101
|
Das T, Sikdar S, Chowdhury MHU, Nyma KJ, Adnan M. SARS-CoV-2 prevalence in domestic and wildlife animals: A genomic and docking based structural comprehensive review. Heliyon 2023; 9:e19345. [PMID: 37662720 PMCID: PMC10474441 DOI: 10.1016/j.heliyon.2023.e19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | | | - Md. Adnan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, 84112, United States
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, 4318, Bangladesh
| |
Collapse
|
102
|
Tsounidi D, Angelopoulou M, Petrou P, Raptis I, Kakabakos S. Simultaneous Detection of SARS-CoV-2 Nucleoprotein and Receptor Binding Domain by a Multi-Area Reflectance Spectroscopy Sensor. BIOSENSORS 2023; 13:865. [PMID: 37754099 PMCID: PMC10526254 DOI: 10.3390/bios13090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The COVID-19 pandemic has emphasized the urgent need for point-of-care methods suitable for the rapid and reliable diagnosis of viral infections. To address this demand, we report the rapid, label-free simultaneous determination of two SARS-CoV-2 proteins, namely, the nucleoprotein and the receptor binding domain peptide of S1 protein, by implementing a bioanalytical device based on Multi Area Reflectance Spectroscopy. Simultaneous detection of these two proteins is achieved by using silicon chips with adjacent areas of different silicon dioxide thickness on top, each of which is modified with an antibody specific to either the nucleoprotein or the receptor binding domain of SARS-CoV-2. Both areas were illuminated by a single probe that also collected the reflected light, directing it to a spectrometer. The online conversion of the combined reflection spectra from the two silicon dioxide areas into the respective adlayer thickness enabled real-time monitoring of immunoreactions taking place on the two areas. Several antibodies have been tested to define the pair, providing the higher specific signal following a non-competitive immunoassay format. Biotinylated secondary antibodies and streptavidin were used to enhance the specific signal. Both proteins were detected in less than 12 min, with detection limits of 1.0 ng/mL. The assays demonstrated high repeatability with intra- and inter-assay coefficients of variation lower than 10%. Moreover, the recovery of both proteins from spiked samples prepared in extraction buffer from a commercial self-test kit for SARS-CoV-2 collection from nasopharyngeal swabs ranged from 90.0 to 110%. The short assay duration in combination with the excellent analytical performance and the compact instrument size render the proposed device and assay suitable for point-of-care applications.
Collapse
Affiliation(s)
- Dimitra Tsounidi
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Michailia Angelopoulou
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Panagiota Petrou
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| | - Sotirios Kakabakos
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| |
Collapse
|
103
|
Sarıoğlu E, Sarıaltın SY, Çoban T. Neurological complications and effects of COVID-19: Symptoms and conceivable mechanisms. BRAIN HEMORRHAGES 2023; 4:154-173. [PMID: 36789140 PMCID: PMC9911160 DOI: 10.1016/j.hest.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in December 2019 in Wuhan, China. The new coronavirus disease (COVID-19) was declared a global pandemic by the World Health Organization (WHO) in March 2020. SARS-CoV-2 can invade the nervous system aside from infecting the respiratory system as its primary target. The most common nervous system symptoms of COVID-19 are stated as headache, myalgia, fatigue, nausea, vomiting, sudden and unexplained anosmia, and ageusia. More severe conditions such as encephalomyelitis, acute myelitis, thromboembolic events, ischemic stroke, intracerebral hemorrhage, Guillain-Barré-syndrome, Bell's palsy, rhabdomyolysis, and even coma have also been reported. Cohort studies revealed that neurological findings are associated with higher morbidity and mortality. The neurological symptoms and manifestations caused by SARS-CoV-2 and COVID-19 are examined and summarized in this article.
Collapse
Affiliation(s)
- Elif Sarıoğlu
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkey
| | - Sezen Yılmaz Sarıaltın
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkey
| | - Tülay Çoban
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkey
| |
Collapse
|
104
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
105
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
106
|
Zheng H, Wang Z, Jia Q. Simultaneous Profiling of Palmitoylomics and Glycomics with Photo/pH Dual-Responsive Magnetic Nanocomposites. SMALL METHODS 2023; 7:e2300254. [PMID: 37231570 DOI: 10.1002/smtd.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Indexed: 05/27/2023]
Abstract
Following an in-depth examination of a single type of protein posttranslational modification, the synergistic analysis of two or more modification types has gradually emerged as a focal point in proteomic research. Palmitoylation and glycosylation are both critical for protein, implicated in carcinogenesis and inflammation. In this study, novel dual-responsive magnetic nanocomposites that serve as an ideal platform for the sequential or simultaneous enrichment of palmitoyl and glycopeptides are reported. The nanocomposites denoted as magDVS-VBA are constructed by modifying magnetic nanoparticles with azobenzene and divinyl sulfone (DVS), and self-assembled with 4-vinylbenzeneboronic acid (VBA)-immobilized β-cyclodextrin, which responds to light. The incorporated DVS component possesses the ability to recognize palmitoyl or glycopeptides under different pH conditions, whereas the introduction of VBA enhances the affinity of the nanocomposite for glycopeptides. Notably, magDVS-VBA exhibits flexible photo-, pH-, and magnetic-responsive capabilities, enabling the simultaneous recognition of hydrophobic palmitoyl peptides and hydrophilic glycopeptides for the first time. The developed platform demonstrates high specificity for sensitive palmitoylomics and glycomics analysis of mouse liver tissue, providing an effective method for studying of their crosstalk, and potential implications in clinical applications.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zirui Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
107
|
Malá Z, Vojta M, Loskot J, Sleha R, Ježek B, Zelenka J. Analysis of SARS-CoV-2 interactions with the Vero cell lines by scanning electron microscopy. J Biol Phys 2023; 49:383-392. [PMID: 37389665 PMCID: PMC10397163 DOI: 10.1007/s10867-023-09638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
In this study, scanning electron microscopy (SEM) was used to study the cell structure of SARS-CoV-2 infected cells. Our measurements revealed infection remodeling caused by infection, including the emergence of new specialized areas where viral morphogenesis occurs at the cell membrane. Intercellular extensions for viral cell surfing have also been observed. Our results expand knowledge of SARS-CoV-2 interactions with cells, its spread from cell to cell, and their size distribution. Our findings suggest that SEM is a useful microscopic method for intracellular ultrastructure analysis of cells exhibiting specific surface modifications that could also be applied to studying other important biological processes.
Collapse
Affiliation(s)
- Zuzana Malá
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic.
| | - Marek Vojta
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
| | - Radek Sleha
- Department of Epidemiology, University of Defencein Brno, Třebešská, 1575, 500 02, Czech Republic
| | - Bruno Ježek
- Department of Informatics and Quantitative Methods, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
| | - Josef Zelenka
- Department of Recreology and Tourism, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
| |
Collapse
|
108
|
Sučec I, Mammeri NE, Dregni AJ, Hong M. Rapid Determination of the Topology of Oligomeric α-Helical Membrane Proteins by Water- and Lipid-Edited Methyl NMR. J Phys Chem B 2023; 127:7518-7530. [PMID: 37606918 PMCID: PMC10893779 DOI: 10.1021/acs.jpcb.3c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Single-span oligomeric α-helical transmembrane proteins are common in virus ion channels, which are targets of antiviral drugs. Knowledge about the high-resolution structures of these oligomeric α-helical bundles is so far scarce. Structure determination of these membrane proteins by solid-state NMR traditionally requires resolving and assigning protein chemical shifts and measuring many interhelical distances, which are time-consuming. To accelerate experimental structure determination, here we introduce a simple solid-state NMR approach that uses magnetization transfer from water and lipid protons to the protein. By detecting the water- and lipid-transferred intensities of the high-sensitivity methyl 13C signals of Leu, Val, and Ile residues, which are highly enriched in these membrane proteins, we can derive models of the topology of these homo-oligomeric helical bundles. The topology is specified by the positions of amino acid residues in heptad repeats and the orientations of residues relative to the channel pore, lipids, and the helical interface. We demonstrate this water- and lipid-edited methyl NMR approach on the envelope (E) protein of SARS-CoV-2, the causative agent of the COVID-19 pandemic. We show that water-edited and lipid-edited 2D 13C-13C correlation spectra can be measured with sufficient sensitivity. Even without resolving multiple residues of the same type in the NMR spectra, we can obtain the helical bundle topology. We apply these experiments to the structurally unknown E proteins of the MERS coronavirus and the human coronavirus NL63. The resulting structural topologies show interesting differences in the positions of the aromatic residues in these three E proteins, suggesting that these viroporins may have different mechanisms of activation and ion conduction.
Collapse
Affiliation(s)
- Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
109
|
Tang Z, Xu Y, Tan Y, Shi H, Jin P, Li Y, Teng J, Liu H, Pan H, Hu Q, Cheng X, Ye J, Su Y, Sun Y, Meng J, Zhou Z, Chi H, Wang X, Liu J, Lu Y, Liu F, Dai J, Yang C, Chen S, Liu T. CD36 mediates SARS-CoV-2-envelope-protein-induced platelet activation and thrombosis. Nat Commun 2023; 14:5077. [PMID: 37604832 PMCID: PMC10442425 DOI: 10.1038/s41467-023-40824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Aberrant coagulation and thrombosis are associated with severe COVID-19 post-SARS-CoV-2 infection, yet the underlying mechanism remains obscure. Here we show that serum levels of SARS-CoV-2 envelope (E) protein are associated with coagulation disorders of COVID-19 patients, and intravenous administration of the E protein is able to potentiate thrombosis in mice. Through protein pull-down and mass spectrometry, we find that CD36, a transmembrane glycoprotein, directly binds with E protein and mediates hyperactivation of human and mouse platelets through the p38 MAPK-NF-κB signaling pathway. Conversely, the pharmacological blockade of CD36 or p38 notably attenuates human platelet activation induced by the E protein. Similarly, the genetic deficiency of CD36, as well as the pharmacological inhibition of p38 in mice, significantly diminishes E protein-induced platelet activation and thrombotic events. Together, our study reveals a critical role for the CD36-p38 axis in E protein-induced platelet hyperactivity, which could serve as an actionable target for developing therapies against aberrant thrombotic events related to the severity and mortality of COVID-19.
Collapse
Affiliation(s)
- Zihan Tang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Peipei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Haoyu Pan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
110
|
Jamir E, Sarma H, Priyadarsinee L, Kiewhuo K, Nagamani S, Sastry GN. Polypharmacology guided drug repositioning approach for SARS-CoV2. PLoS One 2023; 18:e0289890. [PMID: 37556478 PMCID: PMC10411734 DOI: 10.1371/journal.pone.0289890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Drug repurposing has emerged as an important strategy and it has a great potential in identifying therapeutic applications for COVID-19. An extensive virtual screening of 4193 FDA approved drugs has been carried out against 24 proteins of SARS-CoV2 (NSP1-10 and NSP12-16, envelope, membrane, nucleoprotein, spike, ORF3a, ORF6, ORF7a, ORF8, and ORF9b). The drugs were classified into top 10 and bottom 10 drugs based on the docking scores followed by the distribution of their therapeutic indications. As a result, the top 10 drugs were found to have therapeutic indications for cancer, pain, neurological disorders, and viral and bacterial diseases. As drug resistance is one of the major challenges in antiviral drug discovery, polypharmacology and network pharmacology approaches were employed in the study to identify drugs interacting with multiple targets and drugs such as dihydroergotamine, ergotamine, bisdequalinium chloride, midostaurin, temoporfin, tirilazad, and venetoclax were identified among the multi-targeting drugs. Further, a pathway analysis of the genes related to the multi-targeting drugs was carried which provides insight into the mechanism of drugs and identifying targetable genes and biological pathways involved in SARS-CoV2.
Collapse
Affiliation(s)
- Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - G. Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
111
|
Mousavi SM, Kalashgrani MY, Gholami A, Omidifar N, Binazadeh M, Chiang WH. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. BIOSENSORS 2023; 13:786. [PMID: 37622872 PMCID: PMC10452855 DOI: 10.3390/bios13080786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
112
|
Khetran SR, Mustafa R. Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e43906. [PMID: 37485046 PMCID: PMC10353769 DOI: 10.2196/43906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Background COVID-19 and Middle East Respiratory Syndrome are two pandemic respiratory diseases caused by coronavirus species. The novel disease COVID-19 caused by SARS-CoV-2 was first reported in Wuhan, Hubei Province, China, in December 2019, and became a pandemic within 2-3 months, affecting social and economic platforms worldwide. Despite the rapid development of vaccines, there have been obstacles to their distribution, including a lack of fundamental resources, poor immunization, and manual vaccine replication. Several variants of the original Wuhan strain have emerged in the last 3 years, which can pose a further challenge for control and vaccine development. Objective The aim of this study was to comprehensively analyze mutations in SARS-CoV-2 variants of concern (VoCs) using a bioinformatics approach toward identifying novel mutations that may be helpful in developing new vaccines by targeting these sites. Methods Reference sequences of the SARS-CoV-2 spike (YP_009724390) and nucleocapsid (YP_009724397) proteins were compared to retrieved sequences of isolates of four VoCs from 14 countries for mutational and evolutionary analyses. Multiple sequence alignment was performed and phylogenetic trees were constructed by the neighbor-joining method with 1000 bootstrap replicates using MEGA (version 6). Mutations in amino acid sequences were analyzed using the MultAlin online tool (version 5.4.1). Results Among the four VoCs, a total of 143 nonsynonymous mutations and 8 deletions were identified in the spike and nucleocapsid proteins. Multiple sequence alignment and amino acid substitution analysis revealed new mutations, including G72W, M2101I, L139F, 209-211 deletion, G212S, P199L, P67S, I292T, and substitutions with unknown amino acid replacement, reported in Egypt (MW533289), the United Kingdom (MT906649), and other regions. The variants B.1.1.7 (Alpha variant) and B.1.617.2 (Delta variant), characterized by higher transmissibility and lethality, harbored the amino acid substitutions D614G, R203K, and G204R with higher prevalence rates in most sequences. Phylogenetic analysis among the novel SARS-CoV-2 variant proteins and some previously reported β-coronavirus proteins indicated that either the evolutionary clade was weakly supported or not supported at all by the β-coronavirus species. Conclusions This study could contribute toward gaining a better understanding of the basic nature of SARS-CoV-2 and its four major variants. The numerous novel mutations detected could also provide a better understanding of VoCs and help in identifying suitable mutations for vaccine targets. Moreover, these data offer evidence for new types of mutations in VoCs, which will provide insight into the epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Saima Rehman Khetran
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| | - Roma Mustafa
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| |
Collapse
|
113
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
114
|
Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z, Fan Y, Wang Y, Wang X, Mao J. Coronary microvascular dysfunction and cardiovascular disease: Pathogenesis, associations and treatment strategies. Biomed Pharmacother 2023; 164:115011. [PMID: 37321056 DOI: 10.1016/j.biopha.2023.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is a high-risk factor for a variety of cardiovascular events. Due to its complex aetiology and concealability, knowledge of the pathophysiological mechanism of CMD is still limited at present, which greatly restricts its clinical diagnosis and treatment. Studies have shown that CMD is closely related to a variety of cardiovascular diseases, can aggravate the occurrence and development of cardiovascular diseases, and is closely related to a poor prognosis in patients with cardiovascular diseases. Improving coronary microvascular remodelling and increasing myocardial perfusion might be promising strategies for the treatment of cardiovascular diseases. In this paper, the pathogenesis and functional assessment of CMD are reviewed first, along with the relationship of CMD with cardiovascular diseases. Then, the latest strategies for the treatment of CMD and cardiovascular diseases are summarized. Finally, urgent scientific problems in CMD and cardiovascular diseases are highlighted and future research directions are proposed to provide prospective insights for the prevention and treatment of CMD and cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Shaoling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
115
|
Zaher K, Basingab F, Alrahimi J, Basahel K, Aldahlawi A. Gender Differences in Response to COVID-19 Infection and Vaccination. Biomedicines 2023; 11:1677. [PMID: 37371774 DOI: 10.3390/biomedicines11061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Since COVID-19 first appeared, a number of follow-up events have taken place. In an effort to find a solution to this catastrophe, a great deal of study and analysis has been conducted. Because of the high morbidity and exceptionally large losses, scientists are being pushed to conduct more research and find vaccination and treatments. The virus has a wide range of effects, one of which is how it affects sexual activity in both men and women. The impact of the cardiovascular system and susceptibility to embolism, lung stress, and infection heightens the probability of hospitalization in the intensive care unit for pregnant women who have contracted COVID-19. There is no evidence of infection being passed from mother to child. In the current review, the role of COVID-19 infection and vaccination on male and female sexual activity, hormones, and the menstrual cycle for females, as well as on male sex hormones and sexual activity during infection and after vaccination, are being investigated. There are no reports of the virus being isolated from the semen of an infected patient or recently recovered patients. A recent investigation on the influence of the virus on gender susceptibility to sexual organs and function has been uncovered throughout this study.
Collapse
Affiliation(s)
- Kawther Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kholood Basahel
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
116
|
Zhao M, Zhang M, Yang Z, Zhou Z, Huang J, Zhao B. Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1217383. [PMID: 37360529 PMCID: PMC10288995 DOI: 10.3389/fcimb.2023.1217383] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Ever since its emergence in 2019, COVID-19 has rapidly disseminated worldwide, engendering a pervasive pandemic that has profoundly impacted healthcare systems and the socio-economic milieu. A plethora of studies has been conducted targeting its pathogenic virus, SARS-CoV-2, to find ways to combat COVID-19. The ubiquitin-proteasome system (UPS) is widely recognized as a crucial mechanism that regulates human biological activities by maintaining protein homeostasis. Within the UPS, the ubiquitination and deubiquitination, two reversible modifications, of substrate proteins have been extensively studied and implicated in the pathogenesis of SARS-CoV-2. The regulation of E3 ubiquitin ligases and DUBs(Deubiquitinating enzymes), which are key enzymes involved in the two modification processes, determines the fate of substrate proteins. Proteins associated with the pathogenesis of SARS-CoV-2 may be retained, degraded, or even activated, thus affecting the ultimate outcome of the confrontation between SARS-CoV-2 and the host. In other words, the clash between SARS-CoV-2 and the host can be viewed as a battle for dominance over E3 ubiquitin ligases and DUBs, from the standpoint of ubiquitin modification regulation. This review primarily aims to clarify the mechanisms by which the virus utilizes host E3 ubiquitin ligases and DUBs, along with its own viral proteins that have similar enzyme activities, to facilitate invasion, replication, escape, and inflammation. We believe that gaining a better understanding of the role of E3 ubiquitin ligases and DUBs in COVID-19 can offer novel and valuable insights for developing antiviral therapies.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| |
Collapse
|
117
|
Gullberg RC, Frydman J. Novel Mode of nanoLuciferase Packaging in SARS-CoV-2 Virions and VLPs Provides Versatile Reporters for Virus Production. Viruses 2023; 15:1335. [PMID: 37376634 DOI: 10.3390/v15061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
SARS-CoV-2 is a positive-strand RNA virus in the Coronaviridae family that is responsible for morbidity and mortality worldwide. To better understand the molecular pathways leading to SARS-CoV-2 virus assembly, we examined a virus-like particle (VLP) system co-expressing all structural proteins together with an mRNA reporter encoding nanoLuciferase (herein nLuc). Surprisingly, the 19 kDa nLuc protein itself was encapsidated into VLPs, providing a better reporter than nLuc mRNA itself. Strikingly, infecting nLuc-expressing cells with the SARS-CoV-2, NL63 or OC43 coronaviruses yielded virions containing packaged nLuc that served to report viral production. In contrast, infection with the flaviviruses, dengue or Zika, did not lead to nLuc packaging and secretion. A panel of reporter protein variants revealed that the packaging is size-limited and requires cytoplasmic expression, indicating that the large virion of coronaviruses can encaspidate a small cytoplasmic reporter protein. Our findings open the way for powerful new approaches to measure coronavirus particle production, egress and viral entry mechanisms.
Collapse
Affiliation(s)
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
118
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
119
|
Fan S, Wang H, Wu D, Liu L. Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:157-173. [PMID: 37307372 DOI: 10.2478/acph-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, a newly discovered coronavirus, has been linked to the COVID-19 pandemic and is currently an important public health issue. Despite all the work done to date around the world, there is still no viable treatment for COVID-19. This study examined the most recent evidence on the efficacy and safety of several therapeutic options available including natural substances, synthetic drugs and vaccines in the treatment of COVID-19. Various natural compounds such as sarsapogenin, lycorine, biscoclaurine, vitamin B12, glycyrrhizic acid, riboflavin, resveratrol and kaempferol, various vaccines and drugs such as AZD1222, mRNA-1273, BNT162b2, Sputnik V, and remdesivir, lopinavir, favipiravir, darunavir, oseltamivir, and umifenovir, resp., have been discussed comprehensively. We attempted to provide exhaustive information regarding the various prospective therapeutic approaches available in order to assist researchers and physicians in treating COVID-19 patients.
Collapse
Affiliation(s)
- Sijia Fan
- 1Department of Intensive Care Unit, South China Hospital, Health Science Center Shenzhen University Guangdong, Shenzhen 518116, P. R. China
| | - Hongling Wang
- 2Department of Cardiothoracic Surgery 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, Gansu, 730050, P. R. China
| | - Dean Wu
- 3Department of Respiratory Medicine, The Third People's Hospital of Gansu Province Lanzhou University, Lanzhou, Gansu 730050, P. R. China
| | - Lu Liu
- 4The First Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang Liaoning, 110032, P. R. China
| |
Collapse
|
120
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
121
|
Giacon N, Lo Cascio E, Davidson DS, Polêto MD, Lemkul JA, Pennacchietti V, Pagano L, Zamparelli C, Toto A, Arcovito A. Monomeric and dimeric states of human ZO1-PDZ2 are functional partners of the SARS-CoV-2 E protein. Comput Struct Biotechnol J 2023; 21:3259-3271. [PMID: 37293240 PMCID: PMC10210826 DOI: 10.1016/j.csbj.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
The Envelope (E) protein of SARS-CoV-2 plays a key role in virus maturation, assembly, and virulence mechanisms. The E protein is characterized by the presence of a PDZ-binding motif (PBM) at its C-terminus that allows it to interact with several PDZ-containing proteins in the intracellular environment. One of the main binding partners of the SARS-CoV-2 E protein is the PDZ2 domain of ZO1, a protein with a crucial role in the formation of epithelial and endothelial tight junctions (TJs). In this work, through a combination of analytical ultracentrifugation analysis and equilibrium and kinetic folding experiments, we show that ZO1-PDZ2 domain is able to fold in a monomeric state, an alternative form to the dimeric conformation that is reported to be functional in the cell for TJs assembly. Importantly, surface plasmon resonance (SPR) data indicate that the PDZ2 monomer is fully functional and capable of binding the C-terminal portion of the E protein of SARS-CoV-2, with a measured affinity in the micromolar range. Moreover, we present a detailed computational analysis of the complex between the C-terminal portion of E protein with ZO1-PDZ2, both in its monomeric conformation (computed as a high confidence AlphaFold2 model) and dimeric conformation (obtained from the Protein Data Bank), by using both polarizable and nonpolarizable simulations. Together, our results indicate both the monomeric and dimeric states of PDZ2 to be functional partners of the E protein, with similar binding mechanisms, and provide mechanistic and structural information about a fundamental interaction required for the replication of SARS-CoV-2.
Collapse
Affiliation(s)
- Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Darcy S. Davidson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Marcelo D. Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Carlotta Zamparelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
122
|
Pennacchietti V, Toto A. Different electrostatic forces drive the binding kinetics of SARS-CoV, SARS-CoV-2 and MERS-CoV Envelope proteins with the PDZ2 domain of ZO1. Sci Rep 2023; 13:7906. [PMID: 37193746 DOI: 10.1038/s41598-023-35079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
The Envelope protein (E) is a structural protein encoded by the genome of SARS-CoV, SARS-CoV-2 and MERS-CoV Coronaviruses. It is poorly present in the virus but highly expressed in the host cell, with prominent role in virus assembly and virulence. The E protein possesses a PDZ-binding motif (PBM) at its C terminus that allows it to interact with host PDZ domain containing proteins. ZO1 is a key protein in assembling the cytoplasmic plaque of epithelial and endothelial Tight Junctions (TJs) as well as in determining cell differentiation, proliferation and polarity. The PDZ2 domain of ZO1 is known to interact with the Coronaviruses Envelope proteins, however the molecular details of such interaction have not been established. In this paper we directly measured, through Fluorescence Resonance Energy Transfer and Stopped-Flow methodology, the binding kinetics of the PDZ2 domain of ZO1 with peptides mimicking the C-terminal portion of the Envelope protein from SARS-CoV, SARS-CoV-2 and MERS-CoV in different ionic strength conditions. Interestingly, the peptide mimicking the E protein from MERS-CoV display much higher microscopic association rate constant with PDZ2 compared to SARS-CoV and SARS-CoV-2 suggesting a stronger contribution of electrostatic forces in the early events of binding. A comparison of thermodynamic and kinetic data obtained at increasing ionic strengths put in evidence different contribution of electrostatics in the recognition and complex formation events for the three peptides. Our data are discussed under the light of available structural data of PDZ2 domain of ZO1 and of previous works about these protein systems.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
123
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
124
|
Aganovic A. pH-dependent endocytosis mechanisms for influenza A and SARS-coronavirus. Front Microbiol 2023; 14:1190463. [PMID: 37234537 PMCID: PMC10206014 DOI: 10.3389/fmicb.2023.1190463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic and the influenza epidemics have revived the interest in understanding how these highly contagious enveloped viruses respond to alterations in the physicochemical properties of their microenvironment. By understanding the mechanisms and conditions by which viruses exploit the pH environment of the host cell during endocytosis, we can gain a better understanding of how they respond to pH-regulated anti-viral therapies but also pH-induced changes in extracellular environments. This review provides a detailed explanation of the pH-dependent viral structural changes preceding and initiating viral disassembly during endocytosis for influenza A (IAV) and SARS coronaviruses. Drawing upon extensive literature from the last few decades and latest research, I analyze and compare the circumstances in which IAV and SARS-coronavirus can undertake endocytotic pathways that are pH-dependent. While there are similarities in the pH-regulated patterns leading to fusion, the mechanisms and pH activation differ. In terms of fusion activity, the measured activation pH values for IAV, across all subtypes and species, vary between approximately 5.0 to 6.0, while SARS-coronavirus necessitates a lower pH of 6.0 or less. The main difference between the pH-dependent endocytic pathways is that the SARS-coronavirus, unlike IAV, require the presence of specific pH-sensitive enzymes (cathepsin L) during endosomal transport. Conversely, the conformational changes in the IAV virus under acidic conditions in endosomes occur due to the specific envelope glycoprotein residues and envelope protein ion channels (viroporins) getting protonated by H+ ions. Despite extensive research over several decades, comprehending the pH-triggered conformational alterations of viruses still poses a significant challenge. The precise mechanisms of protonation mechanisms of certain during endosomal transport for both viruses remain incompletely understood. In absence of evidence, further research is needed.
Collapse
Affiliation(s)
- Amar Aganovic
- Faculty of Engineering Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
125
|
Su W, Ju J, Gu M, Wang X, Liu S, Yu J, Mu D. SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice. J Neuroinflammation 2023; 20:110. [PMID: 37158916 PMCID: PMC10166055 DOI: 10.1186/s12974-023-02786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) protein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and associated neuroinflammation in the central nervous system (CNS). METHODS Depression-like behaviors and olfactory function were observed in both female and male mice receiving intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial activation, blood-brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in mice. RESULTS Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1β, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregulated in both cortex and hippocampus, whereas IL-1β, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein. CONCLUSIONS Our study demonstrates that envelope protein could directly induce depression-like behaviors, dysosmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 patients.
Collapse
Affiliation(s)
- Wenliang Su
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Jiahang Ju
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311121 China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xinrui Wang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shaozhuang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004 Liaoning China
| | - Jiawen Yu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongliang Mu
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
126
|
Yu Y, Fang B, Yang XD, Zheng Y. One stone two birds: anti-inflammatory bronchodilators as a potential pharmacological strategy for COVID-19. Front Pharmacol 2023; 14:1185076. [PMID: 37214443 PMCID: PMC10192734 DOI: 10.3389/fphar.2023.1185076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a huge threat to public health across the world. While vaccinations are essential for reducing virus transmission and attenuating disease severity, the nature of high mutation rate of SARS-CoV-2 renders vaccines less effective, urging quick development of effective therapies for COVID-19 disease. However, developing novel drugs remains extremely challenging due to the lengthy process and high cost. Alternatively, repurposing of existing drugs on the market represents a rapid and safe strategy for combating COVID-19 pandemic. Bronchodilators are first line drugs for inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Compared to other anti-inflammatory drugs repurposed for COVID-19, bronchodilators are unique in that they have both anti-inflammatory and bronchodilating properties. Whether the dual properties of bronchodilators empower them greater potential to be repurposed for COVID-19 is worth exploring. In fact, clinical and preclinical studies have recently emerged to investigate the benefits of bronchodilators such assalbutamol, formoterol and theophylline in treating COVID-19, and many of them have shown encouraging efficacy on attenuating disease severity of pneumonia and other associated symptoms. To comprehensively understand the latest progress on COVID-19 intervention with bronchodilators, this review will summarize recent findings in this area and highlight the promising clinical benefits and possible adverse effects of bronchodilators as therapeutic options for COVID-19 with a focus on β2 receptor agonists, anticholinergic drugs and theophylline.
Collapse
Affiliation(s)
- Yuanyuan Yu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
127
|
Poggio E, Vallese F, Hartel AJW, Morgenstern TJ, Kanner SA, Rauh O, Giamogante F, Barazzuol L, Shepard KL, Colecraft HM, Clarke OB, Brini M, Calì T. Perturbation of the host cell Ca 2+ homeostasis and ER-mitochondria contact sites by the SARS-CoV-2 structural proteins E and M. Cell Death Dis 2023; 14:297. [PMID: 37120609 PMCID: PMC10148623 DOI: 10.1038/s41419-023-05817-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the β-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca2+) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited.
Collapse
Affiliation(s)
- Elena Poggio
- Department of Biology, University of Padova, Padova, Italy
| | - Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Travis J Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Scott A Kanner
- Doctoral Program in Neurobiology and Behavior, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Doctoral Program in Neurobiology and Behavior, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
128
|
Castañeda-Montes FJ, Cerriteño-Sánchez JL, Castañeda-Montes MA, Cuevas-Romero JS, Mendoza-Elvira S. A Candidate Antigen of the Recombinant Membrane Protein Derived from the Porcine Deltacoronavirus Synthetic Gene to Detect Seropositive Pigs. Viruses 2023; 15:v15051049. [PMID: 37243136 DOI: 10.3390/v15051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emergent swine coronavirus which infects cells from the small intestine and induces watery diarrhea, vomiting and dehydration, causing mortality in piglets (>40%). The aim of this study was to evaluate the antigenicity and immunogenicity of the recombinant membrane protein (M) of PDCoV (rM-PDCoV), which was developed from a synthetic gene obtained after an in silico analysis with a group of 138 GenBank sequences. A 3D model and phylogenetic analysis confirmed the highly conserved M protein structure. Therefore, the synthetic gene was successfully cloned in a pETSUMO vector and transformed in E. coli BL21 (DE3). The rM-PDCoV was confirmed by SDS-PAGE and Western blot with ~37.7 kDa. The rM-PDCoV immunogenicity was evaluated in immunized (BLAB/c) mice and iELISA. The data showed increased antibodies from 7 days until 28 days (p < 0.001). The rM-PDCoV antigenicity was analyzed using pig sera samples from three states located in "El Bajío" Mexico and positive sera were determined. Our results show that PDCoV has continued circulating on pig farms in Mexico since the first report in 2019; therefore, the impact of PDCoV on the swine industry could be higher than reported in other studies.
Collapse
Affiliation(s)
- Francisco Jesus Castañeda-Montes
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Cerriteño-Sánchez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - María Azucena Castañeda-Montes
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Susana Mendoza-Elvira
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
129
|
Xu J, Xu C, Chen R, Yin Y, Wang Z, Li K, Shi J, Chen X, Huang J, Hong J, Yuan R, Liu Y, Liu R, Wang Y, Liu X, Zhang Z. Stability of SARS-CoV-2 on inanimate surfaces: A review. Microbiol Res 2023; 272:127388. [PMID: 37141851 PMCID: PMC10116155 DOI: 10.1016/j.micres.2023.127388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
The stability of SARS-CoV-2 for varying periods on a wide range of inanimate surfaces has raised concerns about surface transmission; however, there is still no evidence to confirm this route. In the present review, three variables affecting virus stability, namely temperature, relative humidity (RH), and initial virus titer, were considered from different experimental studies. The stability of SARS-CoV-2 on the surfaces of six different contact materials, namely plastic, metal, glass, protective equipment, paper, and fabric, and the factors affecting half-life period was systematically reviewed. The results showed that the half-life of SARS-CoV-2 on different contact materials was generally 2-10 h, up to 5 d, and as short as 30 min at 22 °C, whereas the half-life of SARS-CoV-2 on non-porous surfaces was generally 5-9 h d, up to 3 d, and as short as 4 min at 22 ℃. The half-life on porous surfaces was generally 1-5 h, up to 2 d, and as short as 13 min at 22 °C. Therefore, the half-life period of SARS-CoV-2 on non-porous surfaces is longer than that on porous surfaces, and thehalf-life of the virus decreases with increasing temperature, whereas RH produces a stable negative inhibitory effect only in a specific humidity range. Various disinfection precautions can be implemented in daily life depending on the stability of SARS-CoV-2 on different surfaces to interrupt virus transmission, prevent COVID-19 infections, and avoid over-disinfection. Owing to the more stringent control of conditions in laboratory studies and the lack of evidence of transmission through surfaces in the real world, it is difficult to provide strong evidence for the efficiency of transmission of the contaminant from the surface to the human body. Therefore, we suggest that future research should focus on exploring the systematic study of the entire transmission process of the virus, which will provide a theoretical basis for optimizing global outbreak prevention and control measures.
Collapse
Affiliation(s)
- Jiayao Xu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chengyin Xu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China
| | - Ruilin Chen
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China
| | - Yun Yin
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Zengliang Wang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong 250011, China
| | - Ke Li
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jin Shi
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xi Chen
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiaqi Huang
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jie Hong
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Yuan
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yuanhua Liu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Yizhen Wang
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Xin Liu
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Zhijie Zhang
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
130
|
Santos-Mendoza T. The Envelope (E) Protein of SARS-CoV-2 as a Pharmacological Target. Viruses 2023; 15:v15041000. [PMID: 37112980 PMCID: PMC10143767 DOI: 10.3390/v15041000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus is still a global health concern. Several spike (S) protein-based vaccines have been developed that efficiently protect the human population against severe forms of COVID-19. However, some SARS-CoV-2 variants of concern (VOCs) have emerged that evade the protective effect of vaccine-induced antibodies. Therefore, efficient and specific antiviral treatments to control COVID-19 are indispensable. To date, two drugs have been approved for mild COVID-19 treatment; nevertheless, more drugs, preferably broad-spectrum and ready-to-use therapeutic agents for new pandemics, are needed. Here, I discuss the PDZ-dependent protein-protein interactions of the viral E protein with host proteins as attractive alternatives for the development of antivirals against coronavirus.
Collapse
Affiliation(s)
- Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
131
|
Khullar N, Bhatti JS, Singh S, Thukral B, Reddy PH, Bhatti GK. Insight into the liver dysfunction in COVID-19 patients: Molecular mechanisms and possible therapeutic strategies. World J Gastroenterol 2023; 29:2064-2077. [PMID: 37122601 PMCID: PMC10130970 DOI: 10.3748/wjg.v29.i14.2064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
As of June 2022, more than 530 million people worldwide have become ill with coronavirus disease 2019 (COVID-19). Although COVID-19 is most commonly associated with respiratory distress (severe acute respiratory syndrome), meta-analysis have indicated that liver dysfunction also occurs in patients with severe symptoms. Current studies revealed distinctive patterning in the receptors on the hepatic cells that helps in viral invasion through the expression of angiotensin-converting enzyme receptors. It has also been reported that in some patients with COVID-19, therapeutic strategies, including repurposed drugs (mitifovir, lopinavir/ritonavir, tocilizumab, etc.) triggered liver injury and cholestatic toxicity. Several proven indicators support cytokine storm-induced hepatic damage. Because there are 1.5 billion patients with chronic liver disease worldwide, it becomes imperative to critically evaluate the molecular mechanisms concerning hepatotropism of COVID-19 and identify new potential therapeutics. This review also designated a comprehensive outlook of comorbidities and the impact of lifestyle and genetics in managing patients with COVID-19.
Collapse
Affiliation(s)
- Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib 140407, Punjab, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawana Thukral
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Mohali 140413, Punjab, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
132
|
Boonamnaj P, Pandey RB, Sompornpisut P. Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a. J Mol Graph Model 2023; 122:108487. [PMID: 37086515 PMCID: PMC10083643 DOI: 10.1016/j.jmgm.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs.
Collapse
Affiliation(s)
- Panisak Boonamnaj
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - R B Pandey
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Pornthep Sompornpisut
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
133
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
134
|
Sarkar S, Karmakar S, Basu M, Ghosh P, Ghosh MK. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. MedComm (Beijing) 2023; 4:e247. [PMID: 37035134 PMCID: PMC10080216 DOI: 10.1002/mco2.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, causes coronavirus disease 2019 (COVID-19) which led to neurological damage and increased mortality worldwide in its second and third waves. It is associated with systemic inflammation, myocardial infarction, neurological illness including ischemic strokes (e.g., cardiac and cerebral ischemia), and even death through multi-organ failure. At the early stage, the virus infects the lung epithelial cells and is slowly transmitted to the other organs including the gastrointestinal tract, blood vessels, kidneys, heart, and brain. The neurological effect of the virus is mainly due to hypoxia-driven reactive oxygen species (ROS) and generated cytokine storm. Internalization of SARS-CoV-2 triggers ROS production and modulation of the immunological cascade which ultimately initiates the hypercoagulable state and vascular thrombosis. Suppression of immunological machinery and inhibition of ROS play an important role in neurological disturbances. So, COVID-19 associated damage to the central nervous system, patients need special care to prevent multi-organ failure at later stages of disease progression. Here in this review, we are selectively discussing these issues and possible antioxidant-based prevention therapies for COVID-19-associated neurological damage that leads to multi-organ failure.
Collapse
Affiliation(s)
- Sibani Sarkar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Subhajit Karmakar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder College, University of CalcuttaDakshin BarasatWBIndia
| | - Pratyasha Ghosh
- Department of EconomicsBethune CollegeUniversity of CalcuttaKolkataIndia
| | - Mrinal K Ghosh
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| |
Collapse
|
135
|
Mahnam K, Rajaee SM. A theoretical survey to find potential natural compound for inhibition of binding the RBD domain to ACE2 receptor based on plant antivirals. J Biomol Struct Dyn 2023; 41:14540-14565. [PMID: 36974837 DOI: 10.1080/07391102.2023.2183033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
The spike protein of coronavirus is crucial in binding and arrival of the virus to the human cell via binding to the human ACE2 receptor. In this study, at first 25 antiviral phytochemicals were docked into the RBD domain of spike protein, and then all complexes and free RBD domains were separately subjected to molecular dynamics simulation for 100 ns and MM/PBSA binding free energy calculation. In this phase, four ligands were chosen as hit compounds and a natural compound database (NPASS) was screened based on high similarity with these ligands, and 367 ligands were found. Then the same previous procedure was repeated for these ligands and ADME properties were investigated. Finally, virtual screening and 4400 ns MD simulation and MM/PBSA calculation revealed that new ligands including NPC67959, NPC157855, NPC248793, and NPC216361 can inhibit the RBD domain of spike protein and we propose them as potential drugs for experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
136
|
Baliova M, Jahodova I, Jursky F. A Significant Difference in Core PDZ Interactivity of SARS-CoV, SARS-CoV2 and MERS-CoV Protein E Peptide PDZ Motifs In Vitro. Protein J 2023:10.1007/s10930-023-10103-x. [PMID: 36932261 PMCID: PMC10023026 DOI: 10.1007/s10930-023-10103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Small structural E protein of coronaviruses uses its C-terminal PDZ motif to compromise the cellular PDZ interactome. In this work we compared core PDZ interactivity of small (seven amino acids) peptide PDZ motifs, originating from the envelope proteins of recently transmitted coronaviruses SARS-CoV, SARS-CoV2, and MERS-CoV. As the interaction targets we used 23 domains of the largest PDZ proteins MUPP1/MPDZ and PATJ/INAD. Results revealed exceptional affinity and interaction promiscuity of MERS-CoV PDZ motif in vitro, suggesting an increased probability of potential PDZ targets in vivo. We hypothesize that together with its known ability to enter the cells from both apical and basolateral sites, this might further contribute to its elevated disruption of cellular PDZ pathways and higher virulence.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia
| | - Iveta Jahodova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
137
|
Oh CK, Nakamura T, Beutler N, Zhang X, Piña-Crespo J, Talantova M, Ghatak S, Trudler D, Carnevale LN, McKercher SR, Bakowski MA, Diedrich JK, Roberts AJ, Woods AK, Chi V, Gupta AK, Rosenfeld MA, Kearns FL, Casalino L, Shaabani N, Liu H, Wilson IA, Amaro RE, Burton DR, Yates JR, Becker C, Rogers TF, Chatterjee AK, Lipton SA. Targeted protein S-nitrosylation of ACE2 inhibits SARS-CoV-2 infection. Nat Chem Biol 2023; 19:275-283. [PMID: 36175661 PMCID: PMC10127945 DOI: 10.1038/s41589-022-01149-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Tomohiro Nakamura
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Xu Zhang
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Juan Piña-Crespo
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Maria Talantova
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Swagata Ghatak
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Dorit Trudler
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Lauren N Carnevale
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Scott R McKercher
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Malina A Bakowski
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | - Amanda J Roberts
- Animal Models Core, Scripps Research Institute, La Jolla, CA, USA
| | - Ashley K Woods
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | - Victor Chi
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | - Anil K Gupta
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA
| | | | - Thomas F Rogers
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Stuart A Lipton
- Departments of Molecular Medicine and Neuroscience, Neurodegeneration New Medicines Center, La Jolla, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
138
|
Khalid T, Hasan A, Fatima JE, Faridi SA, Khan AF, Mir SS. Therapeutic role of mTOR inhibitors in control of SARS-CoV-2 viral replication. Mol Biol Rep 2023; 50:2701-2711. [PMID: 36538171 PMCID: PMC9764303 DOI: 10.1007/s11033-022-08188-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
By the end of 2019, COVID-19 was reported in Wuhan city of China, and through human-human transmission, this virus spread worldwide and became a pandemic. Initial symptoms of the disease include fever, cough, loss of smell, taste, and shortness of breath, but a decrease in the oxygen levels in the body leads, and pneumonia may ultimately lead to the patient's death. However, the symptoms vary from patient to patient. To understand COVID-19 disease pathogenesis, researchers have tried to understand the cellular pathways that could be targeted to suppress viral replication. Thus, this article reviews the markers that could be targeted to inhibit viral replication by inhibiting the translational initiation complex/regulatory kinases and upregulating host autophagic flux that may lead to a reduction in the viral load. The article also highlights that mTOR inhibitors may act as potential inhibitors of viral replication. mTOR inhibitors such as metformin may inhibit the interaction of SARS-CoV-2 Nsp's and ORFs with mTORC1, LARP1, and 4E-BP. They may also increase autophagic flux by decreasing protein degradation via inhibition of Skp2, further promoting viral cell death. These events result in cell cycle arrest at G1 by p27, ultimately causing cell death.
Collapse
Affiliation(s)
- Tuba Khalid
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, 226026, Lucknow, India
| | - Jamal E Fatima
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Soban Ahmad Faridi
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Ahamad Faiz Khan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, 226026, Lucknow, India.
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, 226026, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
139
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
140
|
Mandal SK, Tare M, Deepa PR. COVID-19 infection and metabolic comorbidities: Mitigating role of nutritional sufficiency and drug - nutraceutical combinations of vitamin D. HUMAN NUTRITION & METABOLISM 2023; 31:200179. [PMID: 38620788 PMCID: PMC9762046 DOI: 10.1016/j.hnm.2022.200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The vulnerability of human health is amplified in recent times with global increase in non-communicable diseases (due to lifestyle changes and environmental insults) and infectious diseases (caused by newer pathogens and drug-resistance strains). Clinical management of diseases is further complicated by disease severity caused by other comorbid factors. Drug-based therapy may not be the sole approach, particularly in scenarios like the COVID-19 pandemic, where there is no specific drug against SARS-CoV-2. Nutritional interventions are significant in armouring human populations in disease prevention, and as adjunctive therapy for disease alleviation. Amidst ongoing clinical trials to determine the efficacy of Vit. D against infections and associated complications, this review examines the pleiotropic benefits of nutritional adequacy of vitamin D (Vit. D) in combating viral infections (COVID-19), its severity and complications due to co-morbidities (obesity, diabetes, stroke and Kawasaki disease), based on research findings and clinical studies. Supplements of Vit. D in combination with other nutrients, and drugs, are suggested as promising preventive-health and adjunct-treatment strategies in the clinical management of viral infections with metabolic comorbidities.
Collapse
Affiliation(s)
- Sumit Kumar Mandal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - P R Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
141
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 316] [Impact Index Per Article: 316.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
142
|
Ahmadi K, Hosseinpour M, Rismani E, Hassaniazad M, Mafakher L, Jahantigh HR, Eftekhar E, Gouklani H. Characterization of SARS-CoV-2 isolated from a patient in Iran compared to SARS-CoV-2 different variants. J Biomol Struct Dyn 2023; 41:1217-1232. [PMID: 35007466 DOI: 10.1080/07391102.2021.2017354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the onset of the global epidemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), whole genome sequencing of virus in all countries has been considered to track and predict virus transmission and variation patterns. In the current study we reported a novel complete genome sequence of SARS-CoV-2 isolated from Iran. Genomics variations and protein sequences were evaluated for the isolated sequence and seven Iranian complete genome sequences of SARS-CoV-2 from NCBI using the reference genome of the SARS-CoV-2 Wuhan-Hu-1. The results showed six nucleotide substitutions. The multiple sequence alignment of the spike protein of the Wuhan-Hu-1 strain and the emerging variants indicated similar its residue pattern in the current sequence to the Wuhan-Hu-1 strain. There were relatively similar binding affinity and residues involved in the interactions of the spike receptor-binding domain (RBD) of the Wuhan-Hu-1 strain, the variants and Hormozgan With angiotensin-converting enzyme 2 (ACE2). Tracing the phylogeny of virus indicated distinct clustering of Iranian variants in branches close to the Asian countries. The mutation effect study on the function of proteins predicted neutral impact of all six nucleotide substitutions. However, the free energy calculations indicated a decreasing the protein stability related to the mutations. This data, consistent with similar studies, showed that despite the high similarity in the nucleotide sequence of the SARS-CoV-2, the mutation pattern varies from country to country. Therefore, any country can benefit from these studies to track and find appropriate strategies for treating and controlling the epidemic.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmood Hosseinpour
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Hassaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Reza Jahantigh
- Interdisciplinary Department of Medicine-Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
143
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
144
|
Zhou S, Lv P, Li M, Chen Z, Xin H, Reilly S, Zhang X. SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development. Biomed Pharmacother 2023; 159:114242. [PMID: 36652729 PMCID: PMC9832061 DOI: 10.1016/j.biopha.2023.114242] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, which has seriously affected human health worldwide. The discovery of therapeutic agents is extremely urgent, and the viral structural proteins are particularly important as potential drug targets. SARS-CoV-2 envelope (E) protein is one of the main structural proteins of the virus, which is involved in multiple processes of the virus life cycle and is directly related to pathogenesis process. In this review, we present the amino acid sequence of the E protein and compare it with other two human coronaviruses. We then explored the role of E protein in the viral life cycle and discussed the pathogenic mechanisms that E protein may be involved in. Next, we summarize the potential drugs against E protein discovered in the current studies. Finally, we described the possible effects of E protein mutation on virus and host. This established a knowledge system of E protein to date, aiming to provide theoretical insights for mitigating the current COVID-19 pandemic and potential future coronavirus outbreaks.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Panpan Lv
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China.
| | - Mingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Zihui Chen
- School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
145
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
146
|
Dregni AJ, McKay MJ, Surya W, Queralt-Martin M, Medeiros-Silva J, Wang HK, Aguilella V, Torres J, Hong M. The Cytoplasmic Domain of the SARS-CoV-2 Envelope Protein Assembles into a β-Sheet Bundle in Lipid Bilayers. J Mol Biol 2023; 435:167966. [PMID: 36682677 PMCID: PMC9851921 DOI: 10.1016/j.jmb.2023.167966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a β-sheet-rich conformation that contains three β-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third β-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the β-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt β-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the β-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.
Collapse
Affiliation(s)
- Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Maria Queralt-Martin
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I. 12080 Castellón, Spain
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Harrison K Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Vicente Aguilella
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I. 12080 Castellón, Spain
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
147
|
Karakasiliotis I, Lagopati N, Evangelou K, Gorgoulis VG. Cellular senescence as a source of SARS-CoV-2 quasispecies. FEBS J 2023; 290:1384-1392. [PMID: 34653312 DOI: 10.1111/febs.16230] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023]
Abstract
In-depth analysis of SARS-CoV-2 biology and pathogenesis is rapidly unraveling the mechanisms through which the virus induces all aspects of COVID-19 pathology. Emergence of hundreds of variants and several important variants of concern has focused research on the mechanistic elucidation of virus mutagenesis. RNA viruses evolve quickly either through the error-prone polymerase or the RNA-editing machinery of the cell. In this review, we are discussing the links between cellular senescence, a natural aging process that has been recently linked to SARS-CoV-2 infection, and virus mutagenesis through the RNA-editing enzymes APOBEC. The action of APOBEC, enhanced by cellular senescence, is hypothesized to assist the emergence of novel variants, called quasispecies, within a cell or organism. These variants when introduced to the community may lead to the generation of a variant of concern, depending on fitness and transmissibility of the new genome. Such a mechanism of virus evolution may highlight the importance of inhibitors of cellular senescence during SARS-CoV-2 clinical treatment.
Collapse
Affiliation(s)
- Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, UK.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Greece.,Faculty of Health and Medical Sciences, University of Surrey, UK
| |
Collapse
|
148
|
Cytoplasmic Tail Truncation Stabilizes S1-S2 Association and Enhances S Protein Incorporation into SARS-CoV-2 Pseudovirions. J Virol 2023; 97:e0165022. [PMID: 36790205 PMCID: PMC10062125 DOI: 10.1128/jvi.01650-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.
Collapse
|
149
|
Ancestral Lineage of SARS-CoV-2 Is More Stable in Human Biological Fluids than Alpha, Beta, and Omicron Variants of Concern. Microbiol Spectr 2023; 11:e0330122. [PMID: 36688691 PMCID: PMC9927102 DOI: 10.1128/spectrum.03301-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2 is a zoonotic virus first identified in 2019, and has quickly spread worldwide. The virus is primarily transmitted through respiratory droplets from infected persons; however, the virus-laden excretions can contaminate surfaces which can serve as a potential source of infection. Since the beginning of the pandemic, SARS-CoV-2 has continued to evolve and accumulate mutations throughout its genome leading to the emergence of variants of concern (VOCs) which exhibit increased fitness, transmissibility, and/or virulence. However, the stability of SARS-CoV-2 VOCs in biological fluids has not been thoroughly investigated. The aim of this study was to determine and compare the stability of different SARS-CoV-2 strains in human biological fluids. Here, we demonstrate that the ancestral strain of the Wuhan-like lineage A was more stable than the Alpha VOC B.1.1.7, and the Beta VOC B.1.351 strains in human liquid nasal mucus and sputum. In contrast, there was no difference in stability among the three strains in dried biological fluids. Furthermore, we also show that the Omicron VOC B.1.1.529 strain was less stable than the ancestral Wuhan-like strain in liquid nasal mucus. These studies provide insight into the effect of the molecular evolution of SARS-CoV-2 on environmental virus stability, which is important information for the development of countermeasures against SARS-CoV-2. IMPORTANCE Genetic evolution of SARS-CoV-2 leads to the continuous emergence of novel virus variants, posing a significant concern to global public health. Five of these variants have been classified to date into variants of concern (VOCs); Alpha, Beta, Gamma, Delta, and Omicron. Previous studies investigated the stability of SARS-CoV-2 under various conditions, but there is a gap of knowledge on the survival of SARS-CoV-2 VOCs in human biological fluids which are clinically relevant. Here, we present evidence that Alpha, Beta, and Omicron VOCs were less stable than the ancestral Wuhan-like strain in human biological fluids. Our findings highlight the potential risk of contaminated human biological fluids in SARS-CoV-2 transmission and contribute to the development of countermeasures against SARS-CoV-2.
Collapse
|
150
|
In Silico Screening of Drugs That Target Different Forms of E Protein for Potential Treatment of COVID-19. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Recently the E protein of SARS-CoV-2 has become a very important target in the potential treatment of COVID-19 since it is known to regulate different stages of the viral cycle. There is biochemical evidence that E protein exists in two forms, as monomer and homopentamer. An in silico screening analysis was carried out employing 5852 ligands (from Zinc databases), and performing an ADMET analysis, remaining a set of 2155 compounds. Furthermore, docking analysis was performed on specific sites and different forms of the E protein. From this study we could identify that the following ligands showed the highest binding affinity: nilotinib, dutasteride, irinotecan, saquinavir and alectinib. We carried out some molecular dynamics simulations and free energy MM–PBSA calculations of the protein–ligand complexes (with the mentioned ligands). Of worthy interest is that saquinavir, nilotinib and alectinib are also considered as a promising multitarget ligand because it seems to inhibit three targets, which play an important role in the viral cycle. On the other side, saquinavir was shown to be able to bind to E protein both in its monomeric as well as pentameric forms. Finally, further experimental assays are needed to probe our hypothesis derived from in silico studies.
Collapse
|