101
|
Klimmt J, Dannert A, Paquet D. Neurodegeneration in a dish: advancing human stem-cell-based models of Alzheimer's disease. Curr Opin Neurobiol 2020; 61:96-104. [PMID: 32112992 DOI: 10.1016/j.conb.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem-cell-based models enable investigation of pathomechanisms in disease-relevant human brain cell types and therefore offer great potential for mechanistic and translational studies on neurodegenerative disorders, such as Alzheimer's disease (AD). While current AD models allow analysis of early disease phenotypes including Aβ accumulation and Tau hyperphosphorylation, they still fail to fully recapitulate later hallmarks such as protein aggregation and neurodegeneration. This impedes the identification of pathomechanisms and novel therapeutic targets. We discuss strategies to overcome these drawbacks and optimize physiological properties and translational potential of iPSC-based models by improving culture formats, increasing cellular diversity, applying genome editing, and implementing maturation and ageing paradigms.
Collapse
Affiliation(s)
- Julien Klimmt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Angelika Dannert
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
102
|
Fernández-Nogales M, Lucas JJ. Altered Levels and Isoforms of Tau and Nuclear Membrane Invaginations in Huntington's Disease. Front Cell Neurosci 2020; 13:574. [PMID: 32009905 PMCID: PMC6978886 DOI: 10.3389/fncel.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Since the early reports of neurofibrillary Tau pathology in brains of some Huntington’s disease (HD) patients, mounting evidence of multiple alterations of Tau in HD brain tissue has emerged in recent years. Such Tau alterations range from increased total levels, imbalance of isoforms generated by alternative splicing (increased 4R-/3R-Tau ratio) or by post-translational modifications such as hyperphosphorylation or truncation. Besides, the detection in HD brains of a new Tau histopathological hallmark known as Tau nuclear rods (TNRs) or Tau-positive nuclear indentations (TNIs) led to propose HD as a secondary Tauopathy. After their discovery in HD brains, TNIs have also been reported in hippocampal neurons of early Braak stage AD cases and in frontal and temporal cortical neurons of FTD-MAPT cases due to the intronic IVS10+16 mutation in the Tau gene (MAPT) which results in an increased 4R-/3R-Tau ratio similar to that observed in HD. TNIs are likely pathogenic for contributing to the disturbed nucleocytoplasmic transport observed in HD. A key question is whether correction of any of the mentioned Tau alterations might have positive therapeutic implications for HD. The beneficial effect of decreasing Tau expression in HD mouse models clearly implicates Tau in HD pathogenesis. Such beneficial effect might be exerted by diminishing the excess total levels of Tau or specifically by diminishing the excess 4R-Tau, as well as any of their downstream effects. In any case, since gene silencing drugs are under development to attenuate both Huntingtin (HTT) expression for HD and MAPT expression for FTD-MAPT, it is conceivable that the combined therapy in HD patients might be more effective than HTT silencing alone.
Collapse
Affiliation(s)
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO)(CSIC-UAM), Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
103
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
104
|
Amir Mishan M, Rezaei Kanavi M, Shahpasand K, Ahmadieh H. Pathogenic Tau Protein Species: Promising Therapeutic Targets for Ocular Neurodegenerative Diseases. J Ophthalmic Vis Res 2019; 14:491-505. [PMID: 31875105 PMCID: PMC6825701 DOI: 10.18502/jovr.v14i4.5459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein, which is highly expressed in the central nervous system as well as ocular neurons and stabilizes microtubule structure. It is a phospho-protein being moderately phosphorylated under physiological conditions but its abnormal hyperphosphorylation or some post-phosphorylation modifications would result in a pathogenic condition, microtubule dissociation, and aggregation. The aggregates can induce neuroinflammation and trigger some pathogenic cascades, leading to neurodegeneration. Taking these together, targeting pathogenic tau employing tau immunotherapy may be a promising therapeutic strategy in fighting with cerebral and ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
105
|
Xia Y, Sorrentino ZA, Kim JD, Strang KH, Riffe CJ, Giasson BI. Impaired tau-microtubule interactions are prevalent among pathogenic tau variants arising from missense mutations. J Biol Chem 2019; 294:18488-18503. [PMID: 31653695 DOI: 10.1074/jbc.ra119.010178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/17/2019] [Indexed: 01/22/2023] Open
Abstract
tau is a microtubule (MT)-associated protein that promotes tubulin assembly and stabilizes MTs by binding longitudinally along the MT surface. tau can aberrantly aggregate into pathological inclusions that define Alzheimer's disease, frontotemporal dementias, and other tauopathies. A spectrum of missense mutations in the tau-encoding gene microtubule-associated protein tau (MAPT) can cause frontotemporal dementias. tau aggregation is postulated to spread by a prion-like mechanism. Using a cell-based inclusion seeding assay, we recently reported that only a few tau variants are intrinsically prone to this type of aggregation. Here, we extended these studies to additional tau mutants and investigated their MT binding properties in mammalian cell-based assays. A limited number of tau variants exhibited modest aggregation propensity in vivo, but most tau mutants did not aggregate. Reduced MT binding appeared to be the most common dysfunction for the majority of tau variants due to missense mutations, implying that MT-targeting therapies could potentially be effective in the management of tauopathies.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Justin D Kim
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kevin H Strang
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Cara J Riffe
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|
106
|
Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, Wang C, Huang C, Sohn PD, Bowles KR, Spina S, Silva MC, Marsh JA, Hsu S, Pugh DA, Ghoshal N, Norton J, Huang Y, Lee SE, Seeley WW, Theofilas P, Grinberg LT, Moreno F, McIlroy K, Boeve BF, Cairns NJ, Crary JF, Haggarty SJ, Ichida JK, Kosik KS, Miller BL, Gan L, Goate AM, Temple S. A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports 2019; 13:939-955. [PMID: 31631020 PMCID: PMC6895712 DOI: 10.1016/j.stemcr.2019.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies. A collection of fibroblasts from 140 MAPT mutation carriers, PSP, CBD, and controls 31 iPSC lines reprogrammed from MAPT mutation carriers, PSP patients, and controls 33 iPSC lines engineered with CRISPR/Cas9 or TALENs Comprehensive resource for tauopathy modeling and discovery of novel therapeutics
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA.
| | - Aimee W Kao
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Karydas
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Khadijah Onanuga
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Andrea Argouarch
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Cindy Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Peter Dongmin Sohn
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Salvatore Spina
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Yadong Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Suzee E Lee
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William W Seeley
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Panagiotis Theofilas
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fermin Moreno
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kathryn McIlroy
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John F Crary
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA; Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth S Kosik
- Department of Molecular Cellular and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Bruce L Miller
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Li Gan
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | | |
Collapse
|
107
|
Bhandare VV, Kumbhar BV, Kunwar A. Differential binding affinity of tau repeat region R2 with neuronal-specific β-tubulin isotypes. Sci Rep 2019; 9:10795. [PMID: 31346240 PMCID: PMC6658543 DOI: 10.1038/s41598-019-47249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Tau is a microtubule-associated protein whose C-terminal domain consisting of four repeat regions R1, R2, R3 and R4 binds to microtubules to stabilize them. In several neurodegenerative diseases, tau detaches from microtubules to form insoluble aggregates leading to tauopathy. Microtubules are made up of αβ tubulin subunits. Seven α-tubulin and nine β-tubulin isotypes have been reported to be present in humans till date. These tubulin isotypes show residue composition variations mainly at C-terminal region and bind to motor proteins and anti-mitotic drugs differently. These tubulin isotypes show tissue specific expression as their relative proportion varies significantly in different type of cells. It is also known that tau binds differently to different cell lines and can either promote or demote microtubule polymerization. However, the relative binding affinity of tau to the different β-tubulin isotypes present in different cell lines is completely unknown. Here, we study relative binding affinity of Tau repeat region R2 to neuronal specific tubulin isotypes βI, βIIb, and βIII using molecular modelling approach. The order of binding energy of tau with tubulin is βIII > βIIb > βI. Our strategy can be potentially adapted to understand differential binding affinity of tau towards β-tubulin isotypes present in other cell lines.
Collapse
Affiliation(s)
- Vishwambhar Vishnu Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India.
| |
Collapse
|
108
|
Bartys N, Kierzek R, Lisowiec-Wachnicka J. The regulation properties of RNA secondary structure in alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194401. [PMID: 31323437 DOI: 10.1016/j.bbagrm.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
Abstract
The RNA secondary structure is important for many functional processes in the cell. The secondary and tertiary structures of cellular RNAs are essential for the activity of these molecules in processes such as transcription, splicing, translation, and localization. New high-throughput analytical methods, including next generation sequencing, have allowed for the in-depth characterization of the 'RNA structurome': a new term describing how the RNA structure controls the activity of RNA by itself and how it regulates the expression of genes. In this review, we present many examples of the influence of structural motifs of RNA, long range interactions and global RNA structure on the alternative splicing processes. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia Bartys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
109
|
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. J Transl Med 2019; 99:912-928. [PMID: 30742061 PMCID: PMC7289372 DOI: 10.1038/s41374-019-0197-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
In multiple neurodegenerative diseases, including Alzheimer's disease (AD), a prominent pathological feature is the aberrant aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-like propagation in various model systems raise questions about the generalizability of this mechanism in various tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration has important implications for tau-targeting therapeutics.
Collapse
Affiliation(s)
- Kevin H Strang
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
110
|
Abstract
Purpose of Review Abnormal accumulation of tau protein is the main hallmark of tauopathies and is closely associated with neurodegeneration and cognitive impairment, whereas the advance in PET imaging provides a non-invasive detection of tau inclusions in the brain. In this review, we discuss the potential of PET imaging as a biomarker in tauopathies, the latest development of novel tau tracers with new clinical information that has been disclosed, and the opportunities for improving diagnosis and designing clinical trials in the future. Recent Findings In recent years, several first-generation tau PET tracers including [11C]PBB3, [18F]THK-5117, [18F]THK-5351 and [18F]AV-1451 have been developed and succeeded in imaging neurofibrillary pathology in vivo. Due to the common off-target binding and subcortical white matter uptake seen in the first-generation tracers, several research institutes and pharmaceutical companies have been working on developing second-generation tau PET tracers which exhibit higher binding affinity and selectivity. Summary Tau PET imaging is promising to serve as a biomarker to support differential diagnosis and monitor disease progression in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Ting Wang
- Neurology Imaging Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paul Edison
- Neurology Imaging Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK. .,Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
111
|
Palomares MA, Dalmasso C, Bonnet E, Derbois C, Brohard-Julien S, Ambroise C, Battail C, Deleuze JF, Olaso R. Systematic analysis of TruSeq, SMARTer and SMARTer Ultra-Low RNA-seq kits for standard, low and ultra-low quantity samples. Sci Rep 2019; 9:7550. [PMID: 31101892 PMCID: PMC6525156 DOI: 10.1038/s41598-019-43983-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
High-throughput RNA-sequencing has become the gold standard method for whole-transcriptome gene expression analysis, and is widely used in numerous applications to study cell and tissue transcriptomes. It is also being increasingly used in a number of clinical applications, including expression profiling for diagnostics and alternative transcript detection. However, despite its many advantages, RNA sequencing can be challenging in some situations, for instance in cases of low input amounts or degraded RNA samples. Several protocols have been proposed to overcome these challenges, and many are available as commercial kits. In this study, we systematically test three recent commercial technologies for RNA-seq library preparation (TruSeq, SMARTer and SMARTer Ultra-Low) on human biological reference materials, using standard (1 mg), low (100 ng and 10 ng) and ultra-low (<1 ng) input amounts, and for mRNA and total RNA, stranded and unstranded. The results are analyzed using read quality and alignment metrics, gene detection and differential gene expression metrics. Overall, we show that the TruSeq kit performs well with an input amount of 100 ng, while the SMARTer kit shows decreased performance for inputs of 100 and 10 ng, and the SMARTer Ultra-Low kit performs relatively well for input amounts <1 ng. All the results are discussed in detail, and we provide guidelines for biologists for the selection of an RNA-seq library preparation kit.
Collapse
Affiliation(s)
- Marie-Ange Palomares
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| | - Cyril Dalmasso
- Laboratoire de Mathématiques et Modélisation ďÉvry (LaMME), Université ďEvry Val ďEssonne, 91000, Evry, France.,UMR CNRS 8071, 91000, Evry, France.,Ecole Nationale Supérieure ďInformatique pour l'Industrie et l'Entreprise, ENSIIE, 91000, Evry, France.,USC INRA, 91000, Evry, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France. .,Université Paris-Saclay, 91190, Saint-Aubin, France.
| | - Céline Derbois
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| | - Solène Brohard-Julien
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| | - Christophe Ambroise
- Laboratoire de Mathématiques et Modélisation ďÉvry (LaMME), Université ďEvry Val ďEssonne, 91000, Evry, France.,UMR CNRS 8071, 91000, Evry, France.,Ecole Nationale Supérieure ďInformatique pour l'Industrie et l'Entreprise, ENSIIE, 91000, Evry, France.,USC INRA, 91000, Evry, France
| | - Christophe Battail
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, 91057, Evry, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| |
Collapse
|
112
|
Lois C, Gonzalez I, Johnson KA, Price JC. PET imaging of tau protein targets: a methodology perspective. Brain Imaging Behav 2019; 13:333-344. [PMID: 29497982 PMCID: PMC6119534 DOI: 10.1007/s11682-018-9847-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The two neuropathological hallmarks of Alzheimer's disease (AD) are amyloid-[Formula: see text] plaques and neurofibrillary tangles of tau protein. Fifteen years ago, Positron Emission Tomography (PET) with Pittsburgh Compound B (11C-PiB) enabled selective in-vivo visualization of amyloid-[Formula: see text] plaque deposits and has since provided valuable information about the role of amyloid-[Formula: see text] deposition in AD. The progression of tau deposition has been shown to be highly associated with neuronal loss, neurodegeneration, and cognitive decline. Until recently it was not possible to visualize tau deposition in-vivo, but several tau PET tracers are now available in different stages of clinical development. To date, no tau tracer has been approved by the Food and Drug Administration for use in the evaluation of AD or other tauopathies, despite very active research efforts. In this paper we review the recent developments in tau PET imaging with a focus on in-vivo findings in AD and discuss the challenges associated with tau tracer development, the status of development and validation of different tau tracers, and the clinical information these provide.
Collapse
Affiliation(s)
- Cristina Lois
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA.
| | - Ivan Gonzalez
- Athinoula A. Martinos Center for Biomedical Research, Department of Radiology, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Research, Department of Radiology, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
| |
Collapse
|
113
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
114
|
Tau aggregation and seeding analyses of two novel MAPT variants found in patients with motor neuron disease and progressive parkinsonism. Neurobiol Aging 2019; 84:240.e13-240.e22. [PMID: 31027853 DOI: 10.1016/j.neurobiolaging.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Variants in the microtubule-associated protein tau (MAPT) gene cause the genetic tauopathies, a subgroup of frontotemporal dementia (FTD) disorders. Through genetic screening of 165 cases possibly associated with tauopathies, including 88 Alzheimer's disease, 26 behavioral variant FTD, eight primary progressive aphasia, nine FTD with motor neuron disease, 21 progressive supranuclear palsy, and 13 corticobasal syndrome, we identified two novel MAPT variants: a heterozygous missense variant, p.P160S, in a patient with FTD with motor neuron disease and a heterozygous insertional variant, p.K298_H299insQ, in three patients with familial progressive supranuclear palsy. The corresponding recombinant tau proteins showed reduced microtubule assembly and increased aggregation by thioflavin S assay. Exon trapping analysis showed that p.K298_H299insQ resulted in the overproduction of 4-repeat tau. In a cell-based model, p.K298_H299insQ had both a higher aggregation ability and seeding activity compared with wild-type tau. These findings indicate that both p.P160S and p.K298_H299insQ may relate to neurodegeneration.
Collapse
|
115
|
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7:22. [PMID: 30767766 PMCID: PMC6376692 DOI: 10.1186/s40478-019-0664-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Jesus Avila
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Dementia Research Centre, University College London, London, UK
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Enikö Kövari
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Rostislav Skrabana
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Lewis D Evans
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eva Kontsekova
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Cracow, Poland
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Luc Buee
- Universite of Lille, Inserm, CHU-Lille, UMRS1172, Alzheimer & Tauopathies, Place de Verdun, 59045, Lille cedex, France.
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia.
| |
Collapse
|
116
|
Li X, Du X, Ni J. Zn 2+ Aggravates Tau Aggregation and Neurotoxicity. Int J Mol Sci 2019; 20:E487. [PMID: 30678122 PMCID: PMC6387307 DOI: 10.3390/ijms20030487] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with high morbidity that has received extensive attention. However, its pathogenesis has not yet been completely elucidated. It is mainly related to β-amyloid protein deposition, the hyperphosphorylation of tau protein, and the loss of neurons. The main function of tau is to assemble tubulin into stable microtubules. Under pathological conditions, tau is hyperphosphorylated, which is the major component of neurofibrillary tangles (NFT) in AD. There is considerable evidence showing that the dyshomeostasis of Zn2+ is closely related to the development of AD. Herein, by using the third repeat unit of the microtubule-binding domain of tau (tau-R3), we investigated the effect of Zn2+ on the aggregation and neurotoxicity of tau. Experimental results showed that tau-R3 probably bound Zn2+ via its Cys residue with moderate affinity (association constant (Ka) = 6.82 ± 0.29 × 10⁴ M-1). Zn2+ accelerated tau-R3 aggregation and promoted tau-R3 to form short fibrils and oligomers. Compared with tau-R3, Zn2+-tau-R3 aggregates were more toxic to Neuro-2A (N2A) cells and induced N2A cells to produce higher levels of reactive oxygen species (ROS). The dendrites and axons of Zn2+-tau-R3-treated neurons became fewer and shorter, resulting in a large number of neuronal deaths. In addition, both tau-R3 and Zn2+-tau-R3 aggregates were found to be taken up by N2A cells, and more Zn2+-tau-R3 entered the cells compared with tau-R3. Our data demonstrated that Zn2+ can aggravate tau-R3 aggregation and neurotoxicity, providing clues to understand the relationship between Zn2+ dyshomeostasis and the etiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Xuexia Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of applied chemistry and engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jiazuan Ni
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of applied chemistry and engineering, University of Science and Technology of China, Hefei 230026, China.
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
117
|
Arner A, Rockenstein E, Mante M, Florio J, Masliah D, Salehi B, Adame A, Overk C, Masliah E, Rissman RA. Increased Vulnerability of the Hippocampus in Transgenic Mice Overexpressing APP and Triple Repeat Tau. J Alzheimers Dis 2019; 61:1201-1219. [PMID: 29332037 DOI: 10.3233/jad-170388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most common tauopathy, characterized by progressive accumulation of amyloid-β (Aβ) and hyperphosphorylated tau. While pathology associated with the 4-repeat (4R) tau isoform is more abundant in corticobasal degeneration and progressive supranuclear palsy, both 3R and 4R tau isoforms accumulate in AD. Many studies have investigated interactions between Aβ and 4R tau in double transgenic mice, but few, if any, have examined the effects of Aβ with 3R tau. To examine this relationship, we crossed our APP751 mutant line with our recently characterized 3R tau mutant model to create a bigenic line (hAPP-3RTau) to model AD neuropathology. Mice were analyzed at 3 and 6 months of age for pathological and behavioral endpoints. While both the 3RTau and the hAPP-3RTau mice showed neuronal loss, increased tau aggregation, Aβ plaques and exhibited more behavioral deficits compared to the non-tg control, the bigenic mice often displaying relatively worsening levels. We found that even in young animals we found that the presence of APP/Aβ increased the accumulation of 3R tau in the neocortex and hippocampus. This observation was accompanied by activation of GSK3 and neurodegeneration in the neocortex and CA1 region. These results suggest that in addition to 4R tau, APP/Aβ may also enhance accumulation of 3R tau, a process which may be directly relevant to pathogenic pathways in AD. Our results demonstrate that this bigenic model closely parallels the pathological course of AD and may serve as a valuable model for testing new pharmacological interventions.
Collapse
Affiliation(s)
- Andrew Arner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Deborah Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Bahar Salehi
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.,Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
118
|
Yin X, Jiang X, Wang J, Qian S, Liu F, Qian W. SIRT1 Deacetylates SC35 and Suppresses Its Function in Tau Exon 10 Inclusion. J Alzheimers Dis 2019; 61:561-570. [PMID: 29226865 DOI: 10.3233/jad-170418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Approximately equal amounts of 3R-tau and 4R-tau resulting from alternative splicing of tau exon 10 is necessary to maintain normal brain function. Dysregulation of alternative splicing of tau exon 10 and the imbalance of 3R-tau/4R-tau have been seen in inherited and sporadic tauopathies. Splicing factor SC35 (also name as SRSF2) plays an important role in promoting tau exon 10 inclusion. SC35 is post-translationally modified by phosphorylation and acetylation, but the role of acetylation in SC35-medicated tau exon 10 inclusion is unknown. Sirtuin type 1 (SIRT1) is an enzyme that deacetylates proteins and associates with age-related disease such as Alzheimer's disease. In the present study, we determined the role of SIRT1 in SC35 acetylation and in the alternative splicing of tau exon 10. We found that SIRT1 interacts with and deacetylates SC35, and inhibits SC35-promoted tau exon 10 inclusion. Substituting K52 residue of SC35 by arginine impairs the role of SC35 in tau exon 10 inclusion. These results suggest that SIRT1 may serve as a therapeutic target for tauopathy by regulating SC35-mediated tau exon 10 splicing.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P.R. China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaosu Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Jia Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Shuo Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Fei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wei Qian
- Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P.R. China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
119
|
Perdomo-Ramirez A, de Armas-Ortiz M, Ramos-Trujillo E, Suarez-Artiles L, Claverie-Martin F. Exonic CLDN16 mutations associated with familial hypomagnesemia with hypercalciuria and nephrocalcinosis can induce deleterious mRNA alterations. BMC MEDICAL GENETICS 2019; 20:6. [PMID: 30621608 PMCID: PMC6325764 DOI: 10.1186/s12881-018-0713-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis type 1 is an autosomal recessive disease characterized by excessive renal magnesium and calcium excretion, bilateral nephrocalcinosis, and progressive chronic renal failure. This rare disease is caused by mutations in CLDN16 that encodes claudin-16, a tight-junction protein involved in paracellular reabsorption of magnesium and calcium in the renal tubule. Most of these variants are located in exons and have been classified as missense mutations. The functional consequences of some of these claudin-16 mutant proteins have been analysed after heterologous expression showing indeed a significant loss of function compared to the wild-type claudin-16. We hypothesize that a number of CLDN16 exonic mutations can be responsible for the disease phenotype by disrupting the pre-mRNA splicing process. METHODS We selected 12 previously described presumed CLDN16 missense mutations and analysed their potential effect on pre-mRNA splicing using a minigene assay. RESULTS Our results indicate that five of these mutations induce significant splicing alterations. Mutations c.453G > T and c.446G > T seem to inactivate exonic splicing enhancers and promote the use of an internal cryptic acceptor splice site resulting in inclusion of a truncated exon 3 in the mature mRNA. Mutation c.571G > A affects an exonic splicing enhancer resulting in partial skipping of exon 3. Mutations c.593G > C and c.593G > A disturb the acceptor splice site of intron 3 and cause complete exon 4 skipping. CONCLUSIONS To our knowledge, this is the first report of CLDN16 exonic mutations producing alterations in splicing. We suggest that in the absence of patients RNA samples, splicing functional assays with minigenes could be valuable for evaluating the effect of exonic CLDN16 mutations on pre-mRNA splicing.
Collapse
Affiliation(s)
- Ana Perdomo-Ramirez
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
| | - Marian de Armas-Ortiz
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
| | - Lorena Suarez-Artiles
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
| | - Felix Claverie-Martin
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
120
|
Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry 2019; 24:1112-1134. [PMID: 30635637 PMCID: PMC6756230 DOI: 10.1038/s41380-018-0342-8] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/19/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
The accumulation of pathological misfolded tau is a feature common to a collective of neurodegenerative disorders known as tauopathies, of which Alzheimer's disease (AD) is the most common. Related tauopathies include progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), Down's syndrome (DS), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Investigation of the role of tau pathology in the onset and progression of these disorders is now possible due the recent advent of tau-specific ligands for use with positron emission tomography (PET), including first- (e.g., [18F]THK5317, [18F]THK5351, [18F]AV1451, and [11C]PBB3) and second-generation compounds [namely [18F]MK-6240, [18F]RO-948 (previously referred to as [18F]RO69558948), [18F]PI-2620, [18F]GTP1, [18F]PM-PBB3, and [18F]JNJ64349311 ([18F]JNJ311) and its derivative [18F]JNJ-067)]. In this review we describe and discuss findings from in vitro and in vivo studies using both initial and new tau ligands, including their relation to biomarkers for amyloid-β and neurodegeneration, and cognitive findings. Lastly, methodological considerations for the quantification of in vivo ligand binding are addressed, along with potential future applications of tau PET, including therapeutic trials.
Collapse
Affiliation(s)
- Antoine Leuzy
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cTheme Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Laetitia Lemoine
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,0000 0004 1936 9377grid.10548.38Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. .,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
121
|
Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:207-216. [PMID: 32096040 DOI: 10.1007/978-981-32-9358-8_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophies (DM) are rare inherited neuromuscular disorders linked to microsatellite unstable expansions in non-coding regions of ubiquitously expressed genes. The DMPK and ZNF9/CNBP genes which mutations are responsible for DM1 and DM2 respectively. DM are multisystemic disorders with brain affection and cognitive deficits. Brain lesions consisting of neurofibrillary tangles are often observed in DM1 and DM2 brain. Neurofibrillary tangles (NFT) made of aggregates of hyper and abnormally phosphorylated isoforms of Tau proteins are neuropathological lesions common to more than 20 neurological disorders globally referred to as Tauopathies. Although NFT are observed in DM1 and DM2 brain, the question of whether DM1 and DM2 are Tauopathies remains a matter of debate. In the present review, several pathophysiological processes including, missplicing, nucleocytoplasmic transport disruption, RAN translation which are common mechanisms implicated in neurodegenerative diseases will be described. Together, these processes including the missplicing of Tau are providing evidence that DM1 and DM2 are not solely muscular diseases but that their brain affection component share many similarities with Tauopathies and other neurodegenerative diseases. Understanding DM1 and DM2 pathophysiology is therefore valuable to more globally understand other neurodegenerative diseases such as Tauopathies but also frontotemporal lobar neurodegeneration and amyotrophic lateral sclerosis.
Collapse
|
122
|
Montes M, Sanford BL, Comiskey DF, Chandler DS. RNA Splicing and Disease: Animal Models to Therapies. Trends Genet 2019; 35:68-87. [PMID: 30466729 PMCID: PMC6339821 DOI: 10.1016/j.tig.2018.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing of pre-mRNA increases genetic diversity, and recent studies estimate that most human multiexon genes are alternatively spliced. If this process is not highly regulated and accurate, it leads to mis-splicing events, which may result in proteins with altered function. A growing body of work has implicated mis-splicing events in a range of diseases, including cancer, neurodegenerative diseases, and muscular dystrophies. Understanding the mechanisms that cause aberrant splicing events and how this leads to disease is vital for designing effective therapeutic strategies. In this review, we focus on advances in therapies targeting splicing, and highlight the animal models developed to recapitulate disease phenotypes as a model for testing these therapies.
Collapse
Affiliation(s)
- Matías Montes
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brianne L Sanford
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel F Comiskey
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dawn S Chandler
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
123
|
Mutreja Y, Combs B, Gamblin TC. FTDP-17 Mutations Alter the Aggregation and Microtubule Stabilization Propensity of Tau in an Isoform-Specific Fashion. Biochemistry 2018; 58:742-754. [PMID: 30562452 DOI: 10.1021/acs.biochem.8b01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
More than 50 different intronic and exonic autosomal dominant mutations in the tau gene have been linked to the neurodegenerative disorder frontotemporal dementia with Parkinsonism linked to chromosome-17 (FTDP-17). Although the pathological and clinical presentation of this disorder is heterogeneous among patients, the deposition of tau as pathological aggregates is a common feature. Collectively, FTDP-17 mutations have been shown to alter tau's ability to stabilize microtubules, enhance its aggregation, alter mRNA splicing, or induce its hyperphosphorylation, among other effects. Previous in vitro studies from our lab revealed that these mutations differ markedly from each other in the longest 2N4R isoform of tau. However, it is not entirely known whether the effect of a single mutation varies when compared between different isoforms of tau. Differences in the isoelectric points of the N-terminal region of tau isoforms lead to changes in their biochemical properties, raising the possibility that isoforms could also be disproportionately affected by disease-related mechanisms such as mutations. We therefore performed a comparative study of three FTDP-17 mutations present in different regions of tau (R5L, P301L, and R406W) in the three 4R isoforms of tau. We observed significant differences in the effect these mutations exert on the total amount and kinetics of aggregation, aggregate length distributions, and microtubule stabilizing propensity of 4R tau isoforms for all three selected mutants. These results demonstrate that different combinations of FTDP-17 mutations and tau isoforms are functionally distinct and could have important implications for our understanding of disease and animal models of tauopathies.
Collapse
Affiliation(s)
- Yamini Mutreja
- Department of Molecular Biosciences , University of Kansas , 1200 Sunnyside Ave , Lawrence , Kansas 66045 , United States
| | - Benjamin Combs
- Department of Molecular Biosciences , University of Kansas , 1200 Sunnyside Ave , Lawrence , Kansas 66045 , United States.,Department of Translational Science & Molecular Medicine, College of Human Medicine , Michigan State University , Grand Rapids , Michigan 49503 , United States
| | - T Chris Gamblin
- Department of Molecular Biosciences , University of Kansas , 1200 Sunnyside Ave , Lawrence , Kansas 66045 , United States
| |
Collapse
|
124
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
125
|
Strang KH, Sorrentino ZA, Riffe CJ, Gorion KMM, Vijayaraghavan N, Golde TE, Giasson BI. Phosphorylation of serine 305 in tau inhibits aggregation. Neurosci Lett 2018; 692:187-192. [PMID: 30423399 DOI: 10.1016/j.neulet.2018.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease and other tauopathies are characterized by the brain accumulation of hyperphosphorylated aggregated tau protein forming pathological inclusions. Although elevated tau phosphorylated at many amino acid residues is a hallmark of pathological tau, some evidence suggest that tau phosphorylation at unique sites, especially within its microtubule-binding domain, might inhibit aggregation. In this study, the effects of phosphorylation of two unique residues within this domain, serine 305 (S305) and serine 320 (S320), were examined in the context of established aggregation and seeding models. It was found that the S305E phosphomimetic significantly inhibited both tau seeding and tau aggregation in this model, while S320E did not. To further explore S305 phosphorylation in vivo, a monoclonal antibody (2G2) specific for tau phosphorylated at S305 was generated and characterized. Consistent with inhibition of tau aggregation, phosphorylation of S305 was not detected in pathological tau inclusions in Alzheimer's disease brain tissue. This study indicates that phosphorylation of unique tau residues can be inhibitory to aggregate formation, and has important implications for potential kinase therapies. Additionally, it creates new tools for observing these changes in vivo.
Collapse
Affiliation(s)
- Kevin H Strang
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Cara J Riffe
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Niran Vijayaraghavan
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
126
|
Wang ZH, Liu P, Liu X, Yu SP, Wang JZ, Ye K. Delta-secretase (AEP) mediates tau-splicing imbalance and accelerates cognitive decline in tauopathies. J Exp Med 2018; 215:3038-3056. [PMID: 30373880 PMCID: PMC6279401 DOI: 10.1084/jem.20180539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/16/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Wang et al. demonstrate that AEP cleaves SRPK2 in tauopathies and plays a functional role in mediating tau-splicing imbalance and accelerating cognitive decline in mouse models of tauopathy. SRPK2 is abnormally activated in tauopathies including Alzheimer’s disease (AD). SRPK2 is known to play an important role in pre–mRNA splicing by phosphorylating SR-splicing factors. Dysregulation of tau exon 10 pre–mRNA splicing causes pathological imbalances in 3R- and 4R-tau, leading to neurodegeneration; however, the role of SRPK2 in these processes remains unclear. Here we show that delta-secretase (also known as asparagine endopeptidase; AEP), which is activated in AD, cleaves SRPK2 and increases its nuclear translocation as well as kinase activity, augmenting exon 10 inclusion. Conversely, AEP-uncleavable SRPK2 N342A mutant increases exon 10 exclusion. Lentiviral expression of truncated SRPK2 increases 4R-tau isoforms and accelerates cognitive decline in htau mice. Uncleavable SRPK2 N342A expression improves synaptic functions and prevents spatial memory deficits in tau intronic mutant FTDP-17 transgenic mice. Hence, AEP mediates tau-splicing imbalance in tauopathies via cleaving SRPK2.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA .,Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
127
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
128
|
Perea JR, Llorens-Martín M, Ávila J, Bolós M. The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. Front Cell Neurosci 2018; 12:172. [PMID: 30042659 PMCID: PMC6048186 DOI: 10.3389/fncel.2018.00172] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Tauopathies are neurodegenerative diseases which course with the accumulation of Tau, mainly in neurons. In addition, Tau accumulates in a hyperphosphorylated and aggregated form. This protein is released into the extracellular space and spreads following a stereotypical pattern, inducing the development of the disease through connected regions of the brain. Microglia-the macrophages of the brain-are involved in maintaining brain homeostasis. They perform a variety of functions related to the surveillance and clearance of pathological proteins, among other dead cells and debris, from the extracellular space that could compromise brain equilibrium. This review focuses on the role played by microglia in tauopathies, specifically in Alzheimer's disease (AD), and how the uncoupling of activation/phagocytosis functions can have fatal consequences leading to the development of the pathology.
Collapse
Affiliation(s)
- Juan R Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
129
|
Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11:1756286418776932. [PMID: 29854003 PMCID: PMC5971383 DOI: 10.1177/1756286418776932] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022] Open
Abstract
The introduction of genetics revolutionized the field of neurodegenerative and neuromuscular diseases and has provided considerable insight into the underlying pathomechanisms. Nevertheless, effective treatment options have been limited. This changed recently when antisense oligonucleotides (ASOs) could be translated from in vitro and experimental animal studies into clinical practice. In 2016, two ASOs were approved by the United States US Food and Drug Administration (FDA) and demonstrated remarkable efficacy in Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). ASOs are synthetic single-stranded strings of nucleic acids. They selectively bind to specific premessenger ribonucleic acid (pre-mRNA)/mRNA sequences and alter protein synthesis by several mechanisms of action. Thus, apart from gene replacement, ASOs may therefore provide the most direct therapeutic strategy for influencing gene expression. In this review, we shall discuss basic mechanisms of ASO action, the role of chemical modifications needed to improve the pharmacodynamic and pharmacokinetic properties of ASOs, and we shall then focus on several ASOs developed for the treatment of neurodegenerative and neuromuscular disorders, including SMA, DMD, myotonic dystrophies, Huntington's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia D. Wurster
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm, 89081, Germany
| | | |
Collapse
|
130
|
Giacomini C, Koo CY, Yankova N, Tavares IA, Wray S, Noble W, Hanger DP, Morris JDH. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol Commun 2018; 6:37. [PMID: 29730992 PMCID: PMC5937037 DOI: 10.1186/s40478-018-0539-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/21/2018] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer’s disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.
Collapse
|
131
|
Shimizu S, Hirose D, Hatanaka H, Takenoshita N, Kaneko Y, Ogawa Y, Sakurai H, Hanyu H. Role of Neuroimaging as a Biomarker for Neurodegenerative Diseases. Front Neurol 2018; 9:265. [PMID: 29720959 PMCID: PMC5915477 DOI: 10.3389/fneur.2018.00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 12/03/2022] Open
Abstract
It has recently been recognized that neurodegenerative diseases are caused by common cellular and molecular mechanisms including protein aggregation and inclusion body formation. Each type of neurodegenerative disease is characterized by the specific protein that aggregates. In these days, the pathway involved in protein aggregation has been elucidated. These are leading to approaches toward disease-modifying therapies. Neurodegenerative diseases are fundamentally diagnosed pathologically. Therefore, autopsy is essential for a definitive diagnosis of a neurodegenerative disease. However, recently, the development of various molecular brain imaging techniques have enabled pathological changes in the brain to be inferred even without autopsy. Some molecular imaging techniques are described as biomarker in diagnostic criteria of neurodegenerative disease. Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET), and amyloid imaging are described in the diagnostic guidelines for Alzheimer’s disease in the National Institute on Aging-Alzheimer’s Association. MRI, dopamine transporter (DAT) imaging, and 123I-metaiodobenzyl-guanidine (MIBG) myocardial scintigraphy listed in the guidelines for consensus clinical diagnostic criteria for dementia with Lewy bodies are described as potential biomarkers. The Movement Disorder Society Progressive Supranuclear Palsy Study Group defined MRI, SPECT/PET, DAT imaging, and tau imaging as biomarkers. Other diagnostic criteria for neurodegenerative disease described neuroimaging findings as only characteristic finding, not as biomarker. In this review, we describe the role of neuroimaging as a potential biomarker for neurodegenerative diseases.
Collapse
Affiliation(s)
- Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Daisuke Hirose
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hirokuni Hatanaka
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yoshitsugu Kaneko
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Ogawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
132
|
The Neurotoxic Role of Extracellular Tau Protein. Int J Mol Sci 2018; 19:ijms19040998. [PMID: 29584657 PMCID: PMC5979432 DOI: 10.3390/ijms19040998] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases associated with the microtubule-associated protein tau, with Alzheimer’s disease (AD) being the most prevalent related disorder. Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks present in the brains of AD patients. Because NFTs are aberrant intracellular inclusions formed by hyperphosphorylated tau, it was initially proposed that phosphorylated and/or aggregated intracellular tau protein was causative of neuronal death. However, recent studies suggest a toxic role for non-phosphorylated and non-aggregated tau when it is located in the brain extracellular space. In this work, we will discuss the neurotoxic role of extracellular tau as well its involvement in the spreading of tau pathologies.
Collapse
|
133
|
Jones DT, Knopman DS, Graff-Radford J, Syrjanen JA, Senjem ML, Schwarz CG, Dheel C, Wszolek Z, Rademakers R, Kantarci K, Petersen RC, Jack CR, Lowe VJ, Boeve BF. In vivo 18F-AV-1451 tau PET signal in MAPT mutation carriers varies by expected tau isoforms. Neurology 2018; 90:e947-e954. [PMID: 29440563 PMCID: PMC5858948 DOI: 10.1212/wnl.0000000000005117] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/05/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate 18F-AV-1451 tau PET binding among microtubule-associated protein tau (MAPT) mutation carriers. METHODS Using a case-control study, we quantitatively and qualitatively compared tau PET scans in 10 symptomatic and 3 asymptomatic MAPT mutation carriers (n = 13, age range 42-67 years) with clinically normal (CN) participants (n = 241, age range 42-67 years) and an Alzheimer disease (AD) dementia cohort (n = 30, age range 52-67 years). Eight participants had MAPT mutations that involved exon 10 (N279K n = 5, S305N n = 2, P301L n = 1) and tend to form 4R tau pathology, and 5 had mutations outside exon 10 (V337M n = 2, R406W n = 3) and tend to form mixed 3R/4R tau pathology. RESULTS Tau PET signal was qualitatively and quantitatively different between participants with AD, CN participants, and MAPT mutation carriers, with the greatest signal intensity in those with AD and minimal regional signal in MAPT mutation carries with mutations in exon 10. However, MAPT mutation carriers with mutations outside exon 10 had uptake levels within the AD range, which was significantly higher than both MAPT mutation carriers with mutations in exon 10 and controls. CONCLUSIONS Tau PET shows higher magnitude of binding in MAPT mutation carriers who harbor mutations that are more likely to produce AD-like tau pathology (e.g., in our series, the non-exon 10 families tend to accumulate mixed 3R/4R aggregates). Exon 10 splicing determines the balance of 3R and 4R tau isoforms, with some mutations involving exon 10 predisposing to a greater proportion of 4R aggregates and consequently a lower level of AV-1451 binding, as seen in this case series, thus supporting the notion that this tau PET ligand has specific binding properties for AD-like tau pathology.
Collapse
Affiliation(s)
- David T Jones
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL.
| | - David S Knopman
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Jeremy A Syrjanen
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Christina Dheel
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Zbigniew Wszolek
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Rosa Rademakers
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| | - Bradley F Boeve
- From the Departments of Neurology (D.T.J., D.S.K., J.G.-R., C.D., R.C.P., B.F.B.), Radiology (D.T.J., C.G.S., K.K., C.R.J., V.J.L.), Health Sciences Research (J.A.S.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (Z.W.) and Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
134
|
Ce O, Rs P, Ab W, S D, Cj W, Qm M, D L. Potential Link Between Proprotein Convertase Subtilisin/Kexin Type 9 and Alzheimer's Disease. ACTA ACUST UNITED AC 2018; 1. [PMID: 32352077 DOI: 10.31531/2581-4745.1000106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease [AD] is not only the most common neurodegenerative disease but is also currently incurable. Proprotein convertase subtilisin/kexin-9 [PCSK9] is an indirect regulator of plasma low density lipoprotein [LDL] levels controlling LDL receptor expression at the plasma membrane. PCSK9 also appears to regulate the development of glucose intolerance, insulin resistance, abdominal obesity, inflammation, and hypertension, conditions that have been identified as risk factors for AD. PCSK9 levels also depend on age, sex, and ethnic background, factors associated with AD. Herein, we will review indirect evidence that suggests a link between PCSK9 levels and AD.
Collapse
Affiliation(s)
- Oldham Ce
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Powell Rs
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Williams Ab
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Dixon S
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Wooten Cj
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Melendez Qm
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Lopez D
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| |
Collapse
|
135
|
Strang KH, Croft CL, Sorrentino ZA, Chakrabarty P, Golde TE, Giasson BI. Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies. J Biol Chem 2017; 293:2408-2421. [PMID: 29259137 DOI: 10.1074/jbc.m117.815357] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The accumulation of aberrantly aggregated MAPT (microtubule-associated protein Tau) defines a spectrum of tauopathies, including Alzheimer's disease. Mutations in the MAPT gene cause frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), characterized by neuronal pathological Tau inclusions in the form of neurofibrillary tangles and Pick bodies and in some cases glial Tau pathology. Increasing evidence points to the importance of prion-like seeding as a mechanism for the pathological spread in tauopathy and other neurodegenerative diseases. Herein, using a cell culture model, we examined a multitude of genetic FTDP-17 Tau variants for their ability to be seeded by exogenous Tau fibrils. Our findings revealed stark differences between FTDP-17 Tau variants in their ability to be seeded, with variants at Pro301 and Ser320 showing robust aggregation with seeding. Similarly, we elucidated the importance of certain Tau protein regions and unique residues, including the role of Pro301 in inhibiting Tau aggregation. We also revealed potential barriers in cross-seeding between three-repeat and four-repeat Tau isoforms. Overall, these differences alluded to potential mechanistic differences between wildtype and FTDP-17 Tau variants, as well as different Tau isoforms, in influencing Tau aggregation. Furthermore, by combining two FTDP-17 Tau variants (either P301L or P301S with S320F), we generated aggressive models of tauopathy that do not require exogenous seeding. These models will allow for rapid screening of potential therapeutics to alleviate Tau aggregation without the need for exogenous Tau fibrils. Together, these studies provide novel insights in the molecular determinants that modulate Tau aggregation.
Collapse
Affiliation(s)
- Kevin H Strang
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Cara L Croft
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Zachary A Sorrentino
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Paramita Chakrabarty
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida 32610
| | - Todd E Golde
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida 32610
| | - Benoit I Giasson
- From the Department of Neuroscience, .,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida 32610
| |
Collapse
|
136
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
137
|
Bruch J, Xu H, Rösler TW, De Andrade A, Kuhn PH, Lichtenthaler SF, Arzberger T, Winklhofer KF, Müller U, Höglinger GU. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol Med 2017; 9:371-384. [PMID: 28148553 PMCID: PMC5331260 DOI: 10.15252/emmm.201606664] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The RNA‐like endoplasmic reticulum kinase (PERK) is genetically associated with the tauopathy progressive supranuclear palsy (PSP). To elucidate the functional mechanisms underlying this association, we explored PERK activity in brains of PSP patients and its function in three tauopathy models (cultured human neurons overexpressing 4‐repeat wild‐type tau or treated with the environmental neurotoxin annonacin, and P301S tau transgenic mice). In vitro, treatment with a pharmacological PERK activator CCT020312 or PERK overexpression reduced tau phosphorylation, tau conformational change and 4‐repeat tau isoforms, and increased cell viability. In vivo, the PERK activator significantly improved memory and locomotor function, reduced tau pathology, and prevented dendritic spine and motoneuron loss in P301S tau mice. Importantly, the PERK substrate EIF2A, mediating some detrimental effects of PERK signaling, was downregulated in PSP brains and tauopathy models, suggesting that the alternative PERK–NRF2 pathway accounts for these beneficial effects in the context of tauopathies. In summary, PERK activation may be a novel strategy to treat PSP and eventually other tauopathies.
Collapse
Affiliation(s)
- Julius Bruch
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Technical University of Munich (TUM), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hong Xu
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Technical University of Munich (TUM), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Technical University of Munich (TUM), Munich, Germany
| | - Anderson De Andrade
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich (TUM), Munich, Germany.,Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Stefan F Lichtenthaler
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich (TUM), Munich, Germany.,Neuroproteomics, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research (ZNP), University of Munich, Munich, Germany
| | - Konstanze F Winklhofer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, Giessen, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Department of Neurology, Technical University of Munich (TUM), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
138
|
Interaction of misfolded proteins and mitochondria in neurodegenerative disorders. Biochem Soc Trans 2017; 45:1025-1033. [PMID: 28733489 DOI: 10.1042/bst20170024] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
Abstract
The number of the people affected by neurodegenerative disorders is growing dramatically due to the ageing of population. The major neurodegenerative diseases share some common pathological features including the involvement of mitochondria in the mechanism of pathology and misfolding and the accumulation of abnormally aggregated proteins. Neurotoxicity of aggregated β-amyloid, tau, α-synuclein and huntingtin is linked to the effects of these proteins on mitochondria. All these misfolded aggregates affect mitochondrial energy metabolism by inhibiting diverse mitochondrial complexes and limit ATP availability in neurones. β-Amyloid, tau, α-synuclein and huntingtin are shown to be involved in increased production of reactive oxygen species, which can be generated in mitochondria or can target this organelle. Most of these aggregated proteins are capable of deregulating mitochondrial calcium handling that, in combination with oxidative stress, lead to opening of the mitochondrial permeability transition pore. Despite some of the common features, aggregated β-amyloid, tau, α-synuclein and huntingtin have diverse targets in mitochondria that can partially explain neurotoxic effect of these proteins in different brain regions.
Collapse
|
139
|
De Conti L, Borroni B, Baralle M. New routes in frontotemporal dementia drug discovery. Expert Opin Drug Discov 2017; 12:659-671. [DOI: 10.1080/17460441.2017.1329294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura De Conti
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders - Neurology Unit, University of Brescia, Brescia, Italy
| | - Marco Baralle
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
140
|
Kunkle B, Carney R, Kohli M, Naj A, Hamilton-Nelson K, Whitehead P, Wang L, Lang R, Cuccaro M, Vance J, Byrd G, Beecham G, Gilbert J, Martin E, Haines J, Pericak-Vance M. Targeted sequencing of ABCA7 identifies splicing, stop-gain and intronic risk variants for Alzheimer disease. Neurosci Lett 2017; 649:124-129. [DOI: 10.1016/j.neulet.2017.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/07/2017] [Indexed: 12/30/2022]
|
141
|
Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Hum Genet 2017; 136:1215-1235. [DOI: 10.1007/s00439-017-1802-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
|
142
|
Jin N, Wu Y, Xu W, Gong CX, Iqbal K, Liu F. C-terminal truncation of GSK-3β enhances its dephosphorylation by PP2A. FEBS Lett 2017; 591:1053-1063. [DOI: 10.1002/1873-3468.12617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/06/2017] [Accepted: 02/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Nana Jin
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Regeneration; Nantong University; China
| | - Yue Wu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Regeneration; Nantong University; China
| | - Wen Xu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Regeneration; Nantong University; China
- Department of Neurochemistry; New York State Institute for Basic Research in Developmental Disabilities; Staten Island NY USA
| | - Cheng-Xin Gong
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Regeneration; Nantong University; China
- Department of Neurochemistry; New York State Institute for Basic Research in Developmental Disabilities; Staten Island NY USA
| | - Khalid Iqbal
- Department of Neurochemistry; New York State Institute for Basic Research in Developmental Disabilities; Staten Island NY USA
| | - Fei Liu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Regeneration; Nantong University; China
- Department of Neurochemistry; New York State Institute for Basic Research in Developmental Disabilities; Staten Island NY USA
| |
Collapse
|
143
|
Esteras N, Rohrer JD, Hardy J, Wray S, Abramov AY. Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biol 2017; 12:410-422. [PMID: 28319892 PMCID: PMC5357682 DOI: 10.1016/j.redox.2017.03.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
Tau protein inclusions are a frequent hallmark of a variety of neurodegenerative disorders. The 10+16 intronic mutation in MAPT gene, encoding tau, causes frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), by altering the splicing of the gene and inducing an increase in the production of 4R tau isoforms, which are more prone to aggregation. However, the molecular mechanisms linking increased 4R tau to neurodegeneration are not well understood. Here, we have used iPSC-derived neurons from patients of FTDP-17 carrying the 10+16 mutation to study the molecular mechanisms underlying neurodegeneration. We show that mitochondrial function is altered in the neurons of the patients. We found that FTDP-17 neurons present an increased mitochondrial membrane potential, which is partially maintained by the F1Fo ATPase working in reverse mode. The 10+16 MAPT mutation is also associated with lower mitochondrial NADH levels, partially supressed complex I-driven respiration, and lower ATP production by oxidative phosphorylation, with cells relying on glycolysis to maintain ATP levels. Increased mitochondrial membrane potential in FTDP-17 neurons leads to overproduction of the ROS in mitochondria, which in turn causes oxidative stress and cell death. Mitochondrial ROS overproduction in these cells is a major trigger for neuronal cell death and can be prevented by mitochondrial antioxidants.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
144
|
Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present and future directions. Mol Neurodegener 2017; 12:19. [PMID: 28219440 PMCID: PMC5319037 DOI: 10.1186/s13024-017-0162-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Abnormal aggregation of tau in the brain is a major contributing factor in various neurodegenerative diseases. The role of tau phosphorylation in the pathophysiology of tauopathies remains unclear. Consequently, it is important to be able to accurately and specifically target tau deposits in vivo in the brains of patients. The advances of molecular imaging in the recent years have now led to the recent development of promising tau-specific tracers for positron emission tomography (PET), such as THK5317, THK5351, AV-1451, and PBB3. These tracers are now available for clinical assessment in patients with various tauopathies, including Alzheimer's disease, as well as in healthy subjects. Exploring the patterns of tau deposition in vivo for different pathologies will allow discrimination between neurodegenerative diseases, including different tauopathies, and monitoring of disease progression. The variety and complexity of the different types of tau deposits in the different diseases, however, has resulted in quite a challenge for the development of tau PET tracers. Extensive work remains in order to fully characterize the binding properties of the tau PET tracers, and to assess their usefulness as an early biomarker of the underlying pathology. In this review, we summarize recent findings on the most promising tau PET tracers to date, discuss what has been learnt from these findings, and offer some suggestions for the next steps that need to be achieved in a near future.
Collapse
Affiliation(s)
- Laure Saint-Aubert
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Laetitia Lemoine
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Konstantinos Chiotis
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Antoine Leuzy
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Elena Rodriguez-Vieitez
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Agneta Nordberg
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden. .,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
145
|
Asai M, Kinjo A, Kimura S, Mori R, Kawakubo T, Shirotani K, Yagishita S, Maruyama K, Iwata N. Perturbed Calcineurin-NFAT Signaling Is Associated with the Development of Alzheimer's Disease. Biol Pharm Bull 2017; 39:1646-1652. [PMID: 27725441 DOI: 10.1248/bpb.b16-00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-β peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.
Collapse
Affiliation(s)
- Masashi Asai
- School of Pharmaceutical Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Barber IS, Braae A, Clement N, Patel T, Guetta-Baranes T, Brookes K, Medway C, Chappell S, Guerreiro R, Bras J, Hernandez D, Singleton A, Hardy J, Mann DM, Morgan K. Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array. Neurobiol Aging 2016; 49:215.e1-215.e8. [PMID: 27776828 DOI: 10.1016/j.neurobiolaging.2016.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
Abstract
We have screened sporadic early-onset Alzheimer's disease (sEOAD, n = 408) samples using the NeuroX array for known causative and predicted pathogenic variants in 16 genes linked to familial forms of neurodegeneration. We found 2 sEOAD individuals harboring a known causative variant in PARK2 known to cause early-onset Parkinson's disease; p.T240M (n = 1) and p.Q34fs delAG (n = 1). In addition, we identified 3 sEOAD individuals harboring a predicted pathogenic variant in MAPT (p.A469T), which has previously been associated with AD. It is currently unknown if these variants affect susceptibility to sEOAD, further studies would be needed to establish this. This work highlights the need to screen sEOAD individuals for variants that are more classically attributed to other forms of neurodegeneration.
Collapse
Affiliation(s)
- Imelda S Barber
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anne Braae
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Naomi Clement
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Tulsi Patel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Tamar Guetta-Baranes
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Keeley Brookes
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Christopher Medway
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Sally Chappell
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Jose Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - David M Mann
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | | | - Kevin Morgan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
147
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
148
|
Cabrera JR, Lucas JJ. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol 2016; 27:181-189. [PMID: 27098187 DOI: 10.1111/bpa.12387] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic alteration of striatal medium spiny neurons is one of the earliest morphological abnormalities in Huntington's disease (HD). The main microtubule-associated protein in dendrites is MAP2. The low-molecular weight isoforms of MAP2 (LMW-MAP2) are the juvenile forms resulting from exclusion of the sequence encoded by exons E7-E9 and are downregulated after the early stages of neuronal development when E7-E9 exon-including high-molecular weight isoforms (HMW-MAP2) are favored. Splicing alteration has recently been proposed to contribute to HD in view of two pathogenic missplicing events resulting in a highly toxic N-terminal version of mutant huntingtin and in a detrimental imbalance in MAP Tau isoforms with three or four tubulin-binding repeats. Both splicing events are postulated targets of the SR splicing factor SRSF6 which has recently been reported to be dramatically altered in HD. SR proteins often regulate functionally related sets of genes and SRSF6 targets are enriched in genes involved in brain organogenesis including several actin-and tubulin-binding proteins. Here we hypothesized that MAP2 might be target of SRSF6 and altered in HD. By SRSF6 knockdown in neuroblastoma cells, we demonstrate that splicing of MAP2 E7-E9 exons is affected by SRSF6. We then show a disbalance in LMW and HMW MAP2 mRNA isoforms in HD striatum in favor of the juvenile LMW forms together with a decrease in total MAP2 mRNA. This is accompanied by a global decrease in total MAP2 protein due to almost total disappearance of HMW-MAP2 isoforms with preservation of LMW-MAP2 isoforms. Accordingly, the predominant dendritic MAP2 staining in striatal neuropil of control subjects is absent in HD cases. In these, MAP2-immunoreactivity is faint and restricted to neuronal cell bodies often showing a sharp boundary at the base of dendrites. Together, our results highlight the importance of splicing alteration in HD and suggest that MAP2 alteration contributes to dendritic atrophy.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
149
|
Scekic-Zahirovic J, Sendscheid O, El Oussini H, Jambeau M, Sun Y, Mersmann S, Wagner M, Dieterlé S, Sinniger J, Dirrig-Grosch S, Drenner K, Birling MC, Qiu J, Zhou Y, Li H, Fu XD, Rouaux C, Shelkovnikova T, Witting A, Ludolph AC, Kiefer F, Storkebaum E, Lagier-Tourenne C, Dupuis L. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 2016; 35:1077-97. [PMID: 26951610 PMCID: PMC4868956 DOI: 10.15252/embj.201592559] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Oliver Sendscheid
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Hajer El Oussini
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Mélanie Jambeau
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Ying Sun
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Stéphane Dieterlé
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Jérome Sinniger
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Kevin Drenner
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caroline Rouaux
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | | | - Anke Witting
- Department of Neurology University of Ulm, Ulm, Germany
| | | | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Luc Dupuis
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| |
Collapse
|
150
|
Sood S, Szkop KJ, Nakhuda A, Gallagher IJ, Murie C, Brogan RJ, Kaprio J, Kainulainen H, Atherton PJ, Kujala UM, Gustafsson T, Larsson O, Timmons JA. iGEMS: an integrated model for identification of alternative exon usage events. Nucleic Acids Res 2016; 44:e109. [PMID: 27095197 PMCID: PMC4914109 DOI: 10.1093/nar/gkw263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/02/2016] [Indexed: 12/16/2022] Open
Abstract
DNA microarrays and RNAseq are complementary methods for studying RNA molecules. Current computational methods to determine alternative exon usage (AEU) using such data require impractical visual inspection and still yield high false-positive rates. Integrated Gene and Exon Model of Splicing (iGEMS) adapts a gene-level residuals model with a gene size adjusted false discovery rate and exon-level analysis to circumvent these limitations. iGEMS was applied to two new DNA microarray datasets, including the high coverage Human Transcriptome Arrays 2.0 and performance was validated using RT-qPCR. First, AEU was studied in adipocytes treated with (n = 9) or without (n = 8) the anti-diabetes drug, rosiglitazone. iGEMS identified 555 genes with AEU, and robust verification by RT-qPCR (∼90%). Second, in a three-way human tissue comparison (muscle, adipose and blood, n = 41) iGEMS identified 4421 genes with at least one AEU event, with excellent RT-qPCR verification (95%, n = 22). Importantly, iGEMS identified a variety of AEU events, including 3′UTR extension, as well as exon inclusion/exclusion impacting on protein kinase and extracellular matrix domains. In conclusion, iGEMS is a robust method for identification of AEU while the variety of exon usage between human tissues is 5–10 times more prevalent than reported by the Genotype-Tissue Expression consortium using RNA sequencing.
Collapse
Affiliation(s)
- Sanjana Sood
- Division of Genetics and Molecular Medicine, King's College London, WC2R 2LS, London, UK Research Department, XRGenomics Ltd, 35 Kingsland Road, London E2 8AA, UK
| | - Krzysztof J Szkop
- Division of Genetics and Molecular Medicine, King's College London, WC2R 2LS, London, UK Research Department, XRGenomics Ltd, 35 Kingsland Road, London E2 8AA, UK
| | - Asif Nakhuda
- Division of Genetics and Molecular Medicine, King's College London, WC2R 2LS, London, UK School of Medicine, University of Nottingham, Derby Royal Hospital, Derbyshire, DE22 3DT, UK
| | - Iain J Gallagher
- School of Health Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Carl Murie
- Department of Oncology-Pathology, SciLifeLab, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Robert J Brogan
- Research Department, XRGenomics Ltd, 35 Kingsland Road, London E2 8AA, UK
| | - Jaakko Kaprio
- Department of Public Health and the Institute for Molecular Medicine (FIMM), University of Helsinki, FI-00014, Helsinki, Finland National Institute for Health and Welfare, University of Helsinki, FI-00014, Helsinki, Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Philip J Atherton
- School of Medicine, University of Nottingham, Derby Royal Hospital, Derbyshire, DE22 3DT, UK
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, SciLifeLab, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, WC2R 2LS, London, UK Research Department, XRGenomics Ltd, 35 Kingsland Road, London E2 8AA, UK
| |
Collapse
|