lucrezia C D E Gatti
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis X Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands .,Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
114
|
Our evolving understanding of the role of the γδ T cell receptor in γδ T cell mediated immunity. Biochem Soc Trans 2021; 49:1985-1995. [PMID: 34515758 PMCID: PMC8589442 DOI: 10.1042/bst20200890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
The γδ T cell immune cell lineage has remained relatively enigmatic and under-characterised since their identification. Conversely, the insights we have, highlight their central importance in diverse immunological roles and homeostasis. Thus, γδ T cells are considered as potentially a new translational tool in the design of new therapeutics for cancer and infectious disease. Here we review our current understanding of γδ T cell biology viewed through a structural lens centred on the how the γδ T cell receptor mediates ligand recognition. We discuss the limited knowledge of antigens, the structural basis of such reactivities and discuss the emerging trends of γδ T cell reactivity and implications for γδ T cell biology.
Collapse
|
115
|
Nada MH, Wang H, Hussein AJ, Tanaka Y, Morita CT. PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against human prostate cancer. Oncoimmunology 2021; 10:1989789. [PMID: 34712512 PMCID: PMC8547840 DOI: 10.1080/2162402x.2021.1989789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Vγ2Vδ2 (also termed Vγ9Vδ2) T cells play important roles in microbial and tumor immunity by monitoring foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis. Accumulation of isoprenoid metabolites after bisphosphonate treatment allows Vγ2Vδ2 T cells to recognize and kill tumors independently of their MHC expression or burden of non-synonymous mutations. Clinical trials with more than 400 patients show that adoptive immunotherapy with Vγ2Vδ2 T cells has few side effects but has resulted in only a few partial and complete remissions. Here, we have tested Vγ2Vδ2 T cells for expression of inhibitory receptors and determined whether adding PD-1 checkpoint blockade to adoptively transferred Vγ2Vδ2 T cells enhances immunity to human PC-3 prostate tumors in an NSG mouse model. We find that Vγ2Vδ2 T cells express PD-1, CTLA-4, LAG-3, and TIM-3 inhibitory receptors during the 14-day ex vivo expansion period, and PD-1, LAG-3, and TIM-3 upon subsequent stimulation by pamidronate-treated tumor cells. Expression of PD-L1 on PC-3 prostate cancer cells was increased by co-culture with activated Vγ2Vδ2 T cells. Importantly, anti-PD-1 mAb treatment enhanced Vγ2Vδ2 T cell immunity to PC-3 tumors in immunodeficient NSG mice, reducing tumor volume nearly to zero after 5 weeks. These results demonstrate that PD-1 checkpoint blockade can enhance the effectiveness of adoptive immunotherapy with human γδ T cells in treating prostate tumors in a preclinical model.
Collapse
Affiliation(s)
- Mohanad H Nada
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq.,Department of Medical and Health Sciences, The American University of Iraq, Sulaimani, Sulaymaniah, Iraq
| | - Hong Wang
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Auter J Hussein
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Salah Al-Din Directorate of Health, Ministry of Health, Iraq
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki Japan
| | - Craig T Morita
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
116
|
De Gassart A, Le KS, Brune P, Agaugué S, Sims J, Goubard A, Castellano R, Joalland N, Scotet E, Collette Y, Valentin E, Ghigo C, Pasero C, Colazet M, Guillén J, Cano CE, Marabelle A, De Bonno J, Hoet R, Truneh A, Olive D, Frohna P. Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci Transl Med 2021; 13:eabj0835. [PMID: 34669444 DOI: 10.1126/scitranslmed.abj0835] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | | | | | - Armelle Goubard
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET preclinical platform, 13009 Marseille, France
| | - Rémy Castellano
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET preclinical platform, 13009 Marseille, France
| | - Noémie Joalland
- Université de Nantes, INSERM, CNRS, CRCINA, F-44000 Nantes, France.,LabEx IGO "Immunotherapy, Graft, and Oncology," Nantes F-44000, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, F-44000 Nantes, France.,LabEx IGO "Immunotherapy, Graft, and Oncology," Nantes F-44000, France
| | - Yves Collette
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET preclinical platform, 13009 Marseille, France
| | | | | | | | | | | | | | - Aurélien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Johann De Bonno
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton SM2 5PT, UK
| | - René Hoet
- ImCheck Therapeutics, 13009 Marseille, France.,Biopharmaceutics, Dept. Pathology, University of Maastricht, 6200 MD Netherlands
| | | | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Paul Frohna
- ImCheck Therapeutics, 13009 Marseille, France
| |
Collapse
|
117
|
Madhok A, Bhat SA, Philip CS, Sureshbabu SK, Chiplunkar S, Galande S. Transcriptome Signature of Vγ9Vδ2 T Cells Treated With Phosphoantigens and Notch Inhibitor Reveals Interplay Between TCR and Notch Signaling Pathways. Front Immunol 2021; 12:660361. [PMID: 34526984 PMCID: PMC8435775 DOI: 10.3389/fimmu.2021.660361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma-delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.
Collapse
Affiliation(s)
- Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India
| | - Sajad Ahmad Bhat
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Chinna Susan Philip
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shubhada Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
118
|
αβ-T Cells Engineered to Express γδ-T Cell Receptors Can Kill Neuroblastoma Organoids Independent of MHC-I Expression. J Pers Med 2021; 11:jpm11090923. [PMID: 34575700 PMCID: PMC8471928 DOI: 10.3390/jpm11090923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.
Collapse
|
119
|
Ma L, Papadopoulou M, Taton M, Genco F, Marchant A, Meroni V, Vermijlen D. Effector Vγ9Vδ2 T cell response to congenital Toxoplasma gondii infection. JCI Insight 2021; 6:e138066. [PMID: 34255746 PMCID: PMC8409983 DOI: 10.1172/jci.insight.138066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
A major γδ T cell population in human adult blood are the Vγ9Vδ2 T cells that are activated and expanded in a TCR-dependent manner by microbe-derived and endogenously derived phosphorylated prenyl metabolites (phosphoantigens). Vγ9Vδ2 T cells are also abundant in human fetal peripheral blood, but compared with their adult counterparts they have a distinct developmental origin, are hyporesponsive toward in vitro phosphoantigen exposure, and do not possess a cytotoxic effector phenotype. In order to obtain insight into the role of Vγ9Vδ2 T cells in the human fetus, we investigated their response to in utero infection with the phosphoantigen-producing parasite Toxoplasma gondii (T. gondii). Vγ9Vδ2 T cells expanded strongly when faced with congenital T. gondii infection, which was associated with differentiation toward potent cytotoxic effector cells. The Vγ9Vδ2 T cell expansion in utero resulted in a fetal footprint with public germline-encoded clonotypes in the Vγ9Vδ2 TCR repertoire 2 months after birth. Overall, our data indicate that the human fetus, from early gestation onward, possesses public Vγ9Vδ2 T cells that acquire effector functions following parasite infections.
Collapse
Affiliation(s)
- Ling Ma
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Taton
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valeria Meroni
- IRCCS San Matteo Polyclinic, Pavia, Italy.,Molecular Medicine Department, University of Pavia, Italy
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
120
|
Ren H, Li S, Liu X, Li W, Hao J, Zhao N. Multi-omics analysis of the expression and prognostic value of the butyrophilins in breast cancer. J Leukoc Biol 2021; 110:1181-1195. [PMID: 34411352 DOI: 10.1002/jlb.5ma0321-158rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Butyrophilins (BTNs) belong to the immunoglobulin superfamily of transmembrane proteins and play a role in the regulation of lymphocyte activation, several autoimmune diseases, and the progression of human cancers. However, the associated clinicopathologic characteristics and prognostic value of BTNs in breast cancer remain unknown. This study aimed to discover potential key related BTN genes and signaling pathways in breast cancer, which could provide new insights for immune-based strategies. In the present study, the mRNA expression level and prognostic value of BTN2A1, BTN3A1, BTN3A2, BTN3A3, BTNL2, BTNL9, ERMAP, and MOG were measured. Up-regulation of these genes was significantly correlated with improved overall and relapse-free survival. We then analyzed the prognostic outcomes of breast cancer subtypes, genetic alterations, interaction networks, and the functional enrichment of eight BTN family genes. Our results showed that these eight genes played essential roles in tumor progression. Furthermore, an immune infiltration analysis indicated that most candidate BTN family members were associated with intratumoral immune cell infiltration, especially that of γδ T cells. Finally, gene set enrichment analysis for a single hub gene revealed that each BTN gene played a vital role in tumor progression through immune signaling pathways. These findings provided new insights into breast cancer pathogenesis and identified eight potential biomarkers for breast cancer.
Collapse
Affiliation(s)
- He Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shuliang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, Shandong, China.,Department of Gastrointestinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, Shandong, China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Wanjing Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
121
|
Alice AF, Kramer G, Bambina S, Bahjat KS, Gough MJ, Crittenden MR. Listeria monocytogenes-infected human monocytic derived dendritic cells activate Vγ9Vδ2 T cells independently of HMBPP production. Sci Rep 2021; 11:16347. [PMID: 34381163 PMCID: PMC8358051 DOI: 10.1038/s41598-021-95908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Gamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.
Collapse
Affiliation(s)
- Alejandro F Alice
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Gwen Kramer
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Shelly Bambina
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Keith S Bahjat
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA.,Astellas Pharma US, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Michael J Gough
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA. .,The Oregon Clinic, Portland, OR, 97213, USA.
| |
Collapse
|
122
|
Laplagne C, Ligat L, Foote J, Lopez F, Fournié JJ, Laurent C, Valitutti S, Poupot M. Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins. Cell Mol Immunol 2021; 18:1861-1870. [PMID: 34183807 PMCID: PMC8237548 DOI: 10.1038/s41423-021-00720-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.
Collapse
Affiliation(s)
- Chloé Laplagne
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Laetitia Ligat
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Juliet Foote
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Frederic Lopez
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Jean-Jacques Fournié
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Camille Laurent
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- IUCT-O, Toulouse, France
| | - Salvatore Valitutti
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Mary Poupot
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
- ERL 5294 CNRS, Toulouse, France.
| |
Collapse
|
123
|
Serrano R, Coch C, Peters C, Hartmann G, Wesch D, Kabelitz D. Monocyte-dependent co-stimulation of cytokine induction in human γδ T cells by TLR8 RNA ligands. Sci Rep 2021; 11:15231. [PMID: 34315922 PMCID: PMC8316369 DOI: 10.1038/s41598-021-94428-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023] Open
Abstract
Human Vγ9Vδ2 T cells recognize pyrophosphates produced by microbes and transformed cells and play a role in anti-infective immunity and tumor surveillance. Toll-like receptors (TLR) are pattern recognition receptors in innate immune cells which sense microbial structures including nucleic acids. Given that γδ T cells are in clinical development for application in cellular cancer immunotherapy and TLR ligands have potent adjuvant activity, we investigated the co-stimulatory role of selected TLR ligands in γδ T-cell activation. Here we have used recently described RNA ligands for TLR7 and TLR8 together with Vγ9Vδ2 T-cell specific pyrophosphate antigens to analyze the rapid cytokine induction in Vδ2 T cells as well as the accessory cell requirements. While TLR8- as well as TLR7/8-specific RNA did not induce IFN-γ in Vδ2 T cells on their own, they provided strong co-stimulation for Vδ2 T cells within peripheral blood mononuclear cells in the presence of additional T-cell receptor activation. In contrast, TLR7 ligands were ineffective. Purified γδ T cells did not directly respond to TLR8 co-stimulation but required the presence of monocytes. Further experiments revealed a critical role of IL-1β and IL-18, and to a slightly lesser extent of IL-12p70, in the co-stimulation of Vδ2 T cells by TLR8 and TLR7/8 RNA ligands. Results of intracellular cytokine expression were validated by ELISA analysis of cytokines in cell culture supernatants. The cell context-dependent adjuvant activity of TLR8 and TLR7/8 RNA ligands described here might be important for the future optimization of γδ T-cell based cancer immunotherapy.
Collapse
Affiliation(s)
- Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Christoph Coch
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Gunther Hartmann
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany.
| |
Collapse
|
124
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
125
|
Targeting butyrophilins for cancer immunotherapy. Trends Immunol 2021; 42:670-680. [PMID: 34253468 DOI: 10.1016/j.it.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Vγ9Vδ2+ T cells form part of the innate immune repertoire and are activated by phosphorylated antigens produced by many bacteria and tumors. They have long been suggested as promising targets for anti-tumor therapies, but clinical trials so far have not shown major successes. Several recent discoveries could help to overcome these shortfalls, such as those leading to an improved understanding of the role of butyrophilin molecules BTN2A1 and BTN3A1, in Vγ9Vδ2+ T cell activation. Moreover, we propose that studies suggesting the presence of live bacteria in a variety of tumors (tumor microbiome), indicate that the latter might be harnessed as a source of high affinity bacterial phosphoantigen to trigger or enhance anti-tumor immune responses.
Collapse
|
126
|
Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, Herrmann T, Imbert C, Gorvel L, Vey N, Briantais A, le Floch AC, Olive D. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep 2021; 36:109359. [PMID: 34260935 DOI: 10.1016/j.celrep.2021.109359] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 01/20/2023] Open
Abstract
The anti-tumor response of Vγ9Vδ2 T cells requires the sensing of accumulated phosphoantigens (pAgs) bound intracellularly to butyrophilin 3A1 (BTN3A1). In this study, we show that butyrophilin 2A1 (BTN2A1) is required for BTN3A-mediated Vγ9Vδ2 T cell cytotoxicity against cancer cells, and that expression of the BTN2A1/BTN3A1 complex is sufficient to trigger Vγ9Vδ2 TCR activation. Also, BTN2A1 interacts with all isoforms of BTN3A (BTN3A1, BTN3A2, BTN3A3), which appears to be a rate-limiting factor to BTN2A1 export to the plasma membrane. BTN2A1/BTN3A1 interaction is enhanced by pAgs and, strikingly, B30.2 domains of both proteins are required for pAg responsiveness. BTN2A1 expression in cancer cells correlates with bisphosphonate-induced Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell killing of cancer cells is modulated by anti-BTN2A1 monoclonal antibodies (mAbs), whose action relies on the inhibition of BTN2A1 binding to the Vγ9Vδ2TCR. This demonstrates the potential of BTN2A1 as a therapeutic target and adds to the emerging butyrophilin-family cooperation pathway in γδ T cell activation.
Collapse
Affiliation(s)
- Carla E Cano
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France.
| | - Christine Pasero
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Aude De Gassart
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Clement Kerneur
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Mélanie Gabriac
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emilie Granarolo
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - René Hoet
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Chirine Rafia
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France; Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Caroline Imbert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Norbert Vey
- Institut Paoli-Calmettes, 13009 Marseille, France
| | - Antoine Briantais
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Anne Charlotte le Floch
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France; Institut Paoli-Calmettes, 13009 Marseille, France; Aix-Marseille Université UM105, CNRS UMR 7258, 13009 Marseille, France.
| |
Collapse
|
127
|
Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021; 70:1797-1809. [PMID: 33386466 PMCID: PMC10991494 DOI: 10.1007/s00262-020-02805-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Human gamma delta (γδ) T cells represent heterogeneous subsets of unconventional lymphocytes with an HLA-unrestricted target cell recognition. γδ T cells display adaptive clonally restricted specificities coupled to a powerful cytotoxic function against transformed/injured cells. Dendritic cells (DCs) are documented to be the most potent professional antigen-presenting cells (APCs) able to induce adaptive immunity and support the innate immune response independently from T cells. Several data show that the cross-talk of γδ T lymphocytes with DCs can play a crucial role in the orchestration of immune response by bridging innate to adaptive immunity. In the last decade, DCs, as well as γδ T cells, have been of increasing clinical interest, especially as monotherapy for cancer immunotherapy, even though with unpredictable results mainly due to immune suppression and/or tumor-immune escape. For these reasons, new vaccine strategies have to be explored to reach cancer immunotherapy's full potential. The effect of DC-based vaccines on γδ T cell is less extensively investigated, and a combinatorial approach using DC-based vaccines with γδ T cells might promote a strong synergy for long-term tumor control and protection against escaping tumor clones. Here, we discuss the therapeutic potential of the interaction between DCs and γδ T cells to improve cancer vaccination. In particular, we describe the most relevant and updated evidence of such combinatorial approaches, including the use of Zoledronate, Interleukin-15, and protamine RNA, also looking towards future strategies such as CAR therapies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
128
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
129
|
Wragg KM, Tan HX, Kristensen AB, Nguyen-Robertson CV, Kelleher AD, Parsons MS, Wheatley AK, Berzins SP, Pellicci DG, Kent SJ, Juno JA. High CD26 and Low CD94 Expression Identifies an IL-23 Responsive Vδ2 + T Cell Subset with a MAIT Cell-like Transcriptional Profile. Cell Rep 2021; 31:107773. [PMID: 32553157 DOI: 10.1016/j.celrep.2020.107773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Vδ2+ T cells play a critical role in immunity to micro-organisms and cancer but exhibit substantial heterogeneity in humans. Here, we demonstrate that CD26 and CD94 define transcriptionally, phenotypically, and functionally distinct Vδ2+ T cell subsets. Despite distinct antigen specificities, CD26hiCD94lo Vδ2+ cells exhibit substantial similarities to CD26hi mucosal-associated invariant T (MAIT) cells, although CD26- Vδ2+ cells exhibit cytotoxic, effector-like profiles. At birth, the Vδ2+Vγ9+ population is dominated by CD26hiCD94lo cells; during adolescence and adulthood, Vδ2+ cells acquire CD94/NKG2A expression and the relative frequency of the CD26hiCD94lo subset declines. Critically, exposure of the CD26hiCD94lo subset to phosphoantigen in the context of interleukin-23 (IL-23) and CD26 engagement drives the acquisition of a cytotoxic program and concurrent loss of the MAIT cell-like phenotype. The ability to modulate the cytotoxic potential of CD26hiCD94lo Vδ2+ cells, combined with their adenosine-binding capacity, may make them ideal targets for immunotherapeutic expansion and adoptive transfer.
Collapse
Affiliation(s)
- Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Catriona V Nguyen-Robertson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia; St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, NSW 2011, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Federation University and Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC 3053, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
130
|
Holmen Olofsson G, Idorn M, Carnaz Simões AM, Aehnlich P, Skadborg SK, Noessner E, Debets R, Moser B, Met Ö, thor Straten P. Vγ9Vδ2 T Cells Concurrently Kill Cancer Cells and Cross-Present Tumor Antigens. Front Immunol 2021; 12:645131. [PMID: 34149689 PMCID: PMC8208807 DOI: 10.3389/fimmu.2021.645131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
The human Vγ9Vδ2 T cell is a unique cell type that holds great potential in immunotherapy of cancer. In particular, the therapeutic potential of this cell type in adoptive cell therapy (ACT) has gained interest. In this regard optimization of in vitro expansion methods and functional characterization is desirable. We show that Vγ9Vδ2 T cells, expanded in vitro with zoledronic acid (Zometa or ZOL) and Interleukin-2 (IL-2), are efficient cancer cell killers with a trend towards increased killing efficacy after prolonged expansion time. Thus, Vγ9Vδ2 T cells expanded for 25 days in vitro killed prostate cancer cells more efficiently than Vγ9Vδ2 T cells expanded for 9 days. These data are supported by phenotype characteristics, showing increased expression of CD56 and NKG2D over time, reaching above 90% positive cells after 25 days of expansion. At the early stage of expansion, we demonstrate that Vγ9Vδ2 T cells are capable of cross-presenting tumor antigens. In this regard, our data show that Vγ9Vδ2 T cells can take up tumor-associated antigens (TAA) gp100, MART-1 and MAGE-A3 - either as long peptide or recombinant protein - and then present TAA-derived peptides on the cell surface in the context of HLA class I molecules, demonstrated by their recognition as targets by peptide-specific CD8 T cells. Importantly, we show that cross-presentation is impaired by the proteasome inhibitor lactacystin. In conclusion, our data indicate that Vγ9Vδ2 T cells are broadly tumor-specific killers with the additional ability to cross-present MHC class I-restricted peptides, thereby inducing or supporting tumor-specific αβTCR CD8 T cell responses. The dual functionality is dynamic during in vitro expansion, yet, both functions are of interest to explore in ACT for cancer therapy.
Collapse
Affiliation(s)
- Gitte Holmen Olofsson
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Manja Idorn
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ana Micaela Carnaz Simões
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Pia Aehnlich
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Signe Koggersbøl Skadborg
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Elfriede Noessner
- Helmholtz Zentrum München, Germany Research Center for Environmental Health, Immunoanalytics, Research Group Tissue control of immunocytes, Munich, Germany
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, Netherlands
| | - Bernhard Moser
- Division of Infection & Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Özcan Met
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per thor Straten
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
131
|
Abstract
In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
132
|
Chen S, Li Z, Huang W, Wang Y, Fan S. Prognostic and Therapeutic Significance of BTN3A Proteins in Tumors. J Cancer 2021; 12:4505-4512. [PMID: 34149914 PMCID: PMC8210570 DOI: 10.7150/jca.57831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The Butyrophilin 3A (BTN3A) family is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily. The family contains three members: BTN3A1, BTN3A2 and BTN3A3, which share 95% homology in the extracellular domain. The expression of BTN3A family members is different in different types of tumors, which plays an important role in tumor prognosis. Among them, there are many studies on tumor immunity of BTN3A1, which shows that it is essential for the activation of Vγ9Vδ2 T cells, while BTN3A3 is expected to become a potential therapeutic target for breast cancer. Recent studies have shown that the BTN3A family is closely related to the occurrence and development of tumors. Now the BTN3A family has become one of the research hotspots and is expected to become new tumor prediction and treatment targets.
Collapse
Affiliation(s)
- Sihan Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenyi Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou First People's Hospital, Jiangsu, China
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
133
|
Van Rhijn I, Le Nours J. CD1 and MR1 recognition by human γδ T cells. Mol Immunol 2021; 133:95-100. [PMID: 33636434 PMCID: PMC8075093 DOI: 10.1016/j.molimm.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
The two main T cell lineages, αβ and γδ T cells, play a central role in immunity. Unlike αβ T cells that recognize antigens bound to the Major Histocompatibility Complex (MHC) or MHC class I-like antigen-presenting molecules, the ligands for γδ T cell receptors (TCRs) are much more diverse. However, it is now clear that γδ TCRs can also recognize MHC class I-like molecules, including CD1b, CD1c, CD1d and the MHC class I-related protein 1 (MR1). Yet, our understanding at the molecular level of γδ T cell immunity to CD1 and MR1 is still very limited. Here, we discuss new molecular paradigms underpinning γδ TCRs recognition of antigens, antigen-presenting molecules or both. The recent discovery of recognition of MR1 by a γδ TCR at a position located underneath the antigen display platform reinforces the view that γδ TCRs can approach their ligands from many directions, unlike αβ TCRs that bind MHC, CD1 and MR1 targets in an aligned, end to end fashion.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, and Harvard Medical School, Boston, MA, 02115, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands.
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
134
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
135
|
Holmen Olofsson G, Pedersen SR, Aehnlich P, Svane IM, Idorn M, Thor Straten P. The capacity of CD4 + Vγ9Vδ2 T cells to kill cancer cells correlates with co-expression of CD56. Cytotherapy 2021; 23:582-589. [PMID: 33785258 DOI: 10.1016/j.jcyt.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Human Vγ9Vδ2 T cells are a unique T-cell type, and data from recent studies of Vγ9Vδ2 T cells emphasize their potential relevance to cancer immunotherapy. Vγ9Vδ2 T cells exhibit dual properties since they are both antigen-presenting cells and cytotoxic toward cancer cells. The majority of Vγ9Vδ2 T cells are double-negative for the co-receptors CD4 and CD8, and only 20-30% express CD8. Even though they are mostly neglected, a small fraction of Vγ9Vδ2 T cells also express the co-receptor CD4. Here the authors show that CD4+ Vγ9Vδ2 T cells comprise 0.1-7% of peripheral blood Vγ9Vδ2 T cells. These cells can be expanded in vitro using zoledronic acid, pamidronic acid or CD3 antibodies combined with IL-2 and feeder cells. Unlike most conventional CD4+ αβ T cells, CD4+ Vγ9Vδ2 T cells are potently cytotoxic and can kill cancer cells, which is here shown by the killing of cancer cell lines of different histological origins, including breast cancer, prostate cancer and melanoma cell lines, upon treatment with zoledronic acid. Notably, the killing capacity of CD4+ Vγ9Vδ2 T cells correlates with co-expression of CD56.
Collapse
Affiliation(s)
- Gitte Holmen Olofsson
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark.
| | - Sara Ram Pedersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Manja Idorn
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark; Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Per Thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
136
|
Adoptive γδT-cell transfer alone or combined with chemotherapy for the treatment of advanced esophageal cancer. Cytotherapy 2021; 23:423-432. [PMID: 33781711 DOI: 10.1016/j.jcyt.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS After therapy with platinum, 5-fluorouracil and taxane, no further recommended therapy is available for recurrent or metastatic esophageal cancer (r/mEC). Here the authors report two phase 1 trials of adoptive γδT-cell therapy, one for treatment-refractory r/mEC (γδT-monotherapy-P1, UMIN000001419) and the other for r/mEC with no prior systemic therapy (DCF-γδT-P1, UMIN000008097). METHODS For γδT-monotherapy-P1, patients received four weekly and four biweekly injections of autologous γδT cells. For DCF-γδT-P1, patients received docetaxel, cisplatin and 5-fluorouracil (DCF) chemotherapy consisting of docetaxel (60 mg/m2) and cisplatin (60 mg/m2) on day 1 and continuous injection of 5-fluorouracil (600 mg/m2/day) on days 1-5 of each 28-day cycle; additionally, they received autologous γδT-cell injections on day 15 and day 22 of each cycle. RESULTS Twenty-six patients were enrolled for γδT-monotherapy-P1. No severe adverse events were associated with γδT-cell therapy. Median overall survival was 5.7 months (95% confidence interval [CI], 4.3-10.0), and median progression-free survival was 2.4 months (95% CI, 1.7-2.8). Eighteen patients received DCF-γδT-P1. All treatment-related adverse events were associated with DCF chemotherapy, not γδT injection. Median overall survival was 13.4 months (95% CI, 6.7-not reached), and median progression-free survival was 4.0 months (95% CI, 2.5-5.7). The response rate and disease control rate were 39% and 78%, respectively. CONCLUSIONS The use of γδT-cell immunotherapy with or without chemotherapy was safe and feasible for r/mEC patients. Although the authors failed to demonstrate any clinical benefit of γδT-monotherapy-P1, survival benefits were observed in the DCF-γδT-P1 trial.
Collapse
|
137
|
Mo Q, Xu K, Luo C, Zhang Q, Wang L, Ren G. BTNL9 is frequently downregulated and inhibits proliferation and metastasis via the P53/CDC25C and P53/GADD45 pathways in breast cancer. Biochem Biophys Res Commun 2021; 553:17-24. [PMID: 33756341 DOI: 10.1016/j.bbrc.2021.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer (BC) threatens the life and health of women worldwide because of its high morbidity and mortality. The present study aimed to explore the biological functions and potential mechanism of BTNL9 in BC. RNA sequence and clinical data extracted from the Kaplan-Meier plotter database and The Cancer Genome Atlas (TCGA) were utilized to analyze the relationship between the expression level of BTNL9 in BC tissues and clinicopathological features and the effects of BTNL9 expression on the prognosis of BC. The diagnostic efficacy of BTNL9 expression was estimated by receiver operating characteristic (ROC) curve analysis. The mRNA and protein expression levels of BTNL9 in BC cell lines and in BC tissue were determined by quantitative real-time PCR (qPCR) and western blotting, respectively. The functions of BTNL9 were measured by colony formation, CCK-8, Transwell, flow cytometry and EdU assays. Western blotting analysis was also performed to explore the latent mechanism of BTNL9. The results showed that the expression of BTNL9 declined in BC tissues and cell lines. Low expression of BTNL9 was significantly associated with early progression of T stage, relapse-free survival (RFS), and poor overall survival (OS). Ectopic expression of BTNL9 inhibited cell proliferation, colony formation and metastasis and induced apoptosis in BC, while knockdown of BTNL9 had the opposite result. Furthermore, BTNL9 blocked BC cells in the G2/M phase via the P53/CDC25C and P53/GADD45 pathways. Our results suggest that BTNL9 may play a tumor-suppressive role in BC and has the potency to become a new biomarker for early BC diagnosis.
Collapse
Affiliation(s)
- Qingfan Mo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Oncology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Chenghao Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qia Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Long Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
138
|
de Weerdt I, Lameris R, Ruben JM, de Boer R, Kloosterman J, King LA, Levin MD, Parren PWHI, de Gruijl TD, Kater AP, van der Vliet HJ. A Bispecific Single-Domain Antibody Boosts Autologous Vγ9Vδ2-T Cell Responses Toward CD1d in Chronic Lymphocytic Leukemia. Clin Cancer Res 2021; 27:1744-1755. [PMID: 33451981 DOI: 10.1158/1078-0432.ccr-20-4576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Although considerable progress has been made with autologous T cell-based therapy in B-cell malignancies, application in chronic lymphocytic leukemia (CLL) lags behind due to disappointing response rates as well as substantial toxicity that is of particular concern in the elderly CLL population. Vγ9Vδ2-T cells form a conserved T-cell subset with strong intrinsic immunotherapeutic potential, largely because of their capacity to be triggered by phosphoantigens that can be overproduced by CLL and other malignant cells. Specific activation of Vγ9Vδ2-T cells by a bispecific antibody may improve the efficacy and toxicity of autologous T-cell-based therapy in CLL. EXPERIMENTAL DESIGN We evaluated CD1d expression in a cohort of 78 untreated patients with CLL and generated and functionally characterized a CD1d-specific Vγ9Vδ2-T cell engager based on single-domain antibodies (VHH). RESULTS CD1d was expressed by CLL in the majority of patients, particularly in patients with advanced disease. The CD1d-specific Vγ9Vδ2-T cell engager induced robust activation and degranulation of Vγ9Vδ2-T cells, enabling Vγ9Vδ2-T cells from patients with CLL to lyse autologous leukemic cells at low effector-to-target ratios. Expression of CD1d on CLL cells is upregulated by all-trans retinoic acid, and sensitizes the malignant cells to bispecific VHH-induced lysis. Furthermore, we provide evidence that the Vγ9Vδ2-T cell receptor retains responsiveness to phosphoantigens when the bispecific VHH is bound, and aminobisphosphonates can therefore enhance bispecific Vγ9Vδ2-T cell engager-mediated tumor-specific killing. CONCLUSIONS Collectively, our data demonstrate the immunotherapeutic potential of this novel CD1d-specific Vγ9Vδ2-T cell engager in CLL.
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jurjen M Ruben
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Experimental Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Kloosterman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lisa A King
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Paul W H I Parren
- Lava Therapeutics, Utrecht, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. .,Lava Therapeutics, Utrecht, the Netherlands
| |
Collapse
|
139
|
Barragué H, Fontaine J, Abravanel F, Mauré E, Péron JM, Alric L, Dubois M, Izopet J, Champagne E. Mobilization of γδ T Cells and IL-10 Production at the Acute Phase of Hepatitis E Virus Infection in Cytomegalovirus Carriers. THE JOURNAL OF IMMUNOLOGY 2021; 206:1027-1038. [PMID: 33483348 DOI: 10.4049/jimmunol.2000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Alterations in the γδ T cell compartment have been reported in immunocompromised individuals infected with hepatitis E virus (HEV)-g3. We now report the analysis of blood γδ T cells from acutely HEV-infected individuals in the absence of immunosuppression. In these patients, non-Vδ2 (ND2) γδ T cells outnumbered otherwise predominant Vδ2 cells selectively in human CMV (HCMV)-seropositive patients and were higher than in HCMVpos controls, mimicking HCMV reactivation, whereas their serum was PCR-negative for HCMV. Stimulation of their lymphocytes with HEV-infected hepatocarcinoma cells led to an HEV-specific response in γδ subsets of HCMVpos individuals. HEV infection was associated with a lowered expression of TIGIT, LAG-3, and CD160 immune checkpoint markers on ND2 effector memory cells in HCMVneg but not in HCMVpos HEV patients. γδ cell lines, predominantly ND2, were generated from patients after coculture with hepatocarcinoma cells permissive to HEV and IL-2/12/18. Upon restimulation with HEV-infected or uninfected cells and selected cytokines, these cell lines produced IFN-γ and IL-10, the latter being induced by IL-12 in IFN-γ-producing cells and upregulated by HEV and IL-18. They were also capable of suppressing the proliferation of CD3/CD28-activated CD4 cells in transwell experiments. Importantly, IL-10 was detected in the plasma of 10 of 10 HCMVpos HEV patients but rarely in controls or HCMVneg HEV patients, implying that γδ cells are probably involved in IL-10 production at the acute phase of infection. Our data indicate that HEV mobilizes a pool of ND2 memory cells in HCMV carriers, promoting the development of an immunoregulatory environment.
Collapse
Affiliation(s)
- Hugo Barragué
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jessica Fontaine
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Florence Abravanel
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Emilie Mauré
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jean-Marie Péron
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Laurent Alric
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Martine Dubois
- CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Jacques Izopet
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Eric Champagne
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France; .,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| |
Collapse
|
140
|
Seo IH, Lee SJ, Noh TW, Kim JH, Joo HC, Shin EC, Park SH, Ko YG. Increase of Vδ2 + T Cells That Robustly Produce IL-17A in Advanced Abdominal Aortic Aneurysm Tissues. Immune Netw 2021; 21:e17. [PMID: 33996173 PMCID: PMC8099614 DOI: 10.4110/in.2021.21.e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/01/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic dilation of the aorta with a tendency to enlarge and eventually rupture, which constitutes a major cause of cardiovascular mortality. Although T-cell infiltrates have been observed in AAA, the cellular, phenotypic, and functional characteristics of these tissue-infiltrating T cells are not fully understood. Here, we investigated the proportional changes of T-cell subsets-including CD4+ T cells, CD8+ T cells, and γδ T cells-and their effector functions in AAAs. We found that Vδ2+ T cells were presented at a higher frequency in aortic aneurysmal tissue compared to normal aortic tissue and PBMCs from patients with AAA. In contrast, no differences were observed in the frequencies of CD4+, CD8+, and Vδ1+ T cells. Moreover, we observed that the Vδ2+ T cells from AAA tissue displayed immunophenotypes indicative of CCR5+ non-exhausted effector memory cells, with a decreased proportion of CD16+ cells. Finally, we found that these Vδ2+ T cells were the main source of IL-17A in abdominal aortic aneurysmal tissue. In conclusion, our results suggest that increased Vδ2+ T cells that robustly produce IL-17A in aortic aneurysmal tissue may contribute to AAA pathogenesis and progression.
Collapse
Affiliation(s)
- In-Ho Seo
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Jun Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Wook Noh
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung-Hwan Kim
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun-Chel Joo
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eui-Cheol Shin
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Young-Guk Ko
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
141
|
Lentini NA, Schroeder CM, Harmon NM, Huang X, Schladetsch MA, Foust BJ, Poe MM, Hsiao CHC, Wiemer AJ, Wiemer DF. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Modifications of the Allylic Alcohol. ACS Med Chem Lett 2021; 12:136-142. [PMID: 33488975 DOI: 10.1021/acsmedchemlett.0c00586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
(E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and its phosphonate analogs are potent phosphoantigens. HMBPP contains an (E)-allylic alcohol which interacts with the molecular target BTN3A1 giving an antigenic signal to activate Vγ9Vδ2 T cells. As probes of BTN3A1 function, we prepared prodrug derivatives of the HMBPP analog C-HMBP that lack the (E)-allylic alcohol or have modified it to an aldehyde or aldoxime and evaluated their biological activity. Removal of the alcohol completely abrogates phosphoantigenicity in these compounds while the aldoxime modification decreases potency relative to the (E)-allylic alcohol form. However, homoprenyl derivatives oxidized to an aldehyde stimulate Vγ9Vδ2 T cells at nanomolar concentrations. Selection of phosphonate protecting groups (i.e., prodrug forms) impacts the potency of phosphoantigen aldehydes, with mixed aryl acyloxyalkyl forms exhibiting superior activity relative to aryl amidate forms. The activity correlates with the cellular reduction of the aldehyde to the alcohol form. Thus, the functionality on this ligand framework can be altered concurrently with phosphonate protection to promote cellular transformation to highly potent phosphoantigens.
Collapse
Affiliation(s)
- Nicholas A. Lentini
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chloe M. Schroeder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Nyema M. Harmon
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Megan A. Schladetsch
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Benjamin J. Foust
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| |
Collapse
|
142
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|
143
|
Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell 2020; 183:1826-1847.e31. [PMID: 33296702 PMCID: PMC7770098 DOI: 10.1016/j.cell.2020.10.046] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αβ T and non-classic CD4+ αβ TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αβ T, and CD4+ αβ TH1∗ cells unable to compensate for this deficit.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Lisa Worley
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - David Langlais
- Department of Human Genetics, Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Ibithal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Houda Elarabi
- Pediatrics Department, Hassan II Hospital, 80030 Dakhla, Morocco
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France; University of Paris, 75006 Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - David Jarrossay
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Daniela Latorre
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yichao Shen
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Lucas T Husquin
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France
| | - Julia L Maclsaac
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mohamed Jeljeli
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Mathieu Bourgey
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics, Montreal, QC H3A 0G1, Canada
| | | | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Fréderic Batteux
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Flore Rozenberg
- University of Paris, 75006 Paris, France; Virology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, PO 34110, Qatar
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France; Chair of Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Gros
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Study Center for Primary Immunodeficiencies, Necker Children Hospital, AP-HP, 75015 Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
144
|
Dang AT, Strietz J, Zenobi A, Khameneh HJ, Brandl SM, Lozza L, Conradt G, Kaufmann SHE, Reith W, Kwee I, Minguet S, Chelbi ST, Guarda G. NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9Vδ2 T cell-mediated killing. iScience 2020; 24:101900. [PMID: 33364588 PMCID: PMC7753138 DOI: 10.1016/j.isci.2020.101900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
BTN3A molecules—BTN3A1 in particular—emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity. BTN3A promoters contain a unique regulatory motif occupied by overexpressed NLRC5 NLRC5 and BTN3A mRNA levels correlate in healthy and diseased cells NLRC5 overexpression increases susceptibility to Vγ9Vδ2 T-cell-mediated elimination
Collapse
Affiliation(s)
- Anh Thu Dang
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Juliane Strietz
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Alessandro Zenobi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Hanif J Khameneh
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Simon M Brandl
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Gregor Conradt
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sonia T Chelbi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| |
Collapse
|
145
|
Kabelitz D. Gamma Delta T Cells (γδ T Cells) in Health and Disease: In Memory of Professor Wendy Havran. Cells 2020; 9:E2564. [PMID: 33266147 PMCID: PMC7760329 DOI: 10.3390/cells9122564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022] Open
Abstract
Gamma delta (γδ) T cells are a small subset of CD3-positive T cells in the peripheral blood but occur at increased frequency in mucosal tissues [...].
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, D-24105 Kiel, Germany
| |
Collapse
|
146
|
Coffelt SB, Kabelitz D, Silva-Santos B, Kuball J, Born W, Bank I. Editorial: γδ T Cells in Cancer. Front Immunol 2020; 11:602411. [PMID: 33329597 PMCID: PMC7714948 DOI: 10.3389/fimmu.2020.602411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Jurgen Kuball
- Department of Hematology and Center for Translational Immunology, Utrecht Medical Center (UMC), Utrecht, Netherlands
| | - Willi Born
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Ilan Bank
- Rheumatology Unit, Division of Medicine, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
147
|
Hsu H, Boudova S, Mvula G, Divala TH, Rach D, Mungwira RG, Boldrin F, Degiacomi G, Manganelli R, Laufer MK, Cairo C. Age-related changes in PD-1 expression coincide with increased cytotoxic potential in Vδ2 T cells during infancy. Cell Immunol 2020; 359:104244. [PMID: 33248366 DOI: 10.1016/j.cellimm.2020.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Human Vγ9Vδ2 T cells respond to several diverse pathogens by sensing microbial cholesterol intermediates. Unlike CD4 T cells, they are poised for rapid Th1-like responses even before birth, which allows them to play a key role in the first line of defense against pathogens in early life. However, their regulation and functional maturation during infancy (in particular the acquisition of cytotoxic potential) remain understudied. We thus characterized their responses to cholesterol intermediates and Bacille Calmette-Guérin in a cohort of African neonates and 12-month-old infants. Infant Vδ2 lymphocytes exhibited intermediate or adult-like expression of markers associated with differentiation or function, intermediate proliferative responses, and adult-like cytotoxic potential. The enhancement of Vδ2 cell cytotoxic potential coincided with decreasing PD-1 and increasing NKG2A expression. Our results are consistent with the hypothesis that switching from a PD-1+ to a NKG2A+ phenotype during infancy indicates a shift in mechanisms regulating Vδ2 T cell function.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Randy G Mungwira
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
148
|
de Weerdt I, Lameris R, Scheffer GL, Vree J, de Boer R, Stam AG, van de Ven R, Levin MD, Pals ST, Roovers RC, Parren PWHI, de Gruijl TD, Kater AP, van der Vliet HJ. A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9Vδ2 T cell-Mediated Antitumor Responses in Human B-cell Malignancies. Cancer Immunol Res 2020; 9:50-61. [PMID: 33177109 DOI: 10.1158/2326-6066.cir-20-0138] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/05/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Novel T cell-based therapies for the treatment of B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), are thought to have strong potential. Progress, however, has been hampered by low efficacy and high toxicity. Tumor targeting by Vγ9Vδ2 T cells, a conserved T-cell subset with potent intrinsic antitumor properties, mediated by a bispecific antibody represents a novel approach promising high efficacy with limited toxicity. Here, we describe the generation of a bispecific Vγ9Vδ2 T-cell engager directed against CD40, which, due to its overexpression and biological footprint in malignant B cells, represents an attractive target. The CD40-targeting moiety of the bispecific antibody was selected because it can prevent CD40L-induced prosurvival signaling and reduce CD40-mediated resistance of CLL cells to venetoclax. Selective activation of Vγ9Vδ2 T cells in the presence of CD40+ tumor cells induced potent Vγ9Vδ2 T-cell degranulation, cytotoxicity against CLL and MM cells in vitro, and in vivo control of MM in a xenograft model. The CD40-bispecific γδ T-cell engager demonstrated lysis of leukemic cells by autologous Vγ9Vδ2 T cells present in patient-derived samples. Taken together, our CD40 bispecific γδ T-cell engager increased the sensitivity of leukemic cells to apoptosis and induced a potent Vγ9Vδ2 T cell-dependent antileukemic response. It may, therefore, represent a potential candidate for the development of novel treatments for B-cell malignancies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- CD40 Antigens/immunology
- Cell Line, Tumor
- Female
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- Male
- Mice
- Mice, Inbred NOD
- Middle Aged
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - George L Scheffer
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jana Vree
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita G Stam
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | | | - Paul W H I Parren
- Lava Therapeutics, Utrecht, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Lava Therapeutics, Utrecht, the Netherlands
| |
Collapse
|
149
|
Papadopoulou M, Sanchez Sanchez G, Vermijlen D. Innate and adaptive γδ T cells: How, when, and why. Immunol Rev 2020; 298:99-116. [PMID: 33146423 DOI: 10.1111/imr.12926] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
γδ T cells comprise the third cell lineage of lymphocytes that use, like αβ T cells and B cells, V(D)J gene rearrangement with the potential to generate a highly diverse T cell receptor (TCR) repertoire. There is no obvious conservation of γδ T cell subsets (based on TCR repertoire and/or function) between mice and human, leading to the notion that human and mouse γδ T cells are highly different. In this review, we focus on human γδ T cells, building on recent studies using high-throughput sequencing to analyze the TCR repertoire in various settings. We make then the comparison with mouse γδ T cell subsets highlighting the similarities and differences and describe the remarkable changes during lifespan of innate and adaptive γδ T cells. Finally, we propose mechanisms contributing to the generation of innate versus adaptive γδ T cells. We conclude that key elements related to the generation of the γδ TCR repertoire and γδ T cell activation/development are conserved between human and mice, highlighting the similarities between these two species.
Collapse
Affiliation(s)
- Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| |
Collapse
|
150
|
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020; 11:564499. [PMID: 33133075 PMCID: PMC7550643 DOI: 10.3389/fimmu.2020.564499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Though a healthy immune system is capable of recognizing and eliminating emergent cancerous cells, an established tumor is adept at escaping immune surveillance. Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates, also termed the “tumor glycocode,” is a prominent mechanism by which tumors can escape anti-tumor immunity. Given their persistent and homogeneous expression, tumor-associated glycans are promising targets to be exploited as biomarkers and therapeutic targets. However, the exploitation of these glycans has been a challenge due to their low immunogenicity, immunosuppressive properties, and the inefficient presentation of glycolipids in a conventional major histocompatibility complex (MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted antigen recognition and potent inherent anti-tumor properties. In this review, we discuss the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the potential of γδ T cells to target the tumor glycocode. Understanding the many facets of this interaction holds the potential to unlock new ways to use both tumor-associated glycans and γδ T cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada.,Pharmacology and Therapeutics, and Ophthalmology and Vision Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|