101
|
Saberpour M, Najar-Peeraye S, Shams S, Bakhshi B. Effects of chitosan nanoparticles loaded with mesenchymal stem cell conditioned media on gene expression in Vibrio cholerae and Caco-2 cells. Sci Rep 2022; 12:9781. [PMID: 35697926 PMCID: PMC9192724 DOI: 10.1038/s41598-022-14057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio (V.) cholerae forms a pellicle for self-defense in the pathological conditions in the intestine, which protects it against antibiotics and adverse conditions. Targeting biofilm genes and Toll-like receptors (TLRs) is one of the new strategies to combat multidrug-resistant bacteria. The objective of this study was to evaluate the effect of mesenchymal stem cell conditioned media (MSC CM; 1000 µg), chitosan nanoparticles incorporated with mesenchymal stem cell conditioned media (MSC CM-CS NPs; 1000 µg + 0.05%), and chitosan nanoparticles (CS NPs; 0.05%) on the expression of bap1 and rbmC biofilm genes in V. cholerae and TLR2 and TLR4 genes in Caco-2 cells. The bacteria were inoculated in the presence or absence of MSC CM, MSC CM-CS NPs, and CS NPs for 24 h at 37 °C to evaluate the expression of biofilm genes. The Caco-2 cells were also exposed to V. cholerae for 1 h and then MSC CM, MSC CM-CS NPs, and CS NPs for 18 h at 37 °C. After these times, RNA was extracted from Caco-2 cells and bacteria exposed to the compounds, and the expression of target genes was evaluated using real-time PCR. Caco-2 cell viability was also assessed by MTT assay. After adding MSC CM, MSC CM-CS NPs, and CS NPs to V. cholerae medium, the percentage reduction in gene expression of bap1 was 96, 91, and 39%, and rbmC was 93, 92, and 32%, respectively. After adding MSC CM, MSC CM-CS NPs, and CS NPs to the Caco-2 cell medium, the percentage reduction in the gene expression of TLR4 was 89, 90, and 82%, and TLR2 was 41, 43, and 32%, respectively. MTT showed that Caco-2 cell viability was high and the compounds had little toxicity on these cells. Finally, it suggests that MSC CM-CS NPs designed may be a therapeutic agent to combat inflammation and biofilm formation in multidrug-resistant V. cholerae. However, further studies in vivo are also recommended.
Collapse
Affiliation(s)
- Masoumeh Saberpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peeraye
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
102
|
Lingas EC. Empiric Antibiotics in COVID 19: A Narrative Review. Cureus 2022; 14:e25596. [PMID: 35795519 PMCID: PMC9250242 DOI: 10.7759/cureus.25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
|
103
|
Gordillo Altamirano FL, Kostoulias X, Subedi D, Korneev D, Peleg AY, Barr JJ. Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. EBioMedicine 2022; 80:104045. [PMID: 35537278 PMCID: PMC9097682 DOI: 10.1016/j.ebiom.2022.104045] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clinical phage therapy is often delivered alongside antibiotics. However, the phenomenon of phage-antibiotic synergy has been mostly studied in vitro. Here, we assessed the in vivo bactericidal effect of a phage-antibiotic combination on Acinetobacter baumannii AB900 using phage øFG02, which binds to capsular polysaccharides and leads to antimicrobial resensitisation in vitro. METHODS We performed a two-stage preclinical study using a murine model of severe A. baumannii AB900 bacteraemia. In the first stage, with an endpoint of 11 h, mice (n = 4 per group) were treated with either PBS, ceftazidime, phage øFG02, or the combination of phage and ceftazidime. The second stage involved only the latter two groups (n = 5 per group), with a prolonged endpoint of 16 h. The primary outcome was the average bacterial burden from four body sites (blood, liver, kidney, and spleen). Bacterial colonies from phage-treated mice were retrieved and screened for phage-resistance. FINDINGS In the first stage, the bacterial burden (CFU/g of tissue) of the combination group (median: 4.55 × 105; interquartile range [IQR]: 2.79 × 105-2.81 × 106) was significantly lower than the PBS (median: 2.42 × 109; IQR: 1.97 × 109-3.48 × 109) and ceftazidime groups (median: 3.86 × 108; IQR: 2.15 × 108-6.35 × 108), but not the phage-only group (median: 1.28 × 107; IQR: 4.71 × 106-7.13 × 107). In the second stage, the combination treatment (median: 1.72 × 106; IQR: 5.11 × 105-4.00 × 106) outperformed the phage-only treatment (median: 7.46 × 107; IQR: 1.43 × 107-1.57 × 108). Phage-resistance emerged in 96% of animals receiving phages, and all the tested isolates (n = 11) had loss-of-function mutations in genes involved in capsule biosynthesis and increased sensitivity to ceftazidime. INTERPRETATION øFG02 reliably drives the in vivo evolution of A. baumannii AB900 towards a capsule-deficient, phage-resistant phenotype that is resensitised to ceftazidime. This mechanism highlights the clinical potential of using phage therapy to target A. baumannii and restore antibiotic activity. FUNDING National Health and Medical Research Council (Australia).
Collapse
Affiliation(s)
- Fernando L Gordillo Altamirano
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton, Victoria, Australia; Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Xenia Kostoulias
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia; Infection Program, Department of Microbiology Monash University, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Denis Korneev
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Faculty of Science, School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Anton Y Peleg
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia; Infection Program, Department of Microbiology Monash University, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia; Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
104
|
Marua AM, Shethwala ND, Bhatt P, Shah A. Evaluation of Bacterial Co-Infections and Antibiotic Resistance in Positive COVID-19 Patients. MAEDICA 2022; 17:350-356. [PMID: 36032617 PMCID: PMC9375886 DOI: 10.26574/maedica.2022.17.2.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aim: Due to the fact that patients with COVID--19 can have a bacterial co-infection, physicians should be careful when prescribing antibiotics, with rather considering the sensitivity and resistance of these drugs than various bacteria. Therefore, the main purpose of the present study was to evaluate bacterial coinfections and antibiotic resistance in positive COVID-19 patients. Method:This descriptive cross-sectional study was performed on 450 hospitalized COVID-19 patients who were selected by simple random sampling. Blood culture (BC) and endotracheal aspirate (ETA) were performed for all COVID-19 patients participating in the study. Antibacterial susceptibility was assessed using the standard Kirby-Bauer disk diffusion method on Mueller Hinton agar for all isolated strains in accordance with the Institute of Clinical and Laboratory Standards guidelines. Finally, susceptibility of all identified bacteria to 10 types of antibiotics was assessed. Results:Based on the results of endotracheal aspirate (ETA) culture, we found that 79 (17.5%) patients had COVID-19 and bacterial co-infection. Among COVID-19 patients with bacterial co-infection, Klebsiella species had the highest frequency (21.6%), followed by Methicillin-sensitive Staphylococcus aureus (MSSA) (19%), Escherichia coli (17.7%), Methicillin-resistant Staphylococcus aureus (MRSA) (15.2%), Enterobacter species (13.9%) and Pseudomonas aeruginosa (12.6%), respectively. Based on the results of the present study, it was found that the level of antibiotic resistance for different bacteria varied from 0-100%. Conclusion:The results of the present study indicate that patients with COVID-19 are susceptible to bacterial co-infection, which leads to the conclusion that excessive use of antibiotics is an important factor in the development of antimicrobial resistance. Therefore, caution is needed in prescribing different antibiotics to patients with COVID-19. In addition, considering the SARS-CoV-2 co-infection with other pathogens, it is necessary to use an optimal treatment method for this purpose.
Collapse
Affiliation(s)
- Alpesh M Marua
- Department of Pathology, Dr. N. D. Desai Faculty of Medical Science and Research, Nadiad, India
| | | | - Parth Bhatt
- Department of Pathology, Dr. N. D. Desai Faculty of Medical Science and Research, Dharmsinh Desai University, Nadiad, India
| | - Amar Shah
- Department of Pathology, Dr. N. D. Desai Faculty of Medical Science and Research, Dharmsinh Desai University, Nadiad, India
| |
Collapse
|
105
|
Shinohara DR, dos Santos Saalfeld SM, Martinez HV, Altafini DD, Costa BB, Fedrigo NH, Tognim MCB. Outbreak of endemic carbapenem-resistant Acinetobacter baumannii in a coronavirus disease 2019 (COVID-19)-specific intensive care unit. Infect Control Hosp Epidemiol 2022; 43:815-817. [PMID: 33685542 PMCID: PMC7985906 DOI: 10.1017/ice.2021.98] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/25/2022]
Affiliation(s)
| | - Silvia Maria dos Santos Saalfeld
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Maringá University Hospital, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Daniela Dambroso Altafini
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Maringá University Hospital, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | |
Collapse
|
106
|
Huang CP, Tsai CS, Su PL, Huang TH, Ko WC, Lee NY. Respiratory etiological surveillance among quarantined patients with suspected lower respiratory tract infection at a medical center in southern Taiwan during COVID-19 pandemic. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:428-435. [PMID: 34509393 PMCID: PMC8423990 DOI: 10.1016/j.jmii.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023]
Abstract
Background A comprehensive study of respiratory pathogens was conducted in an area with a low prevalence of COVID-19 among the adults quarantined at a tertiary hospital. Methods From March to May 2020, 201 patients suspected lower respiratory tract infection (LRTI) were surveyed for etiologies by multiplex polymerase chain reaction (PCR: FilmArray TM Respiratory Panel) test combination with cultural method, viral antigen detection and serologic surveys. Results Total 201 patients tested with FilmArray TM Respiratory Panel were enrolled, of which 68.2% had sputum bacterial culture, 86.1% had pneumococcus and Legionella urine antigen test. Their median age was 72.0 year-old with multiple comorbidities, and 11.4% were nursing home residents. Bacteria accounted for 59.7% of identified pathogens. Atypical pathogens were identified in 31.3% of total pathogens, of which viruses accounted for 23.9%. In comparison to patients with bacterial infection, patients with atypical pathogens were younger (median= 77.2 vs 67.1, years, P = 0.017) and had shorter length of hospital (8.0 vs 4.5, days, P = 0.007). Conclusions Patients with LRTI caused by atypical pathogens was indistinguishable from those with bacterial pathogens by clinical manifestations or biomarkers. Multiplex PCR providing rapid diagnosis of atypical pathogens enhance patient care and decision making when rate of sputum culture sampling was low in quarantine ward during pandemic.
Collapse
Affiliation(s)
- Chien-Ping Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital Douliu Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tang-Hsiu Huang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
107
|
Mete B, Kurt AF, Urkmez S, Demirkiran O, Can G, Dumanli GY, Bozbay S, Arsu HY, Otlu B, Karaali R, Balkan II, Saltoglu N, Dikmen Y, Tabak F, Aygun G. The Bad Bug is Back: Acinetobacter Baumannii Bacteremia Outbreak during the COVID-19 Pandemic in an Intensive Care Unit. Niger J Clin Pract 2022; 25:702-709. [PMID: 35593616 DOI: 10.4103/njcp.njcp_2001_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Epidemiology of nosocomial infections may show variability because of under-estimation of infection control measures (ICMs) in coronavirus disease 19 (COVID-19) outbreak. Aim To investigate the Acinetobacter bacteremia outbreak developed in an intensive care unit (ICU) between March 20 to May 15, 2020, examine the risk factors, and re-evaluate ICM retrospectively. Material and Methods A retrospective cohort analysis was conducted to determine the risk factors, pulsed field gel electrophoresis (PFGE) was performed for analysis of the outbreak, ICM practices were observed by a team, and infection control interventions were undertaken. Results Acinetobacter bacteremia developed in 17 patients (21.5%) within 79 COVID-19 patients included in the study. The mean age of the bacteremic patients was 67.3 (SD = 14.82) years, and 82.4% of them were male; of these, 15 died, leading to 88.2% mortality. The bacteremia rate was higher compared with a 14-month period preceding the COVID-19 pandemic (17/79 versus 12/580 patients, respectively). PFGE revealed that the outbreak was polyclonal. On multi-variate analysis, the bacteremia development rate was 13.7 and 5.06 times higher with central venous catheter (CVC) use and in patients with chronic obstructive pulmonary disease (COPD), respectively. The mortality rate was higher in bacteremic patients (p = 0.0016). It was observed that ICMs were not followed completely, especially change of gloves and hand hygiene. Contamination of A. baumannii was observed in 38% of the gloves. Conclusion COPD and CVC use were determined as risk factors for Acinetobacter bacteremia development, and failures in ICM may have led to cross-contamination of endemic A. baumannii. The outbreak could be controlled within 3 weeks of interventions.
Collapse
Affiliation(s)
- B Mete
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - A F Kurt
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - S Urkmez
- Department of Anesthesiology and Reanimation, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasacaddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - O Demirkiran
- Department of Anesthesiology and Reanimation, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasacaddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - G Can
- Department of Public Health, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - G Y Dumanli
- Department of Anesthesiology and Reanimation, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasacaddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - S Bozbay
- Department of Anesthesiology and Reanimation, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasacaddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - H Y Arsu
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - B Otlu
- Department of Medical Microbiology, Inonu University Medical Faculty, Elazig yolu 15. Kilometre, 44280-Battalgazi, Malatya, Turkey
| | - R Karaali
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - I I Balkan
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - N Saltoglu
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - Y Dikmen
- Department of Anesthesiology and Reanimation, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasacaddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - F Tabak
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| | - G Aygun
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Kocamustafapasa caddesi No: 53, Cerrahpasa, 34098-Fatih, Istanbul, Turkey
| |
Collapse
|
108
|
Super Dominant Pathobiontic Bacteria in the Nasopharyngeal Microbiota Cause Secondary Bacterial Infection in COVID-19 Patients. Microbiol Spectr 2022; 10:e0195621. [PMID: 35579467 PMCID: PMC9241909 DOI: 10.1128/spectrum.01956-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease responsible for many infections worldwide. Differences in respiratory microbiota may correlate with disease severity. Samples were collected from 20 severe and 51 mild COVID-19 patients. High-throughput sequencing of the 16S rRNA gene was used to analyze the bacterial community composition of the upper and lower respiratory tracts. The indices of diversity were analyzed. When one genus accounted for >50% of reads from a sample, it was defined as a super dominant pathobiontic bacterial genus (SDPG). In the upper respiratory tract, uniformity indices were significantly higher in the mild group than in the severe group (P < 0.001). In the lower respiratory tract, uniformity indices, richness indices, and the abundance-based coverage estimator were significantly higher in the mild group than in the severe group (P < 0.001). In patients with severe COVID-19, SDPGs were detected in 40.7% of upper and 63.2% of lower respiratory tract samples. In patients with mild COVID-19, only 10.8% of upper and 8.5% of lower respiratory tract samples yielded SDPGs. SDPGs were present in both upper and lower tracts in seven patients (35.0%), among which six (30.0%) patients possessed the same SDPG in the upper and lower tracts. However, no patients with mild infections had an SDPG in both tracts. Staphylococcus, Corynebacterium, and Acinetobacter were the main SDPGs. The number of SDPGs identified differed significantly between patients with mild and severe COVID-19 (P < 0.001). SDPGs in nasopharyngeal microbiota cause secondary bacterial infection in COVID-19 patients and aggravate pneumonia. IMPORTANCE The nasopharyngeal microbiota is composed of a variety of not only the true commensal bacterial species but also the two-face pathobionts, which are one a harmless commensal bacterial species and the other a highly invasive and deadly pathogen. In a previous study, we found that the diversity of nasopharyngeal microbiota was lost in severe influenza patients. We named the genus that accounted for over 50% of microbiota abundance as super dominant pathobiontic genus, which could invade to cause severe pneumonia, leading to high fatality. Similar phenomena were found here for SARS-CoV-2 infection. The diversity of nasopharyngeal microbiota was lost in severe COVID-19 infection patients. SDPGs in nasopharyngeal microbiota were frequently detected in severe COVID-19 patients. Therefore, the SDPGs in nasopharynx microbiota might invade into low respiratory and be responsible for secondary bacterial pneumonia in patients with SARS-CoV-2 infection.
Collapse
|
109
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Front Immunol 2022; 13:894534. [PMID: 35634338 PMCID: PMC9134015 DOI: 10.3389/fimmu.2022.894534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
110
|
Synthesis and Characterization of Piperine Amide analogues: Their In-silico and invitro analysis as Potential antibacterial agents. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
111
|
Ali YM, Lynch NJ, Khatri P, Bamigbola IE, Chan ACY, Yabuki M, Demopulos GA, Heeney JL, Pai S, Baxendale H, Schwaeble WJ. Secondary Complement Deficiency Impairs Anti-Microbial Immunity to Klebsiella pneumoniae and Staphylococcus aureus During Severe Acute COVID-19. Front Immunol 2022; 13:841759. [PMID: 35572551 PMCID: PMC9094484 DOI: 10.3389/fimmu.2022.841759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.
Collapse
Affiliation(s)
- Youssif M. Ali
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nicholas J. Lynch
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Priyanka Khatri
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ifeoluwa E. Bamigbola
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew C. Y. Chan
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sumita Pai
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Wilhelm J. Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
112
|
SATHYAKAMALA RAVICHANDRAN, PEACE ALICER, SHANMUGAM PRIYADARSHINI. A Comparative Study on Bacterial Co-Infections and Prevalence of Multidrug Resistant Organisms among Patients in COVID and Non-COVID Intensive Care Units. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E19-E26. [PMID: 35647371 PMCID: PMC9121664 DOI: 10.15167/2421-4248/jpmh2022.63.1.2175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/22/2022] [Indexed: 11/05/2022]
Abstract
Introduction Secondary bacterial infections have been reported in majority of patients hospitalized with coronavirus disease 2019 (COVID-19). A study of the antimicrobial susceptibility profiles of these bacterial strains revealed that they were multidrug resistant, demonstrating their resistance to at least three classes of antimicrobial agents including beta-lactams, fluoroquinolones and aminoglycosides. Bacterial co-infection remains as an important cause for high mortality in patients hospitalized with COVID-19. Methods In our study, we conducted a retrospective comparative analysis of bacterial co-infections and the antimicrobial resistance profile of bacterial isolates obtained from inpatients admitted in COVID-19 and non-COVID-19 intensive care units. The goal was to obtain the etiology and antimicrobial resistance of these infections for more accurate use of antimicrobials in clinical settings. This study involved a total of 648 samples collected from 356 COVID-19 positive patients and 292 COVID-19 negative patients admitted in the intensive care unit over a period of six months from May to October 2020. Results Among the co-infections found, maximum antimicrobial resistance was found in Acinetobacter species followed by Klebsiella species in both the ICU’s. Incidence of bacterial co-infection was found to be higher in COVID-19 intensive care patients and most of these isolates were multidrug resistant strains. Conclusion Therefore, it is important that co-infections should not be underestimated and instead be made part of an integrated plan to limit the global burden of morbidity and mortality during the SARS-CoV-2 pandemic and beyond.
Collapse
Affiliation(s)
| | - ALICE R. PEACE
- Department of Microbiology, Chettinad Hospital and Research Institute
| | - PRIYADARSHINI SHANMUGAM
- Department of Microbiology, Chettinad Hospital and Research Institute
- Correspondence: Priyadarshini Shanmugam, Professor and Head, Chettinad Hospital and Research Institute, Kelambakkam –Tel. #9841551891 - E-mail:
| |
Collapse
|
113
|
Said KB, Alsolami A, Moussa S, Alfouzan F, Bashir AI, Rashidi M, Aborans R, Taha TE, Almansour H, Alazmi M, Al-Otaibi A, Aljaloud L, Al-Anazi B, Mohialdin A, Aljadani A. COVID-19 Clinical Profiles and Fatality Rates in Hospitalized Patients Reveal Case Aggravation and Selective Co-Infection by Limited Gram-Negative Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095270. [PMID: 35564665 PMCID: PMC9101447 DOI: 10.3390/ijerph19095270] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Bacterial co-infections may aggravate COVID-19 disease, and therefore being cognizant of other pathogens is imperative. We studied the types, frequency, antibiogram, case fatality rates (CFR), and clinical profiles of co-infecting-pathogens in 301 COVID-19 patients. Co-infection was 36% (n = 109), while CFR was 31.2% compared to 9.9% in non-co-infected patients (z-value = 3.1). Four bacterial species dominated, namely, multidrug-resistant Klebsiella pneumoniae (37%, n = 48), extremely drug-resistant Acinetobacter baumannii (26%, n = 34), multidrug-resistant Eschericia. coli (18.6%, n = 24), and extremely drug-resistant Pseudomonas aeruginosa (8.5%, n = 11), in addition to other bacterial species (9.3%, n = 12). Increased co-infection of K. pneumoniae and A. baumannii was associated with increased death rates of 29% (n = 14) and 32% (n = 11), respectively. Klebsiella pneumoniae was equally frequent in respiratory and urinary tract infections (UTI), while E. coli mostly caused UTI (67%), and A. baumannii and P. aeruginosa dominated respiratory infections (38% and 45%, respectively). Co-infections correlated with advance in age: seniors ≥ 50 years (71%), young adults 21–49 years (25.6%), and children 0–20 years (3%). These findings have significant clinical implications in the successful COVID-19 therapies, particularly in geriatric management. Future studies would reveal insights into the potential selective mechanism(s) of Gram-negative bacterial co-infection in COVID-19 patients.
Collapse
Affiliation(s)
- Kamaleldin B. Said
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia; (A.A.-O.); (L.A.); (B.A.-A.)
- Genomics, Bioinformatics and Systems Biology, Carleton University, 1125 Colonel-By Dr, Ottawa, ON K1S 5B6, Canada
- ASC, McGill University, 21111 Lakeshore Rd, Montreal, QC H9X 3L9, Canada
- Correspondence: Correspondence: ; Tel.: +966-500771459
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia; (A.A.); (A.A.)
| | - Safia Moussa
- Department of Microbiology, King Salman Specialist Hospital, Ha’il 55476, Saudi Arabia; (S.M.); (F.A.)
| | - Fayez Alfouzan
- Department of Microbiology, King Salman Specialist Hospital, Ha’il 55476, Saudi Arabia; (S.M.); (F.A.)
| | - Abdelhafiz I. Bashir
- Department of Physiology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Musleh Rashidi
- Ministry of Health, Hail Region, Ha’il 55476, Saudi Arabia;
| | - Rana Aborans
- Department of Community Medicine, Faculty of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Taha E. Taha
- Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Husam Almansour
- Health Management Department, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81481, Saudi Arabia;
| | - Mashari Alazmi
- College of Computer Science and Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia;
| | - Amal Al-Otaibi
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia; (A.A.-O.); (L.A.); (B.A.-A.)
| | - Luluh Aljaloud
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia; (A.A.-O.); (L.A.); (B.A.-A.)
| | - Basmah Al-Anazi
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia; (A.A.-O.); (L.A.); (B.A.-A.)
| | - Ahmed Mohialdin
- Department of Surgery, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Ahmed Aljadani
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia; (A.A.); (A.A.)
| |
Collapse
|
114
|
Genetic analysis of Acenitobacter bumannii associated with viral respiratory infections. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns3.6317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, samples were collected from Corona patients who were in isolation units for Corona virus patients, where samples were taken (from the nasal passage, mouth and sputum) and the samples were transferred by a liquid nutrient medium to the laboratory and kept at -2 temperature until they were cultivated on the medium of the Maconkey and saved In the incubator for 24 hours to observe the types of bacteria present , The samples were also cultured on Chrom agar Base Acinetobacter bacteria (which is a selective medium).It is difficult to distinguish it phenotypically from other bacteria, The phenotypic detection of A. bumannii bacteria, biochemical tests, and then molecular detection using ITS-specific primer were also performed and molecular detection using SP4-specific primer were also performed . A molecular assay for the CipA gene that encodes for the production of an enzyme complementary-inhibitor and Plg-binding protein of A. baumannii (Cip A) was also performed and The molecular assay for the Peptidase M10, metallopeptidase-specific primer gene was also performe. As the most important virulence factors in A. bumannii , Because the two enzymes played an important role in the pathogenesis of these bacteria .
Collapse
|
115
|
Kurnia D. Correlation between Multidrug Resistance Infection with Clinical Outcomes of Critically ill Patients with COVID-19 Admitted to an Intensive Care at RSUP Dr. M. Djamil in Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Approximately 14–50% of severe COVID-19 patients are admitted to the Intensive Care Unit (ICU) that acquires a multidrug-resistant bacterial infection (MDR) and worsens clinical outcomes of patients.
AIM: We aim to determine the increased risk of MDR infection in the ICU including large-spectrum antibiotic administration, invasive procedure performance (mechanical ventilation), and clinical outcomes of patient.
METHODS: We analyzed 227 patients with a primary diagnosis of COVID-19 on mechanical ventilation who were admitted to ICU COVID-19 RSUP Dr. M. Djamil from 2020 to 2021. Demographic information, sputum culture results, intubation, and clinical outcomes were all collected in the medical records for this retrospective cohort study. Patients who were hospitalized for <48 h in the ICU were excluded from the study. An independent t-test and a Chi-square test were used to analyze the data.
RESULTS: In sixty patients (26.4%), bacteria were found in the sputum culture, 40 patients (66.7%) of them were MDR. The most common bacteria found was Acinetobacter baumanii (35%) followed by Klebsiella pneumonia (21.7%). There is a significant relationship between MDR (p-value 0.000) and intubation (p-value, 000) to clinical outcomes of patients (improvement or death). There is a significant relationship between intubation and MDR (p-value 0.009).
CONCLUSION: MDR patient status affected the outcomes of COVID-19 patients in the ICU. Patients with MDR were more likely to have a poor clinical outcome.
Collapse
|
116
|
Abstract
PURPOSE OF REVIEW Some patients with coronavirus disease 2019 (COVID-19) may develop pulmonary bacterial coinfection or superinfection, that could unfavorably impact their prognosis. RECENT FINDINGS The exact burden of methicillin-resistant Staphylococcus aureus (MRSA) lung infection in peculiar populations such as patients with COVID-19 remains somewhat elusive, possibly because of wide heterogeneity in methods and endpoints across studies. SUMMARY There was important heterogeneity in the retrieved literature on the epidemiology of MRSA lung infection in patients with COVID-19, both when considering all other bacteria as the denominator (relative prevalence ranging from 2% to 29%) and when considering only S. aureus as the denominator (relative prevalence ranging from 11% to 65%). Overall, MRSA is among the most frequent causative agents of pulmonary infection in patients with COVID-19. Improving our ability to rapidly reach etiological diagnosis of bacterial lung infection in COVID-19 patients remains fundamental if we are to improve the rates of appropriate antibiotic therapy in patients with COVID-19 and concomitant/superimposed MRSA infection, at the same time avoiding antibiotic overuse in line with antimicrobial stewardship principles.
Collapse
|
117
|
Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms 2022; 10:microorganisms10040722. [PMID: 35456774 PMCID: PMC9026468 DOI: 10.3390/microorganisms10040722] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Infections caused by Acinetobacter baumannii represent a major concern for intensive care unit (ICU) patients. However, the epidemiology of these infections among COVID-19 patients has not been fully explored. The aims of this study were (i) to characterize the clonal spread of A. baumannii among COVID-19 patients admitted to the ICU of the Umberto I hospital of Rome during the first year of the pandemic and (ii) to identify risk factors for its acquisition. Isolates were analysed by pulsed-field gel electrophoresis, and a multivariable regression model was constructed. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were calculated. Overall, 193 patients were included, and 102 strains were analysed. All isolates had highly antibiotic-resistant profiles and derived from two genotypes. The cumulative incidence of A. baumannii acquisition (colonization or infection) was 36.8%. Patients with A. baumannii had higher mortality and length of stay. Multivariable analysis showed that previous carbapenem use was the only risk factor associated with A. baumannii acquisition (aOR: 4.15, 95% CI: 1.78–9.64). We documented substantial A. baumannii infections and colonization and high levels of clonal transmission. Given the limited treatment options, effective prevention and containment strategies to limit the spread of A. baumannii should be implemented.
Collapse
|
118
|
Sahu T, Verma HK, Bhaskar LVKS. Bacterial and fungal co-infection is a major barrier in COVID-19 patients: A specific management and therapeutic strategy is required. World J Virol 2022; 11:107-110. [PMID: 35433338 PMCID: PMC8966592 DOI: 10.5501/wjv.v11.i2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial co-infections are another primary concern in patients with coronavirus disease 2019 (COVID-19), yet it is an untouched area among researchers. Preliminary data and systematic reviews only show the type of pathogens responsible for that, but its pathophysiology is still unknown. Studies show that these microbial co-infections are hospital-acquired/nosocomial infections, and patients admitted to intensive care units with invasive mechanical ventilation are highly susceptible to it. Patients with COVID-19 had elevated inflammatory cytokines and a weakened cell-mediated immune response, with lower CD4+ T and CD8+ T cell counts, indicating vulnerability to various co-infections. Despite this, there are only a few studies that recommend the management of co-infections.
Collapse
Affiliation(s)
- Tarun Sahu
- Department of Physiology, All India Institute of Medical Science, Raipur 492001, Chhattisgarh, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| | | |
Collapse
|
119
|
Ram-Mohan N, Rogers AJ, Blish CA, Nadeau KC, Zudock EJ, Kim D, Quinn JV, Sun L, Liesenfeld O, Yang S. Detection of bacterial co-infections and prediction of fatal outcomes in COVID-19 patients presenting to the emergency department using a 29 mRNA host response classifier. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.14.22272394. [PMID: 35313598 PMCID: PMC8936113 DOI: 10.1101/2022.03.14.22272394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial co-infection, and determining illness severity since current practices require separate workflows. Here we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting SARS-CoV-2 infection, bacterial co-infections, and predicting clinical severity of COVID-19. Methods 161 patients with PCR-confirmed COVID-19 (52.2% female, median age 50.0 years, 51% hospitalized, 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene Blood RNA) and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. Results The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrolment and the remaining oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial co-infection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e. Clostridioides difficile colitis (n=1), urinary tract infection (n=1), and clinically diagnosed bacterial infections (n=3) for a specificity of 99.4%. 2/101 (2.8%) patients in the IMX-SEV-3 Low and 7/60 (11.7%) in the Moderate severity classifications died within thirty days of enrollment. Conclusions IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19, bacterial co-infections, and predicted patients’ risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management including more accurate treatment decisions and optimized resource utilization.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angela J. Rogers
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Catherine A. Blish
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kari C. Nadeau
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elizabeth J Zudock
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Kim
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - James V. Quinn
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
120
|
Kariyawasam RM, Julien DA, Jelinski DC, Larose SL, Rennert-May E, Conly JM, Dingle TC, Chen JZ, Tyrrell GJ, Ronksley PE, Barkema HW. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019-June 2021). Antimicrob Resist Infect Control 2022; 11:45. [PMID: 35255988 PMCID: PMC8899460 DOI: 10.1186/s13756-022-01085-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/20/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pneumonia from SARS-CoV-2 is difficult to distinguish from other viral and bacterial etiologies. Broad-spectrum antimicrobials are frequently prescribed to patients hospitalized with COVID-19 which potentially acts as a catalyst for the development of antimicrobial resistance (AMR). OBJECTIVES We conducted a systematic review and meta-analysis during the first 18 months of the pandemic to quantify the prevalence and types of resistant co-infecting organisms in patients with COVID-19 and explore differences across hospital and geographic settings. METHODS We searched MEDLINE, Embase, Web of Science (BioSIS), and Scopus from November 1, 2019 to May 28, 2021 to identify relevant articles pertaining to resistant co-infections in patients with laboratory confirmed SARS-CoV-2. Patient- and study-level analyses were conducted. We calculated pooled prevalence estimates of co-infection with resistant bacterial or fungal organisms using random effects models. Stratified meta-analysis by hospital and geographic setting was also performed to elucidate any differences. RESULTS Of 1331 articles identified, 38 met inclusion criteria. A total of 1959 unique isolates were identified with 29% (569) resistant organisms identified. Co-infection with resistant bacterial or fungal organisms ranged from 0.2 to 100% among included studies. Pooled prevalence of co-infection with resistant bacterial and fungal organisms was 24% (95% CI 8-40%; n = 25 studies: I2 = 99%) and 0.3% (95% CI 0.1-0.6%; n = 8 studies: I2 = 78%), respectively. Among multi-drug resistant organisms, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and multi-drug resistant Candida auris were most commonly reported. Stratified analyses found higher proportions of AMR outside of Europe and in ICU settings, though these results were not statistically significant. Patient-level analysis demonstrated > 50% (n = 58) mortality, whereby all but 6 patients were infected with a resistant organism. CONCLUSIONS During the first 18 months of the pandemic, AMR prevalence was high in COVID-19 patients and varied by hospital and geography although there was substantial heterogeneity. Given the variation in patient populations within these studies, clinical settings, practice patterns, and definitions of AMR, further research is warranted to quantify AMR in COVID-19 patients to improve surveillance programs, infection prevention and control practices and antimicrobial stewardship programs globally.
Collapse
Affiliation(s)
- Ruwandi M Kariyawasam
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories - Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Danielle A Julien
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
| | - Dana C Jelinski
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
| | - Samantha L Larose
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
| | - Elissa Rennert-May
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Departments of Medicine, Microbiology, Immunology and Infectious Diseases, and Community Health Sciences, O'Brien Institute for Public Health and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - John M Conly
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Departments of Medicine, Pathology and Laboratory Medicine, Microbiology, Immunology and Infectious Diseases, O'Brien Institute for Public Health, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Tanis C Dingle
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories - Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Justin Z Chen
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gregory J Tyrrell
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories - Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Paul E Ronksley
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada
- Department of Community Health Sciences, O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Antimicrobial Resistance - One Health Consortium, Calgary, AB, Canada.
- Departments of Production Animal Health and Community Health Sciences,, One Health at UCalgary, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
121
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infection during SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.28.482305. [PMID: 35262077 PMCID: PMC8902874 DOI: 10.1101/2022.02.28.482305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate SARS-CoV-2 infection increased the risk of pneumococcal coinfection in a time-dependent, but sexindependent, manner in the transgenic K18-hACE mouse model of COVID-19. Bacterial coinfection was not established at 3 d post-virus, but increased lethality was observed when the bacteria was initiated at 5 or 7 d post-virus infection (pvi). Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
122
|
Kurra N, Woodard PI, Gandrakota N, Gandhi H, Polisetty SR, Ang SP, Patel KP, Chitimalla V, Ali Baig MM, Samudrala G. Opportunistic Infections in COVID-19: A Systematic Review and Meta-Analysis. Cureus 2022; 14:e23687. [PMID: 35505698 PMCID: PMC9055976 DOI: 10.7759/cureus.23687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence, incidence, and characteristics of bacterial infections in patients infected with severe acute respiratory syndrome coronavirus 2 are not well understood and have been raised as an important knowledge gap. Therefore, our study focused on the most common opportunistic infections/secondary infections/superinfections in coronavirus disease 2019 (COVID-19) patients. This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Eligible studies were identified using PubMed/Medline since inception to June 25, 2021. Studies meeting the inclusion criteria were selected. Statistical analysis was conducted in Review Manager 5.4.1. A random-effect model was used when heterogeneity was seen to pool the studies, and the result was reported as inverse variance and the corresponding 95% confidence interval. We screened 701 articles comprising 22 cohort studies which were included for analysis. The pooled prevalence of opportunistic infections/secondary infections/superinfections was 16% in COVID-19 patients. The highest prevalence of secondary infections was observed among viruses at 33%, followed by bacteria at 16%, fungi at 6%, and 25% among the miscellaneous group/wrong outcome. Opportunistic infections are more prevalent in critically ill patients. The isolated pathogens included Epstein-Barr virus, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Hemophilus influenza, and invasive pulmonary aspergillosis. Large-scale studies are required to better identify opportunistic/secondary/superinfections in COVID-19 patients.
Collapse
Affiliation(s)
- Nithin Kurra
- Department of Neurology, University of Nebraska Medical Center, Omaha, USA
| | | | | | - Heli Gandhi
- Medicine and Surgery, Manipal Academy of Higher Education, Manipal, IND
| | | | - Song Peng Ang
- Medicine and Surgery, International Medical University, Kuala Lumpur, MYS
| | - Kinjalben P Patel
- Medicine and Surgery, Smt. B. K. Shah Medical Institute & Research Centre, Vadodara, IND
| | - Vishwaj Chitimalla
- Medicine and Surgery, Shri B M Patil Medical College Hospital and Research Centre, Bijapur Lingayat District Educational (BLDE) University, Vijayapura, IND
| | - Mirza M Ali Baig
- Department of Anaesthesiology, Dow University of Health Sciences, Karachi, PAK
| | - Gayathri Samudrala
- Obstetrics and Gynecology, National Board of Examinations, New Delhi, IND.,Medicine and Surgery, Dr. N. T. Ramarao University of Health Sciences, Vijayawada, IND
| |
Collapse
|
123
|
Mousavi SR, Lotfi H, Salmanizadeh S, Feizbakhshan S, Khosravian F, Sajjadi MS, Komachali SR, Beni FA, Torkan B, Kazemi M, Sami R, Salehi M. An experimental in silico study on COVID-19: Response of neutrophil-related genes to antibiotics. Health Sci Rep 2022; 5:e548. [PMID: 35284643 PMCID: PMC8900978 DOI: 10.1002/hsr2.548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
Background and Aims All components of the immune system are involved in alleviating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further research is required to provide detailed insights into COVID-19-related immune compartments and pathways. In addition, a significant percentage of hospitalized COVID-19 patients suspect bacterial infections and antimicrobial resistance occurs following antibiotics treatment. The aim of this study was to evaluate the possible effects of antibiotics on the response of neutrophil-related genes in SARS-CoV-2 patients by an experimental in silico study. Methods The two data sets GSE1739 and GSE21802 including 10 SARS positive patients and 35 influenza A (H1N1) patients were analyzed, respectively. Differentially expressed genes (DEGs) between these two data sets were determined by GEO2R analysis and the Venn diagram online tool. After determining the hub genes involved in immune responses, the expression of these genes in 30 COVID-19 patients and 30 healthy individuals was analyzed by real-time polymerase chain reaction (PCR). All patients received antibiotics, including levofloxacin, colistin, meropenem, and ceftazidime. Results GEO2R analysis detected 240 and 120 DEGs in GSE21802 and GSE1739, respectively. Twenty DEGs were considered as enriched hub genes involved in immune processes such as neutrophil degranulation, neutrophil activation, and antimicrobial humoral response. The central nodes were attributed to the genes of neutrophil elastase (ELANE), arginase 1 (ARG-1), lipocalin 2 (LCN2), and defensin 4 (DEFA4). Compared to the healthy subjects, the expression of LCN2 and DEFA4 were significantly reduced in COVID-19 patients. However, no significant differences were observed in the ELANE and AGR-1 levels between COVID-19 subjects and the control group. Conclusions Activation and degranulation of neutrophils were observed mainly in SARS, and H1N1 infection processes and antibiotics administration could affect neutrophil activity during viral infection. It can be suggested that antibiotics can decrease inflammation by restoring the expression of neutrophil-related genes in COVID-19 patients.
Collapse
Affiliation(s)
- Seyyed R. Mousavi
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
| | - Hajie Lotfi
- Cellular and Molecular Research CenterQazvin University of Medical SciencesQazvinIran
| | - Sharareh Salmanizadeh
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
| | - Sara Feizbakhshan
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
| | - Farinaz Khosravian
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
| | - Maryam S. Sajjadi
- Medical Genetics LaboratoryAlzahra University HospitalIsfahan University of Medical SciencesIsfahanIran
| | - Sajad R. Komachali
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
| | - Faeze A. Beni
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Banafshe Torkan
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Kazemi
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Ramin Sami
- Department of PulmonologyIsfahan University of Medical SciencesIsfahanIran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
- Medical Genetics Research Center of GenomeIsfahan University of Medical SciencesIsfahanIran
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
124
|
Givirovskaia D, Givirovskiy G, Haapakoski M, Hokkanen S, Ruuskanen V, Salo S, Marjomäki V, Ahola J, Repo E. Modification of face masks with zeolite imidazolate framework-8: A tool for hindering the spread of COVID-19 infection. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2022; 334:111760. [PMID: 35221784 PMCID: PMC8858792 DOI: 10.1016/j.micromeso.2022.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The worldwide spread of the SARS-CoV-2 virus has continued to accelerate, putting a considerable burden on public health, safety, and the global economy. Taking into consideration that the main route of virus transmission is via respiratory particles, the face mask represents a simple and efficient barrier between potentially infected and healthy individuals, thus reducing transmissibility per contact by reducing transmission of infected respiratory particles. However, long-term usage of a face mask leads to the accumulation of significant amounts of different pathogens and viruses onto the surface of the mask and can result in dangerous bacterial and viral co-infections. Zeolite imidazolate framework-8 (ZIF-8) has recently emerged as an efficient water-stable photocatalyst capable of generating reactive oxygen species under light irradiation destroying dangerous microbial pathogens. The present study investigates the potential of using ZIF-8 as a coating for face masks to prevent the adherence of microbial/viral entities. The results show that after 2 h of UV irradiation, a polypropylene mask coated with ZIF-8 nanostructures is capable of eliminating S. Aureus and bacteriophage MS2 with 99.99% and 95.4% efficiencies, respectively. Furthermore, low-pathogenic HCoV-OC43 coronavirus was eliminated by a ZIF-8-modified mask with 100% efficiency already after 1 h of UV irradiation. As bacteriophage MS2 and HCoV-OC43 coronavirus are commonly used surrogates of the SARS-CoV-2 virus, the revealed antiviral properties of ZIF-8 can represent an important step in designing efficient protective equipment for controlling and fighting the current COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | - Marjo Haapakoski
- University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Sanna Hokkanen
- LUT University, P.O. Box 20, FI-53851, Lappeenranta, Finland
| | - Vesa Ruuskanen
- LUT University, P.O. Box 20, FI-53851, Lappeenranta, Finland
| | - Satu Salo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044, ESPOO, Finland
| | - Varpu Marjomäki
- University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Jero Ahola
- LUT University, P.O. Box 20, FI-53851, Lappeenranta, Finland
| | - Eveliina Repo
- LUT University, P.O. Box 20, FI-53851, Lappeenranta, Finland
| |
Collapse
|
125
|
Pourajam S, Kalantari E, Talebzadeh H, Mellali H, Sami R, Soltaninejad F, Amra B, Sajadi M, Alenaseri M, Kalantari F, Solgi H. Secondary Bacterial Infection and Clinical Characteristics in Patients With COVID-19 Admitted to Two Intensive Care Units of an Academic Hospital in Iran During the First Wave of the Pandemic. Front Cell Infect Microbiol 2022; 12:784130. [PMID: 35281440 PMCID: PMC8904895 DOI: 10.3389/fcimb.2022.784130] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Data on the prevalence of bacterial co-infections and secondary infection among adults with COVID-19 admitted to the intensive care unit (ICU) are rare. We aimed to determine the frequency of secondary bacterial infection, antibiotic use, and clinical characteristics in patients admitted to the ICU with severe SARS-CoV-2 pneumonia. This was a retrospective cohort study of adults with severe COVID-19 admitted to two ICUs from March 6 to September 7, 2020 in an academic medical center in Isfahan, Iran. To detect COVID-19, reverse transcription real-time polymerase chain reaction was performed and also typical pattern of CT scan was used for the diagnosis of COVID-19. Data collection included the age, gender, main symptoms, history of underlying disease, demographics, hospital stay, outcomes, and antibiotic regimen of the patient. Antimicrobial susceptibility testing was carried out according to the CLSI guidelines. During the study period, 553 patients were referred to the both ICUs for COVID-19 with severe pneumonia. Secondary bacterial infection was detected in 65 (11.9%) patients. The median age was 69.4 (range 21–95) years; 42 (63.6%) were men. Notably, 100% (n = 65) of the patients with superinfection were prescribed empirical antibiotics before first positive culture, predominantly meropenem (86.2%) with a median duration of 12 (range 2–32) days and levofloxacin (73.8%) with a median duration of nine (range 2–24) days. Most prevalent causative agents for secondary bacterial infection were Klebsiella pneumoniae (n = 44) and Acinetobacter baumannii (n = 33). Most patients with secondary bacterial infection showed extensive drug-resistance. The mortality among patients who acquired superinfections was 83% against an overall mortality of 38.1% in total admitted COVID-19 patients. We found a high prevalence of carbapenem-resistant Gram-negative bacilli in COVID-19 patients admitted to our ICUs, with a high proportion of K. pneumoniae followed by A. baumannii. These findings emphasize the importance of implementation of strict infection control measures and highlight the role of antimicrobial stewardship during a pandemic.
Collapse
Affiliation(s)
- Samaneh Pourajam
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Kalantari
- Department of Pulmonology, Isfahan University of Medical Science, Isfahan, Iran
| | - Hamid Talebzadeh
- Department of Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mellali
- Department of Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Sami
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Forogh Soltaninejad
- The Respiratory Research Center, Pulmonary Division, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Amra
- Bamdad Respiratory Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Sajadi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Alenaseri
- Infection Control Unit of Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Forough Kalantari
- Department of Nuclear Medicine, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Solgi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Hamid Solgi,
| |
Collapse
|
126
|
Bazaid AS, Barnawi H, Qanash H, Alsaif G, Aldarhami A, Gattan H, Alharbi B, Alrashidi A, Al-Soud WA, Moussa S, Alfouzan F. Bacterial Coinfection and Antibiotic Resistance Profiles among Hospitalised COVID-19 Patients. Microorganisms 2022; 10:microorganisms10030495. [PMID: 35336071 PMCID: PMC8955474 DOI: 10.3390/microorganisms10030495] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
While it is reported that COVID-19 patients are more prone to secondary bacterial infections, which are strongly linked to the severity of complications of the disease, bacterial coinfections associated with COVID-19 are not widely studied. This work aimed to investigate the prevalence of bacterial coinfections and associated antibiotic resistance profiles among hospitalised COVID-19 patients. Age, gender, weight, bacterial identities, and antibiotic sensitivity profiles were collected retrospectively for 108 patients admitted to the intensive care unit (ICU) and non-ICU ward of a single center in Saudi Arabia. ICU patients (60%) showed a significantly higher percentage of bacterial coinfections in sputum (74%) and blood (38%) samples, compared to non-ICU. Acinetobacter baumannii (56%) and Klebsiella pneumoniae (56%) were the most prevalent bacterial species from ICU patients, presenting with full resistance to all tested antibiotics except colistin. By contrast, samples of non-ICU patients exhibited infections with Escherichia coli (31%) and Pseudomonas aeruginosa (15%) predominantly, with elevated resistance of E. coli to piperacillin/tazobactam and trimethoprim/sulfamethoxazole. This alarming correlation between multi-drug resistant bacterial coinfection and admission to the ICU requires more attention and precaution with prescribed antibiotics to limit the spread of resistant bacteria and improve therapeutic management.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (H.B.); (H.Q.); (G.A.); (B.A.); (A.A.)
- Correspondence: ; Tel.: +966-16-5358200 (ext. 1713)
| | - Heba Barnawi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (H.B.); (H.Q.); (G.A.); (B.A.); (A.A.)
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (H.B.); (H.Q.); (G.A.); (B.A.); (A.A.)
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Hail 55476, Saudi Arabia
| | - Ghaida Alsaif
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (H.B.); (H.Q.); (G.A.); (B.A.); (A.A.)
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia;
| | - Hattan Gattan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Special Infectious Agents Unit, King Fahad Medical Research Center, Jeddah 22252, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (H.B.); (H.Q.); (G.A.); (B.A.); (A.A.)
| | - Abdulaziz Alrashidi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (H.B.); (H.Q.); (G.A.); (B.A.); (A.A.)
| | - Waleed Abu Al-Soud
- Clinical Laboratory Sciences, Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia;
- Health Sciences Research Unit, Jouf University, Sakaka 42421, Saudi Arabia
| | - Safia Moussa
- Department of Microbiology, King Salman Specialist Hospital, Hail 55471, Saudi Arabia; (S.M.); (F.A.)
| | - Fayez Alfouzan
- Department of Microbiology, King Salman Specialist Hospital, Hail 55471, Saudi Arabia; (S.M.); (F.A.)
| |
Collapse
|
127
|
Bahceci I, Yildiz IE, Duran OF, Soztanaci US, Kirdi Harbawi Z, Senol FF, Demiral G. Secondary Bacterial Infection Rates Among Patients With COVID-19. Cureus 2022; 14:e22363. [PMID: 35371794 PMCID: PMC8938257 DOI: 10.7759/cureus.22363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
|
128
|
Park J, Foox J, Hether T, Danko DC, Warren S, Kim Y, Reeves J, Butler DJ, Mozsary C, Rosiene J, Shaiber A, Afshin EE, MacKay M, Rendeiro AF, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AM, Hajirasouliha I, Beheshti A, Taylor D, Saravia-Butler A, Singh U, Wurtele ES, Schisler J, Fennessey S, Corvelo A, Zody MC, Germer S, Salvatore S, Levy S, Wu S, Tatonetti NP, Shapira S, Salvatore M, Westblade LF, Cushing M, Rennert H, Kriegel AJ, Elemento O, Imielinski M, Rice CM, Borczuk AC, Meydan C, Schwartz RE, Mason CE. System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell Rep Med 2022; 3:100522. [PMID: 35233546 PMCID: PMC8784611 DOI: 10.1016/j.xcrm.2022.100522] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 01/07/2023]
Abstract
The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.
Collapse
Affiliation(s)
- Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Foox
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - David C. Danko
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Youngmi Kim
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Daniel J. Butler
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Mozsary
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Joel Rosiene
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alon Shaiber
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Evan E. Afshin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - André F. Rendeiro
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine and the Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Arryn Craney
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Priya Velu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Iman Hajirasouliha
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine and the Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Saravia-Butler
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Logyx, LLC, Mountain View, CA, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Center for Metabolic Biology, Department of Genetics, Development and Cell Biology Iowa State University, Ames, IA, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Center for Metabolic Biology, Department of Genetics, Development and Cell Biology Iowa State University, Ames, IA, USA
| | - Jonathan Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, and Department of Pathology and Lab Medicine at The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | - Steven Salvatore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shawn Levy
- HudsonAlpha Discovery Institute, Huntsville, AL, USA
| | - Shixiu Wu
- Hangzhou Cancer Institute, Hangzhou Cancer Hospital, Hangzhou, China
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Department of Systems Biology, Department of Medicine, Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Sagi Shapira
- Department of Biomedical Informatics, Department of Systems Biology, Department of Medicine, Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hanna Rennert
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alison J. Kriegel
- Department of Physiology, Cardiovascular Center, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Olivier Elemento
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine and the Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcin Imielinski
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alain C. Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E. Schwartz
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E. Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
129
|
Qu J, Cai Z, Duan X, Zhang H, Cheng H, Han S, Yu K, Jiang Z, Zhang Y, Liu Y, Bai F, Liu Y, Liu L, Yang L. Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients. Cell Biosci 2022; 12:14. [PMID: 35139898 PMCID: PMC8827185 DOI: 10.1186/s13578-022-00748-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Background COVID-19 pneumonia has caused huge impact on the health of infected patients and associated with high morbidity and mortality. Shift in the lung microbial ecology upon such viral infection often worsens the disease and increases host susceptibility to superinfections. Bacterial superinfection contributes to the aggravation of COVID-19 and poses a great challenge to clinical treatments. An in-depth investigation on superinfecting bacteria in COVID-19 patients might facilitate understanding of lung microenvironment post virus infections and superinfection mechanism. Results We analyzed the adaptation of two pairs of P. aeruginosa strains with the same MLST type isolated from two critical COVID-19 patients by combining sequencing analysis and phenotypic assays. Both P. aeruginosa strains were found to turn on alginate biosynthesis and attenuate type VI secretion system (T6SS) during short-term colonization in the COVID-19 patients, which results in excessive biofilm formation and virulence reduction-two distinct markers for chronic infections. The macrophage cytotoxicity test and intracellular reactive oxygen species measurement confirmed that the adapted P. aeruginosa strains reduced their virulence towards host cells and are better to escape from host immune clearance than their ancestors. Conclusion Our study suggests that SARS-CoV-2 infection can create a lung environment that allow rapid adaptive evolution of bacterial pathogens with genetic traits suitable for chronic infections. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00748-z.
Collapse
Affiliation(s)
- Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangke Duan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Han Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hang Cheng
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuhong Han
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaiwei Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaofang Jiang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China
| | - Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Fang Bai
- School of Biological Sciences, Nankai University, Tianjin, 300071, China
| | - Yingxia Liu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lei Liu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China. .,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Liang Yang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China. .,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China. .,Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
130
|
Soltani S, Zandi M, Faramarzi S, Shahbahrami R, Vali M, Rezayat SA, Pakzad R, Malekifar P, Pakzad I, Jahandoost N, Moludi J. Worldwide prevalence of fungal coinfections among COVID-19 patients: a comprehensive systematic review and meta-analysis. Osong Public Health Res Perspect 2022; 13:15-23. [PMID: 35255675 PMCID: PMC8907610 DOI: 10.24171/j.phrp.2021.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/02/2022] [Indexed: 11/05/2022] Open
Abstract
Microbial coinfections can increase the morbidity and mortality rates of viral respiratory diseases. Therefore, this study aimed to determine the pooled prevalence of fungal coinfections in coronavirus disease 2019 (COVID-19) patients. Web of Science, Medline, Scopus, and Embase were searched without language restrictions to identify the related research on COVID-19 patients with fungal coinfections from December 1, 2019, to December 30, 2020. A random-effects model was used for analysis. The sample size included 2,246 patients from 8 studies. The pooled prevalence of fungal coinfections was 12.60%. The frequency of fungal subtype coinfections was 3.71% for Aspergillus, 2.39% for Candida, and 0.39% for other. The World Health Organization’s Regional Office for Europe and Regional Office for Southeast Asia had the highest (23.28%) and lowest (4.53%) estimated prevalence of fungal coinfection, respectively. Our findings showed a high prevalence of fungal coinfections in COVID-19 cases, which is a likely contributor to mortality in COVID-19 patients. Early identification of fungal pathogens in the laboratory for COVID-19 patients can lead to timely treatment and prevention of further damage by this hidden infection.
Collapse
|
131
|
Tobramycin Stress Induced Differential Gene Expression in Acinetobacter baumannii. Curr Microbiol 2022; 79:88. [PMID: 35129693 DOI: 10.1007/s00284-022-02788-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Acinetobacter baumannii is a multidrug-resistant bacteria responsible for nosocomial infections with significant fatality rates globally. Therapeutic failure and relapse of infection has been associated with persister cells formation which can also lead to resistance in A. baumannii. In the present study, we observed that A. baumannii ATCC 17978 in exponential phase survived lethal concentrations of amikacin, rifampicin and ciprofloxacin by generating persister cells but was unable to survive tobramycin treatment. The transcriptome of A. baumannii ATCC 17978 was analyzed following exposure to a high concentration of tobramycin (10 × MIC) for a short period of time to study the possible mechanisms responsible for lethality. Tobramycin reduced the expression of genes involved in energy production (nuoH, nuoN, nuoM, cydA, sucC), oxidative stress protection (tauD, cysD), and nutrition uptake (ompW) significantly. In addition, hemerythrin (non-heme di-iron oxygen-binding protein) was found to be the most downregulated gene in response to tobramycin which needs to be further studied for its role in susceptibility to antibiotics. Tobramycin upregulated the expression of genes that are mainly involved in stress response (leucine catabolism, DNA repair and HicAB toxin-antitoxin system). The differentially expressed genes highlighted in the study provided insight into the probable molecular mechanism of tobramycin-induced cell death and revealed some novel targets that can be explored further for their potential to control A. baumannii.
Collapse
|
132
|
Kamenshchikov NO, Berra L, Carroll RW. Therapeutic Effects of Inhaled Nitric Oxide Therapy in COVID-19 Patients. Biomedicines 2022; 10:biomedicines10020369. [PMID: 35203578 PMCID: PMC8962307 DOI: 10.3390/biomedicines10020369] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
The global COVID-19 pandemic has become the largest public health challenge of recent years. The incidence of COVID-19-related acute hypoxemic respiratory failure (AHRF) occurs in up to 15% of hospitalized patients. Antiviral drugs currently available to clinicians have little to no effect on mortality, length of in-hospital stay, the need for mechanical ventilation, or long-term effects. Inhaled nitric oxide (iNO) administration is a promising new non-standard approach to directly treat viral burden while enhancing oxygenation. Along with its putative antiviral affect in COVID-19 patients, iNO can reduce inflammatory cell-mediated lung injury by inhibiting neutrophil activation, lowering pulmonary vascular resistance and decreasing edema in the alveolar spaces, collectively enhancing ventilation/perfusion matching. This narrative review article presents recent literature on the iNO therapy use for COVID-19 patients. The authors suggest that early administration of the iNO therapy may be a safe and promising approach for the treatment of COVID-19 patients. The authors also discuss unconventional approaches to treatment, continuous versus intermittent high-dose iNO therapy, timing of initiation of therapy (early versus late), and novel delivery systems. Future laboratory and clinical research is required to define the role of iNO as an adjunct therapy against bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
- Correspondence:
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
| | - Ryan W. Carroll
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
- Division of Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
133
|
Kaushik S, Thomas J, Panwar V, Murugesan P, Chopra V, Salaria N, Singh R, Roy HS, Kumar R, Gautam V, Ghosh D. A drug-free strategy to combat bacterial infections with magnetic nanoparticles biosynthesized in bacterial pathogens. NANOSCALE 2022; 14:1713-1722. [PMID: 35072191 DOI: 10.1039/d1nr07435k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The extensive and indiscriminate use of antibiotics in the ongoing COVID-19 pandemic might significantly contribute to the growing number of multiple drug resistant (MDR) bacteria. With the dwindling pipeline of new and effective antibiotics, we might soon end up in a post-antibiotic era, in which even common bacterial infections would be a challenge to control. To prevent this, an antibiotic-free strategy would be highly desirable. Magnetic nanoparticle (MNP)-mediated hyperthermia-induced antimicrobial therapy is an attractive option as it is considered safe for human use. Given that iron and zinc are critical for bacterial virulence, we evaluated the response of multiple pathogenic bacteria to these elements. Treatment with 1 mM iron and zinc precursors resulted in the intracellular biosynthesis of MNPs in multiple Gram-positive and Gram-negative disease-causing bacteria. The superparamagnetic nanoparticles in the treated bacteria/biofilms, generated heat upon exposure to an alternating magnetic field (AMF), which resulted in an increase in the temperature (5-6 °C) of the milieu with a subsequent decrease in bacterial viability. Furthermore, we observed for the first time that virulent bacteria derived from infected samples harbour MNPs, suggesting that the bacteria had biosynthesised the MNPs using the metal ions acquired from the host. AMF treatment of the bacterial isolates from the infected specimens resulted in a strong reduction in viability (3-4 logs) as compared to vancomycin/ciprofloxacin treatment. The therapeutic efficacy of the MNPs to induce bacterial death with AMF alone was confirmed ex vivo using infected tissues. Our proposed antibiotic-free approach for killing bacteria using intracellular MNPs is likely to evolve as a promising strategy to combat a wide range of bacterial infections.
Collapse
Affiliation(s)
- Swati Kaushik
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Preethi Murugesan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Rupali Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Himadri Shekar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Rajesh Kumar
- Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Vikas Gautam
- Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
134
|
da Costa RL, Lamas CDC, Simvoulidis LFN, Espanha CA, Moreira LPM, Bonancim RAB, Weber JVLA, Ramos MRF, Silva ECDF, de Oliveira LP. Secondary infections in a cohort of patients with COVID-19 admitted to an intensive care unit: impact of gram-negative bacterial resistance. Rev Inst Med Trop Sao Paulo 2022; 64:e6. [PMID: 35137900 PMCID: PMC8815857 DOI: 10.1590/s1678-9946202264006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Some studies have shown that secondary infections during the COVID-19 pandemic may have contributed to the high mortality. Our objective was to identify the frequency, types and etiology of bacterial infections in patients with COVID-19 admitted to an intensive care unit (ICU) and to evaluate the results of ICU stay, duration of mechanical ventilation (MV) and in-hospital mortality. It was a single-center study with a retrospective cohort of patients admitted consecutively to the ICU for more than 48 h between March and May 2020. Comparisons of groups with and without ICU- acquired infection were performed. A total of 191 patients with laboratory-confirmed COVID-19 were included and 57 patients had 97 secondary infectious events. The most frequent agents were Acinetobacter baumannii (28.9%), Pseudomonas aeruginosa (22.7%) and Klebsiella pneumoniae (14.4%); multi-drug resistance was present in 96% of A. baumannii and in 57% of K. pneumoniae. The most prevalent infection was ventilator-associated pneumonia in 57.9% of patients with bacterial infections, or 17.3% of all COVID-19 patients admitted to the ICU, followed by tracheobronchitis (26.3%). Patients with secondary infections had a longer ICU stay (40.0 vs. 17 days; p < 0.001), as well as a longer duration of MV (24.0 vs 9.0 days; p= 0.003). There were 68 (35.6%) deaths overall, of which 27 (39.7%) patients had bacterial infections. Among the 123 survivors, 30 (24.4%) had a secondary infections (OR 2.041; 95% CI 1.080 - 3.859). A high incidence of secondary infections, mainly caused by gram-negative bacteria has been observed. Secondary infections were associated with longer ICU stay, MV use and higher mortality.
Collapse
Affiliation(s)
- Rafael Lessa da Costa
- Hospital Unimed-Rio, Unidade de Terapia Intensiva, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane da Cruz Lamas
- Instituto Nacional de Cardiologia, Rio de Janeiro, Rio de Janeiro, Brazil
- Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade Unigranrio, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Das R, Kotra K, Singh P, Loh B, Leptihn S, Bajpai U. Alternative Treatment Strategies for Secondary Bacterial and Fungal Infections Associated with COVID-19. Infect Dis Ther 2022; 11:53-78. [PMID: 34807451 PMCID: PMC8607056 DOI: 10.1007/s40121-021-00559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Antimicrobials are essential for combating infectious diseases. However, an increase in resistance to them is a major cause of concern. The empirical use of drugs in managing COVID-19 and the associated secondary infections have further exacerbated the problem of antimicrobial resistance. Hence, the situation mandates exploring and developing efficient alternatives for the treatment of bacterial and fungal infections in patients suffering from COVID-19 or other viral infections. In this review, we have described the alternatives to conventional antimicrobials that have shown promising results and are at various stages of development. An acceleration of efforts to investigate their potential as therapeutics can provide more treatment options for clinical management of drug-resistant secondary bacterial and fungal infections in the current pandemic and similar potential outbreaks in the future. The alternatives include bacteriophages and their lytic enzymes, anti-fungal enzymes, antimicrobial peptides, nanoparticles and small molecule inhibitors among others. What is required at this stage is to critically examine the challenges in developing the listed compounds and biomolecules as therapeutics and to establish guidelines for their safe and effective application within a suitable time frame. In this review, we have attempted to highlight the importance of rational use of antimicrobials in patients suffering from COVID-19 and boost the deployment of alternative therapeutics.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Komal Kotra
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Pulkit Singh
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Belinda Loh
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 314400 People’s Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 314400 People’s Republic of China
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019 India
| |
Collapse
|
136
|
Moya‐Salazar J, Sauñe SS, Valer R, Salazar‐Hernandez R, Loza W, Suxe E, Chicoma‐Flores K, Contreras‐Pulache H. Fungal, parasitological, and bacterial coinfection in a severely ill COVID-19 patient in Peru. Clin Case Rep 2022; 10:e05395. [PMID: 35223005 PMCID: PMC8855487 DOI: 10.1002/ccr3.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
COVID-19 patients are prone to coinfections during their hospitalization. These coinfections are challenging as they involve longer hospital stays, high costs, and higher risk of mortality. Here, we present a case of a patient with multi-infection by resistant parasites, fungi, and bacteria during his hospitalization in a hospital in Lima, Peru.
Collapse
Affiliation(s)
- Jeel Moya‐Salazar
- Hospital Nacional Docente Madre Niño San BartoloméLimaPeru
- South America Center for Education and Research in Public HealthUniversidad Norbert WienerLimaPeru
- Infectious UnitNesh HubbsLimaPeru
| | - Sharon S. Sauñe
- Department of PathologyHospital Carlos Lanfranco La HozLimaPeru
| | - Roxana Valer
- Department of PathologyHospital Carlos Lanfranco La HozLimaPeru
| | | | - Wilfredo Loza
- Department of PathologyHospital Carlos Lanfranco La HozLimaPeru
| | - Evelyn Suxe
- Department of PathologyHospital Carlos Lanfranco La HozLimaPeru
| | | | - Hans Contreras‐Pulache
- South America Center for Education and Research in Public HealthUniversidad Norbert WienerLimaPeru
| |
Collapse
|
137
|
Hayat K, Mustafa ZU, Ikram MN, Ijaz-Ul-Haq M, Noor I, Rasool MF, Ishaq HM, Rehman AU, Hasan SS, Fang Y. Perception, Attitude, and Confidence of Physicians About Antimicrobial Resistance and Antimicrobial Prescribing Among COVID-19 Patients: A Cross-Sectional Study From Punjab, Pakistan. Front Pharmacol 2022; 12:794453. [PMID: 35058779 PMCID: PMC8763689 DOI: 10.3389/fphar.2021.794453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Patients with coronavirus disease 2019 (COVID-19) could experience multiple coinfections, and judicial antimicrobials, including antibiotics, is paramount to treat these coinfections. This study evaluated physicians' perception, attitude, and confidence about antimicrobial resistance (AMR) and antimicrobial prescribing in patients with COVID-19. Methods: A self-administered and validated online questionnaire comprised of six sections was disseminated among physicians working in public sector hospitals in Punjab, Pakistan, using the convenience sampling method from April to May 2021. The study also assessed the validity and reliability of the study questionnaire using exploratory factor analysis and Cronbach's alpha. In addition, the descriptive and inferential statistics present survey results. Results: A total of 387 physicians participated in this study. The study showed that the questionnaire demonstrated good internal consistency (Cronbach's alpha = 0.77). Most physicians (n = 221, 57.1%) believed that AMR is a considerable problem in Pakistan. Less than a quarter of respondents (n = 91, 23.5%) consulted with local antibiotic resistance data to prescribe antibiotics in COVID-19 patients. However, the respondents were confident to select a suitable antibiotic (n = 229, 59.2%). More than three-quarters of the respondents believed that advice from a senior colleague (n = 336, 86.8%), infectious disease (ID) physician (n = 315, 81.4%), and implementing antimicrobial stewardship programs (ASPs) could facilitate appropriate prescribing of antibiotics in COVID-19 patients. Multivariate logistic regression revealed that physicians with more than 10 years of experience had higher odds of consulting local guidelines for antibiotic therapy (OR, 4.71 95% CI: 1.62-13.73, p = 0.004) than physicians with less than 5 years of experience. Similar trends were found for consulting national guidelines and local resistance data to select an empiric antibiotic therapy. Conclusion: AMR-related awareness was optimal among physicians. Only a few physicians looked up local antibiotic resistance data before prescribing antibiotics to COVID-19 patients empirically. The significant approaches advised by physicians to reduce AMR risk among COVID-19 patients were the implementation of ASPs combined with advice from ID physicians.
Collapse
Affiliation(s)
- Khezar Hayat
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan.,Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Centre for Health Reform and Development Research, Xi'an, China
| | - Zia Ul Mustafa
- Department of Pharmacy Services, District Headquarter (DHQ) Hospital, Pakpattan, Pakistan
| | | | - Muhammad Ijaz-Ul-Haq
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Irum Noor
- Department of Pathology, Quaid-e-Azam Medical College, Bahawalpur, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Anees Ur Rehman
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Syed Shahzad Hasan
- Department of Pharmacy, University of Huddersfield, Huddersfield, United Kingdom
| | - Yu Fang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Centre for Health Reform and Development Research, Xi'an, China
| |
Collapse
|
138
|
Evaluation of bacterial agents isolated from endotracheal aspirate cultures of Covid-19 general intensive care patients and their antibiotic resistance profiles compared to pre-pandemic conditions. Microb Pathog 2022; 164:105409. [PMID: 35041973 PMCID: PMC8760848 DOI: 10.1016/j.micpath.2022.105409] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Background Early reports have shown that critically ill patients infected with SARS-CoV-2 have a high prevalence of nosocomial pneumonia, particularly ventilator-associated pneumonia (VAP). Method In the present study, we determined the bacterial agents isolated from endotracheal aspirate (ETA) cultures of Covid-19 general intensive care patients and evaluated the antibiotic resistance profiles of common bacterial agents compared to the pre-pandemic period. Results While a total of 119 significant growths with polymicrobial growths were detected in the ETA cultures of 73 (7.5%) of 971 patients hospitalized in the intensive care unit before the pandemic, 87 significant growths were detected in the ETA cultures of 67 (11.1%) of 602 patients hospitalized in the Covid-19 intensive care unit (ICU) after the pandemic. While 61 (83.6%) of patients in the ICU died before the pandemic, 63 (94.0%) of patients in the Covid-19 ICU died after the pandemic. In terms of age, gender, and mortality, there was no significant difference between the two ICUs (p > 0.05). Before the pandemic, the mean length of stay in the ICU was 33.59 ± 32.89 days, and after the pandemic, it was 13.49 ± 8.03 days. This was a statistically significant difference (p < 0.05). Acinetobacter baumannii (28.5%), Klebsiella pneumoniae (22.6%), Pseudomonas aeruginosa (15.9%), Staphylococcus aureus (6.7%), Escherichia coli (7.5%), Candida spp. (5.0%) were the most prevalent causal microorganisms discovered in pre-pandemic ICU ETA samples, whereas A. baumannii (54.0%), K. pneumoniae (10.3%), P. aeruginosa (6.8%), E. faecium (8%), and Candida spp.(13.7%) were the most common causative microorganisms detected in Covid-19 ICU ETA samples. Except for tigecycline, antibiotic resistance rates in A. baumannii strains increased following the pandemic. Only tobramycin showed a significant difference in the increase of resistance among these antibiotics (p = 0.037). The rate of tigecycline resistance, on the other hand, was 17.6% before the pandemic and 2.2% afterward (p < 0.05). After the pandemic, increased resistance of K. pneumoniae strains to colistin, meropenem, ertapenem, amoxicillin-clavulanic acid, piperacillin-tazobactam, ciprofloxacin, tigecycline, and cefepime antibiotics was observed. However, these increases were not statistically significant. Except for imipenem, antibiotic resistance rates in P. aeruginosa strains increased following the pandemic. The increase in resistance of ceftazidime and levofloxacin was statistically significant (p < 0.05). Conclusion As a result, the Covid-19 pandemic requires intensive care follow-ups at an earlier age and with a more mortal course. Although the length of stay in the intensive care unit has been shortened, it is observed that this situation is observed due to early mortality. In P. aeruginosa strains, a significant difference was detected in the resistance increase of the ceftazidime and levofloxacin (p < 0.05) and with the exception of tigecycline, antibiotic resistance rates in A. baumannii strains increased following the pandemic. Only tobramycin showed a significant difference in the increase of resistance among these antibiotics (p = 0.037). Secondary infections in patients create more difficult treatment processes due to both Covid-19 and increasing antibiotic resistance today.
Collapse
|
139
|
Evaluation of Bacterial Coinfection and Antibiotic Resistance in Patients with COVID-19 Under Mechanical Ventilation. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:19. [PMID: 35013721 PMCID: PMC8733817 DOI: 10.1007/s42399-021-01114-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Patients with confirmed SARS-CoV-2 are principally at risk of emerging superinfections, particularly those caused by Gram-negative bacteria. Therefore, in this retrospective cohort study, we investigated the presence of bacteria in endotracheal aspirate samples in severe COVID-19 patients under mechanical ventilation between 20 February 2020 and 21 September 2020 in Mazandaran Heart Center Hospital, Iran. Outcomes were compared between ICU patients with confirmed SARS-CoV-2 (corona group) and those who suffer from other disease (non-corona group). Out of 38 subjects who met the diagnostic criteria for ventilator-associated pneumonia (VAP) in ICU, 22 and 16 patients in corona and non-corona groups, respectively, were enrolled in the study. Hospital length of stay in 27% of case in corona group was > 10 days. Also, SOFA score was > 10 in 64% and 25% of corona and non-corona groups, respectively (P < 0.05). Moreover, the number of death was significantly higher among corona patients (45%) than non-corona group (6%) in ICU (P < 0.05). Acinetobacter spp. were the most common bacteria in nine corona patients (41%) that were 100% resistant to amikacin, gentamycin, cefixime, and imipenem antibiotics. The prevalence of antibiotic resistance among pathogens isolated from patients with COVID-19 under mechanical ventilation in ICU highlighted the importance of preventing coinfections caused by this pathogen, suggesting an essential standardized approach to antibiotic stewardship in patients with COVID-19 for successful treatment.
Collapse
|
140
|
Gutema G, Homa G. Cropping Up Crisis at the Nexus Between COVID-19 and Antimicrobial Resistance (AMR) in Africa: A Scoping Review and Synthesis of Early Evidence. Cureus 2022; 14:e21035. [PMID: 35155003 PMCID: PMC8820498 DOI: 10.7759/cureus.21035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we aim to synthesize some evidence on the impacts that coronavirus disease 2019 (COVID-19) is having on the epidemiology of antimicrobial resistance (AMR) in Africa since it was declared a global pandemic by the WHO in March 2020. A scoping review was undertaken by collecting and curating relevant resources from peer-reviewed articles and also from the gray literature. Mixed approaches of extracting data (qualitative and quantitative) were employed in synthesizing evidence, as suggested by the Health Evidence Network. A model constructed based on the synthesis of early evidence available on the effects of factors linked to COVID-19 in impacting the evolution of AMR in Africa predicted that, in cumulative terms, those factors favoring the evolution of AMR outpace those disfavoring it by no less than three folds. COVID-19 is likely fueling the evolution of AMR almost unhindered in Africa. Due to the recognition of this crisis, concerted efforts for resource mobilization and global cooperation are needed to tackle it.
Collapse
|
141
|
Karoli NA, Rebrov A. Some issues of safety of antimicrobial therapy in COVID-19 patients. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.226-235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Currently, there is a lack of evidence for empiric use of antimicrobial agents in most patients with COVID-19 in outpatient and hospital settings as the overall proportion of secondary bacterial infections in COVID-19 is quite low. This literature review summarizes data on changes in antimicrobial resistance over the course of COVID-19 pandemic, especially in nosocomial ESKAPE pathogens. The other significant consequences of excessive and unnecessary administration of antibiotics to COVID-19 patients including risk of Clostridioides difficile infection and adverse effects of antimicrobial agents are also discussed.
Collapse
Affiliation(s)
- Nina A. Karoli
- Saratov State Medical University named after V.I. Razumovsky (Saratov, Russia)
| | - A.P. Rebrov
- Saratov State Medical University named after V.I. Razumovsky (Saratov, Russia)
| |
Collapse
|
142
|
Amirova M, Huseynova L, Azim S, Nagiyeva S, Lovely M, Dashdamirova G, Almudarris B, Saed F. Antibiotic Therapy and Offstage about Covid-19 Vaccination. Health (London) 2022. [DOI: 10.4236/health.2022.146049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
143
|
Pakzad R, Malekifar P, Shateri Z, Zandi M, Akhavan Rezayat S, Soleymani M, Karimi MR, Ahmadi SE, Shahbahrami R, Pakzad I, Abdi F, Farahani A, Soltani S, Kesheh MM, Hosseini P. Worldwide prevalence of microbial agents' coinfection among COVID-19 patients: A comprehensive updated systematic review and meta-analysis. J Clin Lab Anal 2022; 36:e24151. [PMID: 34851526 PMCID: PMC8761407 DOI: 10.1002/jcla.24151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To provide information about pathogens' coinfection prevalence with SARS-CoV-2 could be a real help to save patients' lives. This study aims to evaluate the pathogens' coinfection prevalence among COVID-19 patients. METHOD In order to find all of the relevant articles, we used systematic search approach. Research-based databases including PubMed, Web of Science, Embase, and Scopus, without language restrictions, were searched to identify the relevant bacterial, fungal, and viral coinfections among COVID-19 cases from December 1, 2019, to August 23, 2021. In order to dig deeper, other scientific repositories such as Medrxiv were probed. RESULTS A total of 13,023 studies were found through systematic search. After thorough analysis, only 64 studies with 61,547 patients were included in the study. The most common causative agents of coinfection among COVID-19 patients were bacteria (pooled prevalence: 20.97%; 95% CI: 15.95-26.46; I2 : 99.9%) and less frequent were virus coinfections (pooled prevalence: 12.58%; 95% CI: 7.31-18.96; I2 : 98.7%). The pooled prevalence of fungal coinfections was also 12.60% (95% CI: 7.84-17.36; I2 : 98.3%). Meta-regression analysis showed that the age sample size and WHO geographic region did not influenced heterogeneity. CONCLUSION We identified a high prevalence of pathogenic microorganism coinfection among COVID-19 patients. Because of this rate of coinfection empirical use of antibacterial, antifungal, and antiviral treatment are advisable specifically at the early stage of COVID-19 infection. We also suggest running simultaneously diagnostic tests to identify other microbiological agents' coinfection with SARS-CoV-2.
Collapse
Affiliation(s)
- Reza Pakzad
- Department of EpidemiologyFaculty of HealthIlam University Medical SciencesIlamIran
| | - Pooneh Malekifar
- Department of EpidemiologySchool of Public HealthTehran University Medical SciencesTehranIran
| | - Zainab Shateri
- Student research committeeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Milad Zandi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Sara Akhavan Rezayat
- Department of Management & Health EconomicsSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Maral Soleymani
- Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mohammad Reza Karimi
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood BankingSchool of Allied MedicineIran University of Medical SciencesTehranIran
| | - Ramin Shahbahrami
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Iraj Pakzad
- Department of MicrobiologySchool of MedicineIlam University Medical SciencesIlamIran
| | - Fatemeh Abdi
- Non‐communicable Disease Research CenterAlborz University of Medical SciencesKarajIran
| | - Abbas Farahani
- Infectious and Tropical Diseases Research CenterHormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Saber Soltani
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Mina Mobini Kesheh
- Department of VirologySchool of MedicineIran University of Medical ScienceTehranIran
| | - Parastoo Hosseini
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
144
|
Mushtaq A, Shafi R. Mucormycosis: An emerging concern of orofacial complication in COVID-19 infection. JOURNAL OF ORAL RESEARCH AND REVIEW 2022. [DOI: 10.4103/jorr.jorr_72_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
145
|
Shams S, Tafaroji J, Aghaali M, Ahmadi N, Heydari H, Mousavi Nasab SD, Maurya VK. Prevalence of enteric adenovirus and co-infection with rotavirus in children under 15 years of age with gastroenteritis in Qom, Iran. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:256-262. [PMID: 36311970 PMCID: PMC9589133 DOI: 10.22037/ghfbb.v15i3.2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Aim The current study is the first performed in Qom to determine the prevalence of adenovirus and co-infections with rotavirus in children aged <15 years with gastroenteritis symptoms. Background Gastroenteritis-associated viral infections are a cause of death among young children worldwide, especially in developing countries. The Adenovirus species F (40 and 41) are responsible for a range of acute diarrhea cases among infants and children. Methods Over a period of 9 months, a total of 130 children suffering from intestinal problems who referred to the infectious ward of Children's Hospital were enrolled in the current study. After clinical examination and collection of demographic information, fecal samples were obtained from the patients. Viral genomes were extracted with a commercial kit and amplified and typed by adenovirus-specific PCR assay. Adenovirus-positive samples were also evaluated for co-infection with rotavirus. Results Patients had a mean±SD age of 2.66±2.72 years; 63.1% of patients were male and 36.9% were female. Adenovirus infection was identified in 23 cases (17.7%), 21 (91.0%) and 2 (9.0%) of which were type 41 and type 40, respectively. Fever was the most common clinical manifestation among adenovirus-positive patients. No significant difference was observed between adenovirus infection and clinical symptoms, seasonal pattern, or serum laboratory results. Co-infection was found in only 5 cases (21.7%). Conclusion This study was the first to demonstrate adenovirus infection with a relatively high prevalence among children, especially infants, in Qom. The findings further revealed co-infection with rotavirus, indicating a health problem in this region.
Collapse
Affiliation(s)
- Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Javad Tafaroji
- Pediatric Medicine Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Aghaali
- Department of Family and Community Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Heydari
- Pediatric Medicine Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Seyed Dawood Mousavi Nasab
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Vineet Kumar Maurya
- Department of Botany and Microbiology, H.N.B. Garhwal University, Srinagar- Garhwal, India
| |
Collapse
|
146
|
Fedrigo NH, Xavier DE, Cerdeira L, Fuga B, Marini PVB, Shinohara DR, Carrara-Marroni FE, Lincopan N, Tognim MCB. Genomic insights of Acinetobacter baumannii ST374 reveal wide and increasing resistome and virulome. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105148. [PMID: 34801753 DOI: 10.1016/j.meegid.2021.105148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
WGS-based surveillance has significantly improved the ability to track global spread and emergence of multidrug-resistant clones of clinically relevant pathogens. In this study, we performed the genomic characterization and comparative analysis of an Acinetobacter baumannii (strain Ac56) belonging to the sequence type ST374, which was isolated for the first time in Brazil, in 1996. Genomic analysis of Ac56 predicted a total of 5373 genes, with 3012 being identical across nine genomes of A. baumannii isolates of ST374 from European, Asian, North and South American countries. GoeBURST analysis grouped ST374 lineages into clonal complex CC3 (international clone IC-III). Resistome analysis of ST374 clone predicted genes associated with resistance to heavy metals and clinically relevant beta-lactams and aminoglycosides antibiotics. In this regard, in two closely related A. baumannii strains, the intrinsic blaADC gene was linked to the insertion sequence ISAba1; including the Ac56 strain, where it has been possibly associated with intermediate susceptibility to meropenem. Other four carbapenem-resistant A. baumannii strains carried the ISAba1/blaOXA-23 gene array, which was associated with the transposon Tn2008 or with Tn2006 in an AbaR4-type resistance island. While most virulence genes were shared for A. baumannii strains of ST374, three isolates from Thailand harbored KL49 capsular loci, previously identified in the hypervirulent A. baumannii LAC-4 strain. Analysis of thirty-four predicted plasmids showed eight major groups, of which GR-6 (LN-1) and GR-2 (LN-2) were prevalent. All strains, including the earliest isolate Ac56 harbored at least one complete prophage, whereas none CRISPR-associated (cas) gene was detected. In summary, genomic data of A. baumannii ST374 reveal a potential of this lineage to become a successful clone.
Collapse
Affiliation(s)
| | | | - Louise Cerdeira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Floristher Elaine Carrara-Marroni
- Department of Pathology, Clinical and Toxicological Analysis, University Hospital, State University of Londrina, Londrina, Paraná, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
147
|
Fatal Case of Burkholderia gladioli Pneumonia in a Patient With COVID-19. Ochsner J 2022; 22:349-352. [PMID: 36561098 PMCID: PMC9753951 DOI: 10.31486/toj.22.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Burkholderia gladioli (B gladioli) is a rare, gram-negative rod that was initially regarded as a plant pathogen. However, B gladioli has been reported as the primary pathogen causing pneumonia in organ transplant recipients and in patients with cystic fibrosis. We report a case of bacterial pneumonia caused by B gladioli in a patient hospitalized for coronavirus disease 2019 (COVID-19). Case Report: A 68-year-old male was admitted for acute hypoxic respiratory failure secondary to COVID-19 pneumonia. He was treated with dexamethasone and convalescent plasma, resulting in improvement in the hypoxemia. However, during the latter part of his inpatient stay, the patient developed pneumonia caused by B gladioli. The isolate of B gladioli was sensitive to meropenem, levofloxacin, and trimethoprim/sulfamethoxazole and intermediate to ceftazidime. He was treated with meropenem and levofloxacin. Despite treatment, the patient developed acute respiratory distress syndrome with multiorgan failure, suffered cardiac arrest, and died. Conclusion: To the best of our knowledge, this case is the first report of B gladioli coinfection in a patient hospitalized for COVID-19 and provides insight into the possible detrimental outcome of B gladioli and COVID-19 coinfection.
Collapse
|
148
|
Abdoli A, Falahi S, Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin Exp Med 2022; 22:327-346. [PMID: 34424451 PMCID: PMC8381864 DOI: 10.1007/s10238-021-00751-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Treatment of the novel Coronavirus Disease 2019 (COVID-19) remains a complicated challenge, especially among patients with severe disease. In recent studies, immunosuppressive therapy has shown promising results for control of the cytokine storm syndrome (CSS) in severe cases of COVID-19. However, it is well documented that immunosuppressive agents (e.g., corticosteroids and cytokine blockers) increase the risk of opportunistic infections. On the other hand, several opportunistic infections were reported in COVID-19 patients, including Aspergillus spp., Candida spp., Cryptococcus neoformans, Pneumocystis jiroveci (carinii), mucormycosis, Cytomegalovirus (CMV), Herpes simplex virus (HSV), Strongyloides stercoralis, Mycobacterium tuberculosis, and Toxoplasma gondii. This review is a snapshot about the main opportunistic infections that reported among COVID-19 patients. As such, we summarized information about the main immunosuppressive agents that were used in recent clinical trials for COVID-19 patients and the risk of opportunistic infections following these treatments. We also discussed about the main challenges regarding diagnosis and treatment of COVID-19-associated opportunistic infections (CAOIs).
Collapse
Affiliation(s)
- Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran ,Jahrom University of Medical Sciences, Ostad Motahari Ave, POBox 74148-46199, Jahrom, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
149
|
Davies-Bolorunduro OF, Fowora MA, Amoo OS, Adeniji E, Osuolale KA, Oladele O, Onuigbo TI, Obi JC, Oraegbu J, Ogundepo O, Ahmed RA, Usman OA, Iyapo BG, Dada AA, Onyia N, Adegbola RA, Audu RA, Salako BL. Evaluation of respiratory tract bacterial co-infections in SARS-CoV-2 patients with mild or asymptomatic infection in Lagos, Nigeria. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:115. [PMID: 35469122 PMCID: PMC9022018 DOI: 10.1186/s42269-022-00811-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND A common complication of any respiratory disease by a virus could be a secondary bacterial infection, which is known to cause an increase in severity. It is, however, not clear whether the presence of some opportunistic pathogens called pathobionts contributes to the severity of the disease. In COVID-19 patients, undetected bacterial co-infections may be associated with the severity of the disease. Therefore, we investigated the implications of bacterial co-infections in COVID-19 cases. RESULTS This is a cross-sectional study that involved archived specimens collected from nasopharyngeal samples of 150 people for COVID-19 screening in Lagos. DNA extraction from the samples was carried out to determine the presence of five respiratory bacterial pathogens using nested real-time PCR, and data were analysed using the Chi-square test. Of the 150 samples collected, 121 (80.7%) were positive for SARs-CoV-2 infection and 29 were negative. The proportion of patients with bacteria co-infection in COVID-19-negative, asymptomatic, and mild cases were 93.1%, 70.7%, and 67.5%, respectively. There was no statistically significant difference between mild COVID-19 conditions and bacteria co-infection (p = 0.097). There was also no significant difference in the nasal carriage of Staphylococcus aureus, Mycoplasma pneumoniae, and Haemophilus spp. However, there was a statistically significant increase in the carriage of Moraxella catarrhalis and Chlamydophila pneumoniae among COVID-19-negative patients when compared with the positive patients (p value = 0.003 and 0.000 for Moraxella catarrhalis and Chlamydophila pneumoniae, respectively). CONCLUSIONS The current study shows that bacterial co-infection and superinfection with COVID-19 are not associated with mild and asymptomatic COVID-19 cases in our setting. However, given the high prevalence of Staphylococcus aureus and Mycoplasma pneumoniae among the mild COVID-19 cases seen in this study, early diagnosis and treatment of these bacterial co-infections are still encouraged to mitigate the effect on the severity of COVID-19.
Collapse
Affiliation(s)
| | - Muinah Adenike Fowora
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Olufemi Samuel Amoo
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Esther Adeniji
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Oluwatobi Oladele
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | | | - Joy Oraegbu
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Oluwatobi Ogundepo
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | | | | | | | | | | | - Rosemary Ajuma Audu
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | |
Collapse
|
150
|
Rahman HS, Abdulateef DS, Hussen NH, Salih AF, Othman HH, Mahmood Abdulla T, Omer SHS, Mohammed TH, Mohammed MO, Aziz MS, Abdullah R. Recent Advancements on COVID-19: A Comprehensive Review. Int J Gen Med 2021; 14:10351-10372. [PMID: 34992449 PMCID: PMC8713878 DOI: 10.2147/ijgm.s339475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Over the last few decades, there have been several global outbreaks of severe respiratory infections. The causes of these outbreaks were coronaviruses that had infected birds, mammals and humans. The outbreaks predominantly caused respiratory tract and gastrointestinal tract symptoms and other mild to very severe clinical signs. The current coronavirus disease-2019 (COVID-19) outbreak, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a rapidly spreading illness affecting millions of people worldwide. Among the countries most affected by the disease are the United States of America (USA), India, Brazil, and Russia, with France recording the highest infection, morbidity, and mortality rates. Since early January 2021, thousands of articles have been published on COVID-19. Most of these articles were consistent with the reports on the mode of transmission, spread, duration, and severity of the sickness. Thus, this review comprehensively discusses the most critical aspects of COVID-19, including etiology, epidemiology, pathogenesis, clinical signs, transmission, pathological changes, diagnosis, treatment, prevention and control, and vaccination.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Darya Saeed Abdulateef
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Aso Faiq Salih
- Department of Pediatrics, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Trifa Mahmood Abdulla
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Shirwan Hama Salih Omer
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Talar Hamaali Mohammed
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Mohammed Omar Mohammed
- Department of Medicine, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Masrur Sleman Aziz
- Department of Biology, College of Education, Salahaddin University, Erbil, Republic of Iraq
| | - Rasedee Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|