101
|
Xu M, Ouyang Y, Yuan Z. Deep Learning Aided Neuroimaging and Brain Regulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23114993. [PMID: 37299724 DOI: 10.3390/s23114993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier application and the future development trend of precision neuroscience. This review aimed to render comprehensive and informative insights into the recent progress of deep learning and its applications in medical imaging for brain monitoring and regulation. The article starts by providing an overview of the current methods for brain imaging, highlighting their limitations and introducing the potential benefits of using deep learning techniques to overcome these limitations. Then, we further delve into the details of deep learning, explaining the basic concepts and providing examples of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the different types of deep learning models that can be used in medical imaging including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging, and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain monitoring and regulation provides a referrable glance for the intersection of deep learning aided neuroimaging and brain regulation.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China
| | - Yuanyuan Ouyang
- Nanomicro Sino-Europe Technology Company Limited, Zhuhai 519031, China
- Jiangfeng China-Portugal Technology Co., Ltd., Macau SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China
| |
Collapse
|
102
|
Choi H, Sunwoo L, Cho SJ, Baik SH, Bae YJ, Choi BS, Jung C, Kim JH. A Nationwide Web-Based Survey of Neuroradiologists' Perceptions of Artificial Intelligence Software for Neuro-Applications in Korea. Korean J Radiol 2023; 24:454-464. [PMID: 37133213 PMCID: PMC10157324 DOI: 10.3348/kjr.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVE We aimed to investigate current expectations and clinical adoption of artificial intelligence (AI) software among neuroradiologists in Korea. MATERIALS AND METHODS In April 2022, a 30-item online survey was conducted by neuroradiologists from the Korean Society of Neuroradiology (KSNR) to assess current user experiences, perceptions, attitudes, and future expectations regarding AI for neuro-applications. Respondents with experience in AI software were further investigated in terms of the number and type of software used, period of use, clinical usefulness, and future scope. Results were compared between respondents with and without experience with AI software through multivariable logistic regression and mediation analyses. RESULTS The survey was completed by 73 respondents, accounting for 21.9% (73/334) of the KSNR members; 72.6% (53/73) were familiar with AI and 58.9% (43/73) had used AI software, with approximately 86% (37/43) using 1-3 AI software programs and 51.2% (22/43) having up to one year of experience with AI software. Among AI software types, brain volumetry software was the most common (62.8% [27/43]). Although 52.1% (38/73) assumed that AI is currently useful in practice, 86.3% (63/73) expected it to be useful for clinical practice within 10 years. The main expected benefits were reducing the time spent on repetitive tasks (91.8% [67/73]) and improving reading accuracy and reducing errors (72.6% [53/73]). Those who experienced AI software were more familiar with AI (adjusted odds ratio, 7.1 [95% confidence interval, 1.81-27.81]; P = 0.005). More than half of the respondents with AI software experience (55.8% [24/43]) agreed that AI should be included in training curriculums, while almost all (95.3% [41/43]) believed that radiologists should coordinate to improve its performance. CONCLUSION A majority of respondents experienced AI software and showed a proactive attitude toward adopting AI in clinical practice, suggesting that AI should be incorporated into training and active participation in AI development should be encouraged.
Collapse
Affiliation(s)
- Hyunsu Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Se Jin Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Hyun Baik
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheolkyu Jung
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
103
|
Tan H, Xu H, Yu N, Yu Y, Duan H, Fan Q, Zhanyu T. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of rib fractures in acute blunt trauma. BMC Med Imaging 2023; 23:55. [PMID: 37055752 PMCID: PMC10099632 DOI: 10.1186/s12880-023-01012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND To evaluate the value of a deep learning-based computer-aided diagnostic system (DL-CAD) in improving the diagnostic performance of acute rib fractures in patients with chest trauma. MATERIALS AND METHODS CT images of 214 patients with acute blunt chest trauma were retrospectively analyzed by two interns and two attending radiologists independently firstly and then with the assistance of a DL-CAD one month later, in a blinded and randomized manner. The consensusdiagnosis of fib fracture by another two senior thoracic radiologists was regarded as reference standard. The rib fracture diagnostic sensitivity, specificity, positive predictive value, diagnostic confidence and mean reading time with and without DL-CAD were calculated and compared. RESULTS There were 680 rib fracture lesions confirmed as reference standard among all patients. The diagnostic sensitivity and positive predictive value of interns weresignificantly improved from (68.82%, 84.50%) to (91.76%, 93.17%) with the assistance of DL-CAD, respectively. Diagnostic sensitivity and positive predictive value of attendings aided by DL-CAD (94.56%, 95.67%) or not aided (86.47%, 93.83%), respectively. In addition, when radiologists were assisted by DL-CAD, the mean reading time was significantly reduced, and diagnostic confidence was significantly enhanced. CONCLUSIONS DL-CAD improves the diagnostic performance of acute rib fracture in chest trauma patients, which increases the diagnostic confidence, sensitivity, and positive predictive value for radiologists. DL-CAD can advance the diagnostic consistency of radiologists with different experiences.
Collapse
Affiliation(s)
- Hui Tan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Xu
- Peter Boris Centre for Addiction Research, McMaster University & St. Joseph's Health Care Hamilton, 100 West 5th Street, Hamilton, ON, L8P 3R2, Canada.
| | - Nan Yu
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yong Yu
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haifeng Duan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiuju Fan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Tian Zhanyu
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
104
|
Liu DS, Abu-Shaban K, Halabi SS, Cook TS. Changes in Radiology Due to Artificial Intelligence That Can Attract Medical Students to the Specialty. JMIR MEDICAL EDUCATION 2023; 9:e43415. [PMID: 36939823 PMCID: PMC10131993 DOI: 10.2196/43415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The role of artificial intelligence (AI) in radiology has grown exponentially in the recent years. One of the primary worries by medical students is that AI will cause the roles of a radiologist to become automated and thus obsolete. Therefore, there is a greater hesitancy by medical students to choose radiology as a specialty. However, it is in this time of change that the specialty needs new thinkers and leaders. In this succinct viewpoint, 2 medical students involved in AI and 2 radiologists specializing in AI or clinical informatics posit that not only are these fears false, but the field of radiology will be transformed in such a way due to AI that there will be novel reasons to choose radiology. These new factors include greater impact on patient care, new space for innovation, interdisciplinary collaboration, increased patient contact, becoming master diagnosticians, and greater opportunity for global health initiatives, among others. Finally, since medical students view mentorship as a critical resource when deciding their career path, medical educators must also be cognizant of these changes and not give much credence to the prevalent fearmongering. As the field and practice of radiology continue to undergo significant change due to AI, it is urgent and necessary for the conversation to expand from expert to expert to expert to student. Medical students should be encouraged to choose radiology specifically because of the changes brought on by AI rather than being deterred by it.
Collapse
Affiliation(s)
- David Shalom Liu
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Kamil Abu-Shaban
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Safwan S Halabi
- Department of Medical Imaging, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Tessa Sundaram Cook
- Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA, United States
| |
Collapse
|
105
|
Bedi A, Al Masri MK, Al Hennawi H, Qadir S, Ottman P. The Integration of Artificial Intelligence Into Patient Care: A Case of Atrial Fibrillation Caught by a Smartwatch. Cureus 2023; 15:e35941. [PMID: 37038562 PMCID: PMC10082624 DOI: 10.7759/cureus.35941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/12/2023] Open
Abstract
Artificial intelligence (AI) offers a wide range of applications in clinical practice, and new technologies are rapidly evolving the healthcare industry and enhancing outcomes. Smartwatches represent the most popular type of wearable AI device that can assist people in detecting cardiac arrhythmias via constant monitoring of heart activity. Numerous advantages result from integrating AI into healthcare systems, including improved patient care, lower rates of medical errors, better treatment recommendations, and more accurate diagnosis of diseases. However, doubts still remain regarding the adoption of AI into patient care due to the challenges it poses. In this paper, we report a case of atrial fibrillation (AF) in a young patient that was detected by his smartwatch. We also highlight some of the benefits and challenges of AI applications in healthcare.
Collapse
Affiliation(s)
- Angad Bedi
- Internal Medicine, Abington Jefferson Hospital, Abington, USA
| | | | | | - Shayan Qadir
- Internal Medicine, Abington Jefferson Hospital, Abington, USA
| | - Patrick Ottman
- Internal Medicine, Abington Jefferson Hospital, Abington, USA
| |
Collapse
|
106
|
Bizzo BC, Dasegowda G, Bridge C, Miller B, Hillis JM, Kalra MK, Durniak K, Stout M, Schultz T, Alkasab T, Dreyer KJ. Addressing the Challenges of Implementing Artificial Intelligence Tools in Clinical Practice: Principles From Experience. J Am Coll Radiol 2023; 20:352-360. [PMID: 36922109 DOI: 10.1016/j.jacr.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 03/14/2023]
Abstract
The multitude of artificial intelligence (AI)-based solutions, vendors, and platforms poses a challenging proposition to an already complex clinical radiology practice. Apart from assessing and ensuring acceptable local performance and workflow fit to improve imaging services, AI tools require multiple stakeholders, including clinical, technical, and financial, who collaborate to move potential deployable applications to full clinical deployment in a structured and efficient manner. Postdeployment monitoring and surveillance of such tools require an infrastructure that ensures proper and safe use. Herein, the authors describe their experience and framework for implementing and supporting the use of AI applications in radiology workflow.
Collapse
Affiliation(s)
- Bernardo C Bizzo
- Senior Director, Data Science Office, Mass General Brigham, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts.
| | - Giridhar Dasegowda
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts
| | - Christopher Bridge
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts
| | - Benjamin Miller
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts
| | - James M Hillis
- Data Science Office, Mass General Brigham, Boston, Massachusetts; Director of Clinical Operations, Data Science Office, Mass General Brigham, Boston, Massachusetts
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts; Director, Webster Center for Quality and Safety, Massachusetts General Hospital, Boston, Massachusetts
| | - Kimberly Durniak
- Senior Director, Data Science Office, Mass General Brigham, Boston, Massachusetts
| | - Markus Stout
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts; Senior Director, Medical Imaging Informatics, Mass General Brigham, Boston, Massachusetts
| | - Thomas Schultz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts; Senior Director, Enterprise Medical Imaging, Mass General Brigham, Boston, Massachusetts
| | - Tarik Alkasab
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts; Associate Chair for Enterprise IT/Informatics, Massachusetts General Hospital, Boston, Massachusetts; Co-Medical Director, Medical Imaging Informatics, Mass General Brigham, Boston, Massachusetts
| | - Keith J Dreyer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts; Chief Data Science Officer and Chief Imaging Information Officer, Mass General Brigham, Boston, Massachusetts; Vice Chair of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Chief Science Officer, Data Science Institute, American College of Radiology, Reston, Virginia
| |
Collapse
|
107
|
Perchik JD, Rothenberg SA, Tridandapani S, Perchik LM, Smith AD. Artificial Intelligence in Body Imaging: An Overview of Commercially Available Tools. Semin Roentgenol 2023; 58:196-202. [PMID: 37087140 DOI: 10.1053/j.ro.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
|
108
|
Tseng JJ, Lu CH, Li JZ, Lai HY, Chen MH, Cheng FY, Kuo CE. An Open Dataset of Annotated Metaphase Cell Images for Chromosome Identification. Sci Data 2023; 10:104. [PMID: 36823215 PMCID: PMC9950090 DOI: 10.1038/s41597-023-02003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Chromosomes are a principal target of clinical cytogenetic studies. While chromosomal analysis is an integral part of prenatal care, the conventional manual identification of chromosomes in images is time-consuming and costly. This study developed a chromosome detector that uses deep learning and that achieved an accuracy of 98.88% in chromosomal identification. Specifically, we compiled and made available a large and publicly accessible database containing chromosome images and annotations for training chromosome detectors. The database contains five thousand 24 chromosome class annotations and 2,000 single chromosome annotations. This database also contains examples of chromosome variations. Our database provides a reference for researchers in this field and may help expedite the development of clinical applications.
Collapse
Affiliation(s)
- Jenn-Jhy Tseng
- Department of Obstetrics, Gynecology and Women's Health, Taichung Veterans General Hospital, No. 1650 Sec. 4 Taiwan Blvd. Xitun Dist., Taichung, 407, Taiwan
| | - Chien-Hsing Lu
- Department of Obstetrics, Gynecology and Women's Health, Taichung Veterans General Hospital, No. 1650 Sec. 4 Taiwan Blvd. Xitun Dist., Taichung, 407, Taiwan
| | - Jun-Zhou Li
- Department of Automatic Control Engineering, Feng Chia University, No. 100 Wenhua Rd. Xitun Dist., Taichung, 407, Taiwan
| | - Hui-Yu Lai
- Department of Obstetrics, Gynecology and Women's Health, Taichung Veterans General Hospital, No. 1650 Sec. 4 Taiwan Blvd. Xitun Dist., Taichung, 407, Taiwan
| | - Min-Hu Chen
- Department of Obstetrics, Gynecology and Women's Health, Taichung Veterans General Hospital, No. 1650 Sec. 4 Taiwan Blvd. Xitun Dist., Taichung, 407, Taiwan
| | - Fu-Yuan Cheng
- Department of Obstetrics, Gynecology and Women's Health, Taichung Veterans General Hospital, No. 1650 Sec. 4 Taiwan Blvd. Xitun Dist., Taichung, 407, Taiwan
| | - Chih-En Kuo
- Department of Applied Mathematics, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung, 402, Taiwan. .,Smart Sustainable New Agriculture Research Center (SMARTer), Taichung, 402, Taiwan.
| |
Collapse
|
109
|
Yin Y, Lu J, Tong J, Cheng Y, Zhang K. Relationship between early lung adenocarcinoma and multiple driving genes based on artificial intelligence medical images of pulmonary nodules. Front Genet 2023; 14:1142795. [PMID: 36896233 PMCID: PMC9988930 DOI: 10.3389/fgene.2023.1142795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Lung adenocarcinoma is one of the most common cancers in the world, and accurate diagnosis of lung nodules is an important factor in reducing its mortality. In the diagnosis of pulmonary nodules, artificial intelligence (AI) assisted diagnosis technology has been rapidly developed, so testing its effectiveness is conducive to promoting its important role in clinical practice. This paper introduces the background of early lung adenocarcinoma and lung nodule AI medical imaging, and then makes academic research on early lung adenocarcinoma and AI medical imaging, and finally summarizes the biological information. In the experimental part, the relationship analysis of 4 driver genes in group X and group Y showed that there were more abnormal invasive lung adenocarcinoma genes, and the maximum uptake value and uptake function of metabolic value were also higher. However, there was no significant correlation between mutations in the four driver genes and metabolic values, and the average accuracy of AI-based medical images was 3.88% higher than that of traditional images.
Collapse
Affiliation(s)
- Yajun Yin
- Department of Cardiothoracic Surgery, Changzhou Second People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jiawei Lu
- Department of Cardiothoracic Surgery, Changzhou Second People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jichun Tong
- Department of Cardiothoracic Surgery, Changzhou Second People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Youshuang Cheng
- Department of Cardiothoracic Surgery, Affiliated Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke Zhang
- Department of Cardiothoracic Surgery, Changzhou Second People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
110
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
111
|
Vladimirov N, Perlman O. Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response. Int J Mol Sci 2023; 24:3151. [PMID: 36834563 PMCID: PMC9959624 DOI: 10.3390/ijms24043151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immunotherapy constitutes a paradigm shift in cancer treatment. Its FDA approval for several indications has yielded improved prognosis for cases where traditional therapy has shown limited efficiency. However, many patients still fail to benefit from this treatment modality, and the exact mechanisms responsible for tumor response are unknown. Noninvasive treatment monitoring is crucial for longitudinal tumor characterization and the early detection of non-responders. While various medical imaging techniques can provide a morphological picture of the lesion and its surrounding tissue, a molecular-oriented imaging approach holds the key to unraveling biological effects that occur much earlier in the immunotherapy timeline. Magnetic resonance imaging (MRI) is a highly versatile imaging modality, where the image contrast can be tailored to emphasize a particular biophysical property of interest using advanced engineering of the imaging pipeline. In this review, recent advances in molecular-MRI based cancer immunotherapy monitoring are described. Next, the presentation of the underlying physics, computational, and biological features are complemented by a critical analysis of the results obtained in preclinical and clinical studies. Finally, emerging artificial intelligence (AI)-based strategies to further distill, quantify, and interpret the image-based molecular MRI information are discussed in terms of perspectives for the future.
Collapse
Affiliation(s)
- Nikita Vladimirov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
112
|
Image Classification and Automated Machine Learning to Classify Lung Pathologies in Deceased Feedlot Cattle. Vet Sci 2023; 10:vetsci10020113. [PMID: 36851417 PMCID: PMC9960640 DOI: 10.3390/vetsci10020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Bovine respiratory disease (BRD) and acute interstitial pneumonia (AIP) are the main reported respiratory syndromes (RSs) causing significant morbidity and mortality in feedlot cattle. Recently, bronchopneumonia with an interstitial pattern (BIP) was described as a concerning emerging feedlot lung disease. Necropsies are imperative to assist lung disease diagnosis and pinpoint feedlot management sectors that require improvement. However, necropsies can be logistically challenging due to location and veterinarians' time constraints. Technology advances allow image collection for veterinarians' asynchronous evaluation, thereby reducing challenges. This study's goal was to develop image classification models using machine learning to determine RS diagnostic accuracy in right lateral necropsied feedlot cattle lungs. Unaltered and cropped lung images were labeled using gross and histopathology diagnoses generating four datasets: unaltered lung images labeled with gross diagnoses, unaltered lung images labeled with histopathological diagnoses, cropped images labeled with gross diagnoses, and cropped images labeled with histopathological diagnoses. Datasets were exported to create image classification models, and a best trial was selected for each model based on accuracy. Gross diagnoses accuracies ranged from 39 to 41% for unaltered and cropped images. Labeling images with histopathology diagnoses did not improve average accuracies; 34-38% for unaltered and cropped images. Moderately high sensitivities were attained for BIP (60-100%) and BRD (20-69%) compared to AIP (0-23%). The models developed still require fine-tuning; however, they are the first step towards assisting veterinarians' lung diseases diagnostics in field necropsies.
Collapse
|
113
|
Yang DM, Chang TJ, Hung KF, Wang ML, Cheng YF, Chiang SH, Chen MF, Liao YT, Lai WQ, Liang KH. Smart healthcare: A prospective future medical approach for COVID-19. J Chin Med Assoc 2023; 86:138-146. [PMID: 36227021 PMCID: PMC9847685 DOI: 10.1097/jcma.0000000000000824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
COVID-19 has greatly affected human life for over 3 years. In this review, we focus on smart healthcare solutions that address major requirements for coping with the COVID-19 pandemic, including (1) the continuous monitoring of severe acute respiratory syndrome coronavirus 2, (2) patient stratification with distinct short-term outcomes (eg, mild or severe diseases) and long-term outcomes (eg, long COVID), and (3) adherence to medication and treatments for patients with COVID-19. Smart healthcare often utilizes medical artificial intelligence (AI) and cloud computing and integrates cutting-edge biological and optoelectronic techniques. These are valuable technologies for addressing the unmet needs in the management of COVID. By leveraging deep learning/machine learning capabilities and big data, medical AI can perform precise prognosis predictions and provide reliable suggestions for physicians' decision-making. Through the assistance of the Internet of Medical Things, which encompasses wearable devices, smartphone apps, internet-based drug delivery systems, and telemedicine technologies, the status of mild cases can be continuously monitored and medications provided at home without the need for hospital care. In cases that develop into severe cases, emergency feedback can be provided through the hospital for rapid treatment. Smart healthcare can possibly prevent the development of severe COVID-19 cases and therefore lower the burden on intensive care units.
Collapse
Affiliation(s)
- De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Address correspondence. Dr. De-Ming Yang, Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (D.-M. Yang). and Dr. Kung-Hao Liang, Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (K.-H. Liang)
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Su-Hua Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Fang Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Qun Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Address correspondence. Dr. De-Ming Yang, Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (D.-M. Yang). and Dr. Kung-Hao Liang, Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (K.-H. Liang)
| |
Collapse
|
114
|
Khunte M, Chae A, Wang R, Jain R, Sun Y, Sollee JR, Jiao Z, Bai HX. Trends in clinical validation and usage of US Food and Drug Administration-cleared artificial intelligence algorithms for medical imaging. Clin Radiol 2023; 78:123-129. [PMID: 36625218 DOI: 10.1016/j.crad.2022.09.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023]
Abstract
AIM To examine the current landscape of US Food and Drug Administration (FDA)-approved artificial intelligence (AI) medical imaging devices and identify trends in clinical validation strategy. MATERIALS AND METHODS A retrospective study was conducted that analysed data extracted from the American College of Radiology (ACR) Data Science Institute AI Central database as of November 2021 to identify trends in FDA clearance of AI products related to medical imaging. Product and clinical validation information of each device was gathered from their respective public 510(k) summary or de novo request submission, depending on their type of authorisation. RESULTS Overall, the database included a total of 151 AI algorithms that were cleared by the FDA between 2008 and November 2021. Out of the 151 FDA summaries reviewed, 97 (64.2%) reported the use of clinical data to validate their device, with six (4%) revealing study participant demographics, and eight (5.3%) reporting the specifications of the machines used. A total of 51 (33.8%) AI devices characterised their clinical data as multicentre, three (2%) as single-centre, and the remaining 97 (64.2%) did not specify. The ground truth used for clinical validation was specified in 78 (51.6%) FDA summaries. CONCLUSION A wide breadth of AI algorithms has been developed for medical imaging. Most of the FDA summaries of the devices mention their use of clinical data and patient cases for device validation; however, few devices revealed the patient demographics or machine specifications used in their clinical studies, which may lead some consumers to question their external validation.
Collapse
Affiliation(s)
- M Khunte
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - A Chae
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Wang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Jain
- Brown University, Providence, RI, USA
| | - Y Sun
- The World Bank, Washington D.C.,DC, USA
| | - J R Sollee
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Z Jiao
- Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - H X Bai
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
115
|
Sardanelli F, Castiglioni I, Colarieti A, Schiaffino S, Di Leo G. Artificial intelligence (AI) in biomedical research: discussion on authors' declaration of AI in their articles title. Eur Radiol Exp 2023; 7:2. [PMID: 36645623 PMCID: PMC9842807 DOI: 10.1186/s41747-022-00316-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/14/2022] [Indexed: 01/17/2023] Open
Abstract
Artificial intelligence (AI) and its different approaches, from machine learning to deep learning, are not new. We discuss here about the declaration of AI in the title of those articles dealing with AI. From 1990 to 2021, while AI articles in the PubMed increased from 300 to 59,596, the percentage declaring AI in the title describes a U-like-shaped curve: about 30% in early 1990s, less than 13% in 2005-2014, again 30% in 2020-2021. A similar trend was observed for AI in medical imaging. While the initial decline could be due to the establishment of AI methods, the recent increase could be related to the capacity of AI to outperform humans, especially in image recognition, fuelled by the adoption of graphic processing units for general purpose computing. The recent increase may also be due to the relevance of open issues about AI, including the standardisation of methods, explainability of results, and concerns about AI-induced epoch-making transformations: to say "We are using AI" in the title may also reflect these concerns.
Collapse
Affiliation(s)
- Francesco Sardanelli
- grid.4708.b0000 0004 1757 2822Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milan, Italy ,grid.419557.b0000 0004 1766 7370Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Isabella Castiglioni
- grid.7563.70000 0001 2174 1754Department of Physics, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomedical Imaging and Physiology, Consiglio Nazionale delle Ricerche, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Anna Colarieti
- grid.419557.b0000 0004 1766 7370Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Simone Schiaffino
- grid.419557.b0000 0004 1766 7370Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Giovanni Di Leo
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
116
|
Derevianko A, Pizzoli SFM, Pesapane F, Rotili A, Monzani D, Grasso R, Cassano E, Pravettoni G. The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor-Patient Communication in Cancer Diagnosis? Cancers (Basel) 2023; 15:cancers15020470. [PMID: 36672417 PMCID: PMC9856827 DOI: 10.3390/cancers15020470] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In the past decade, interest in applying Artificial Intelligence (AI) in radiology to improve diagnostic procedures increased. AI has potential benefits spanning all steps of the imaging chain, from the prescription of diagnostic tests to the communication of test reports. The use of AI in the field of radiology also poses challenges in doctor-patient communication at the time of the diagnosis. This systematic review focuses on the patient role and the interpersonal skills between patients and physicians when AI is implemented in cancer diagnosis communication. METHODS A systematic search was conducted on PubMed, Embase, Medline, Scopus, and PsycNet from 1990 to 2021. The search terms were: ("artificial intelligence" or "intelligence machine") and "communication" "radiology" and "oncology diagnosis". The PRISMA guidelines were followed. RESULTS 517 records were identified, and 5 papers met the inclusion criteria and were analyzed. Most of the articles emphasized the success of the technological support of AI in radiology at the expense of patient trust in AI and patient-centered communication in cancer disease. Practical implications and future guidelines were discussed according to the results. CONCLUSIONS AI has proven to be beneficial in helping clinicians with diagnosis. Future research may improve patients' trust through adequate information about the advantageous use of AI and an increase in medical compliance with adequate training on doctor-patient diagnosis communication.
Collapse
Affiliation(s)
- Alexandra Derevianko
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Francesca Maria Pizzoli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-0294372099
| | - Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Dario Monzani
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
117
|
Abstract
In the era of artificial intelligence (AI), a great deal of attention is being paid to AI in radiological practice. There are a large number of AI products on the radiological market based on X-rays, computed tomography, magnetic resonance imaging, and ultrasound. AI will not only change the way of radiological practice but also the way of radiological education. It is still not clearly defined about the exact role AI will play in radiological practice, but it will certainly be consolidated into radiological education in the foreseeable future. However, there are few literatures that have comprehensively summarized the attitudes, opportunities and challenges that AI can pose in the different training phases of radiologists, from university education to continuing education. Herein, we describe medical students' attitudes towards AI, summarize the role of AI in radiological education, and analyze the challenges that AI can pose in radiological education.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * Correspondence: Chao Wang, Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou 310009 Zhejiang, China (e-mail: )
| | - Huanhuan Xie
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shan Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyu Yang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ling Hu
- Department of Ultrasound, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
118
|
Ahmed I, Jeon G, Chehri A. An IoT-enabled smart health care system for screening of COVID-19 with multi layers features fusion and selection. COMPUTING 2023; 105. [PMCID: PMC8743102 DOI: 10.1007/s00607-021-00992-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Advancement of smart medical sensors, devices, cloud computing, and health care technologies is getting remarkable attention from academia and the health care industry. As, Internet of things (IoT) has been recognized as one of the promising research topics in the domain of health care, particularly in medical image processing. Researchers utilized various machine and deep learning techniques along with artificial intelligence for analyzing medical images. These developed techniques are used to detect diseases that might assist medical experts in diagnosing diseases at early stages and providing accurate, consistent, effective, and speedy results, and decrease the mortality rate. Nowadays, Coronavirus (COVID-19) has been growing as one of the most rigorous and severe infections and spreading globally. Consequently, an intelligent automated system is required as an active diagnostic choice that might be used to prevent the spread of COVID-19. Thus, this work presented an IoT-enabled smart health care system for the automatic screening and classification of contagious diseases (Pneumonia, COVID-19) in Chest X-ray images. The developed system is based on two different deep learning architectures used with a multi-layers feature fusion and feature selection approach to classify X-ray images of infectious diseases. This work comprises the following steps: to enhance the diversity of the data set, data augmentation is performed, while for feature extraction, deep learning architectures, i.e., VGG-19 and Inception-V3, are used along with transfer learning. For the fusion of extracted features obtained from deep learning architectures, a parallel maximum covariance, and for feature selection, the multi-logistic regression controlled entropy variance approach is applied. For experimentation, a data set is customized containing Chest X-ray images using various publicly available resources. The system provides an overall classification accuracy of 97%.
Collapse
Affiliation(s)
- Imran Ahmed
- Center of Excellence in Information Technology, Institute of Management Sciences, 1-A, Sector E-5, Phase VII, Hayatabad, Peshawar, Pakistan
| | - Gwanggil Jeon
- Department of Embedded Systems Engineering, Incheon National University, Incheon, Korea
| | - Abdellah Chehri
- Department of Applied Sciences, University of Quebec in Chicoutimi, 555, boul. de l’Université, Chicoutimi, Québec, G7H 2B1 Canada
| |
Collapse
|
119
|
Sardanelli F, Colarieti A. Open issues for education in radiological research: data integrity, study reproducibility, peer-review, levels of evidence, and cross-fertilization with data scientists. LA RADIOLOGIA MEDICA 2023; 128:133-135. [PMID: 36586083 PMCID: PMC9804239 DOI: 10.1007/s11547-022-01582-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
We are currently facing extraordinary changes. A harder and harder competition in the field of science is open in each country as well as in continents and worldwide. In this context, what should we teach to young students and doctors? There is a need to look backward and return to "fundamentals", i.e. the deep characteristics that must characterize the research in every field, even in radiology. In this article, we focus on data integrity (including the "declarations" given by the authors who submit a manuscript), reproducibility of study results, and the peer-review process. In addition, we highlight the need of raising the level of evidence of radiological research from the estimation of diagnostic performance to that of diagnostic impact, therapeutic impact, patient outcome, and social impact. Finally, on the emerging topic of radiomics and artificial intelligence, the recommendation is to aim for cross-fertilization with data scientists, possibly involving them in the clinical departments.
Collapse
Affiliation(s)
- Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi Di Milano, Milan, Italy. .,Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy.
| | - Anna Colarieti
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
120
|
Magni V, Cozzi A, Schiaffino S, Colarieti A, Sardanelli F. Artificial intelligence for digital breast tomosynthesis: Impact on diagnostic performance, reading times, and workload in the era of personalized screening. Eur J Radiol 2023; 158:110631. [PMID: 36481480 DOI: 10.1016/j.ejrad.2022.110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
The ultimate goals of the application of artificial intelligence (AI) to digital breast tomosynthesis (DBT) are the reduction of reading times, the increase of diagnostic performance, and the reduction of interval cancer rates. In this review, after outlining the journey from computer-aided detection/diagnosis systems to AI applied to digital mammography (DM), we summarize the results of studies where AI was applied to DBT, noting that long-term advantages of DBT screening and its crucial ability to decrease the interval cancer rate are still under scrutiny. AI has shown the capability to overcome some shortcomings of DBT in the screening setting by improving diagnostic performance and by reducing recall rates (from -2 % to -27 %) and reading times (up to -53 %, with an average 20 % reduction), but the ability of AI to reduce interval cancer rates has not yet been clearly investigated. Prospective validation is needed to assess the cost-effectiveness and real-world impact of AI models assisting DBT interpretation, especially in large-scale studies with low breast cancer prevalence. Finally, we focus on the incoming era of personalized and risk-stratified screening that will first see the application of contrast-enhanced breast imaging to screen women with extremely dense breasts. As the diagnostic advantage of DBT over DM was concentrated in this category, we try to understand if the application of AI to DM in the remaining cohorts of women with heterogeneously dense or non-dense breast could close the gap in diagnostic performance between DM and DBT, thus neutralizing the usefulness of AI application to DBT.
Collapse
Affiliation(s)
- Veronica Magni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| | - Andrea Cozzi
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy
| | - Simone Schiaffino
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy
| | - Anna Colarieti
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy.
| |
Collapse
|
121
|
Cè M, Caloro E, Pellegrino ME, Basile M, Sorce A, Fazzini D, Oliva G, Cellina M. Artificial intelligence in breast cancer imaging: risk stratification, lesion detection and classification, treatment planning and prognosis-a narrative review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:795-816. [PMID: 36654817 PMCID: PMC9834285 DOI: 10.37349/etat.2022.00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
The advent of artificial intelligence (AI) represents a real game changer in today's landscape of breast cancer imaging. Several innovative AI-based tools have been developed and validated in recent years that promise to accelerate the goal of real patient-tailored management. Numerous studies confirm that proper integration of AI into existing clinical workflows could bring significant benefits to women, radiologists, and healthcare systems. The AI-based approach has proved particularly useful for developing new risk prediction models that integrate multi-data streams for planning individualized screening protocols. Furthermore, AI models could help radiologists in the pre-screening and lesion detection phase, increasing diagnostic accuracy, while reducing workload and complications related to overdiagnosis. Radiomics and radiogenomics approaches could extrapolate the so-called imaging signature of the tumor to plan a targeted treatment. The main challenges to the development of AI tools are the huge amounts of high-quality data required to train and validate these models and the need for a multidisciplinary team with solid machine-learning skills. The purpose of this article is to present a summary of the most important AI applications in breast cancer imaging, analyzing possible challenges and new perspectives related to the widespread adoption of these new tools.
Collapse
Affiliation(s)
- Maurizio Cè
- Postgraduate School in Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy
| | - Elena Caloro
- Postgraduate School in Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy
| | - Maria E. Pellegrino
- Postgraduate School in Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy
| | - Mariachiara Basile
- Postgraduate School in Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy
| | - Adriana Sorce
- Postgraduate School in Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy
| | | | - Giancarlo Oliva
- Department of Radiology, ASST Fatebenefratelli Sacco, 20121 Milan, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, 20121 Milan, Italy
| |
Collapse
|
122
|
Han X, Hu Z, Wang S, Zhang Y. A Survey on Deep Learning in COVID-19 Diagnosis. J Imaging 2022; 9:1. [PMID: 36662099 PMCID: PMC9866755 DOI: 10.3390/jimaging9010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization statistics, as of 25 October 2022, there have been 625,248,843 confirmed cases of COVID-19, including 65,622,281 deaths worldwide. The spread and severity of COVID-19 are alarming. The economy and life of countries worldwide have been greatly affected. The rapid and accurate diagnosis of COVID-19 directly affects the spread of the virus and the degree of harm. Currently, the classification of chest X-ray or CT images based on artificial intelligence is an important method for COVID-19 diagnosis. It can assist doctors in making judgments and reduce the misdiagnosis rate. The convolutional neural network (CNN) is very popular in computer vision applications, such as applied to biological image segmentation, traffic sign recognition, face recognition, and other fields. It is one of the most widely used machine learning methods. This paper mainly introduces the latest deep learning methods and techniques for diagnosing COVID-19 using chest X-ray or CT images based on the convolutional neural network. It reviews the technology of CNN at various stages, such as rectified linear units, batch normalization, data augmentation, dropout, and so on. Several well-performing network architectures are explained in detail, such as AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. We analyzed and discussed the existing CNN automatic COVID-19 diagnosis systems from sensitivity, accuracy, precision, specificity, and F1 score. The systems use chest X-ray or CT images as datasets. Overall, CNN has essential value in COVID-19 diagnosis. All of them have good performance in the existing experiments. If expanding the datasets, adding GPU acceleration and data preprocessing techniques, and expanding the types of medical images, the performance of CNN will be further improved. This paper wishes to make contributions to future research.
Collapse
Affiliation(s)
- Xue Han
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
123
|
Artificial Intelligence (AI) in Breast Imaging: A Scientometric Umbrella Review. Diagnostics (Basel) 2022; 12:diagnostics12123111. [PMID: 36553119 PMCID: PMC9777253 DOI: 10.3390/diagnostics12123111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence (AI), a rousing advancement disrupting a wide spectrum of applications with remarkable betterment, has continued to gain momentum over the past decades. Within breast imaging, AI, especially machine learning and deep learning, honed with unlimited cross-data/case referencing, has found great utility encompassing four facets: screening and detection, diagnosis, disease monitoring, and data management as a whole. Over the years, breast cancer has been the apex of the cancer cumulative risk ranking for women across the six continents, existing in variegated forms and offering a complicated context in medical decisions. Realizing the ever-increasing demand for quality healthcare, contemporary AI has been envisioned to make great strides in clinical data management and perception, with the capability to detect indeterminate significance, predict prognostication, and correlate available data into a meaningful clinical endpoint. Here, the authors captured the review works over the past decades, focusing on AI in breast imaging, and systematized the included works into one usable document, which is termed an umbrella review. The present study aims to provide a panoramic view of how AI is poised to enhance breast imaging procedures. Evidence-based scientometric analysis was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline, resulting in 71 included review works. This study aims to synthesize, collate, and correlate the included review works, thereby identifying the patterns, trends, quality, and types of the included works, captured by the structured search strategy. The present study is intended to serve as a "one-stop center" synthesis and provide a holistic bird's eye view to readers, ranging from newcomers to existing researchers and relevant stakeholders, on the topic of interest.
Collapse
|
124
|
AI in breast screening mammography: breast screening readers' perspectives. Insights Imaging 2022; 13:186. [PMID: 36484919 PMCID: PMC9733732 DOI: 10.1186/s13244-022-01322-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study surveyed the views of breast screening readers in the UK on how to incorporate Artificial Intelligence (AI) technology into breast screening mammography. METHODS An online questionnaire was circulated to the UK breast screening readers. Questions included their degree of approval of four AI implementation scenarios: AI as triage, AI as a companion reader/reader aid, AI replacing one of the initial two readers, and AI replacing all readers. They were also asked to rank five AI representation options (discrete opinion; mammographic scoring; percentage score with 100% indicating malignancy; region of suspicion; heat map) and indicate which evidence they considered necessary to support the implementation of AI into their practice among six options offered. RESULTS The survey had 87 nationally accredited respondents across the UK; 73 completed the survey in full. Respondents approved of AI replacing one of the initial two human readers and objected to AI replacing all human readers. Participants were divided on AI as triage and AI as a reader companion. A region of suspicion superimposed on the image was the preferred AI representation option. Most screen readers considered national guidelines (77%), studies using a nationally representative dataset (65%) and independent prospective studies (60%) as essential evidence. Participants' free-text comments highlighted concerns and the need for additional validation. CONCLUSIONS Overall, screen readers supported the introduction of AI as a partial replacement of human readers and preferred a graphical indication of the suspected tumour area, with further evidence and national guidelines considered crucial prior to implementation.
Collapse
|
125
|
Jin H, Wagner MW, Ertl-Wagner B, Khalvati F. An Educational Graphical User Interface to Construct Convolutional Neural Networks for Teaching Artificial Intelligence in Radiology. Can Assoc Radiol J 2022:8465371221144264. [PMID: 36475925 DOI: 10.1177/08465371221144264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deep learning techniques using convolutional neural networks (CNNs) have been successfully developed for various medical image analysis tasks. However, the skills to understand and develop deep learning models are not usually taught during radiology training, which constitutes a barrier for radiologists looking to integrate machine learning (ML) into their research or clinical practice. In this work, we developed and evaluated an educational graphical user interface (GUI) to construct CNNs for teaching deep learning concepts to radiology trainees. The GUI was developed in Python using the PyQt and PyTorch frameworks. The functionality of the GUI was demonstrated through a binary classification task on a dataset of MR images of the brain. The usability of the GUI was assessed through 45-min user testing sessions with 5 neuroradiologists and neuroradiology fellows, assessing mean task completion times, the System Usability Scale (SUS), and a qualitative questionnaire as metrics. Task completion times were compared against a ML expert who performed the same tasks. After a 20-min introduction to CNNs and a walkthrough of the GUI, users were able to perform all assigned tasks successfully. There was no significant difference in task completion time compared to a ML expert. The educational GUI achieved a score of 82.5 on the SUS, suggesting that the system is highly usable. Users indicated that the GUI seems useful as an educational tool to teach ML topics to radiology trainees. An educational GUI allows interactive teaching in ML that can be incorporated into radiology training.
Collapse
Affiliation(s)
- Haiyue Jin
- Division of Engineering Science, University of Toronto, Toronto, ON, Canada
| | - Matthias W Wagner
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada,Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
| | - Birgit Ertl-Wagner
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada,Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
| | - Farzad Khalvati
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada,Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
126
|
Akoob S, Akbar K, Van Wyk J. The use of technology in postgraduate medical education within radiology: a scoping review. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [PMCID: PMC9016688 DOI: 10.1186/s43055-022-00763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPostgraduate radiology training has traditionally followed didactic approaches; however, complex reasoning skills and critical thinking are essential in the field of radiology. Therefore, the shortages of radiologists in Africa have necessitated the need to review the use of technology in postgraduate education to improve efficient training and service. This scoping review was conducted to map the evidence on the role of technology in postgraduate radiology education and practice. A systematic scoping review search strategy was undertaken to review material published between January 2005 and August 2020 on the use of technology in radiology education. Data from the included studies were extracted and analyzed for emerging themes and presented in response to the research question. Seven articles described studies from the African continent. The most popular technological intervention was telemedicine, and several niche areas of technology implementation were identified (blended learning, flipped learning, digital teaching files). Furthermore, the most challenging aspects relating to technology use remain fiscal and credentialing constraints. Technology plays a role in postgraduate radiology education through networks, synchronous and asynchronous applications. It has the potential to increase support to doctoral students in the African context and alleviate some stressors associated with traditional, face-to-face didactic programs.
Collapse
|
127
|
Ikerionwu C, Ugwuishiwu C, Okpala I, James I, Okoronkwo M, Nnadi C, Orji U, Ebem D, Ike A. Application of machine and deep learning algorithms in optical microscopic detection of Plasmodium: A malaria diagnostic tool for the future. Photodiagnosis Photodyn Ther 2022; 40:103198. [PMID: 36379305 DOI: 10.1016/j.pdpdt.2022.103198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Machine and deep learning techniques are prevalent in the medical discipline due to their high level of accuracy in disease diagnosis. One such disease is malaria caused by Plasmodium falciparum and transmitted by the female anopheles mosquito. According to the World Health Organisation (WHO), millions of people are infected annually, leading to inevitable deaths in the infected population. Statistical records show that early detection of malaria parasites could prevent deaths and machine learning (ML) has proved helpful in the early detection of malarial parasites. Human error is identified to be a major cause of inaccurate diagnostics in the traditional microscopy malaria diagnosis method. Therefore, the method would be more reliable if human expert dependency is restricted or entirely removed, and thus, the motivation of this paper. This study presents a systematic review to understand the prevalent machine learning algorithms applied to a low-cost, portable optical microscope in the automation of blood film interpretation for malaria parasite detection. Peer-reviewed papers were downloaded from selected reputable databases eg. Elsevier, IEEExplore, Pubmed, Scopus, Web of Science, etc. The extant literature suggests that convolutional neural network (CNN) and its variants (deep learning) account for 41.9% of the microscopy malaria diagnosis using machine learning with a prediction accuracy of 99.23%. Thus, the findings suggest that early detection of the malaria parasite has improved through the application of CNN and other ML algorithms on microscopic malaria parasite detection.
Collapse
Affiliation(s)
- Charles Ikerionwu
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Software Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chikodili Ugwuishiwu
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Izunna Okpala
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Information Technology, University of Cincinnati, USA
| | - Idara James
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, Akwa Ibom State University, Nigeria
| | - Matthew Okoronkwo
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Charles Nnadi
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ugochukwu Orji
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Deborah Ebem
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Ike
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
128
|
Shiang T, Garwood E, Debenedectis CM. Artificial intelligence-based decision support system (AI-DSS) implementation in radiology residency: Introducing residents to AI in the clinical setting. Clin Imaging 2022; 92:32-37. [DOI: 10.1016/j.clinimag.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
129
|
Ozsahin DU, Isa NA, Uzun B. The Capacity of Artificial Intelligence in COVID-19 Response: A Review in Context of COVID-19 Screening and Diagnosis. Diagnostics (Basel) 2022; 12:2943. [PMID: 36552949 PMCID: PMC9777320 DOI: 10.3390/diagnostics12122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Artificial intelligence (AI) has been shown to solve several issues affecting COVID-19 diagnosis. This systematic review research explores the impact of AI in early COVID-19 screening, detection, and diagnosis. A comprehensive survey of AI in the COVID-19 literature, mainly in the context of screening and diagnosis, was observed by applying the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Data sources for the years 2020, 2021, and 2022 were retrieved from google scholar, web of science, Scopus, and PubMed, with target keywords relating to AI in COVID-19 screening and diagnosis. After a comprehensive review of these studies, the results found that AI contributed immensely to improving COVID-19 screening and diagnosis. Some proposed AI models were shown to have comparable (sometimes even better) clinical decision outcomes, compared to experienced radiologists in the screening/diagnosing of COVID-19. Additionally, AI has the capacity to reduce physician work burdens and fatigue and reduce the problems of several false positives, associated with the RT-PCR test (with lower sensitivity of 60-70%) and medical imaging analysis. Even though AI was found to be timesaving and cost-effective, with less clinical errors, it works optimally under the supervision of a physician or other specialists.
Collapse
Affiliation(s)
- Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Sciences, Sharjah University, Sharjah P.O. Box 27272, United Arab Emirates
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Nuhu Abdulhaqq Isa
- Department of Biomedical Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
- Department of Biomedical Engineering, College of Health Science and Technology, Keffi 961101, Keffi Nasarawa State, Nigeria
| | - Berna Uzun
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
- Department of Statistics, Carlos III Madrid University, 28903 Getafe, Madrid, Spain
- Department of Mathematics, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| |
Collapse
|
130
|
Aldhafeeri FM. Perspectives of radiographers on the emergence of artificial intelligence in diagnostic imaging in Saudi Arabia. Insights Imaging 2022; 13:178. [DOI: 10.1186/s13244-022-01319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Objectives
This study aimed to gain insight into radiographers’ views on the application of artificial intelligence (AI) in Saudi Arabia by conducting a qualitative investigation designed to provide recommendations to assist radiographic workforce improvement.
Materials and methods
We conducted an online cross-sectional online survey of Saudi radiographers regarding perspectives on AI implementation, job security, workforce development, and ethics.
Results
In total, 562 valid responses were received. Most respondents (90.6%) believed that AI was the direction of diagnostic imaging. Among the respondents, 88.5% stated that AI would improve the accuracy of diagnosis. Some challenges in implementing AI in Saudi Arabia include the high cost of equipment, inadequate knowledge, radiologists’ fear of losing employment, and concerns related to potential medical errors and cyber threats.
Conclusion
Radiographers were generally positive about introducing AI to radiology departments. To integrate AI successfully into radiology departments, radiographers need training programs, transparent policies, and motivation.
Collapse
|
131
|
Pesapane F, Rotili A, Valconi E, Agazzi GM, Montesano M, Penco S, Nicosia L, Bozzini A, Meneghetti L, Latronico A, Pizzamiglio M, Rossero E, Gaeta A, Raimondi S, Pizzoli SFM, Grasso R, Carrafiello G, Pravettoni G, Cassano E. Women’s perceptions and attitudes to the use of AI in breast cancer screening: a survey in a cancer referral centre. Br J Radiol 2022; 96:20220569. [DOI: 10.1259/bjr.20220569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Although breast cancer screening can benefit from Artificial Intelligence (AI), it is still unknown whether, to which extent or under which conditions, the use of AI is going to be accepted by the general population. The aim of our study is to evaluate what the females who are eligible for breast cancer screening know about AI and how they perceive such innovation. Methods: We used a prospective survey consisting of a 11-multiple-choice questionnaire evaluating statistical associations with Chi-Square-test or Fisher-exact-test. Multinomial-logistic-regression was performed on items with more than two response categories. Odds ratio (OR) with 95% CI were computed to estimate the probability of a specific response according to patient’s characteristics. Results: In the 800 analysed questionnaires, 51% of respondents confirmed to have knowledge of AI. Of these, 88% expressed a positive opinion about its use in medicine. Non-Italian respondents were associated with the belief of having a deep awareness about AI more often than Italian respondents (OR = 1.91;95% CI[1.10–3.33]). Higher education level was associated with better opinions on the use of AI in medicine (OR = 4.69;95% CI[1.36–16.12]). According to 94% of respondents, the radiologists should always produce their own report on mammograms, whilst 77% agreed that AI should be used as a second reader. Most respondents (52%) considered that both the software developer and the radiologist should be held accountable for AI errors. Conclusions: Most of the females undergoing screening in our Institute approve the introduction of AI, although only as a support to radiologist, and not in substitution thereof. Yet, accountability in case of AI errors is still unsolved. advances in knowledge: This survey may be considered as a pilot-study for the development of large-scale studies to understand females’s demands and concerns about AI applications in breast cancer screening.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Valconi
- Diagnostic and Interventional Radiology Unit, Department of Diagnostic and Therapeutic Advanced Technology, Azienda Socio Sanitaria Territoriale Santi Paolo and Carlo Hospital, Milan, Italy
| | - Giorgio Maria Agazzi
- Diagnostic and Interventional Radiology Unit, Department of Diagnostic and Therapeutic Advanced Technology, Azienda Socio Sanitaria Territoriale Santi Paolo and Carlo Hospital, Milan, Italy
| | - Marta Montesano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Eleonora Rossero
- Laboratorio dei Diritti Fondamentali, Collegio Carlo Alberto, Torino ER, Turin, Italy
| | - Aurora Gaeta
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology and Department of Health Sciences, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milano, Milan, Italy
| | - Gabriella Pravettoni
- Dipartimento di Oncologia ed Emato Oncologia, Università degli studi di Milano, Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
132
|
Li YZ, Wang Y, Fang KB, Zheng HZ, Lai QQ, Xia YF, Chen JY, Dai ZS. Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN. Eur J Med Res 2022; 27:247. [PMID: 36372871 PMCID: PMC9661774 DOI: 10.1186/s40001-022-00883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The diagnostic results of magnetic resonance imaging (MRI) are essential references for arthroscopy as an invasive procedure. A deviation between medical imaging diagnosis and arthroscopy results may cause irreversible damage to patients and lead to excessive medical treatment. To improve the accurate diagnosis of meniscus injury, it is urgent to develop auxiliary diagnosis algorithms to improve the accuracy of radiological diagnosis. PURPOSE This study aims to present a fully automatic 3D deep convolutional neural network (DCNN) for meniscus segmentation and detects arthroscopically proven meniscus tears. MATERIALS AND METHODS Our institution retrospectively included 533 patients with 546 knees who underwent knee magnetic resonance imaging (MRI) and knee arthroscopy. Sagittal proton density-weighted (PDW) images in MRI of 382 knees were regarded as a training set to train our 3D-Mask RCNN. The remaining data from 164 knees were used to validate the trained network as a test set. The masks were hand-drawn by an experienced radiologist, and the reference standard is arthroscopic surgical reports. The performance statistics included Dice accuracy, sensitivity, specificity, FROC, receiver operating characteristic (ROC) curve analysis, and bootstrap test statistics. The segmentation performance was compared with a 3D-Unet, and the detection performance was compared with radiological evaluation by two experienced musculoskeletal radiologists without knowledge of the arthroscopic surgical diagnosis. RESULTS Our model produced strong Dice coefficients for sagittal PDW of 0.924, 0.95 sensitivity with 0.823 FPs/knee. 3D-Unet produced a Dice coefficient for sagittal PDW of 0.891, 0.95 sensitivity with 1.355 FPs/knee. The difference in the areas under 3D-Mask-RCNN FROC and 3D-Unet FROC was statistically significant (p = 0.0011) by bootstrap test. Our model detection performance achieved an area under the curve (AUC) value, accuracy, and sensitivity of 0.907, 0.924, 0.941, and 0.785, respectively. Based on the radiological evaluations, the AUC value, accuracy, sensitivity, and specificity were 0.834, 0.835, 0.889, and 0.754, respectively. The difference in the areas between 3D-Mask-RCNN ROC and radiological evaluation ROC was statistically significant (p = 0.0009) by bootstrap test. 3D Mask RCNN significantly outperformed the 3D-Unet and radiological evaluation demonstrated by these results. CONCLUSIONS 3D-Mask RCNN has demonstrated efficacy and precision for meniscus segmentation and tear detection in knee MRI, which can assist radiologists in improving the accuracy and efficiency of diagnosis. It can also provide effective diagnostic indicators for orthopedic surgeons before arthroscopic surgery and further promote precise treatment.
Collapse
Affiliation(s)
- Yuan-Zhe Li
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 China
| | - Yi Wang
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 China
| | - Kai-Bin Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 China
| | - Hui-Zhong Zheng
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Qing-Quan Lai
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 China
| | - Yong-Fa Xia
- Orthopedics, Anji TCM Hospital Affiliated to Zhejiang Provincial Hospital of Traditional Chinese Medicine (Anji Traditional Chinese Medical Hospital), Anji, 313300 China
| | - Jia-Yang Chen
- Radiology Department, Anxi Hospital of Traditional Chinese Medicine, Quanzhou, 362400 China
| | - Zhang-sheng Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 China
| |
Collapse
|
133
|
Digital Twins in Radiology. J Clin Med 2022; 11:jcm11216553. [DOI: 10.3390/jcm11216553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
A digital twin is a virtual model developed to accurately reflect a physical thing or a system. In radiology, a digital twin of a radiological device enables developers to test its characteristics, make alterations to the design or materials, and test the success or failure of the modifications in a virtual environment. Innovative technologies, such as AI and -omics sciences, may build virtual models for patients that are continuously adjustable based on live-tracked health/lifestyle parameters. Accordingly, healthcare could use digital twins to improve personalized medicine. Furthermore, the accumulation of digital twin models from real-world deployments will enable large cohorts of digital patients that may be used for virtual clinical trials and population studies. Through their further refinement, development, and application into clinical practice, digital twins could be crucial in the era of personalized medicine, revolutionizing how diseases are detected and managed. Although significant challenges remain in the development of digital twins, a structural modification to the current operating models is occurring, and radiologists can guide the introduction of such technology into healthcare.
Collapse
|
134
|
Parkash O, Siddiqui ATS, Jiwani U, Rind F, Padhani ZA, Rizvi A, Hoodbhoy Z, Das JK. Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:1018937. [PMID: 36405592 PMCID: PMC9672666 DOI: 10.3389/fmed.2022.1018937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Artificial Intelligence (AI) holds considerable promise for diagnostics in the field of gastroenterology. This systematic review and meta-analysis aims to assess the diagnostic accuracy of AI models compared with the gold standard of experts and histopathology for the diagnosis of various gastrointestinal (GI) luminal pathologies including polyps, neoplasms, and inflammatory bowel disease. Methods We searched PubMed, CINAHL, Wiley Cochrane Library, and Web of Science electronic databases to identify studies assessing the diagnostic performance of AI models for GI luminal pathologies. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. We performed a meta-analysis and hierarchical summary receiver operating characteristic curves (HSROC). The risk of bias was assessed using Quality Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Subgroup analyses were conducted based on the type of GI luminal disease, AI model, reference standard, and type of data used for analysis. This study is registered with PROSPERO (CRD42021288360). Findings We included 73 studies, of which 31 were externally validated and provided sufficient information for inclusion in the meta-analysis. The overall sensitivity of AI for detecting GI luminal pathologies was 91.9% (95% CI: 89.0–94.1) and specificity was 91.7% (95% CI: 87.4–94.7). Deep learning models (sensitivity: 89.8%, specificity: 91.9%) and ensemble methods (sensitivity: 95.4%, specificity: 90.9%) were the most commonly used models in the included studies. Majority of studies (n = 56, 76.7%) had a high risk of selection bias while 74% (n = 54) studies were low risk on reference standard and 67% (n = 49) were low risk for flow and timing bias. Interpretation The review suggests high sensitivity and specificity of AI models for the detection of GI luminal pathologies. There is a need for large, multi-center trials in both high income countries and low- and middle- income countries to assess the performance of these AI models in real clinical settings and its impact on diagnosis and prognosis. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=288360], identifier [CRD42021288360].
Collapse
Affiliation(s)
- Om Parkash
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Uswa Jiwani
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fahad Rind
- Head and Neck Oncology, The Ohio State University, Columbus, OH, United States
| | - Zahra Ali Padhani
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
| | - Arjumand Rizvi
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jai K. Das
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- *Correspondence: Jai K. Das,
| |
Collapse
|
135
|
Santomartino SM, Yi PH. Systematic Review of Radiologist and Medical Student Attitudes on the Role and Impact of AI in Radiology. Acad Radiol 2022; 29:1748-1756. [PMID: 35105524 DOI: 10.1016/j.acra.2021.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES The introduction of AI in radiology has prompted both excitement and hesitation within the field. We performed a systematic review of original studies evaluating the attitudes of radiologists, radiology trainees, and medical students towards AI in radiology. MATERIALS AND METHODS We searched PubMed for studies published as of August 24, 2021 for original studies evaluating attitudes of radiologists (attendings and trainees) and medical students towards AI in radiology. We summarized the baseline article characteristics and performed thematic analysis of the questions asked in each study. RESULTS Nineteen studies were included evaluating attitudes across different levels of training (medical students, radiology trainees, and radiology attendings) with representation from nearly every continent. Medical students and radiologists alike favored increased educational initiatives, and displayed interest in learning about and implementing AI solutions themselves, despite reporting of a current gap in formal AI training. There was general optimism about the role of AI in radiology, although radiologists and trainees had greater consensus than medical students. CONCLUSION Although there is interest in incorporating AI into medical education and optimism among radiologists towards AI, medical students are more divided in their views. We propose that outreach to and AI education for medical students may help improve their attitudes towards the potentially transformative technology of AI for radiology.
Collapse
Affiliation(s)
- Samantha M Santomartino
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Intelligent Imaging (UM2ii) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Paul H Yi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Intelligent Imaging (UM2ii) Center, University of Maryland School of Medicine, Baltimore, Maryland; Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
136
|
Fasterholdt I, Naghavi-Behzad M, Rasmussen BSB, Kjølhede T, Skjøth MM, Hildebrandt MG, Kidholm K. Value assessment of artificial intelligence in medical imaging: a scoping review. BMC Med Imaging 2022; 22:187. [PMID: 36316665 PMCID: PMC9620604 DOI: 10.1186/s12880-022-00918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) is seen as one of the major disrupting forces in the future healthcare system. However, the assessment of the value of these new technologies is still unclear, and no agreed international health technology assessment-based guideline exists. This study provides an overview of the available literature in the value assessment of AI in the field of medical imaging. METHODS We performed a systematic scoping review of published studies between January 2016 and September 2020 using 10 databases (Medline, Scopus, ProQuest, Google Scholar, and six related databases of grey literature). Information about the context (country, clinical area, and type of study) and mentioned domains with specific outcomes and items were extracted. An existing domain classification, from a European assessment framework, was used as a point of departure, and extracted data were grouped into domains and content analysis of data was performed covering predetermined themes. RESULTS Seventy-nine studies were included out of 5890 identified articles. An additional seven studies were identified by searching reference lists, and the analysis was performed on 86 included studies. Eleven domains were identified: (1) health problem and current use of technology, (2) technology aspects, (3) safety assessment, (4) clinical effectiveness, (5) economics, (6) ethical analysis, (7) organisational aspects, (8) patients and social aspects, (9) legal aspects, (10) development of AI algorithm, performance metrics and validation, and (11) other aspects. The frequency of mentioning a domain varied from 20 to 78% within the included papers. Only 15/86 studies were actual assessments of AI technologies. The majority of data were statements from reviews or papers voicing future needs or challenges of AI research, i.e. not actual outcomes of evaluations. CONCLUSIONS This review regarding value assessment of AI in medical imaging yielded 86 studies including 11 identified domains. The domain classification based on European assessment framework proved useful and current analysis added one new domain. Included studies had a broad range of essential domains about addressing AI technologies highlighting the importance of domains related to legal and ethical aspects.
Collapse
Affiliation(s)
- Iben Fasterholdt
- CIMT – Centre for Innovative Medical Technology, Odense University Hospital, Sdr. Boulevard 29, Entrance 102, 4rd Floor, 5000 Odense C, Denmark
| | - Mohammad Naghavi-Behzad
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Benjamin S. B. Rasmussen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Radiology, Odense University Hospital, Odense, Denmark
- CAI-X – Centre for Clinical Artificial Intelligence, Odense University Hospital, Odense, Denmark
| | - Tue Kjølhede
- CIMT – Centre for Innovative Medical Technology, Odense University Hospital, Sdr. Boulevard 29, Entrance 102, 4rd Floor, 5000 Odense C, Denmark
| | - Mette Maria Skjøth
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- CIMT – Centre for Innovative Medical Technology, Odense University Hospital, Sdr. Boulevard 29, Entrance 102, 4rd Floor, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Kristian Kidholm
- CIMT – Centre for Innovative Medical Technology, Odense University Hospital, Sdr. Boulevard 29, Entrance 102, 4rd Floor, 5000 Odense C, Denmark
| |
Collapse
|
137
|
Sivanesan U, Wu K, McInnes MDF, Dhindsa K, Salehi F, van der Pol CB. Checklist for Artificial Intelligence in Medical Imaging Reporting Adherence in Peer-Reviewed and Preprint Manuscripts With the Highest Altmetric Attention Scores: A Meta-Research Study. Can Assoc Radiol J 2022; 74:334-342. [PMID: 36301600 DOI: 10.1177/08465371221134056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose: To establish reporting adherence to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) in diagnostic accuracy AI studies with the highest Altmetric Attention Scores (AAS), and to compare completeness of reporting between peer-reviewed manuscripts and preprints. Methods: MEDLINE, EMBASE, arXiv, bioRxiv, and medRxiv were retrospectively searched for 100 diagnostic accuracy medical imaging AI studies in peer-reviewed journals and preprint platforms with the highest AAS since the release of CLAIM to June 24, 2021. Studies were evaluated for adherence to the 42-item CLAIM checklist with comparison between peer-reviewed manuscripts and preprints. The impact of additional factors was explored including body region, models on COVID-19 diagnosis and journal impact factor. Results: Median CLAIM adherence was 48% (20/42). The median CLAIM score of manuscripts published in peer-reviewed journals was higher than preprints, 57% (24/42) vs 40% (16/42), P < .0001. Chest radiology was the body region with the least complete reporting ( P = .0352), with manuscripts on COVID-19 less complete than others (43% vs 54%, P = .0002). For studies published in peer-reviewed journals with an impact factor, the CLAIM score correlated with impact factor, rho = 0.43, P = .0040. Completeness of reporting based on CLAIM score had a positive correlation with a study’s AAS, rho = 0.68, P < .0001. Conclusions: Overall reporting adherence to CLAIM is low in imaging diagnostic accuracy AI studies with the highest AAS, with preprints reporting fewer study details than peer-reviewed manuscripts. Improved CLAIM adherence could promote adoption of AI into clinical practice and facilitate investigators building upon prior works.
Collapse
Affiliation(s)
- Umaseh Sivanesan
- Department of Diagnostic Radiology, Kingston Health Sciences Centre, Kingston General Hospital, Kingston, ON, Canada
| | - Kay Wu
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Matthew D. F. McInnes
- Department of Radiology and Epidemiology, University of Ottawa, Ottawa, ON, Canada; Scientist Ottawa Hospital Research Institute Clinical Epidemiology Program, Rm c-159 Department of Medical Imaging, The Ottawa Hospital- Civic Campus, Ottawa, ON, Canada
| | - Kiret Dhindsa
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fateme Salehi
- Department of Radiology, Scarborough Health Network, Scarborough, ON, Canada
| | - Christian B. van der Pol
- Department of Diagnostic Imaging, Juravinski Hospital and Cancer Centre, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
138
|
Mumuni AN, Hasford F, Udeme NI, Dada MO, Awojoyogbe BO. A SWOT analysis of artificial intelligence in diagnostic imaging in the developing world: making a case for a paradigm shift. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Diagnostic imaging (DI) refers to techniques and methods of creating images of the body’s internal parts and organs with or without the use of ionizing radiation, for purposes of diagnosing, monitoring and characterizing diseases. By default, DI equipment are technology based and in recent times, there has been widespread automation of DI operations in high-income countries while low and middle-income countries (LMICs) are yet to gain traction in automated DI. Advanced DI techniques employ artificial intelligence (AI) protocols to enable imaging equipment perceive data more accurately than humans do, and yet automatically or under expert evaluation, make clinical decisions such as diagnosis and characterization of diseases. In this narrative review, SWOT analysis is used to examine the strengths, weaknesses, opportunities and threats associated with the deployment of AI-based DI protocols in LMICs. Drawing from this analysis, a case is then made to justify the need for widespread AI applications in DI in resource-poor settings. Among other strengths discussed, AI-based DI systems could enhance accuracies in diagnosis, monitoring, characterization of diseases and offer efficient image acquisition, processing, segmentation and analysis procedures, but may have weaknesses regarding the need for big data, huge initial and maintenance costs, and inadequate technical expertise of professionals. They present opportunities for synthetic modality transfer, increased access to imaging services, and protocol optimization; and threats of input training data biases, lack of regulatory frameworks and perceived fear of job losses among DI professionals. The analysis showed that successful integration of AI in DI procedures could position LMICs towards achievement of universal health coverage by 2030/2035. LMICs will however have to learn from the experiences of advanced settings, train critical staff in relevant areas of AI and proceed to develop in-house AI systems with all relevant stakeholders onboard.
Collapse
Affiliation(s)
| | - Francis Hasford
- Department of Medical Physics , University of Ghana, Ghana Atomic Energy Commission , Accra , Ghana
| | | | | | | |
Collapse
|
139
|
Lee S, Kang M, Byeon K, Lee SE, Lee IH, Kim YA, Kang SW, Park JT. Machine Learning-Aided Chronic Kidney Disease Diagnosis Based on Ultrasound Imaging Integrated with Computer-Extracted Measurable Features. J Digit Imaging 2022; 35:1091-1100. [PMID: 35411524 PMCID: PMC9582094 DOI: 10.1007/s10278-022-00625-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022] Open
Abstract
Although ultrasound plays an important role in the diagnosis of chronic kidney disease (CKD), image interpretation requires extensive training. High operator variability and limited image quality control of ultrasound images have made the application of computer-aided diagnosis (CAD) challenging. This study assessed the effect of integrating computer-extracted measurable features with the convolutional neural network (CNN) on the ultrasound image CAD accuracy of CKD. Ultrasound images from patients who visited Severance Hospital and Gangnam Severance Hospital in South Korea between 2011 and 2018 were used. A Mask regional CNN model was used for organ segmentation and measurable feature extraction. Data on kidney length and kidney-to-liver echogenicity ratio were extracted. The ResNet18 model classified kidney ultrasound images into CKD and non-CKD. Experiments were conducted with and without the input of the measurable feature data. The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUROC). A total of 909 patients (mean age, 51.4 ± 19.3 years; 414 [49.5%] men and 495 [54.5%] women) were included in the study. The average AUROC from the model trained using ultrasound images achieved a level of 0.81. Image training with the integration of automatically extracted kidney length and echogenicity features revealed an improved average AUROC of 0.88. This value further increased to 0.91 when the clinical information of underlying diabetes was also included in the model trained with CNN and measurable features. The automated step-wise machine learning-aided model segmented, measured, and classified the kidney ultrasound images with high performance. The integration of computer-extracted measurable features into the machine learning model may improve CKD classification.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | | | | | - Sang Eun Lee
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Biostatics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In Ho Lee
- AI Team, INFINYX, Daegu, Republic of Korea
| | - Young Ah Kim
- Department of Medical Informatics, Yonsei University Health System, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea.
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
140
|
Data governance functions to support responsible data stewardship in pediatric radiology research studies using artificial intelligence. Pediatr Radiol 2022; 52:2111-2119. [PMID: 35790559 DOI: 10.1007/s00247-022-05427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 03/03/2023]
Abstract
The integration of human and machine intelligence promises to profoundly change the practice of medicine. The rapidly increasing adoption of artificial intelligence (AI) solutions highlights its potential to streamline physician work and optimize clinical decision-making, also in the field of pediatric radiology. Large imaging databases are necessary for training, validating and testing these algorithms. To better promote data accessibility in multi-institutional AI-enabled radiologic research, these databases centralize the large volumes of data required to effect accurate models and outcome predictions. However, such undertakings must consider the sensitivity of patient information and therefore utilize requisite data governance measures to safeguard data privacy and security, to recognize and mitigate the effects of bias and to promote ethical use. In this article we define data stewardship and data governance, review their key considerations and applicability to radiologic research in the pediatric context, and consider the associated best practices along with the ramifications of poorly executed data governance. We summarize several adaptable data governance frameworks and describe strategies for their implementation in the form of distributed and centralized approaches to data management.
Collapse
|
141
|
Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography. PROGRESS IN ARTIFICIAL INTELLIGENCE 2022. [DOI: 10.1007/s13748-022-00292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
142
|
The potential of predictive and prognostic breast MRI (P2-bMRI). Eur Radiol Exp 2022; 6:42. [PMID: 35989400 PMCID: PMC9393116 DOI: 10.1186/s41747-022-00291-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an important part of breast cancer diagnosis and multimodal workup. It provides unsurpassed soft tissue contrast to analyse the underlying pathophysiology, and it is adopted for a variety of clinical indications. Predictive and prognostic breast MRI (P2-bMRI) is an emerging application next to these indications. The general objective of P2-bMRI is to provide predictive and/or prognostic biomarkers in order to support personalisation of breast cancer treatment. We believe P2-bMRI has a great clinical potential, thanks to the in vivo examination of the whole tumour and of the surrounding tissue, establishing a link between pathophysiology and response to therapy (prediction) as well as patient outcome (prognostication). The tools used for P2-bMRI cover a wide spectrum: standard and advanced multiparametric pulse sequences; structured reporting criteria (for instance BI-RADS descriptors); artificial intelligence methods, including machine learning (with emphasis on radiomics data analysis); and deep learning that have shown compelling potential for this purpose. P2-bMRI reuses the imaging data of examinations performed in the current practice. Accordingly, P2-bMRI could optimise clinical workflow, enabling cost savings and ultimately improving personalisation of treatment. This review introduces the concept of P2-bMRI, focusing on the clinical application of P2-bMRI by using semantic criteria.
Collapse
|
143
|
Zhang T, Zhang C, Zhong Y, Sun Y, Wang H, Li H, Yang G, Zhu Q, Yuan M. A radiomics nomogram for invasiveness prediction in lung adenocarcinoma manifesting as part-solid nodules with solid components smaller than 6 mm. Front Oncol 2022; 12:900049. [PMID: 36033463 PMCID: PMC9406823 DOI: 10.3389/fonc.2022.900049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate whether radiomics can help radiologists and thoracic surgeons accurately predict invasive adenocarcinoma (IAC) manifesting as part-solid nodules (PSNs) with solid components <6 mm and provide a basis for rational clinical decision-making. Materials and Methods In total, 1,210 patients (mean age ± standard deviation: 54.28 ± 11.38 years, 374 men and 836 women) from our hospital and another hospital with 1,248 PSNs pathologically diagnosed with adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or IAC were enrolled in this study. Among them, 1,050 cases from our hospital were randomly divided into a derivation set (n = 735) and an internal validation set (n = 315), 198 cases from another hospital were used for external validation. Each labeled nodule was segmented, and 105 radiomics features were extracted. Least absolute shrinkage and selection operator (LASSO) was used to calculate Rad-score and build the radiomics model. Multivariable logistic regression was conducted to identify the clinicoradiological predictors and establish the clinical-radiographic model. The combined model and predictive nomogram were developed based on identified clinicoradiological independent predictors and Rad-score using multivariable logistic regression analysis. The predictive performances of the three models were compared via receiver operating characteristic (ROC) curve analysis. Decision curve analysis (DCA) was performed on both the internal and external validation sets to evaluate the clinical utility of the nomogram. Results The radiomics model showed superior predictive performance than the clinical-radiographic model in both internal and external validation sets (Az values, 0.884 vs. 0.810, p = 0.001; 0.924 vs. 0.855, p < 0.001, respectively). The combined model showed comparable predictive performance to the radiomics model (Az values, 0.887 vs. 0.884, p = 0.398; 0.917 vs. 0.924, p = 0.271, respectively). The clinical application value of the nomogram developed based on the Rad-score, maximum diameter, and lesion shape was confirmed, and DCA demonstrated that application of the Rad-score would be beneficial for radiologists predicting invasive lesions. Conclusions Radiomics has the potential as an independent diagnostic tool to predict the invasiveness of PSNs with solid components <6 mm.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengxiu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yan Zhong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Haijie Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Quan Zhu, ; Mei Yuan,
| | - Mei Yuan
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Quan Zhu, ; Mei Yuan,
| |
Collapse
|
144
|
A Survey on the Use of Artificial Intelligence by Clinicians in Dentistry and Oral and Maxillofacial Surgery. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081059. [PMID: 36013526 PMCID: PMC9412897 DOI: 10.3390/medicina58081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background: Applications of artificial intelligence (AI) in medicine and dentistry have been on the rise in recent years. In dental radiology, deep learning approaches have improved diagnostics, outperforming clinicians in accuracy and efficiency. This study aimed to provide information on clinicians' knowledge and perceptions regarding AI. Methods: A 21-item questionnaire was used to study the views of dentistry professionals on AI use in clinical practice. Results: In total, 302 questionnaires were answered and assessed. Most of the respondents rated their knowledge of AI as average (37.1%), below average (22.2%) or very poor (23.2%). The participants were largely convinced that AI would improve and bring about uniformity in diagnostics (mean Likert ± standard deviation 3.7 ± 1.27). Among the most serious concerns were the responsibility for machine errors (3.7 ± 1.3), data security or privacy issues (3.5 ± 1.24) and the divestment of healthcare to large technology companies (3.5 ± 1.28). Conclusions: Within the limitations of this study, insights into the acceptance and use of AI in dentistry are revealed for the first time.
Collapse
|
145
|
Sajid MI, Ahmed S, Waqar U, Tariq J, Chundrigarh M, Balouch SS, Abaidullah S. SARS-CoV-2: Has artificial intelligence stood the test of time. Chin Med J (Engl) 2022; 135:1792-1802. [PMID: 36195992 PMCID: PMC9521771 DOI: 10.1097/cm9.0000000000002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Artificial intelligence (AI) has proven time and time again to be a game-changer innovation in every walk of life, including medicine. Introduced by Dr. Gunn in 1976 to accurately diagnose acute abdominal pain and list potential differentials, AI has since come a long way. In particular, AI has been aiding in radiological diagnoses with good sensitivity and specificity by using machine learning algorithms. With the coronavirus disease 2019 pandemic, AI has proven to be more than just a tool to facilitate healthcare workers in decision making and limiting physician-patient contact during the pandemic. It has guided governments and key policymakers in formulating and implementing laws, such as lockdowns and travel restrictions, to curb the spread of this viral disease. This has been made possible by the use of social media to map severe acute respiratory syndrome coronavirus 2 hotspots, laying the basis of the "smart lockdown" strategy that has been adopted globally. However, these benefits might be accompanied with concerns regarding privacy and unconsented surveillance, necessitating authorities to develop sincere and ethical government-public relations.
Collapse
Affiliation(s)
- Mir Ibrahim Sajid
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Shaheer Ahmed
- Medlcal College, Islamabad Medical and Dental College, Main Murree Road, Islamabad, Pakistan
| | - Usama Waqar
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Javeria Tariq
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | - Samira Shabbir Balouch
- Oral and Maxillofacial Surgery, King Edward Medical University, Neela Gumbad, Lahore, Pakistan
| | - Sajid Abaidullah
- King Edward Medical University, Neela Gumbad, Lahore, Pakistan
- North Medical Ward, Mayo Hospital, Neela Gumbad, Lahore, Pakistan
| |
Collapse
|
146
|
Damigos G, Zacharaki EI, Zerva N, Pavlopoulos A, Chatzikyrkou K, Koumenti A, Moustakas K, Pantos C, Mourouzis I, Lourbopoulos A. Machine learning based analysis of stroke lesions on mouse tissue sections. J Cereb Blood Flow Metab 2022; 42:1463-1477. [PMID: 35209753 PMCID: PMC9274860 DOI: 10.1177/0271678x221083387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An unbiased, automated and reliable method for analysis of brain lesions in tissue after ischemic stroke is missing. Manual infarct volumetry or by threshold-based semi-automated approaches is laborious, and biased to human error or biased by many false -positive and -negative data, respectively. Thereby, we developed a novel machine learning, atlas-based method for fully automated stroke analysis in mouse brain slices stained with 2% Triphenyltetrazolium-chloride (2% TTC), named "StrokeAnalyst", which runs on a user-friendly graphical interface. StrokeAnalyst registers subject images on a common spatial domain (a novel mouse TTC- brain atlas of 80 average mathematical images), calculates pixel-based, tissue-intensity statistics (z-scores), applies outlier-detection and machine learning (Random-Forest) models to increase accuracy of lesion detection, and produces volumetry data and detailed neuroanatomical information per lesion. We validated StrokeAnalyst in two separate experimental sets using the filament stroke model. StrokeAnalyst detects stroke lesions in a rater-independent and reproducible way, correctly detects hemispheric volumes even in presence of post-stroke edema and significantly minimizes false-positive errors compared to threshold-based approaches (false-positive rate 1.2-2.3%, p < 0.05). It can process scanner-acquired, and even smartphone-captured or pdf-retrieved images. Overall, StrokeAnalyst surpasses all previous TTC-volumetry approaches and increases quality, reproducibility and reliability of stroke detection in relevant preclinical models.
Collapse
Affiliation(s)
- Gerasimos Damigos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece.,Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Evangelia I Zacharaki
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Nefeli Zerva
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Pavlopoulos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Chatzikyrkou
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyro Koumenti
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Constantinos Pantos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Lourbopoulos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,Neurointensive Care Unit, Schoen Klinik Bad Aibling, Germany
| |
Collapse
|
147
|
Vicini S, Bortolotto C, Rengo M, Ballerini D, Bellini D, Carbone I, Preda L, Laghi A, Coppola F, Faggioni L. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med 2022; 127:819-836. [DOI: 10.1007/s11547-022-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
|
148
|
Sajid MI, Ahmed S, Waqar U, Tariq J, Chundrigarh M, Balouch SS, Abaidullah S. Application in medicine: Has artificial intelligence stood the test of time. Chin Med J (Engl) 2022; Publish Ahead of Print:00029330-990000000-00090. [PMID: 35899989 DOI: 10.1097/cm9.00000000000020s8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Artificial intelligence (AI) has proven time and time again to be a game-changer innovation in every walk of life, including medicine. Introduced by Dr. Gunn in 1976 to accurately diagnose acute abdominal pain and list potential differentials, AI has since come a long way. In particular, AI has been aiding in radiological diagnoses with good sensitivity and specificity by using machine learning algorithms. With the coronavirus disease 2019 pandemic, AI has proven to be more than just a tool to facilitate healthcare workers in decision making and limiting physician-patient contact during the pandemic. It has guided governments and key policymakers in formulating and implementing laws, such as lockdowns and travel restrictions, to curb the spread of this viral disease. This has been made possible by the use of social media to map severe acute respiratory syndrome coronavirus 2 hotspots, laying the basis of the "smart lockdown" strategy that has been adopted globally. However, these benefits might be accompanied with concerns regarding privacy and unconsented surveillance, necessitating authorities to develop sincere and ethical government-public relations.
Collapse
Affiliation(s)
- Mir Ibrahim Sajid
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Shaheer Ahmed
- Medlcal College, Islamabad Medical and Dental College, Main Murree Road, Islamabad, Pakistan
| | - Usama Waqar
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Javeria Tariq
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | - Samira Shabbir Balouch
- Oral and Maxillofacial Surgery, King Edward Medical University, Neela Gumbad, Lahore, Pakistan
| | - Sajid Abaidullah
- King Edward Medical University, Neela Gumbad, Lahore, Pakistan
- North Medical Ward, Mayo Hospital, Neela Gumbad, Lahore, Pakistan
| |
Collapse
|
149
|
Assessing the Accuracy of an Artificial Intelligence-Based Segmentation Algorithm for the Thoracic Aorta in Computed Tomography Applications. Diagnostics (Basel) 2022; 12:diagnostics12081790. [PMID: 35892500 PMCID: PMC9330011 DOI: 10.3390/diagnostics12081790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
The aim was to evaluate the accuracy of a prototypical artificial intelligence-based algorithm for automated segmentation and diameter measurement of the thoracic aorta (TA) using CT. One hundred twenty-two patients who underwent dual-source CT were retrospectively included. Ninety-three of these patients had been administered intravenous iodinated contrast. Images were evaluated using the prototypical algorithm, which segments the TA and determines the corresponding diameters at predefined anatomical locations based on the American Heart Association guidelines. The reference standard was established by two radiologists individually in a blinded, randomized fashion. Equivalency was tested and inter-reader agreement was assessed using intra-class correlation (ICC). In total, 99.2% of the parameters measured by the prototype were assessable. In nine patients, the prototype failed to determine one diameter along the vessel. Measurements along the TA did not differ between the algorithm and readers (p > 0.05), establishing equivalence. Inter-reader agreement between the algorithm and readers (ICC ≥ 0.961; 95% CI: 0.940−0.974), and between the readers was excellent (ICC ≥ 0.879; 95% CI: 0.818−0.92). The evaluated prototypical AI-based algorithm accurately measured TA diameters at each region of interest independent of the use of either contrast utilization or pathology. This indicates that the prototypical algorithm has substantial potential as a valuable tool in the rapid clinical evaluation of aortic pathology.
Collapse
|
150
|
Li H, Bhatt M, Qu Z, Zhang S, Hartel MC, Khademhosseini A, Cloutier G. Deep learning in ultrasound elastography imaging: A review. Med Phys 2022; 49:5993-6018. [PMID: 35842833 DOI: 10.1002/mp.15856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/04/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Zhen Qu
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Shiming Zhang
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Martin C Hartel
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|