101
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of Protein Kinase A activity dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565028. [PMID: 37961214 PMCID: PMC10635033 DOI: 10.1101/2023.10.31.565028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive, cannot easily target sparse or hard-to-transfect/infect cell types, and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I. Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Ph. D. Program in Neuroscience, Washington University in St. Louis
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
102
|
Jovanoski KD, Duquenoy L, Mitchell J, Kapoor I, Treiber CD, Croset V, Dempsey G, Parepalli S, Cognigni P, Otto N, Felsenberg J, Waddell S. Dopaminergic systems create reward seeking despite adverse consequences. Nature 2023; 623:356-365. [PMID: 37880370 PMCID: PMC10632144 DOI: 10.1038/s41586-023-06671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Resource-seeking behaviours are ordinarily constrained by physiological needs and threats of danger, and the loss of these controls is associated with pathological reward seeking1. Although dysfunction of the dopaminergic valuation system of the brain is known to contribute towards unconstrained reward seeking2,3, the underlying reasons for this behaviour are unclear. Here we describe dopaminergic neural mechanisms that produce reward seeking despite adverse consequences in Drosophila melanogaster. Odours paired with optogenetic activation of a defined subset of reward-encoding dopaminergic neurons become cues that starved flies seek while neglecting food and enduring electric shock punishment. Unconstrained seeking of reward is not observed after learning with sugar or synthetic engagement of other dopaminergic neuron populations. Antagonism between reward-encoding and punishment-encoding dopaminergic neurons accounts for the perseverance of reward seeking despite punishment, whereas synthetic engagement of the reward-encoding dopaminergic neurons also impairs the ordinary need-dependent dopaminergic valuation of available food. Connectome analyses reveal that the population of reward-encoding dopaminergic neurons receives highly heterogeneous input, consistent with parallel representation of diverse rewards, and recordings demonstrate state-specific gating and satiety-related signals. We propose that a similar dopaminergic valuation system dysfunction is likely to contribute to maladaptive seeking of rewards by mammals.
Collapse
Affiliation(s)
| | - Lucille Duquenoy
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Jessica Mitchell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ishaan Kapoor
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | | | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Georgia Dempsey
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Sai Parepalli
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Paola Cognigni
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Northern Medical Physics and Clinical Engineering, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
103
|
Stopper G, Caudal LC, Rieder P, Gobbo D, Stopper L, Felix L, Everaerts K, Bai X, Rose CR, Scheller A, Kirchhoff F. Novel algorithms for improved detection and analysis of fluorescent signal fluctuations. Pflugers Arch 2023; 475:1283-1300. [PMID: 37700120 PMCID: PMC10567899 DOI: 10.1007/s00424-023-02855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. Using advanced imaging technologies, fluorescence indicators are a prerequisite for the analysis of physiological molecular signaling. Automated detection and analysis of fluorescence signals require to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection, and extraction of events themselves as well as proper segmentation of neighboring events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. Here, we present two algorithms (PBasE and CoRoDe) for accurate baseline estimation and automated detection and segmentation of fluorescence fluctuations.
Collapse
Affiliation(s)
- Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany.
| |
Collapse
|
104
|
Yang HH, Brezovec LE, Capdevila LS, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562426. [PMID: 37904997 PMCID: PMC10614758 DOI: 10.1101/2023.10.15.562426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream from distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Notably, a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from brain cells that drive specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H. Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Luke E. Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305 USA
| | | | | | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Rachel I. Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
105
|
Funamizu A, Marbach F, Zador AM. Stable sound decoding despite modulated sound representation in the auditory cortex. Curr Biol 2023; 33:4470-4483.e7. [PMID: 37802051 PMCID: PMC10665086 DOI: 10.1016/j.cub.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
The activity of neurons in the auditory cortex is driven by both sounds and non-sensory context. To investigate the neuronal correlates of non-sensory context, we trained head-fixed mice to perform a two-alternative-choice auditory task in which either reward or stimulus expectation (prior) was manipulated in blocks. Using two-photon calcium imaging to record populations of single neurons in the auditory cortex, we found that both stimulus and reward expectation modulated the activity of these neurons. A linear decoder trained on this population activity could decode stimuli as well or better than predicted by the animal's performance. Interestingly, the optimal decoder was stable even in the face of variable sensory representations. Neither the context nor the mouse's choice could be reliably decoded from the recorded neural activity. Our findings suggest that, in spite of modulation of auditory cortical activity by task priors, the auditory cortex does not represent sufficient information about these priors to exploit them optimally. Thus, the combination of rapidly changing sensory information with more slowly varying task information required for decisions in this task might be represented in brain regions other than the auditory cortex.
Collapse
Affiliation(s)
- Akihiro Funamizu
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Fred Marbach
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Anthony M Zador
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
106
|
Chen J, Gish CM, Fransen JW, Salazar-Gatzimas E, Clark DA, Borghuis BG. Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. iScience 2023; 26:107928. [PMID: 37810236 PMCID: PMC10550730 DOI: 10.1016/j.isci.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Evolution has equipped vertebrates and invertebrates with neural circuits that selectively encode visual motion. While similarities in the computations performed by these circuits in mouse and fruit fly have been noted, direct experimental comparisons have been lacking. Because molecular mechanisms and neuronal morphology in the two species are distinct, we directly compared motion encoding in these two species at the algorithmic level, using matched stimuli and focusing on a pair of analogous neurons, the mouse ON starburst amacrine cell (ON SAC) and Drosophila T4 neurons. We find that the cells share similar spatiotemporal receptive field structures, sensitivity to spatiotemporal correlations, and tuning to sinusoidal drifting gratings, but differ in their responses to apparent motion stimuli. Both neuron types showed a response to summed sinusoids that deviates from models for motion processing in these cells, underscoring the similarities in their processing and identifying response features that remain to be explained.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
| | - Caitlin M Gish
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Damon A Clark
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
107
|
Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu TC, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WCA, Li H, Mhatre N, Tuthill JC. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 2023; 111:3230-3243.e14. [PMID: 37562405 PMCID: PMC10644877 DOI: 10.1016/j.neuron.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasha Mhatre
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
108
|
Davidson AM, Kaushik S, Hige T. Dopamine-Dependent Plasticity Is Heterogeneously Expressed by Presynaptic Calcium Activity across Individual Boutons of the Drosophila Mushroom Body. eNeuro 2023; 10:ENEURO.0275-23.2023. [PMID: 37848287 PMCID: PMC10616905 DOI: 10.1523/eneuro.0275-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023] Open
Abstract
The Drosophila mushroom body (MB) is an important model system for studying the synaptic mechanisms of associative learning. In this system, coincidence of odor-evoked calcium influx and dopaminergic input in the presynaptic terminals of Kenyon cells (KCs), the principal neurons of the MB, triggers long-term depression (LTD), which plays a critical role in olfactory learning. However, it is controversial whether such synaptic plasticity is accompanied by a corresponding decrease in odor-evoked calcium activity in the KC presynaptic terminals. Here, we address this question by inducing LTD by pairing odor presentation with optogenetic activation of dopaminergic neurons (DANs). This allows us to rigorously compare the changes at the presynaptic and postsynaptic sites in the same conditions. By imaging presynaptic acetylcholine release in the condition where LTD is reliably observed in the postsynaptic calcium signals, we show that neurotransmitter release from KCs is depressed selectively in the MB compartments innervated by activated DANs, demonstrating the presynaptic nature of LTD. However, total odor-evoked calcium activity of the KC axon bundles does not show concurrent depression. We further conduct calcium imaging in individual presynaptic boutons and uncover the highly heterogeneous nature of calcium plasticity. Namely, only a subset of boutons, which are strongly activated by associated odors, undergo calcium activity depression, while weakly responding boutons show potentiation. Thus, our results suggest an unexpected nonlinear relationship between presynaptic calcium influx and the results of plasticity, challenging the simple view of cooperative actions of presynaptic calcium and dopaminergic input.
Collapse
Affiliation(s)
- Andrew M Davidson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shivam Kaushik
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
109
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
110
|
Mano O, Choi M, Tanaka R, Creamer MS, Matos NCB, Shomar JW, Badwan BA, Clandinin TR, Clark DA. Long-timescale anti-directional rotation in Drosophila optomotor behavior. eLife 2023; 12:e86076. [PMID: 37751469 PMCID: PMC10522332 DOI: 10.7554/elife.86076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Locomotor movements cause visual images to be displaced across the eye, a retinal slip that is counteracted by stabilizing reflexes in many animals. In insects, optomotor turning causes the animal to turn in the direction of rotating visual stimuli, thereby reducing retinal slip and stabilizing trajectories through the world. This behavior has formed the basis for extensive dissections of motion vision. Here, we report that under certain stimulus conditions, two Drosophila species, including the widely studied Drosophila melanogaster, can suppress and even reverse the optomotor turning response over several seconds. Such 'anti-directional turning' is most strongly evoked by long-lasting, high-contrast, slow-moving visual stimuli that are distinct from those that promote syn-directional optomotor turning. Anti-directional turning, like the syn-directional optomotor response, requires the local motion detecting neurons T4 and T5. A subset of lobula plate tangential cells, CH cells, show involvement in these responses. Imaging from a variety of direction-selective cells in the lobula plate shows no evidence of dynamics that match the behavior, suggesting that the observed inversion in turning direction emerges downstream of the lobula plate. Further, anti-directional turning declines with age and exposure to light. These results show that Drosophila optomotor turning behaviors contain rich, stimulus-dependent dynamics that are inconsistent with simple reflexive stabilization responses.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Minseung Choi
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Natalia CB Matos
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Joseph W Shomar
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Bara A Badwan
- Department of Chemical Engineering, Yale UniversityNew HavenUnited States
| | | | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| |
Collapse
|
111
|
Kourdougli N, Suresh A, Liu B, Juarez P, Lin A, Chung DT, Graven Sams A, Gandal MJ, Martínez-Cerdeño V, Buonomano DV, Hall BJ, Mombereau C, Portera-Cailliau C. Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron 2023; 111:2863-2880.e6. [PMID: 37451263 PMCID: PMC10529373 DOI: 10.1016/j.neuron.2023.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/14/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
Collapse
Affiliation(s)
| | - Anand Suresh
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Benjamin Liu
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Pablo Juarez
- Department of Pathology, UC Davis, Davis, CA, USA
| | - Ashley Lin
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Dean V Buonomano
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | - Carlos Portera-Cailliau
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Neurobiology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
112
|
Seemann KM, Kovács A, Schmid TE, Ilicic K, Multhoff G, Dunin-Borkowski RE, Michelagnoli C, Cieplicka-Oryńczak N, Jana S, Colombi G, Jentschel M, Schneider CM, Kuhn B. Neutron-activated, plasmonically excitable Fe-Pt-Yb 2O 3 nanoparticles delivering anti-cancer radiation against human glioblastoma cells. iScience 2023; 26:107683. [PMID: 37680485 PMCID: PMC10481348 DOI: 10.1016/j.isci.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb2O3 core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from 175Yb, 177Yb, and 177Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.
Collapse
Affiliation(s)
- Klaus M. Seemann
- Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Université de Lorraine, CNRS, IJL, 54000 Nancy, France
| | - András Kovács
- Ernst-Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Thomas E. Schmid
- Dpt. Radiation Oncology and TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Katarina Ilicic
- Dpt. Radiation Oncology and TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Gabriele Multhoff
- Dpt. Radiation Oncology and TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst-Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Caterina Michelagnoli
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Natalia Cieplicka-Oryńczak
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Soumen Jana
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Giacomo Colombi
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Michael Jentschel
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Claus M. Schneider
- Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
113
|
Funamizu A, Marbach F, Zador AM. Stable sound decoding despite modulated sound representation in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526457. [PMID: 37745428 PMCID: PMC10515783 DOI: 10.1101/2023.01.31.526457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The activity of neurons in the auditory cortex is driven by both sounds and non-sensory context. To investigate the neuronal correlates of non-sensory context, we trained head-fixed mice to perform a two-alternative choice auditory task in which either reward or stimulus expectation (prior) was manipulated in blocks. Using two-photon calcium imaging to record populations of single neurons in auditory cortex, we found that both stimulus and reward expectation modulated the activity of these neurons. A linear decoder trained on this population activity could decode stimuli as well or better than predicted by the animal's performance. Interestingly, the optimal decoder was stable even in the face of variable sensory representations. Neither the context nor the mouse's choice could be reliably decoded from the recorded neural activity. Our findings suggest that in spite of modulation of auditory cortical activity by task priors, auditory cortex does not represent sufficient information about these priors to exploit them optimally and that decisions in this task require that rapidly changing sensory information be combined with more slowly varying task information extracted and represented in brain regions other than auditory cortex.
Collapse
Affiliation(s)
- Akihiro Funamizu
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
- Present address: Institute for Quantitative Biosciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 1130032, Japan
- Present address: Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 1538902, Japan
| | - Fred Marbach
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
- Present address: The Francis Crick Institute, 1 Midland Rd, NW1 4AT London, UK
| | - Anthony M Zador
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
114
|
Ikezoe K, Hidaka N, Manita S, Murakami M, Tsutsumi S, Isomura Y, Kano M, Kitamura K. Cerebellar climbing fibers multiplex movement and reward signals during a voluntary movement task in mice. Commun Biol 2023; 6:924. [PMID: 37689776 PMCID: PMC10492837 DOI: 10.1038/s42003-023-05309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar climbing fibers convey sensorimotor information and their errors, which are used for motor control and learning. Furthermore, they represent reward-related information. Despite such functional diversity of climbing fiber signals, it is still unclear whether each climbing fiber conveys the information of single or multiple modalities and how the climbing fibers conveying different information are distributed over the cerebellar cortex. Here we perform two-photon calcium imaging from cerebellar Purkinje cells in mice engaged in a voluntary forelimb lever-pull task and demonstrate that climbing fiber responses in 68% of Purkinje cells can be explained by the combination of multiple behavioral variables such as lever movement, licking, and reward delivery. Neighboring Purkinje cells exhibit similar climbing fiber response properties, form functional clusters, and share noise fluctuations of responses. Taken together, individual climbing fibers convey behavioral information on multiplex variables and are spatially organized into the functional modules of the cerebellar cortex.
Collapse
Affiliation(s)
- Koji Ikezoe
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
| | - Naoki Hidaka
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Satoshi Manita
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Masayoshi Murakami
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichiro Tsutsumi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kazuo Kitamura
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
115
|
Xu D, Bourdakos KN, Crisford A, Johnson P, Abughazaleh I, Srisamran P, Oreffo ROC, Mahajan S, Richardson DJ, Xu L. All-fiberized 1840-nm femtosecond thulium fiber laser for label-free nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:4520-4530. [PMID: 37791276 PMCID: PMC10545209 DOI: 10.1364/boe.495879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
We report an all-fiberized 1840-nm thulium-fiber-laser source, comprising a dissipative-soliton mode-locked seed laser and a chirped-pulse-amplification system for label-free biological imaging through nonlinear microscopy. The mode-locked thulium fiber laser generated dissipative-soliton pulses with a pre-chirped duration of 7 ps and pulse energy of 1 nJ. A chirped-pulse fiber-amplification system employing an in-house-fabricated, short-length, single-mode, high-absorption, thulium fiber delivered pulses with energies up to 105 nJ. The pulses were capable of being compressed to 416 fs by passing through a grating pair. Imaging of mouse tissue and human bone samples was demonstrated using this source via third-harmonic generation microscopy.
Collapse
Affiliation(s)
- Duanyang Xu
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Konstantinos N. Bourdakos
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anna Crisford
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Peter Johnson
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
- Human Development Health, Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Ibrahim Abughazaleh
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Panuwat Srisamran
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Richard O. C. Oreffo
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Human Development Health, Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - David J. Richardson
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Lin Xu
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
116
|
Weber TD, Moya MV, Kılıç K, Mertz J, Economo MN. High-speed multiplane confocal microscopy for voltage imaging in densely labeled neuronal populations. Nat Neurosci 2023; 26:1642-1650. [PMID: 37604887 PMCID: PMC11209746 DOI: 10.1038/s41593-023-01408-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Genetically encoded voltage indicators (GEVIs) hold immense potential for monitoring neuronal population activity. To date, best-in-class GEVIs rely on one-photon excitation. However, GEVI imaging of dense neuronal populations remains difficult because out-of-focus background fluorescence produces low contrast and excess noise when paired with conventional one-photon widefield imaging methods. To address this challenge, we developed an imaging system capable of efficient, high-contrast GEVI imaging at near-kHz rates and demonstrate it for in vivo and ex vivo imaging applications in the mouse neocortex. Our approach uses simultaneous multiplane imaging to monitor activity within contiguous tissue volumes with no penalty in speed or requirement for high excitation power. This approach, multi-Z imaging with confocal detection (MuZIC), permits high signal-to-noise ratio voltage imaging in densely labeled neuronal populations and is compatible with imaging through micro-optics. Moreover, it minimizes artifacts associated with concurrent imaging and optogenetic photostimulation for all-optical electrophysiology.
Collapse
Affiliation(s)
- Timothy D Weber
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Maria V Moya
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Kıvılcım Kılıç
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Neurophotonics Center, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
| |
Collapse
|
117
|
Bender PTR, McCollum M, Boyd-Pratt H, Mendelson BZ, Anderson CT. Synaptic zinc potentiates AMPA receptor function in mouse auditory cortex. Cell Rep 2023; 42:112932. [PMID: 37585291 PMCID: PMC10514716 DOI: 10.1016/j.celrep.2023.112932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.
Collapse
Affiliation(s)
- Philip T R Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Helen Boyd-Pratt
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Benjamin Z Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles T Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
118
|
Priest MF, Freda SN, Rieth IJ, Badong D, Dumrongprechachan V, Kozorovitskiy Y. Peptidergic and functional delineation of the Edinger-Westphal nucleus. Cell Rep 2023; 42:112992. [PMID: 37594894 PMCID: PMC10512657 DOI: 10.1016/j.celrep.2023.112992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 06/15/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Many neuronal populations that release fast-acting excitatory and inhibitory neurotransmitters in the brain also contain slower-acting neuropeptides. These facultative peptidergic cell types are common, but it remains uncertain whether neurons that solely release peptides exist. Our fluorescence in situ hybridization, genetically targeted electron microscopy, and electrophysiological characterization suggest that most neurons of the non-cholinergic, centrally projecting Edinger-Westphal nucleus in mice are obligately peptidergic. We further show, using anterograde projection mapping, monosynaptic retrograde tracing, angled-tip fiber photometry, and chemogenetic modulation and genetically targeted ablation in conjunction with canonical assays for anxiety, that this peptidergic population activates in response to loss of motor control and promotes anxiety responses. Together, these findings elucidate an integrative, ethologically relevant role for the Edinger-Westphal nucleus and functionally align the nucleus with the periaqueductal gray, where it resides. This work advances our understanding of peptidergic modulation of anxiety and provides a framework for future investigations of peptidergic systems.
Collapse
Affiliation(s)
- Michael F Priest
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sara N Freda
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Isabelle J Rieth
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanna Badong
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
119
|
Zhuo Y, Luo B, Yi X, Dong H, Wan J, Cai R, Williams JT, Qian T, Campbell MG, Miao X, Li B, Wei Y, Li G, Wang H, Zheng Y, Watabe-Uchida M, Li Y. Improved dual-color GRAB sensors for monitoring dopaminergic activity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554559. [PMID: 37662187 PMCID: PMC10473776 DOI: 10.1101/2023.08.24.554559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- These authors contributed equally
| | - Bin Luo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- These authors contributed equally
| | - Xinyang Yi
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - John T. Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Malcolm G. Campbell
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bozhi Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | - Yu Wei
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
120
|
Lendner JD, Niethard N, Mander BA, van Schalkwijk FJ, Schuh-Hofer S, Schmidt H, Knight RT, Born J, Walker MP, Lin JJ, Helfrich RF. Human REM sleep recalibrates neural activity in support of memory formation. SCIENCE ADVANCES 2023; 9:eadj1895. [PMID: 37624898 PMCID: PMC10456851 DOI: 10.1126/sciadv.adj1895] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory. We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid eye movement (REM) sleep to mediate sleep-dependent recalibration of neural population dynamics. The extent of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal-neocortical activity, favoring remembering rather than forgetting. The findings describe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance long-term memory.
Collapse
Affiliation(s)
- Janna D. Lendner
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Bryce A. Mander
- Department of Psychiatry and Human Behavior, UC Irvine, 101 The City Dr, Orange, CA 92868, USA
| | - Frank J. van Schalkwijk
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, University Medical Center Mannheim, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Hannah Schmidt
- Department of Neurophysiology, University Medical Center Mannheim, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, CA 94720, USA
- Department of Psychology, UC Berkeley, 2121 Berkeley Way, CA 94720, USA
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen 72076, Germany
| | - Matthew P. Walker
- Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, CA 94720, USA
- Department of Psychology, UC Berkeley, 2121 Berkeley Way, CA 94720, USA
| | - Jack J. Lin
- Department of Neurology, UC Davis, 3160 Folsom Blvd., Sacramento, CA 95816, USA
- Center for Mind and Brain, UC Davis, 267 Cousteau Pl, Davis, CA 95618, USA
| | - Randolph F. Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| |
Collapse
|
121
|
Tu X, Jain A, Parra Bueno P, Decker H, Liu X, Yasuda R. Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. SCIENCE ADVANCES 2023; 9:eadg0666. [PMID: 37531435 PMCID: PMC10396292 DOI: 10.1126/sciadv.adg0666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.
Collapse
Affiliation(s)
- Xun Tu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Brain and Behavior, Jupiter, FL, USA
- FAU/Max Planck Florida Institute Joint Graduate Program in Integrative Biology and Neuroscience, Florida Atlantic University, Boca Raton, FL, USA
| | - Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Paula Parra Bueno
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Helena Decker
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Xiaodan Liu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| |
Collapse
|
122
|
Whiddon ZD, Marshall JB, Alston DC, McGee AW, Krimm RF. Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover. PLoS Biol 2023; 21:e3002271. [PMID: 37651406 PMCID: PMC10499261 DOI: 10.1371/journal.pbio.3002271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/13/2023] [Accepted: 07/22/2023] [Indexed: 09/02/2023] Open
Abstract
Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.
Collapse
Affiliation(s)
- Zachary D. Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jaleia B. Marshall
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - David C. Alston
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robin F. Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
123
|
Glaeser-Khan S, Savalia NK, Cressy J, Feng J, Li Y, Kwan AC, Kaye AP. Spatiotemporal organization of prefrontal norepinephrine influences neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544191. [PMID: 37502881 PMCID: PMC10370029 DOI: 10.1101/2023.06.09.544191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Norepinephrine (NE), a neuromodulator released by locus coeruleus neurons throughout cortex, influences arousal and learning through extra-synaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the PFC affect neuronal firing, we employed in-vivo two-photon imaging of layer 2/3 of PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. We found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.
Collapse
|
124
|
Allen CH, Skillings R, Ahmed D, Sanchez SC, Altwasser K, Hilan G, Willmore WG, Chauhan V, Cassol E, Murugkar S. Investigating ionizing radiation-induced changes in breast cancer cells using stimulated Raman scattering microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:076501. [PMID: 37441447 PMCID: PMC10335321 DOI: 10.1117/1.jbo.28.7.076501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Significance Altered lipid metabolism of cancer cells has been implicated in increased radiation resistance. A better understanding of this phenomenon may lead to improved radiation treatment planning. Stimulated Raman scattering (SRS) microscopy enables label-free and quantitative imaging of cellular lipids but has never been applied in this domain. Aim We sought to investigate the radiobiological response in human breast cancer MCF7 cells using SRS microscopy, focusing on how radiation affects lipid droplet (LD) distribution and cellular morphology. Approach MCF7 breast cancer cells were exposed to either 0 or 30 Gy (X-ray) ionizing radiation and imaged using a spectrally focused SRS microscope every 24 hrs over a 72-hr time period. Images were analyzed to quantify changes in LD area per cell, lipid and protein content per cell, and cellular morphology. Cell viability and confluency were measured using a live cell imaging system while radiation-induced lipid peroxidation was assessed using BODIPY C11 staining and flow cytometry. Results The LD area per cell and total lipid and protein intensities per cell were found to increase significantly for irradiated cells compared to control cells from 48 to 72 hrs post irradiation. Increased cell size, vacuole formation, and multinucleation were observed as well. No significant cell death was observed due to irradiation, but lipid peroxidation was found to be greater in the irradiated cells than control cells at 72 hrs. Conclusions This pilot study demonstrates the potential of SRS imaging for investigating ionizing radiation-induced changes in cancer cells without the use of fluorescent labels.
Collapse
Affiliation(s)
- Christian Harry Allen
- Carleton University, Department of Physics, Ottawa, Ontario, Canada
- Carleton University, Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada
| | - Robyn Skillings
- Carleton University, Department of Health Sciences, Ottawa, Ontario, Canada
| | - Duale Ahmed
- Carleton University, Department of Health Sciences, Ottawa, Ontario, Canada
| | - Sarita Cuadros Sanchez
- Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, Ontario, Canada
| | - George Hilan
- Carleton University, Institute of Biochemistry, Departments of Biology and Chemistry, Ottawa, Canada
| | - William G. Willmore
- Carleton University, Institute of Biochemistry, Departments of Biology and Chemistry, Ottawa, Canada
| | - Vinita Chauhan
- Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, Ontario, Canada
| | - Edana Cassol
- Carleton University, Department of Health Sciences, Ottawa, Ontario, Canada
| | - Sangeeta Murugkar
- Carleton University, Department of Physics, Ottawa, Ontario, Canada
- Carleton University, Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada
| |
Collapse
|
125
|
Giblin J, Kura S, Nunuez JLU, Zhang J, Kureli G, Jiang J, Boas DA, Chen IA. High throughput detection of capillary stalling events with Bessel beam two-photon microscopy. NEUROPHOTONICS 2023; 10:035009. [PMID: 37705938 PMCID: PMC10495839 DOI: 10.1117/1.nph.10.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Significance Brief disruptions in capillary flow, commonly referred to as capillary "stalling," have gained interest recently for their potential role in disrupting cerebral blood flow and oxygen delivery. Approaches to studying this phenomenon have been hindered by limited volumetric imaging rates and cumbersome manual analysis. The ability to precisely and efficiently quantify the dynamics of these events will be key in understanding their potential role in stroke and neurodegenerative diseases, such as Alzheimer's disease. Aim Our study aimed to demonstrate that the fast volumetric imaging rates offered by Bessel beam two-photon microscopy combined with improved data analysis throughput allows for faster and more precise measurement of capillary stall dynamics. Results We found that while our analysis approach was unable to achieve full automation, we were able to cut analysis time in half while also finding stalling events that were missed in traditional blind manual analysis. The resulting data showed that our Bessel beam system was captured more stalling events compared to optical coherence tomography, particularly shorter stalling events. We then compare differences in stall dynamics between a young and old group of mice as well as a demonstrate changes in stalling before and after photothrombotic model of stroke. Finally, we also demonstrate the ability to monitor arteriole dynamics alongside stall dynamics. Conclusions Bessel beam two-photon microscopy combined with high throughput analysis is a powerful tool for studying capillary stalling due to its ability to monitor hundreds of capillaries simultaneously at high frame rates.
Collapse
Affiliation(s)
- John Giblin
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Juan Luis Ugarte Nunuez
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Juncheng Zhang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Gulce Kureli
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - John Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Ichun A. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| |
Collapse
|
126
|
Post S, Mol W, Abu-Wishah O, Ali S, Rahmatullah N, Goel A. Multimodal Temporal Pattern Discrimination Is Encoded in Visual Cortical Dynamics. eNeuro 2023; 10:ENEURO.0047-23.2023. [PMID: 37487713 PMCID: PMC10368206 DOI: 10.1523/eneuro.0047-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Discriminating between temporal features in sensory stimuli is critical to complex behavior and decision-making. However, how sensory cortical circuit mechanisms contribute to discrimination between subsecond temporal components in sensory events is unclear. To elucidate the mechanistic underpinnings of timing in primary visual cortex (V1), we recorded from V1 using two-photon calcium imaging in awake-behaving mice performing a go/no-go discrimination timing task, which was composed of patterns of subsecond audiovisual stimuli. In both conditions, activity during the early stimulus period was temporally coordinated with the preferred stimulus. However, while network activity increased in the preferred condition, network activity was increasingly suppressed in the nonpreferred condition over the stimulus period. Multiple levels of analyses suggest that discrimination between subsecond intervals that are contained in rhythmic patterns can be accomplished by local neural dynamics in V1.
Collapse
Affiliation(s)
- Sam Post
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - William Mol
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Omar Abu-Wishah
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Shazia Ali
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Noorhan Rahmatullah
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Anubhuti Goel
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
127
|
Tsujioka S, Sumino A, Nagasawa Y, Sumikama T, Flechsig H, Puppulin L, Tomita T, Baba Y, Kakuta T, Ogoshi T, Umeda K, Kodera N, Murakoshi H, Shibata M. Imaging single CaMKII holoenzymes at work by high-speed atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadh1069. [PMID: 37390213 PMCID: PMC10313165 DOI: 10.1126/sciadv.adh1069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in synaptic plasticity. It is a dodecameric serine/threonine kinase that has been highly conserved across metazoans for over a million years. Despite the extensive knowledge of the mechanisms underlying CaMKII activation, its behavior at the molecular level has remained unobserved. In this study, we used high-speed atomic force microscopy to visualize the activity-dependent structural dynamics of rat/hydra/C. elegans CaMKII with nanometer resolution. Our imaging results revealed that the dynamic behavior is dependent on CaM binding and subsequent pT286 phosphorylation. Among the species studies, only rat CaMKIIα with pT286/pT305/pT306 exhibited kinase domain oligomerization. Furthermore, we revealed that the sensitivity of CaMKII to PP2A in the three species differs, with rat, C. elegans, and hydra being less dephosphorylated in that order. The evolutionarily acquired features of mammalian CaMKIIα-specific structural arrangement and phosphatase tolerance may differentiate neuronal function between mammals and other species.
Collapse
Affiliation(s)
- Shotaro Tsujioka
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Tomita
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
128
|
Deán-Ben XL, Robin J, Nozdriukhin D, Ni R, Zhao J, Glück C, Droux J, Sendón-Lago J, Chen Z, Zhou Q, Weber B, Wegener S, Vidal A, Arand M, El Amki M, Razansky D. Deep optoacoustic localization microangiography of ischemic stroke in mice. Nat Commun 2023; 14:3584. [PMID: 37328490 PMCID: PMC10275987 DOI: 10.1038/s41467-023-39069-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2023] [Indexed: 06/18/2023] Open
Abstract
Super-resolution optoacoustic imaging of microvascular structures deep in mammalian tissues has so far been impeded by strong absorption from densely-packed red blood cells. Here we devised 5 µm biocompatible dichloromethane-based microdroplets exhibiting several orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus enabling single-particle detection in vivo. We demonstrate non-invasive three-dimensional microangiography of the mouse brain beyond the acoustic diffraction limit (<20 µm resolution). Blood flow velocity quantification in microvascular networks and light fluence mapping was also accomplished. In mice affected by acute ischemic stroke, the multi-parametric multi-scale observations enabled by super-resolution and spectroscopic optoacoustic imaging revealed significant differences in microvascular density, flow and oxygen saturation in ipsi- and contra-lateral brain hemispheres. Given the sensitivity of optoacoustics to functional, metabolic and molecular events in living tissues, the new approach paves the way for non-invasive microscopic observations with unrivaled resolution, contrast and speed.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| | - Justine Robin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Jim Zhao
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Jeanne Droux
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Juan Sendón-Lago
- Experimental Biomedicine Centre (CEBEGA), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Susanne Wegener
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael Arand
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|
129
|
Kiritani T, Pala A, Gasselin C, Crochet S, Petersen CCH. Membrane potential dynamics of excitatory and inhibitory neurons in mouse barrel cortex during active whisker sensing. PLoS One 2023; 18:e0287174. [PMID: 37311008 DOI: 10.1371/journal.pone.0287174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Neocortical neurons can increasingly be divided into well-defined classes, but their activity patterns during quantified behavior remain to be fully determined. Here, we obtained membrane potential recordings from various classes of excitatory and inhibitory neurons located across different cortical depths in the primary whisker somatosensory barrel cortex of awake head-restrained mice during quiet wakefulness, free whisking and active touch. Excitatory neurons, especially those located superficially, were hyperpolarized with low action potential firing rates relative to inhibitory neurons. Parvalbumin-expressing inhibitory neurons on average fired at the highest rates, responding strongly and rapidly to whisker touch. Vasoactive intestinal peptide-expressing inhibitory neurons were excited during whisking, but responded to active touch only after a delay. Somatostatin-expressing inhibitory neurons had the smallest membrane potential fluctuations and exhibited hyperpolarising responses at whisking onset for superficial, but not deep, neurons. Interestingly, rapid repetitive whisker touch evoked excitatory responses in somatostatin-expressing inhibitory neurons, but not when the intercontact interval was long. Our analyses suggest that distinct genetically-defined classes of neurons at different subpial depths have differential activity patterns depending upon behavioral state providing a basis for constraining future computational models of neocortical function.
Collapse
Affiliation(s)
- Taro Kiritani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélie Pala
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Célia Gasselin
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
130
|
Pirogova N, Borst A. Contrast normalization affects response time-course of visual interneurons. PLoS One 2023; 18:e0285686. [PMID: 37294743 PMCID: PMC10256145 DOI: 10.1371/journal.pone.0285686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
In natural environments, light intensities and visual contrasts vary widely, yet neurons have a limited response range for encoding them. Neurons accomplish that by flexibly adjusting their dynamic range to the statistics of the environment via contrast normalization. The effect of contrast normalization is usually measured as a reduction of neural signal amplitudes, but whether it influences response dynamics is unknown. Here, we show that contrast normalization in visual interneurons of Drosophila melanogaster not only suppresses the amplitude but also alters the dynamics of responses when a dynamic surround is present. We present a simple model that qualitatively reproduces the simultaneous effect of the visual surround on the response amplitude and temporal dynamics by altering the cells' input resistance and, thus, their membrane time constant. In conclusion, single-cell filtering properties as derived from artificial stimulus protocols like white-noise stimulation cannot be transferred one-to-one to predict responses under natural conditions.
Collapse
Affiliation(s)
- Nadezhda Pirogova
- Department Circuits-Computation-Models, Max Planck Institute for Biological Intelligence, Planegg, Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg, Martinsried, Germany
| | - Alexander Borst
- Department Circuits-Computation-Models, Max Planck Institute for Biological Intelligence, Planegg, Martinsried, Germany
| |
Collapse
|
131
|
Cheong HSJ, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WCA, Card GM, Daly KC, Dacks AM. Organization of an Ascending Circuit that Conveys Flight Motor State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544074. [PMID: 37333334 PMCID: PMC10274802 DOI: 10.1101/2023.06.07.544074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Natural behaviors are a coordinated symphony of motor acts which drive self-induced or reafferent sensory activation. Single sensors only signal presence and magnitude of a sensory cue; they cannot disambiguate exafferent (externally-induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to make appropriate decisions and initiate adaptive behavioral outcomes. This is mediated by predictive motor signaling mechanisms, which emanate from motor control pathways to sensory processing pathways, but how predictive motor signaling circuits function at the cellular and synaptic level is poorly understood. We use a variety of techniques, including connectomics from both male and female electron microscopy volumes, transcriptomics, neuroanatomical, physiological and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs), which putatively provide predictive motor signals to several sensory and motor neuropil. Both AHN pairs receive input primarily from an overlapping population of descending neurons, many of which drive wing motor output. The two AHN pairs target almost exclusively non-overlapping downstream neural networks including those that process visual, auditory and mechanosensory information as well as networks coordinating wing, haltere, and leg motor output. These results support the conclusion that the AHN pairs multi-task, integrating a large amount of common input, then tile their output in the brain, providing predictive motor signals to non-overlapping sensory networks affecting motor control both directly and indirectly.
Collapse
Affiliation(s)
- Han S. J. Cheong
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States of America
| | - Kaitlyn N. Boone
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Marryn M. Bennett
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Jacob D. Ralston
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Kaleb Hatch
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Raven F. Allen
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Alec M. Phelps
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Andrew P. Cook
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mert Erginkaya
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Wei-Chung A. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States of America
- Zuckerman Institute, Columbia University, New York, NY 10027, United States of America
| | - Kevin C. Daly
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, United States of America
| | - Andrew M. Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, United States of America
| |
Collapse
|
132
|
Taisz I, Donà E, Münch D, Bailey SN, Morris BJ, Meechan KI, Stevens KM, Varela-Martínez I, Gkantia M, Schlegel P, Ribeiro C, Jefferis GSXE, Galili DS. Generating parallel representations of position and identity in the olfactory system. Cell 2023; 186:2556-2573.e22. [PMID: 37236194 PMCID: PMC10403364 DOI: 10.1016/j.cell.2023.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/07/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.
Collapse
Affiliation(s)
- István Taisz
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Billy J Morris
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Katie M Stevens
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
133
|
Zhao B, Koyama M, Mertz J. High-resolution multi-z confocal microscopy with a diffractive optical element. BIOMEDICAL OPTICS EXPRESS 2023; 14:3057-3071. [PMID: 37342696 PMCID: PMC10278611 DOI: 10.1364/boe.491538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
There has been recent interest in the development of fluorescence microscopes that provide high-speed volumetric imaging for life-science applications. For example, multi-z confocal microscopy enables simultaneous optically-sectioned imaging at multiple depths over relatively large fields of view. However, to date, multi-z microscopy has been hampered by limited spatial resolution owing to its initial design. Here we present a variant of multi-z microscopy that recovers the full spatial resolution of a conventional confocal microscope while retaining the simplicity and ease of use of our initial design. By introducing a diffractive optical element in the illumination path of our microscope, we engineer the excitation beam into multiple tightly focused spots that are conjugated to axially distributed confocal pinholes. We discuss the performance of this multi-z microscope in terms of resolution and detectability and demonstrate its versatility by performing in-vivo imaging of beating cardiomyocytes in engineered heart tissues and neuronal activity in c. elegans and zebrafish brains.
Collapse
Affiliation(s)
- Bingying Zhao
- Department of Electrical and Computer Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Minoru Koyama
- Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Scarborough, ON M1C1A4, Canada
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
134
|
Lai C, Calvarese M, Reichwald K, Bae H, Vafaeinezhad M, Meyer-Zedler T, Hoffmann F, Mühlig A, Eidam T, Stutzki F, Messerschmidt B, Gross H, Schmitt M, Guntinas-Lichius O, Popp J. Design and test of a rigid endomicroscopic system for multimodal imaging and femtosecond laser ablation. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:066004. [PMID: 37388219 PMCID: PMC10306116 DOI: 10.1117/1.jbo.28.6.066004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Significance Conventional diagnosis of laryngeal cancer is normally made by a combination of endoscopic examination, a subsequent biopsy, and histopathology, but this requires several days and unnecessary biopsies can increase pathologist workload. Nonlinear imaging implemented through endoscopy can shorten this diagnosis time, and localize the margin of the cancerous area with high resolution. Aim Develop a rigid endomicroscope for the head and neck region, aiming for in-vivo multimodal imaging with a large field of view (FOV) and tissue ablation. Approach Three nonlinear imaging modalities, which are coherent anti-Stokes Raman scattering, two-photon excitation fluorescence, and second harmonic generation, as well as the single photon fluorescence of indocyanine green, are applied for multimodal endomicroscopic imaging. High-energy femtosecond laser pulses are transmitted for tissue ablation. Results This endomicroscopic system consists of two major parts, one is the rigid endomicroscopic tube 250 mm in length and 6 mm in diameter, and the other is the scan-head (10 × 12 × 6 cm 3 in size) for quasi-static scanning imaging. The final multimodal image accomplishes a maximum FOV up to 650 μ m , and a resolution of 1 μ m is achieved over 560 μ m FOV. The optics can easily guide sub-picosecond pulses for ablation. Conclusions The system exhibits large potential for helping real-time tissue diagnosis in surgery, by providing histological tissue information with a large FOV and high resolution, label-free. By guiding high-energy fs laser pulses, the system is even able to remove suspicious tissue areas, as has been shown for thin tissue sections in this study.
Collapse
Affiliation(s)
| | - Matteo Calvarese
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | | | - Hyeonsoo Bae
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | - Mohammadsadegh Vafaeinezhad
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | - Franziska Hoffmann
- Jena University Hospital, Department of Otorhinolaryngology, Jena, Germany
| | - Anna Mühlig
- Jena University Hospital, Department of Otorhinolaryngology, Jena, Germany
| | - Tino Eidam
- Active Fiber Systems GmbH, Jena, Germany
| | | | | | - Herbert Gross
- Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany
| | - Michael Schmitt
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| |
Collapse
|
135
|
Abdelfattah AS, Zheng J, Singh A, Huang YC, Reep D, Tsegaye G, Tsang A, Arthur BJ, Rehorova M, Olson CVL, Shuai Y, Zhang L, Fu TM, Milkie DE, Moya MV, Weber TD, Lemire AL, Baker CA, Falco N, Zheng Q, Grimm JB, Yip MC, Walpita D, Chase M, Campagnola L, Murphy GJ, Wong AM, Forest CR, Mertz J, Economo MN, Turner GC, Koyama M, Lin BJ, Betzig E, Novak O, Lavis LD, Svoboda K, Korff W, Chen TW, Schreiter ER, Hasseman JP, Kolb I. Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. Neuron 2023; 111:1547-1563.e9. [PMID: 37015225 PMCID: PMC10280807 DOI: 10.1016/j.neuron.2023.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.
Collapse
Affiliation(s)
| | - Jihong Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Amrita Singh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi-Chieh Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Daniel Reep
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Getahun Tsegaye
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Tsang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin J Arthur
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Monika Rehorova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Carl V L Olson
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lixia Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tian-Ming Fu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Maria V Moya
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Timothy D Weber
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Natalie Falco
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mighten C Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | | | | | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Bei-Jung Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Departments of Molecular and Cell Biology and Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tsai-Wen Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
136
|
Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, Thiberge SY, Peña CJ, Witten IB. Overlapping representations of food and social stimuli in VTA dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541104. [PMID: 37293057 PMCID: PMC10245666 DOI: 10.1101/2023.05.17.541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.
Collapse
Affiliation(s)
- Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Adelaide R. Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Nirja Oak
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ilana B. Witten
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| |
Collapse
|
137
|
Brady ES, Griffiths J, Andrianova L, Bielska M, Saito T, Saido TC, Randall AD, Tamagnini F, Witton J, Craig MT. Alterations to parvalbumin-expressing interneuron function and associated network oscillations in the hippocampal - medial prefrontal cortex circuit during natural sleep in App NL-G-F/NL-G-F mice. Neurobiol Dis 2023; 182:106151. [PMID: 37172910 DOI: 10.1016/j.nbd.2023.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-β (Aβ) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aβ-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.
Collapse
Affiliation(s)
- Erica S Brady
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; Gladstone Institute for Neurological Disease, 1650 Owens Street, San Francisco, CA 91458, United States of America
| | - Jessica Griffiths
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Lilya Andrianova
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Monika Bielska
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Andrew D Randall
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Francesco Tamagnini
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Jonathan Witton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK.
| | - Michael T Craig
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
138
|
Bonato J, Curreli S, Romanzi S, Panzeri S, Fellin T. ASTRA: a deep learning algorithm for fast semantic segmentation of large-scale astrocytic networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539211. [PMID: 37205519 PMCID: PMC10187152 DOI: 10.1101/2023.05.03.539211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Changes in the intracellular calcium concentration are a fundamental fingerprint of astrocytes, the main type of glial cell. Astrocyte calcium signals can be measured with two-photon microscopy, occur in anatomically restricted subcellular regions, and are coordinated across astrocytic networks. However, current analytical tools to identify the astrocytic subcellular regions where calcium signals occur are time-consuming and extensively rely on user-defined parameters. These limitations limit reproducibility and prevent scalability to large datasets and fields-of-view. Here, we present Astrocytic calcium Spatio-Temporal Rapid Analysis (ASTRA), a novel software combining deep learning with image feature engineering for fast and fully automated semantic segmentation of two-photon calcium imaging recordings of astrocytes. We applied ASTRA to several two-photon microscopy datasets and found that ASTRA performed rapid detection and segmentation of astrocytic cell somata and processes with performance close to that of human experts, outperformed state-of-the-art algorithms for the analysis of astrocytic and neuronal calcium data, and generalized across indicators and acquisition parameters. We also applied ASTRA to the first report of two-photon mesoscopic imaging of hundreds of astrocytes in awake mice, documenting large-scale redundant and synergistic interactions in extended astrocytic networks. ASTRA is a powerful tool enabling closed-loop and large-scale reproducible investigation of astrocytic morphology and function.
Collapse
Affiliation(s)
- Jacopo Bonato
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna; 40126 Bologna, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Sebastiano Curreli
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
| | - Sara Romanzi
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- University of Genova; 16126 Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Tommaso Fellin
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
| |
Collapse
|
139
|
Ma X, Johnson DA, He XJ, Layden AE, McClain SP, Yung JC, Rizzo A, Bonaventura J, Banghart MR. In vivo photopharmacology with a caged mu opioid receptor agonist drives rapid changes in behavior. Nat Methods 2023; 20:682-685. [PMID: 36973548 PMCID: PMC10569260 DOI: 10.1038/s41592-023-01819-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
Photoactivatable drugs and peptides can drive quantitative studies into receptor signaling with high spatiotemporal precision, yet few are compatible with behavioral studies in mammals. We developed CNV-Y-DAMGO-a caged derivative of the mu opioid receptor-selective peptide agonist DAMGO. Photoactivation in the mouse ventral tegmental area produced an opioid-dependent increase in locomotion within seconds of illumination. These results demonstrate the power of in vivo photopharmacology for dynamic studies into animal behavior.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Desiree A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aryanna E Layden
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shannan P McClain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jean C Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
140
|
Okray Z, Jacob PF, Stern C, Desmond K, Otto N, Talbot CB, Vargas-Gutierrez P, Waddell S. Multisensory learning binds neurons into a cross-modal memory engram. Nature 2023; 617:777-784. [PMID: 37100911 PMCID: PMC10208976 DOI: 10.1038/s41586-023-06013-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.
Collapse
Affiliation(s)
- Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| | - Pedro F Jacob
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Ciara Stern
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Kieran Desmond
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Nils Otto
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Clifford B Talbot
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | | | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
141
|
Ren B, Burkovetskaya M, Jung Y, Bergdolt L, Totusek S, Martinez-Cerdeno V, Stauch K, Korade Z, Dunaevsky A. Dysregulated cholesterol metabolism, aberrant excitability and altered cell cycle of astrocytes in fragile X syndrome. Glia 2023; 71:1176-1196. [PMID: 36594399 PMCID: PMC10023374 DOI: 10.1002/glia.24331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.
Collapse
Affiliation(s)
- Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maria Burkovetskaya
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yoosun Jung
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lara Bergdolt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, MIND Institute, and Institute for Pediatric Regenerative Medicine at UC Davis School of Medicine, and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Kelly Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pediatrics, CHRI, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
142
|
Adoff H, Halls VS, Holland E, Lobingier B, Arttamangkul S. Ligand-directed labeling of opioid receptors for covalent attachment of fluorophores or small-molecule probes. STAR Protoc 2023; 4:102231. [PMID: 37104091 PMCID: PMC10154970 DOI: 10.1016/j.xpro.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 04/28/2023] Open
Abstract
This protocol describes endogenous labeling of opioid receptors (ORs) using a ligand-directed reagent, naltrexamine-acylimidazole compounds (NAI-X). NAI acts by guiding and permanently tagging a small-molecule reporter (X)-such as fluorophores or biotin-to ORs. Here we detail syntheses and uses of NAI-X for OR visualization and functional studies. The NAI-X compounds overcome long-standing challenges in mapping and tracking endogenous ORs as the labeling can be done in situ with live tissues or cultured cells. For complete details on the use and execution of this protocol, please refer to Arttamangkul et al.1,2.
Collapse
Affiliation(s)
- Hayden Adoff
- Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Victoria S Halls
- Medicinal Chemistry Core Facility, Oregon Health and Science University, Portland, OR, USA
| | - Emily Holland
- Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Braden Lobingier
- Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
143
|
Hageter J, Starkey J, Horstick EJ. Thalamic regulation of a visual critical period and motor behavior. Cell Rep 2023; 42:112287. [PMID: 36952349 PMCID: PMC10514242 DOI: 10.1016/j.celrep.2023.112287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
During the visual critical period (CP), sensory experience refines the structure and function of visual circuits. The basis of this plasticity was long thought to be limited to cortical circuits, but recently described thalamic plasticity challenges this dogma and demonstrates greater complexity underlying visual plasticity. Yet how visual experience modulates thalamic neurons or how the thalamus modulates CP timing is incompletely understood. Using a larval zebrafish, thalamus-centric ocular dominance model, we show functional changes in the thalamus and a role of inhibitory signaling to establish CP timing using a combination of functional imaging, optogenetics, and pharmacology. Hemisphere-specific changes in genetically defined thalamic neurons correlate with changes in visuomotor behavior, establishing a role of thalamic plasticity in modulating motor performance. Our work demonstrates that visual plasticity is broadly conserved and that visual experience leads to neuron-level functional changes in the thalamus that require inhibitory signaling to establish critical period timing.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Eric J Horstick
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA; Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
144
|
Mano O, Choi M, Tanaka R, Creamer MS, Matos NC, Shomar J, Badwan BA, Clandinin TR, Clark DA. Long timescale anti-directional rotation in Drosophila optomotor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523055. [PMID: 36711627 PMCID: PMC9882005 DOI: 10.1101/2023.01.06.523055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Locomotor movements cause visual images to be displaced across the eye, a retinal slip that is counteracted by stabilizing reflexes in many animals. In insects, optomotor turning causes the animal to turn in the direction of rotating visual stimuli, thereby reducing retinal slip and stabilizing trajectories through the world. This behavior has formed the basis for extensive dissections of motion vision. Here, we report that under certain stimulus conditions, two Drosophila species, including the widely studied D. melanogaster, can suppress and even reverse the optomotor turning response over several seconds. Such "anti-directional turning" is most strongly evoked by long-lasting, high-contrast, slow-moving visual stimuli that are distinct from those that promote syn-directional optomotor turning. Anti-directional turning, like the syn-directional optomotor response, requires the local motion detecting neurons T4 and T5. A subset of lobula plate tangential cells, CH cells, show involvement in these responses. Imaging from a variety of direction-selective cells in the lobula plate shows no evidence of dynamics that match the behavior, suggesting that the observed inversion in turning direction emerges downstream of the lobula plate. Further, anti-directional turning declines with age and exposure to light. These results show that Drosophila optomotor turning behaviors contain rich, stimulus-dependent dynamics that are inconsistent with simple reflexive stabilization responses.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Minseung Choi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Matthew S. Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Natalia C.B. Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Joseph Shomar
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Bara A. Badwan
- Department of Chemical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A. Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
145
|
Zhong W, Oda R, Ozeki Y, Yasui M, Nuriya M. Protocol to image deuterated propofol in living rat neurons using multimodal stimulated Raman scattering microscopy. STAR Protoc 2023; 4:102221. [PMID: 37060560 PMCID: PMC10140144 DOI: 10.1016/j.xpro.2023.102221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
Propofol is a widely used anesthetic important in clinics, but like many other bioactive molecules, it is too small to be tagged and visualized by fluorescent dyes. Here, we present a protocol to visualize deuterated propofol in living rat neurons using stimulated Raman scattering (SRS) microscopy with carbon-deuterium bonds serving as a Raman tag. We describe the preparation and culture of rat neurons, followed by optimization of the SRS system. We then detail neuron loading and real-time imaging of anesthesia dynamics. For complete details on the use and execution of this protocol, please refer to Oda et al.1.
Collapse
Affiliation(s)
- Wenying Zhong
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Robert Oda
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan.
| |
Collapse
|
146
|
Mishra A, Serbe-Kamp E, Borst A, Haag J. Voltage to Calcium Transformation Enhances Direction Selectivity in Drosophila T4 Neurons. J Neurosci 2023; 43:2497-2514. [PMID: 36849417 PMCID: PMC10082464 DOI: 10.1523/jneurosci.2297-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and calcium indicators, ArcLight and GCaMP6f, respectively, to measure responses in direction-selective T4 neurons of female Drosophila Comparison between ArcLight and GCaMP6f signals reveals calcium signals to have a significantly higher direction selectivity compared with voltage signals. Using these recordings, we build a model which transforms T4 voltage responses into calcium responses. Using a cascade of thresholding, temporal filtering and a stationary nonlinearity, the model reproduces experimentally measured calcium responses across different visual stimuli. These findings provide a mechanistic underpinning of the voltage to calcium transformation and show how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. Measuring the directional tuning of postsynaptic vertical system (VS)-cells with inputs from other cells blocked, we found that, indeed, it matches the one of the calcium signal in presynaptic T4 cells.SIGNIFICANCE STATEMENT The transformation of voltage to calcium influx is an important step in the signaling cascade within a nerve cell. While this process has been intensely studied in the context of transmitter release mechanism, its consequences for information transmission and neural computation are unclear. Here, we measured both membrane voltage and cytosolic calcium levels in direction-selective cells of Drosophila in response to a large set of visual stimuli. We found direction selectivity in the calcium signal to be significantly enhanced compared with membrane voltage through a nonlinear transformation of voltage to calcium. Our findings highlight the importance of an additional step in the signaling cascade for information processing within single nerve cells.
Collapse
Affiliation(s)
- Abhishek Mishra
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Etienne Serbe-Kamp
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
147
|
Giblin JT, Park SW, Jiang J, Kılıç K, Kura S, Tang J, Boas DA, Chen IA. Measuring capillary flow dynamics using interlaced two-photon volumetric scanning. J Cereb Blood Flow Metab 2023; 43:595-609. [PMID: 36495178 PMCID: PMC10063827 DOI: 10.1177/0271678x221145091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two photon microscopy and optical coherence tomography (OCT) are two standard methods for measuring flow speeds of red blood cells in microvessels, particularly in animal models. However, traditional two photon microscopy lacks the depth of field to adequately capture the full volumetric complexity of the cerebral microvasculature and OCT lacks the specificity offered by fluorescent labeling. In addition, the traditional raster scanning technique utilized in both modalities requires a balance of image frame rate and field of view, which severely limits the study of RBC velocities in the microvascular network. Here, we overcome this by using a custom two photon system with an axicon based Bessel beam to obtain volumetric images of the microvascular network with fluorescent specificity. We combine this with a novel scan pattern that generates pairs of frames with short time delay sufficient for tracking red blood cell flow in capillaries. We track RBC flow speeds in 10 or more capillaries simultaneously at 1 Hz in a 237 µm × 237 µm × 120 µm volume and quantified both their spatial and temporal variability in speed. We also demonstrate the ability to track flow speed changes around stalls in capillary flow and measure to 300 µm in depth.
Collapse
Affiliation(s)
- John T Giblin
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Seong-Wook Park
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kıvılcım Kılıç
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ichun A Chen
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
148
|
Moll FW, Kranz D, Corredera Asensio A, Elmaleh M, Ackert-Smith LA, Long MA. Thalamus drives vocal onsets in the zebra finch courtship song. Nature 2023; 616:132-136. [PMID: 36949189 PMCID: PMC11967199 DOI: 10.1038/s41586-023-05818-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.
Collapse
Affiliation(s)
- Felix W Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Devorah Kranz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Lyn A Ackert-Smith
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
149
|
Chen Y, Liu Z, Ji M. Imaging Low-Temperature Phases of Ice with Polarization-Resolved Hyperspectral Stimulated Raman Scattering Microscopy. J Phys Chem B 2023; 127:2609-2616. [PMID: 36913684 DOI: 10.1021/acs.jpcb.2c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Water freezes into various phases of ice under different cryogenic temperatures and pressure conditions, such as ice Ih and ice XI at normal pressure. Vibrational imaging with high spectral, spatial, and polarization resolutions could provide detailed information on ice, including the phases and crystal orientations at the microscopic level. Here, we report in situ stimulated Raman scattering (SRS) imaging of ice to analyze the vibrational spectral changes of the OH stretching modes associated with the phase transition between ice Ih and ice XI. In addition, polarization-resolved measurements were performed to reveal the microcrystal orientations of the two phases of ice, with the spatial-dependent anisotropy pattern indicating the inhomogeneous distribution of their orientations. Furthermore, the angular patterns were theoretically explained by third-order nonlinear optics with the known crystal symmetries of the ice phases. Our work may provide new opportunities to investigate many intriguing physical chemistry properties of ice under low-temperature conditions.
Collapse
Affiliation(s)
- Yaxin Chen
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang 322000, China
| |
Collapse
|
150
|
Vishniakou I, Seelig JD. Differentiable optimization of the Debye-Wolf integral for light shaping and adaptive optics in two-photon microscopy. OPTICS EXPRESS 2023; 31:9526-9542. [PMID: 37157521 DOI: 10.1364/oe.482387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Control of light through a microscope objective with a high numerical aperture is a common requirement in applications such as optogenetics, adaptive optics, or laser processing. Light propagation, including polarization effects, can be described under these conditions using the Debye-Wolf diffraction integral. Here, we take advantage of differentiable optimization and machine learning for efficiently optimizing the Debye-Wolf integral for such applications. For light shaping we show that this optimization approach is suitable for engineering arbitrary three-dimensional point spread functions in a two-photon microscope. For differentiable model-based adaptive optics (DAO), the developed method can find aberration corrections with intrinsic image features, for example neurons labeled with genetically encoded calcium indicators, without requiring guide stars. Using computational modeling we further discuss the range of spatial frequencies and magnitudes of aberrations which can be corrected with this approach.
Collapse
|