101
|
Micutkova L, Diener T, Li C, Rogowska-Wrzesinska A, Mueck C, Huetter E, Weinberger B, Grubeck-Loebenstein B, Roepstorff P, Zeng R, Jansen-Duerr P. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts. Mech Ageing Dev 2011; 132:468-79. [PMID: 21820463 PMCID: PMC3192261 DOI: 10.1016/j.mad.2011.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 01/10/2023]
Abstract
Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26 extracellular proteins with significantly different abundance in conditioned media from young and senescent fibroblasts. Among these was insulin-like growth factor binding protein-6 (IGFBP-6), which was chosen for further analysis. When IGFBP-6 gene expression was downregulated, cell proliferation was inhibited and apoptotic cell death was increased. Furthermore, downregulation of IGFBP-6 led to premature entry into cellular senescence. Since IGFBP-6 overexpression increased cellular lifespan, the data suggest that IGFBP-6, in contrast to other IGF binding proteins, is a negative regulator of cellular senescence in human fibroblasts.
Collapse
Affiliation(s)
- Lucia Micutkova
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Thomas Diener
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Chen Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Adelina Rogowska-Wrzesinska
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Christoph Mueck
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Eveline Huetter
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Beatrix Grubeck-Loebenstein
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Peter Roepstorff
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pidder Jansen-Duerr
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
- Corresponding author. Tel.: +43 512 583919 44; fax: +43 512 583919 8.
| |
Collapse
|
102
|
Kaeberlein M. Longevity genomics across species. Curr Genomics 2011; 8:73-8. [PMID: 18660849 DOI: 10.2174/138920207780368196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 01/01/2023] Open
Abstract
Unbiased genome-wide studies of longevity in S. cerevisiae and C. elegans have led to the identification of more than one hundred genes that determine life span in one or both organisms. Key pathways have been uncovered linking nutrient and growth factor cues to longevity. Quantitative measures of the degree to which aging is evolutionary conserved are now possible. A major challenge for the future is determining which of these genes play a similar role in human aging and using that information to develop therapies toward age-associated diseases.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
103
|
Chiba T, Yamaza H, Shimokawa I. Role of insulin and growth hormone/insulin-like growth factor-I signaling in lifespan extension: rodent longevity models for studying aging and calorie restriction. Curr Genomics 2011; 8:423-8. [PMID: 19412415 PMCID: PMC2647154 DOI: 10.2174/138920207783591726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 10/15/2007] [Accepted: 10/18/2007] [Indexed: 12/26/2022] Open
Abstract
Insulin/insulin-like growth factor-I (IGF-I) pathways are recognized as critical signaling pathways involved in the control of lifespans in lower organisms to mammals. Caloric restriction (CR) reduces plasma concentration of insulin, growth hormone (GH), and IGF-I. CR retards various age-dependent disorders such as nuerodegenerative diseases and extends lifespan in laboratory rodents. These beneficial effects of CR are partly mimicked in spontaneous or genetically engineered rodent models of reduced insulin and GH/IGF-I axis. Most of these long-living rodents show increased insulin sensitivity; however, recent study has revealed that some other rodents show normal or reduced insulin sensitivity. Thus, increased insulin sensitivity might be not prerequisite for lifespan extension in insulin/GH/IGF-I altered longevity rodent models. These results highlighted that, for lifespan extension, the intracellular signaling molecules of insulin/GH/IGF-I pathways might be more important than actual peripheral or systemic insulin action.
Collapse
Affiliation(s)
- T Chiba
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | | | | |
Collapse
|
104
|
Omodei D, Fontana L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 2011; 585:1537-42. [PMID: 21402069 PMCID: PMC3439843 DOI: 10.1016/j.febslet.2011.03.015] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
Abstract
Life expectancy in the world has increased dramatically during the last century; the number of older adults is expected to rise while the number of youths will decline in the near future. This demographic shift has considerable public health and economic implications since aging is associated with the development of serious chronic diseases. Calorie restriction (CR) is the most effective nutritional intervention for slowing aging and preventing chronic disease in rodents. In non-human and human primates, CR with adequate nutrition protects against abdominal obesity, diabetes, hypertension and cardiovascular diseases. Cancer morbidity and mortality are also diminished in CR monkeys, and data obtained from individuals practicing long-term CR show a reduction of metabolic and hormonal factors associated with increased cancer risk.
Collapse
Affiliation(s)
- Daniela Omodei
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nutrition and Aging, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
105
|
Minor RK, López M, Younts CM, Jones B, Pearson KJ, Anson RM, Diéguez C, de Cabo R. The arcuate nucleus and neuropeptide Y contribute to the antitumorigenic effect of calorie restriction. Aging Cell 2011; 10:483-92. [PMID: 21385308 PMCID: PMC3094497 DOI: 10.1111/j.1474-9726.2011.00693.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calorie restriction (CR) is known to have profound effects on tumor incidence. A typical consequence of CR is hunger, and we hypothesized that the neuroendocrine response to CR might in part mediate CR's antitumor effects. We tested CR under appetite suppression using two models: neuropeptide Y (NPY) knockout mice and monosodium glutamate-injected mice. While CR was protective in control mice challenged with a two-stage skin carcinogenesis model, papilloma development was neither delayed nor reduced by CR in the monosodium glutamate-treated and NPY knockout mice. Adiponectin levels were also not increased by CR in the appetite-suppressed mice. We propose that some of CR's beneficial effects cannot be separated from those imposed on appetite, and that NPY neurons in the arcuate nucleus of the hypothalamus are involved in the translation of reduced intake to downstream physiological and functional benefits.
Collapse
Affiliation(s)
- Robin K. Minor
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100 Room 9C218, Baltimore, Maryland, 21224, USA
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Caitlin M. Younts
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100 Room 9C218, Baltimore, Maryland, 21224, USA
| | - Bruce Jones
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100 Room 9C218, Baltimore, Maryland, 21224, USA
| | - Kevin J. Pearson
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100 Room 9C218, Baltimore, Maryland, 21224, USA
- Graduate Center for Nutritional Sciences, University of Kentucky, C.T. Wethington Bldg, Rm 591, Lexington, KY 40536, USA
| | - R. Michael Anson
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100 Room 9C218, Baltimore, Maryland, 21224, USA
- CCBC School of Mathematics and Science, 7200 Sollers Point Road, Room E210B, Baltimore, MD, 21222
| | - Carlos Diéguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100 Room 9C218, Baltimore, Maryland, 21224, USA
| |
Collapse
|
106
|
Baugh LR, Kurhanewicz N, Sternberg PW. Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans. PLoS One 2011; 6:e18086. [PMID: 21445366 PMCID: PMC3062572 DOI: 10.1371/journal.pone.0018086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/24/2011] [Indexed: 12/15/2022] Open
Abstract
Insulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
107
|
Keipert S, Voigt A, Klaus S. Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice. Aging Cell 2011; 10:122-36. [PMID: 21070590 PMCID: PMC3042149 DOI: 10.1111/j.1474-9726.2010.00648.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about how diet and energy metabolism interact in determination of lifespan under ad libitum feeding. From 12 weeks of age until death, male and female wild-type (WT) and transgenic (TG) mice with increased skeletal muscle mitochondrial uncoupling (HSA-mUCP1 mice) were fed one of three different semisynthetic diets differing in macronutrient ratio: control (high-carbohydrate/low-fat-HCLF) and two high-fat diets: high-carbohydrate/high-fat (HCHF), and low-carbohydrate/high-fat (LCHF). Compared to control and LCHF, HCHF feeding rapidly and significantly increased body fat content in WT. Median lifespan of WT was decreased by 33% (HCHF) and 7% (LCHF) compared to HCLF. HCHF significantly increased insulin resistance (HOMA) of WT from 24 weeks on compared to control. TG mice had lower lean body mass and increased energy expenditure, insulin sensitivity, and maximum lifespan (+10%) compared to WT. They showed a delayed development of obesity on HCHF but reached similar maximum adiposity as WT. TG median lifespan was only slightly reduced by HCHF (−7%) and unaffected by LCHF compared to control. Correlation analyses showed that decreased longevity was more strongly linked to a high rate of fat gain than to adiposity itself. Furthermore, insulin resistance was negatively and weight-specific energy expenditure was positively correlated with longevity. We conclude that (i) dietary macronutrient ratios strongly affected obesity development, glucose homeostasis, and longevity, (ii) that skeletal muscle mitochondrial uncoupling alleviated the detrimental effects of high-fat diets, and (iii) that early imbalances in energy homeostasis leading to increased insulin resistance are predictive for a decreased lifespan.
Collapse
|
108
|
Chistyakova OV. Signaling pathway of insulin and insulin-like growth factor 1 (IGF-1) as a potential regulator of lifespan. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093008010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
109
|
Hsieh CC, Kuro-o M, Rosenblatt KP, Brobey R, Papaconstantinou J. The ASK1-Signalosome regulates p38 MAPK activity in response to levels of endogenous oxidative stress in the Klotho mouse models of aging. Aging (Albany NY) 2011; 2:597-611. [PMID: 20844314 PMCID: PMC2984608 DOI: 10.18632/aging.100194] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) and elevated levels of p38 MAPK activity accelerate physiological aging. This emphasizes the importance of understanding the molecular mechanism(s) that link ROS production to activation of the p38 mediated promotion of aging, longevity, and resistance to oxidative stress. We examined Klotho(-/-) (elevated ROS) and Klotho overexpressing mice (low ROS and resistance to ROS) to determine whether the ROS-sensitive apoptosis signal-regulating kinase (ASK1)-signalosome -> p38 MAPK pathway plays a role in the accelerated aging of Klotho(-/-), and resistance to oxidative stress and extended lifespan in the Klotho overexpressing models. Our results suggest that increased endogenous ROS generated by Klotho(-/-) and resistance to oxidative stress in Klotho overexpression are linked to the regulation of ASK1-signalosome -> p38 activity. We propose that (a) the ASK1-signalosome -> p38 MAPK pathway is activated by oxidative stress due to ablation of the Klotho gene; (b) increased longevity by Klotho overexpression is linked to suppression of the ASK1-signalosome-p38 MAPK activity; (c) the ROS-responsive ASK1-signalosome regulates physiological aging via its regulation of p38 MAPK, through a mechanism that balances the levels of inhibitory vs. activating ASK1-signalosomes. We conclude that the Klotho suppressor-of-aging activity is linked to the ASK1-signalsome, a physiological ROS-sensitive signaling center.
Collapse
Affiliation(s)
- C-C Hsieh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
110
|
Laschober GT, Ruli D, Hofer E, Muck C, Carmona-Gutierrez D, Ring J, Hutter E, Ruckenstuhl C, Micutkova L, Brunauer R, Jamnig A, Trimmel D, Herndler-Brandstetter D, Brunner S, Zenzmaier C, Sampson N, Breitenbach M, Fröhlich KU, Grubeck-Loebenstein B, Berger P, Wieser M, Grillari-Voglauer R, Thallinger GG, Grillari J, Trajanoski Z, Madeo F, Lepperdinger G, Jansen-Dürr P. Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell 2010; 9:1084-97. [PMID: 20883526 PMCID: PMC2997327 DOI: 10.1111/j.1474-9726.2010.00637.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2010] [Indexed: 01/28/2023] Open
Abstract
To identify new genetic regulators of cellular aging and senescence, we performed genome-wide comparative RNA profiling with selected human cellular model systems, reflecting replicative senescence, stress-induced premature senescence, and distinct other forms of cellular aging. Gene expression profiles were measured, analyzed, and entered into a newly generated database referred to as the GiSAO database. Bioinformatic analysis revealed a set of new candidate genes, conserved across the majority of the cellular aging models, which were so far not associated with cellular aging, and highlighted several new pathways that potentially play a role in cellular aging. Several candidate genes obtained through this analysis have been confirmed by functional experiments, thereby validating the experimental approach. The effect of genetic deletion on chronological lifespan in yeast was assessed for 93 genes where (i) functional homologues were found in the yeast genome and (ii) the deletion strain was viable. We identified several genes whose deletion led to significant changes of chronological lifespan in yeast, featuring both lifespan shortening and lifespan extension. In conclusion, an unbiased screen across species uncovered several so far unrecognized molecular pathways for cellular aging that are conserved in evolution.
Collapse
Affiliation(s)
- Gerhard T Laschober
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Doris Ruli
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Edith Hofer
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Christoph Muck
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Didac Carmona-Gutierrez
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Julia Ring
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Eveline Hutter
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Christoph Ruckenstuhl
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Lucia Micutkova
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Regina Brunauer
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Angelika Jamnig
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Daniela Trimmel
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | | | - Stefan Brunner
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Christoph Zenzmaier
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Natalie Sampson
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | | | - Kai-Uwe Fröhlich
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | | | - Peter Berger
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Matthias Wieser
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Regina Grillari-Voglauer
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Johannes Grillari
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
- Biocenter, Section for Bioinformatics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Frank Madeo
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Günter Lepperdinger
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| |
Collapse
|
111
|
Klopfleisch R, Hvid H, Klose P, Da Costa A, Gruber AD. Insulin receptor is expressed in normal canine mammary gland and benign adenomas but decreased in metastatic canine mammary carcinomas similar to human breast cancer. Vet Comp Oncol 2010; 8:293-301. [DOI: 10.1111/j.1476-5829.2009.00232.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
112
|
Sloane LB, Stout JT, Austad SN, McClearn GE. Tail tendon break time: a biomarker of aging? J Gerontol A Biol Sci Med Sci 2010; 66:287-94. [PMID: 21059835 DOI: 10.1093/gerona/glq196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Research has attempted to identify biomarkers of aging that are predictive of longevity and specific age-related changes during animal life span. Tail tendon break time (TTBT), one presumed biomarker, measures collagen cross-linking, known to increase with age. Significant differences in the rate of increase of TTBT with age have been reported between mouse strains and animal species. We measured both TTBT and longevity in C57BL/6J, DBA/2J, and 23 recombinant inbred (RI) strains (B×D RIs), with TTBT measured at 200, 500, and 800 days of age. Longevity demonstrated considerable variability among these strains (116-951 days). TTBT, also highly variable, increased significantly with age in both sexes and all genotypes. Neither TTBT nor its rate of change correlated significantly with life span. There were suggestive trends for rate of TTBT change to correlate with male longevity and strain longevity to correlate with female TTBT. We conclude that for the range of genetic variation found among these mouse genotypes, TTBT cannot be considered a robust biomarker of longevity.
Collapse
Affiliation(s)
- Lauren B Sloane
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, STCBM Room 3.325, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA.
| | | | | | | |
Collapse
|
113
|
Sun LY, Bokov AF, Richardson A, Miller RA. Hepatic response to oxidative injury in long-lived Ames dwarf mice. FASEB J 2010; 25:398-408. [PMID: 20826540 DOI: 10.1096/fj.10-164376] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple stress resistance pathways were evaluated in the liver of Ames dwarf mice before and after exposure to the oxidative toxin diquat, seeking clues to the exceptional longevity conferred by this mutation. Before diquat treatment, Ames dwarf mice, compared with nonmutant littermate controls, had 2- to 6-fold higher levels of expression of mRNAs for immediate early genes and 2- to 5-fold higher levels of mRNAs for genes dependent on the transcription factor Nrf2. Diquat led to a 2-fold increase in phosphorylation of the stress kinase ERK in control (but not Ames dwarf) mice and to a 50% increase in phosphorylation of the kinase JNK2 in Ames dwarf (but not control) mice. Diquat induction of Nrf2 protein was higher in dwarf mice than in controls. Of 6 Nrf2-responsive genes evaluated, 4 (HMOX, NQO-1, MT-1, and MT-2) remained 2- to 10-fold lower in control than in dwarf liver after diquat, and the other 2 (GCLM and TXNRD) reached levels already seen in dwarf liver at baseline. Thus, livers of Ames dwarf mice differ systematically from controls in multiple stress resistance pathways before and after exposure to diquat, suggesting mechanisms for stress resistance and extended longevity in Ames dwarf mice.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-0940, USA
| | | | | | | |
Collapse
|
114
|
Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci U S A 2010; 107:16268-73. [PMID: 20805469 DOI: 10.1073/pnas.1002696107] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zmpste24 (also called FACE-1) is a metalloproteinase involved in the maturation of lamin A, an essential component of the nuclear envelope. Zmpste24-deficient mice exhibit multiple defects that phenocopy human accelerated aging processes such as Hutchinson-Gilford progeria syndrome. In this work, we report that progeroid Zmpste24(-/-) mice present profound transcriptional alterations in genes that regulate the somatotroph axis, together with extremely high circulating levels of growth hormone (GH) and a drastic reduction in plasma insulin-like growth factor 1 (IGF-1). We also show that recombinant IGF-1 treatment restores the proper balance between IGF-1 and GH in Zmpste24(-/-) mice, delays the onset of many progeroid features, and significantly extends the lifespan of these progeroid animals. Our findings highlight the importance of IGF/GH balance in longevity and may be of therapeutic interest for devastating human progeroid syndromes associated with nuclear envelope abnormalities.
Collapse
|
115
|
Hsu HC, Mountz JD. Metabolic syndrome, hormones, and maintenance of T cells during aging. Curr Opin Immunol 2010; 22:541-8. [PMID: 20591642 PMCID: PMC2937064 DOI: 10.1016/j.coi.2010.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/17/2010] [Accepted: 05/30/2010] [Indexed: 12/26/2022]
Abstract
Although the phenotype of T-cell senescence has been extensively investigated, few studies have analyzed the factors that promote the generation and maintenance of naïve and memory T cells that exist throughout the lifespan of the individuals. Unlike senescent T cells, naïve and memory T cells are able to participate in useful immune responses as well as respond to new activation. Hormones such as leptin, ghrelin, insulin-like growth factor 1, IGFBP3, and cytokines, including IL-7, regulate both thymopoiesis and maintenance of naïve T cells in the periphery. Although chronic viruses such as cytomegalovirus (CMV) are thought to drive T-cell senescence, other microbes may be important for the maintenance of nonsenescent T cells. Microbiota of the gut can induce metabolic syndrome as well as modulate T-cell development into specific subpopulations of effector cells. Finally, T-cell generation, maintenance, and apoptosis depend upon pathways of energy utilization within the T cells, which parallel those that regulate overall metabolism. Therefore, better understanding of metabolic syndrome, T-cell metabolism, hormones, and microbiota may lead to new insights into the maintenance of proper immune responses in old age.
Collapse
Affiliation(s)
- Hui-Chen Hsu
- Department of Medicine, University of Alabama at Birmingham, Alabama 35294, U.S.A
| | - John D. Mountz
- Department of Medicine, University of Alabama at Birmingham, Alabama 35294, U.S.A
- Veterans Administration Medical Center, Birmingham, Alabama 35294, U.S.A
| |
Collapse
|
116
|
Chen JH, Tarry-Adkins JL, Matharu K, Yeo GSH, Ozanne SE. Maternal protein restriction affects gene expression profiles in the kidney at weaning with implications for the regulation of renal function and lifespan. Clin Sci (Lond) 2010; 119:373-84. [PMID: 20528770 DOI: 10.1042/cs20100230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Nutritionally induced alterations in early growth can influence health and disease in later adult life. We have demonstrated previously that low birthweight resulting from maternal protein restriction during pregnancy followed by accelerated growth in rodents was associated with shortened lifespan, whereas protein restriction and slow growth during lactation increased lifespan. Thus early life events can also have a long lasting impact on longevity. In the present study, we show that long-lived PLP (postnatal low protein) mice were protected from developing albuminuria, whereas short-lived recuperated mice demonstrated an age-dependent increase in albuminuria in old age. Microarray analysis of kidneys from 21-day-old mice revealed that gene expression profiles were differentially affected depending on whether protein restriction was imposed during pregnancy or lactation. The differentially expressed genes were involved in diverse biological functions such as cytoprotective functions, vitamin D synthesis, protein homoeostasis, regulation of antioxidant enzymes and cellular senescence. Significantly, up-regulation of Hmox1 (haem oxygenase 1) in kidneys from PLP mice suggests that tissues of long-lived mice are equipped with a better cytoprotective function. In contrast, up-regulation of Nuak2 (NUAK family, SNF1-like kinase 2) and down-regulation of Lonp2 (Lon peptidase 2), Foxo3a (forkhead box O3a), Sod1 (copper/zinc superoxide dismutase) and Sesn1 (sestrin 1) in the kidneys of recuperated offspring suggest that protein homoeostasis and resistance to oxidative stress are compromised, leading to accelerated cellular senescence in these shorter-lived mice.
Collapse
Affiliation(s)
- Jian-Hua Chen
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|
117
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
118
|
Riquelme R, Cediel R, Contreras J, la Rosa Lourdes RD, Murillo-Cuesta S, Hernandez-Sanchez C, Zubeldia JM, Cerdan S, Varela-Nieto I. A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Front Neuroanat 2010; 4:27. [PMID: 20661454 PMCID: PMC2907134 DOI: 10.3389/fnana.2010.00027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/01/2010] [Indexed: 01/07/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or ameliorate age-related hearing loss.
Collapse
Affiliation(s)
- Raquel Riquelme
- Instituto de Investigaciones Biomedicas "Alberto Sols", CSIC-UAM Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Speakman JR, Król E. The heat dissipation limit theory and evolution of life histories in endotherms--time to dispose of the disposable soma theory? Integr Comp Biol 2010; 50:793-807. [PMID: 21558242 DOI: 10.1093/icb/icq049] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major factor influencing life-history strategies of endotherms is body size. Larger endotherms live longer, develop more slowly, breed later and less frequently, and have fewer offspring per attempt at breeding. The classical evolutionary explanation for this pattern is that smaller animals experience greater extrinsic mortality, which favors early reproduction at high intensity. This leads to a short lifespan and early senescence by three suggested mechanisms. First, detrimental late-acting mutations cannot be removed because of the low force of selection upon older animals (mutation accumulation). Second, genes that promote early reproduction will be favored in small animals, even if they have later detrimental effects (antagonistic pleiotropy). Third, small animals may be forced to reduce their investment in longevity assurance mechanisms (LAMs) in favor of investment in reproduction (the disposable soma theory, DST). The DST hinges on three premises: that LAMs exist, that such LAMs are energetically expensive and that the supply of energy is limited. By contrast, the heat dissipation limit (HDL) theory provides a different conceptual perspective on the evolution of life histories in relation to body size. We suggest that rather than being limited, energy supplies in the environment are often unlimited, particularly when animals are breeding, and that animals are instead constrained by their maximum capacity to dissipate body heat, generated as a by-product of their metabolism. Because heat loss is fundamentally a surface-based phenomenon, the low surface-to-volume ratio of larger animals generates significant problems for dissipating the body heat associated with reproductive effort, which then limits their current reproductive investment. We suggest that this is the primary reason why fecundity declines as animal size increases. Because large animals are constrained by their capacity for heat dissipation, they have low reproductive rates. Consequently, only those large animals living in habitats with low extrinsic mortality could survive leading to the familiar patterns of life-history trade-offs and their links to extrinsic mortality rates. The HDL theory provides a novel mechanism underpinning the evolution of life history and ageing in endotherms, and makes a number of testable predictions that directly contrast with the predictions arising from the DST.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue 2, Aberdeen AB242TZ, Scotland, UK.
| | | |
Collapse
|
120
|
Abstract
BACKGROUND Calorie Restriction (CR) research has expanded rapidly over the past few decades and CR remains the most highly reproducible, environmental intervention to improve health and extend lifespan in animal studies. Although many model organisms have consistently demonstrated positive responses to CR, it remains to be shown whether CR will extend lifespan in humans. Additionally, the current environment of excess caloric consumption and high incidence of overweight/obesity illustrate the improbable nature of the long-term adoption of a CR lifestyle by a significant proportion of the human population. Thus, the search for substances that can reproduce the beneficial physiologic responses of CR without a requisite calorie intake reduction, termed CR mimetics (CRMs), has gained momentum. MATERIAL AND METHODS Recent articles describing health and lifespan results of CR in nonhuman primates and short-term human studies are discussed. Additional consideration is given to the rapidly expanding search for CRMs. RESULTS The first results from a long-term, randomized, controlled CR study in nonhuman primates showing statistically significant benefits on longevity have now been reported. Additionally, positive results from short-term, randomized, controlled CR studies in humans are suggestive of potential health and longevity gains, while test of proposed CRMs (including rapamycin, resveratrol, 2-deoxyglucose and metformin) have shown both positive and mixed results in rodents. CONCLUSION Whether current positive results will translate into longevity gains for humans remains an open question. However, the apparent health benefits that have been observed with CR suggest that regardless of longevity gains, the promotion of healthy ageing and disease prevention may be attainable.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
121
|
Abstract
When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
122
|
Rosa CED, Kuradomi RY, Almeida DV, Lannes CFC, Figueiredo MDA, Dytz AG, Fonseca DB, Marins LF. GH overexpression modifies muscle expression of anti-oxidant enzymes and increases spinal curvature of old zebrafish. Exp Gerontol 2010; 45:449-56. [PMID: 20338232 DOI: 10.1016/j.exger.2010.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 03/03/2010] [Accepted: 03/17/2010] [Indexed: 01/13/2023]
Abstract
Growth hormone (GH) excess causes an increment in the metabolic rate and in reactive oxygen species generation, which accelerate the ageing process in mammals. Considering that there is no information on this subject in fish, the aim of the present study was to evaluate the excess GH effect on senescence in a zebrafish (Danio rerio) transgenic model. In order to reach this objective, we analyzed the phenotype of spinal curvature and expression of genes related to the anti-oxidant defense system and myogenesis in muscle of 8 and 30 months old GH-transgenic males. Gene expression analyses revealed that both superoxide dismutase isoforms were down-regulated only in 30 months old animals, while glutamate cysteine ligase was down-regulated in GH-transgenic zebrafish. Acceleration of the spinal curvature and a reduction in the expression of miogenin at both ages and MyoD in the old fish were also observed. Although neurolipofuscin accumulation was not significant in GH-transgenic zebrafish, the estimation of maximum longevity based on the von Bertalanffy growth function was significantly lower in this group. The results obtained here indicate that GH overexpression reduces the transcription of anti-oxidant defense system and myogenesis-related genes, which probably accelerates senescence in the zebrafish transgenic model used.
Collapse
|
123
|
Amdam GV, Fennern E, Baker N, Rascón B. Honeybee associative learning performance and metabolic stress resilience are positively associated. PLoS One 2010; 5:e9740. [PMID: 20305818 PMCID: PMC2840029 DOI: 10.1371/journal.pone.0009740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability), educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. RESULTS We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS) function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster. CONCLUSIONS Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby, is not evidence of a shared biology that will give insight about systems integrity in people. Yet, the means to resolve difficult research questions often come from findings in distant areas of science while the model systems that turn out to be valuable are sometimes the least predictable. Our results add to recent findings indicating that honeybees can become instrumental to understanding how metabolic biology influences life outcomes.
Collapse
Affiliation(s)
- Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
| | | | | | | |
Collapse
|
124
|
Barbieri M, Paolisso G, Kimura M, Gardner JP, Boccardi V, Papa M, Hjelmborg JV, Christensen K, Brimacombe M, Nawrot TS, Staessen JA, Pollak MN, Aviv A. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev 2010; 130:771-6. [PMID: 19913048 DOI: 10.1016/j.mad.2009.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/06/2009] [Accepted: 10/24/2009] [Indexed: 01/21/2023]
Abstract
Mutations that inhibit the insulin-like growth factor-1 (IGF-1) extend the lifespan of worms, flies and mice. However, it appears that relatively low circulating levels of IGF-1 in humans are associated with aging-related diseases and diminished longevity. As leukocyte telomere length (LTL) is ostensibly a biomarker of human aging, we examined the relationship between LTL and blood IGF-1 in a healthy cohort. Our sample comprised 476 healthy, unrelated Caucasians (208 men and 268 women), aged 16-104 years, living in the West Coast of Southern Italy. We measured LTL by Southern blots and IGF-1 by enzyme-linked immunoassay. Both IGF-1 and LTL diminished with age (IGF-1, r=-0.601, P<0.001; LTL, r=-0.706, P<0.001). Age-adjusted LTL was positively associated with IGF-1 level throughout the age range of the cohort (r=0.270, P<0.001). IGF-1 accounted for about 10% of the inter-individual variation in LTL over and above the effect of age. Our findings suggest that both circulating IGF-1 and LTL are indices of healthy aging in humans. Further research will be necessary to establish whether LTL will ultimately be used in clinical settings as an index of healthy aging.
Collapse
Affiliation(s)
- Michelangela Barbieri
- Department of Geriatric Medicine and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, Hwang D, Cohen P, Bianchi G, Longo VD. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res 2010; 70:1564-72. [PMID: 20145127 PMCID: PMC2836202 DOI: 10.1158/0008-5472.can-09-3228] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the insulin-like growth factor-I (IGF-I) receptor have been widely studied for their ability to enhance the killing of a variety of malignant cells, but whether IGF-I signaling differentially protects the host and cancer cells against chemotherapy is unknown. Starvation can protect mice, but not cancer cells, against high-dose chemotherapy [differential stress resistance (DSR)]. Here, we offer evidence that IGF-I reduction mediates part of the starvation-dependent DSR. A 72-hour fast in mice reduced circulating IGF-I by 70% and increased the level of the IGF-I inhibitor IGFBP-1 by 11-fold. LID mice, with a 70% to 80% reduction in circulating IGF-I levels, were protected against three of four chemotherapy drugs tested. Restoration of IGF-I was sufficient to reverse the protective effect of fasting. Sixty percent of melanoma-bearing LID mice treated with doxorubicin achieved long-term survival whereas all control mice died of either metastases or chemotherapy toxicity. Reducing IGF-I/IGF-I signaling protected primary glia, but not glioma cells, against cyclophosphamide and protected mouse embryonic fibroblasts against doxorubicin. Further, S. cerevisiae lacking homologs of IGF-I signaling proteins were protected against chemotherapy-dependent DNA damage in a manner that could be reversed by expressing a constitutively active form of Ras. We conclude that normal cells and mice can be protected against chemotherapy-dependent damage by reducing circulating IGF-I levels and by a mechanism that involves downregulation of proto-oncogene signals.
Collapse
Affiliation(s)
- Changhan Lee
- Andrus Gerontology Center, Dept. of Biological Sciences and Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191
| | - Fernando M. Safdie
- Andrus Gerontology Center, Dept. of Biological Sciences and Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191
| | | | - Min Wei
- Andrus Gerontology Center, Dept. of Biological Sciences and Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191
| | - Federica Madia
- Andrus Gerontology Center, Dept. of Biological Sciences and Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191
| | - Edoardo Parrella
- Andrus Gerontology Center, Dept. of Biological Sciences and Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191
| | - David Hwang
- Pediatric Endocrinology, UCLA, Los Angeles, CA 90095
| | - Pinchas Cohen
- Pediatric Endocrinology, UCLA, Los Angeles, CA 90095
| | - Giovanna Bianchi
- Laboratory of Oncology, Giannina Gaslini Institute, Genova, Italy 16150
| | - Valter D. Longo
- Andrus Gerontology Center, Dept. of Biological Sciences and Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191
| |
Collapse
|
126
|
Redman LM, Veldhuis JD, Rood J, Smith SR, Williamson D, Ravussin E. The effect of caloric restriction interventions on growth hormone secretion in nonobese men and women. Aging Cell 2010; 9:32-9. [PMID: 19878147 DOI: 10.1111/j.1474-9726.2009.00530.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age-associated decline in growth hormone (GH), insulin-like growth factor (IGF)-1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty-three young (36.8 +/- 1.0 years), overweight (BMI 27.8 +/- 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00-08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: -1 +/- 1%, CR: -10 +/- 1%, CR + EX: -10 +/- 1%, LCD: -14 +/- 1%), fat mass (control: -2 +/- 3%, CR: -24 +/- 3%, CR + EX: -25 +/- 3%, LCD: -31 +/- 2%) and visceral fat (control: -2 +/- 4%, CR: -28 +/- 4%, CR + EX: -27 +/- 3%, LCD: -36 +/- 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 +/- 13%, LCD: 27 +/- 22%, P < 0.05) and amplitude (CR + EX: 34 +/- 14%, LCD: 30 +/- 20%, P < 0.05) but not to changes in secretory burst frequency or GH half-life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF-1 concentrations were increased only in CR + EX (10 +/- 7%, P < 0.05) and LCD (19 +/- 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF-1 in nonobese men and women.
Collapse
Affiliation(s)
- Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | | | | | | | | |
Collapse
|
127
|
Sun LY, Steinbaugh MJ, Masternak MM, Bartke A, Miller RA. Fibroblasts from long-lived mutant mice show diminished ERK1/2 phosphorylation but exaggerated induction of immediate early genes. Free Radic Biol Med 2009; 47:1753-61. [PMID: 19786089 PMCID: PMC2783454 DOI: 10.1016/j.freeradbiomed.2009.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 01/02/2023]
Abstract
Skin-derived fibroblasts from long-lived mutant mice, including the Snell dwarf mice and mice defective in growth hormone receptor (GHRKO mice), are resistant to death induced by oxidative stress or by UV light, but the molecular mechanism for their stress resistance is unknown. This study shows that phosphorylation of the stress-activated protein kinases ERK1/2 induced by peroxide, cadmium, or paraquat is attenuated in cells from these mice. Induction of ERK phosphorylation by UV light was not altered in the Snell dwarf cells, and neither JNK nor p38 kinase showed increased phosphorylation in response to any of the stresses tested. Surprisingly, stress-induced elevation of mRNA for certain immediate early genes (Egr-1 and Fos) was higher in Snell-derived cells than in control cells, despite the evidence of lower ERK phosphorylation. Thus cells from Snell dwarf mice differ from controls in two ways: (a) lower induction of ERK1/2 phosphorylation and (b) increased expression of some ERK-dependent immediate early genes. These alterations in kinase pathways may contribute to the resistance of these cells to lethal injury.
Collapse
Affiliation(s)
- Liou Y. Sun
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI
| | - Michael J. Steinbaugh
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI
| | - Michal M. Masternak
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI
- Ann Arbor VA Medical Center, Ann Arbor, MI
- Correspondence: Richard A. Miller, University of Michigan Geriatrics Center, Room 3001 BSRB Box 2200, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0940, USA. Tel.: 734 936 2122; fax: 734 647 9749;
| |
Collapse
|
128
|
Nar A, Demirtas E, Ayhan A, Gurlek A. Effects of bilateral ovariectomy and estrogen replacement therapy on serum leptin, sex hormone binding globulin and insulin like growth factor-I levels. Gynecol Endocrinol 2009; 25:773-8. [PMID: 19905995 DOI: 10.3109/09513590903159532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies evaluating the effect of estrogen replacement therapy (ERT) on leptin levels are contradictory. The aim of this study was to investigate effects of bilateral ovariectomy and ERT on serum leptin levels and anthropometric measurements as well as interaction among leptin, sex hormone binding globulin (SHBG), and insulin like growth factor-I (IGF-I) in premenopausal women after bilateral ovariectomy. Twenty-four premenopausal women who undergo bilateral overiectomy were divided into two groups based on whether they received hormonal treatment postoperatively. The studied parameters were evaluated in both groups preoperatively and during the fourth and eighth weeks postoperatively. Serum leptin, testosterone, prolactin, insulin, IGF-1 levels, BMI, HOMA-IR, and waist-to-hip ratio values did not change in both groups at all times. In the estradiol group, serum SHBG concentrations were significantly higher on weeks 8 compared with control group and basal values (p = 0.03 and 0.014, respectively). Leptin levels showed a positive linear correlation with BMI in all groups and at all times evaluated (r = 0.80, p < 0.01 for controls and r = 0.62, p < 0.01 for women treated with 17beta-estradiol) and with insulin in estradiol group on weeks 4 (r = 0.755, p < 0.05). No correlation was found between leptin and estradiol, testosterone, prolactin, SHBG, IGF-1 levels, and anthropometric variables at all times. Leptin levels do not show modification 8 weeks after bilateral ovariectomy and under ERT, suggesting that estrogens do not have a stimulatory action on leptin in humans. Although needing confirmation by a longer study, our findings suggest that IGF-I system and SHBG did not regulate leptin and vice versa and ERT do not have any effect on leptin, SHBG, and IGF-I.
Collapse
Affiliation(s)
- Asli Nar
- Department of Endocrinology and Metabolism, Baskent University Faculty of Medicine, Ankara, Turkey.
| | | | | | | |
Collapse
|
129
|
Eleswarapu S, Ge X, Wang Y, Yu J, Jiang H. Growth hormone-activated STAT5 may indirectly stimulate IGF-I gene transcription through HNF-3{gamma}. Mol Endocrinol 2009; 23:2026-37. [PMID: 19819986 DOI: 10.1210/me.2009-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IGF-I is abundantly expressed in the liver under the stimulation of GH. We showed previously that expression of hepatocyte nuclear factor (HNF)-3gamma, a liver-enriched transcription factor, was strongly stimulated by GH in bovine liver. In this study, we determined whether GH-increased HNF-3gamma might contribute to GH stimulation of IGF-I gene expression in bovine liver and the underlying mechanism. A sequence analysis of the bovine IGF-I promoter revealed three putative HNF-3 binding sites, which all appear to be conserved in mammals. Chromatin immunoprecipitation assays showed that GH injection increased binding of HNF-3gamma to the IGF-I promoter in bovine liver. Gel-shift assays indicated that one of the three putative HNF-3 binding sites, HNF-3 binding site 1, bound to the HNF-3gamma protein from bovine liver with high affinity. Cotransfection analyses demonstrated that this HNF-3 binding site was essential for the transcriptional response of the IGF-I promoter to HNF-3gamma in CHO cells and to GH in primary mouse hepatocytes. Using similar approaches, we found that GH increased binding of the signal transducer and activator of transcription 5 (STAT5) to the HNF-3gamma promoter in bovine liver, that this binding occurred at a conserved STAT5 binding site, and that this STAT5 binding site was necessary for the HNF-3gamma promoter to respond to GH. Taken together, these results suggest that in addition to direct action, GH-activated STAT5 may also indirectly stimulate IGF-I gene transcription in the liver by directly enhancing the expression of the HNF-3gamma gene.
Collapse
Affiliation(s)
- Satyanarayana Eleswarapu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | | | | | | | | |
Collapse
|
130
|
Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner A, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 2009; 8:460-72. [PMID: 19489743 PMCID: PMC3652804 DOI: 10.1111/j.1474-9726.2009.00493.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The insulin/IGF1 signaling pathways affect lifespan in several model organisms, including worms, flies and mice. To investigate whether common genetic variation in this pathway influences lifespan in humans, we genotyped 291 common variants in 30 genes encoding proteins in the insulin/IGF1 signaling pathway in a cohort of elderly Caucasian women selected from the Study of Osteoporotic Fractures (SOF). The cohort included 293 long-lived cases (lifespan > or = 92 years (y), mean +/- standard deviation (SD) = 95.3 +/- 2.2y) and 603 average-lifespan controls (lifespan < or = 79y, mean = 75.7 +/- 2.6y). Variants were selected for genotyping using a haplotype-tagging approach. We found a modest excess of variants nominally associated with longevity. Nominally significant variants were then replicated in two additional Caucasian cohorts including both males and females: the Cardiovascular Health Study and Ashkenazi Jewish Centenarians. An intronic single nucleotide polymorphism in AKT1, rs3803304, was significantly associated with lifespan in a meta-analysis across the three cohorts (OR = 0.78 95%CI = 0.68-0.89, adjusted P = 0.043); two intronic single nucleotide polymorphisms in FOXO3A demonstrated a significant lifespan association among women only (rs1935949, OR = 1.35, 95%CI = 1.15-1.57, adjusted P = 0.0093). These results demonstrate that common variants in several genes in the insulin/IGF1 pathway are associated with human lifespan.
Collapse
Affiliation(s)
- Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
- Institute for Human Genetics, University of California, San Francisco, CA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, CA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, CA
| | - Andrew Sung
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Catherine Chu
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Justin Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Alex Joyner
- Scripps Genomic Medicine, The Scripps Translational Science Institute, and Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Nicholas J. Schork
- Scripps Genomic Medicine, The Scripps Translational Science Institute, and Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Wen-Chi Hsueh
- Institute for Human Genetics, University of California, San Francisco, CA
- Department of Medicine, University of California, San Francisco, CA
| | - Alexander P. Reiner
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA
- Center for Health Studies, Group Health, Seattle, WA
| | - Gil Atzmon
- Institute for Aging Research and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Nir Barzilai
- Institute for Aging Research and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | | | - Warren S. Browner
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, CA
- Department of Medicine, University of California, San Francisco, CA
| |
Collapse
|
131
|
Murga M, Bunting S, Montaña MF, Soria R, Mulero F, Cañamero M, Lee Y, McKinnon PJ, Nussenzweig A, Fernandez-Capetillo O. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 2009; 41:891-8. [PMID: 19620979 PMCID: PMC2902278 DOI: 10.1038/ng.420] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/23/2009] [Indexed: 01/01/2023]
Abstract
Although DNA damage is considered a driving force for aging, the nature of the damage that arises endogenously remains unclear. Replicative stress, a source of endogenous DNA damage, is prevented primarily by the ATR kinase. We have developed a mouse model of Seckel syndrome characterized by a severe deficiency in ATR. Seckel mice show high levels of replicative stress during embryogenesis, when proliferation is widespread, but this is reduced to marginal amounts in postnatal life. In spite of this decrease, adult Seckel mice show accelerated aging, which is further aggravated in the absence of p53. Together, these results support a model whereby replicative stress, particularly in utero, contributes to the onset of aging in postnatal life, and this is balanced by the replicative stress-limiting role of the checkpoint proteins ATR and p53.
Collapse
Affiliation(s)
- Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Vallejo AN, Michel JJ, Bale LK, Lemster BH, Borghesi L, Conover CA. Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A. Proc Natl Acad Sci U S A 2009; 106:11252-7. [PMID: 19549878 PMCID: PMC2700140 DOI: 10.1073/pnas.0807025106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Indexed: 12/26/2022] Open
Abstract
Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA(-/-) mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA(-/-) mice maintain discrete thymic cortex and medulla densely populated by CD4(+)CD8(+) thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA(-/-) mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA(-/-) mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44(+)CD43(+) memory T cells similar to wild-type mice. However, CD43(+) T cell subsets of old PAPPA(-/-) mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA(-/-) mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15201, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Chase K, Jones P, Martin A, Ostrander EA, Lark KG. Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic. J Hered 2009; 100 Suppl 1:S37-41. [PMID: 19321632 PMCID: PMC3139361 DOI: 10.1093/jhered/esp011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/10/2009] [Accepted: 02/25/2009] [Indexed: 12/21/2022] Open
Abstract
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.
Collapse
Affiliation(s)
- Kevin Chase
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
134
|
Edman U, Garcia AM, Busuttil R, Sorensen D, Lundell M, Kapahi P, Vijg J. Lifespan extension by dietary restriction is not linked to protection against somatic DNA damage in Drosophila melanogaster. Aging Cell 2009; 8:331-8. [PMID: 19627272 PMCID: PMC2917806 DOI: 10.1111/j.1474-9726.2009.00480.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Dietary restriction (DR) has been shown to robustly extend lifespan in multiple species tested so far. The pro-longevity effect of DR is often ascribed to an increase in cellular defense against somatic damage, most notably damage by reactive oxygen species (ROS), considered a major cause of aging. Especially irreversible damage to DNA, the carrier of genetic information, is considered a critical causal factor in aging. Using a recently developed transgenic Drosophila melanogaster model system harboring a lacZ-plasmid construct that can be recovered in E. coli, spontaneous DNA mutation frequency in flies under DR and ad libitum conditions are measured. Three different DR conditions, imposed by manipulating levels of different types of yeast sources, were tested in females and males of two lacZ reporter gene lines. Feeding with the ROS producer paraquat at 1 mM resulted in a rapid accumulation of somatic mutations, indicating that the frequency of mutations at the lacZ locus is a reliable marker for increased oxidative stress. However, none of the DR conditions altered the accumulation of spontaneous mutations with age. These results suggest that the beneficial effects of DR are unlikely to be linked to protection against oxidative somatic DNA damage.
Collapse
Affiliation(s)
- Ursula Edman
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Ana Maria Garcia
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Rita Busuttil
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Dylan Sorensen
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Martha Lundell
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Pankaj Kapahi
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Jan Vijg
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| |
Collapse
|
135
|
Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J Neurosci 2009; 29:1212-23. [PMID: 19176829 DOI: 10.1523/jneurosci.4957-08.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been used in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1(dw)), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated beta-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology, and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1(dw) mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1(dw) mutant outer hair cells, and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age-related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1(dw) mice.
Collapse
|
136
|
Westbrook R, Bonkowski MS, Strader AD, Bartke A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Gerontol A Biol Sci Med Sci 2009; 64:443-51. [PMID: 19286975 DOI: 10.1093/gerona/gln075] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Growth hormone (GH) signaling influences longevity in mice, with decreased GH signaling associated with longer life span and increased GH signaling with shortened life span. A proposed mechanism through which GH signaling influences life span postulates that decreased GH signaling lowers metabolic rate, thus slowing aging by decreasing production of damaging free radicals. The influence of altered GH signaling on metabolism was tested by monitoring oxygen consumption (VO(2)), respiratory quotient (RQ), and heat production in long-lived GH receptor knockout (GHRKO) and Ames dwarf mice, and short-lived bovine GH-overexpressing transgenic (bGH TG) mice. Intriguingly, both GHRKO and Ames dwarf mice have increased VO(2) and heat per gram body weight, and decreased RQ, whereas bGH TG mice have decreased VO(2) and heat per gram body weight and increased RQ. In conclusion, decreased GH signaling associates with increased metabolism per body weight and may beneficially affect mitochondrial flexibility by increasing the capacity for fat oxidation; generally, GH excess produces opposite metabolic effects.
Collapse
Affiliation(s)
- Reyhan Westbrook
- Department of Internal Medicine, Division of Geriatric Research, Southern Illinois University School of Medicine, 801 North Rutledge Street, Springfield, IL 62794-9628, USA.
| | | | | | | |
Collapse
|
137
|
Sparkman AM, Vleck CM, Bronikowski AM. Evolutionary ecology of endocrine-mediated life-history variation in the garter snakeThamnophis elegans. Ecology 2009; 90:720-8. [DOI: 10.1890/08-0850.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
138
|
Andressoo JO, Weeda G, de Wit J, Mitchell JR, Beems RB, van Steeg H, van der Horst GTJ, Hoeijmakers JH. An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol Cell Biol 2009; 29:1276-90. [PMID: 19114557 PMCID: PMC2643825 DOI: 10.1128/mcb.01229-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/05/2008] [Accepted: 12/02/2008] [Indexed: 02/02/2023] Open
Abstract
Patients carrying mutations in the XPB helicase subunit of the basal transcription and nucleotide excision repair (NER) factor TFIIH display the combined cancer and developmental-progeroid disorder xeroderma pigmentosum/Cockayne syndrome (XPCS). Due to the dual transcription repair role of XPB and the absence of animal models, the underlying molecular mechanisms of XPB(XPCS) are largely uncharacterized. Here we show that severe alterations in Xpb cause embryonic lethality and that knock-in mice closely mimicking an XPCS patient-derived XPB mutation recapitulate the UV sensitivity typical for XP but fail to show overt CS features unless the DNA repair capacity is further challenged by crossings to the NER-deficient Xpa background. Interestingly, the Xpb(XPCS) Xpa double mutants display a remarkable interanimal variance, which points to stochastic DNA damage accumulation as an important determinant of clinical diversity in NER syndromes. Furthermore, mice carrying the Xpb(XPCS) mutation together with a point mutation in the second TFIIH helicase Xpd are healthy at birth but display neonatal lethality, indicating that transcription efficiency is sufficient to permit embryonal development even when both TFIIH helicases are crippled. The double-mutant cells exhibit sensitivity to oxidative stress, suggesting a role for endogenous DNA damage in the onset of XPB-associated CS.
Collapse
Affiliation(s)
- Jaan-Olle Andressoo
- MGC-Cancer Genomics Center, Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA, Westbrook R, Spong A, Panici J, Masternak MM, Kopchick JJ, Bartke A. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS One 2009; 4:e4567. [PMID: 19234595 PMCID: PMC2639640 DOI: 10.1371/journal.pone.0004567] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/09/2008] [Indexed: 01/23/2023] Open
Abstract
Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.
Collapse
Affiliation(s)
- Michael S. Bonkowski
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Pharmacology, and Physiology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Fernando P. Dominici
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oge Arum
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Juliana S. Rocha
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Morphology, Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Khalid A. Al Regaiey
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Reyhan Westbrook
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Adam Spong
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Jacob Panici
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Michal M. Masternak
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - John J. Kopchick
- Department of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Andrzej Bartke
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Pharmacology, and Physiology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| |
Collapse
|
140
|
Arai Y, Kojima T, Takayama M, Hirose N. The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol 2009; 299:124-8. [PMID: 18672019 DOI: 10.1016/j.mce.2008.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/03/2008] [Indexed: 12/25/2022]
Abstract
Recent studies have shown that insulin and insulin-like growth factor (IGF)-1 signaling are involved in the control of ageing and longevity in model organisms. Based on these studies, genes involved in the insulin/IGF-1 signaling pathway are believed to play a role in longevity throughout evolution and could also be important in determining human longevity. However, human studies have yielded conflicting and controversial results. In human, defects in insulin receptor signaling cause insulin resistance and diabetes, and IGF-1 deficiency is associated with an increased risk of cardiovascular disease and atherosclerosis. Interestingly, insulin sensitivity normally decreases during aging; however, centenarians were reported to maintain greatly increased insulin sensitivity and had a lower prevalence of the metabolic syndrome as compared to younger subjects. Additionally, a longitudinal study revealed that insulin-sensitizing hormones, including leptin and adiponectin, were significantly associated with the survival of centenarians, indicating that an efficient insulin response may influence human longevity.
Collapse
Affiliation(s)
- Yasumichi Arai
- Department of Internal Medicine, Division of Geriatric Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
141
|
Minor RK, Chang JW, de Cabo R. Hungry for life: How the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol Cell Endocrinol 2009; 299:79-88. [PMID: 19041366 PMCID: PMC2668104 DOI: 10.1016/j.mce.2008.10.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 10/14/2008] [Indexed: 11/27/2022]
Abstract
Laboratory studies consistently demonstrate extended lifespan in animals on calorie restriction (CR), where total caloric intake is reduced by 10-40% but adequate nutrition is otherwise maintained. CR has been further shown to delay the onset and severity of chronic diseases associated with aging such as cancer, and to extend the functional health span of important faculties like cognition. Less understood are the underlying mechanisms through which CR might act to induce such alterations. One theory postulates that CR's beneficial effects are intimately tied to the neuroendocrine response to low energy availability, of which the arcuate nucleus in the hypothalamus plays a pivotal role. Neuropeptide Y (NPY), a neurotransmitter in the front line of the arcuate response to low energy availability, is the primary hunger signal affected by CR and therefore may be a critical mechanism for lifespan extension.
Collapse
Affiliation(s)
- Robin K. Minor
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Joy W. Chang
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
142
|
The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses 2009; 72:125-8. [DOI: 10.1016/j.mehy.2008.07.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/08/2023]
|
143
|
Ransome MI, Turnley AM. Growth hormone signaling and hippocampal neurogenesis: insights from genetic models. Hippocampus 2008; 18:1034-50. [PMID: 18566962 DOI: 10.1002/hipo.20463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adult hippocampal neurogenesis (AHN) is modulated by a variety of factors through effects on the proliferation-differentiation-survival regulatory axis. We have employed growth hormone receptor knockout (GH-R-/-) and suppressor of cytokine signaling-2 transgenic (SOCS-2 Tg) mice as models of altered GH-signaling to assess their affects on basal and exercised-induced hippocampal neurogenesis. Assessment of proliferation 24-h after 7-days of bromodeoxyuridine (BrdU) labeling with or without voluntary running showed that the density of BrdU(+) cells in the subgranular zone remained unchanged between genotypes in control housing, while running induced significant increases in BrdU-labeled cells in WT, GH-R-/-, and SOCS-2 Tg mice. The proportion of BrdU/doublecortin and BrdU/S100beta cells did not vary between genotype or running conditions at this time-point. Assessment of cell survival 28-days after BrdU labeling showed that SOCS-2 Tg animals had significantly higher BrdU(+) cell densities in the granule cell layer compared to WT and GH-R-/- animals in control housing and after voluntary running. There were no differences in cell survival between WT and GH-R-/- mice with or without running. Mature phenotype analysis showed similar proportions of BrdU/NeuN and BrdU/S100beta in all groups. While SOCS-2 Tg mice had similar social interaction behaviors and sensorimotor gating, they appeared to be less anxious with heightened basal locomotor activity and showed enhanced performance in the Morris watermaze test. Overall, our data indicated that mice over-expressing SOCS-2 showed increased survival of neurons generated during AHN, which correlated with improved performance in a hippocampal-dependent cognitive task. Furthermore, voluntary running increased AHN in WT, SOCS-2 Tg, and serum-IGF-1-deficient GH-R-/- mice.
Collapse
Affiliation(s)
- Mark I Ransome
- Neural Regeneration Laboratory, Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
144
|
Mesenchymal stem cell-mediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice. Blood 2008; 113:2595-604. [PMID: 19074727 DOI: 10.1182/blood-2008-10-182246] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subcutaneous transplants of bone marrow mesenchymal stem cells (BMMSCs) are capable of generating ectopic bone and organizing functional hematopoietic marrow elements in animal models. Here we report that immunocompromised mice received subcutaneous BMMSC transplants using hydroxyapatite tricalcium phosphate as a carrier suppressed age-related degeneration in multiple organs and benefited an increase in life span extension compared with control littermates. The newly organized ectopic bone/marrow system restores active hematopoiesis via the erythropoietin receptor/signal transducer and activator of transcription 5 (Stat5) pathway. Furthermore, the BMMSC recipient mice showed elevated level of Klotho and suppression of insulin-like growth factor I signaling, which may be the mechanism contributing to the alleviation of aging-like phenotypes and prolongation of life in the treated mice. This work reveals that erythropoietin receptor/Stat5 pathway contributes to BMMSC-organized ectopic hematopoiesis, which may offer a treatment paradigm of reversing age-related degeneration of multiple organs in adult immunocompromised mice.
Collapse
|
145
|
Abstract
Loss of genome maintenance may causally contribute to ageing, as exemplified by the premature appearance of multiple symptoms of ageing in a growing family of human syndromes and in mice with genetic defects in genome maintenance pathways. Recent evidence revealed a similarity between such prematurely ageing mutants and long-lived mice harbouring mutations in growth signalling pathways. At first sight this seems paradoxical as they represent both extremes of ageing yet show a similar 'survival' response that is capable of delaying age-related pathology and extending lifespan. Understanding the mechanistic basis of this response and its connection with genome maintenance would open exciting possibilities for counteracting cancer or age-related diseases, and for promoting longevity.
Collapse
|
146
|
Frank SJ, Fuchs SY. Modulation of growth hormone receptor abundance and function: roles for the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:785-94. [PMID: 18586085 PMCID: PMC2760287 DOI: 10.1016/j.bbadis.2008.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 05/27/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
Abstract
Growth hormone plays an important role in regulating numerous functions in vertebrates. Several pathways that negatively regulate the magnitude and duration of its signaling (including expression of tyrosine phosphatases, SOCS and PIAS proteins) are shared between signaling induced by growth hormone itself and by other cytokines. Here we overview downregulation of the growth hormone receptor as the most specific and potent mechanism of restricting cellular responses to growth hormone and analyze the role of several proteolytic systems and, specifically, ubiquitin-dependent pathways in this regulation.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA.
| | | |
Collapse
|
147
|
Casellas J, Medrano JF. Lack of Socs2 expression reduces lifespan in high-growth mice. AGE (DORDRECHT, NETHERLANDS) 2008; 30:245-249. [PMID: 19424848 PMCID: PMC2585654 DOI: 10.1007/s11357-008-9064-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 05/17/2008] [Indexed: 05/27/2023]
Abstract
The high-growth (HG) phenotype in mice is characterized by a 30-50% postweaning overgrowth with a substantial increase in plasma insulin-like growth factor I (IGF1) levels, which is directly related to a deletion (hg) on chromosome 10 that includes the suppressor of cytokine signaling 2 (Socs2) gene. Reduced plasma IGF1 levels have been associated with extended lifespan in mice, although the aging-related effects of abnormally high IGF1 levels without elevated growth hormone levels have never been assessed in mammals. Within this context, the hg deletion was introgressed into C57BL/6J (B6) and FVB backgrounds, and a survival analysis was performed on the longevity records of 200 B6 (91 wild-type and 109 homozygous hg mutants) and 69 FVB (32 wild-type and 37 hg mutants) mice. Longevity was examined using a piecewise Weibull proportional hazards model solved through a Bayesian perspective and Markov chain Monte Carlo sampling. Lifespan was significantly reduced in both strains in homozygous hg mice, with a death risk between 3.689 (B6) and 4.347 (FVB) times higher than in wild-type mice (non-overlapped highest posterior density regions at 95%). These results highlight the effects of the Socs2 gene on aging regulation, likely related with variations described in plasma IGF1 levels. This result is consistent with previous research in dwarf mutant mice and other species, and characterizes the HG mutant mice as a unique and interesting animal model for accelerated aging research.
Collapse
Affiliation(s)
| | - Juan F. Medrano
- Department of Animal Science, University of California-Davis, One Shields Ave., Davis, CA 95616-8521 USA
| |
Collapse
|
148
|
Belfiore A, Frasca F. IGF and insulin receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:381-406. [PMID: 19016312 DOI: 10.1007/s10911-008-9099-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/30/2008] [Indexed: 01/06/2023] Open
Abstract
Major molecular abnormalities in breast cancer include the deregulation of several components of the IGF system. It is well recognized that the epithelial breast cancer cells commonly overexpress the IGF-I receptor while IGF-II is expressed by the tumor stroma. In view to the fact that the IGF-IR has mitogenic, pro-invasive and anti-apoptotic effects and mediates resistance to a variety of anti-cancer therapies, breast cancer is expected to be a candidate to therapeutic approaches aimed to inhibit the IGF-IR. However, there is increasing awareness that IGF system in cancer undergoes signal diversification by various mechanisms. One of these mechanisms is the aberrant expression of insulin receptor (IR) isoform A (IR-A), which is a high affinity receptor for both insulin and IGF-II, in breast cancer cells. Moreover, overexpression of both IGF-IR and IR-A in breast cancer cells, leads to overexpression of hybrid IR/IGF-IR receptors (HRs) as well. Upon binding to IGF-II, both IR-A and HRs may activate unique signaling patterns, which predominantly mediate proliferative effects. A better understanding of IGF system signal diversification in breast cancer has important implications for cancer prevention measures, which should include control of insulin resistance and associated hyperinsulinemia. Moreover, in addition to the IGF-IR, both IR-A and HRs should be also considered as molecular targets for anti-cancer therapies.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catanzaro, 88100, Catanzaro, Italy,
| | | |
Collapse
|
149
|
Garcia AM, Busuttil R, Calder B, Dollé MET, Diaz V, McMahan CA, Bartke A, Nelson J, Reddick R, Vijg J. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mech Ageing Dev 2008; 129:528-33. [PMID: 18565572 PMCID: PMC2581895 DOI: 10.1016/j.mad.2008.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/28/2008] [Accepted: 04/19/2008] [Indexed: 11/25/2022]
Abstract
Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduce multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into Escherichia coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57BL/6J background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month-old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR.
Collapse
Affiliation(s)
| | | | - Brent Calder
- Buck Institute for Age Research, Novato, CA, USA
| | - Martijn E. T. Dollé
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Vivian Diaz
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - C. Alex McMahan
- University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - James Nelson
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Robert Reddick
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jan Vijg
- Buck Institute for Age Research, Novato, CA, USA
| |
Collapse
|
150
|
Abstract
Recent discoveries in the science of ageing indicate that lifespan in model organisms such as yeast, nematodes, flies and mice is plastic and can be manipulated by genetic, nutritional or pharmacological intervention. A better understanding of the targets of such interventions, as well as the proximate causes of ageing-related degeneration and disease, is essential before we can evaluate if abrogation of human senescence is a realistic prospect.
Collapse
Affiliation(s)
- Jan Vijg
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, California 94945, USA.
| | | |
Collapse
|