101
|
Park Y, Choo SP, Jung GS, Kim S, Lee MJ, Im W, Park H, Lee I, Lee JH, Cho S, Choi YS. Formononetin Inhibits Progression of Endometriosis via Regulation of p27, pSTAT3, and Progesterone Receptor: In Vitro and In Vivo Studies. Nutrients 2023; 15:3001. [PMID: 37447325 DOI: 10.3390/nu15133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES Formononetin is one of the phytoestrogens that functions like a selective estrogen receptor modulator (SERM). In this study, we evaluated the effects of formononetin on endometriosis progression in vitro and in vivo. MATERIALS AND METHODS After pathological confirmation, 10 eutopic and ectopic endometria were collected from patients with endometriosis. Ten eutopic endometria samples were collected from patients who did not have endometriosis. To determine the cytotoxic dose and therapeutic dose of formononetin, the concentration of 70% of the cells that survived after formononetin administration was estimated using a Cell counting kit-8 (CCK 8) assay. Western blot analysis was used to determine the relative expression levels of BAX, p53, pAKT, ERK, pERK, p27, and pSTAT3 in the eutopic endometria without endometriosis, eutopic endometria with endometriosis, and ectopic endometria with endometriosis as the formononetin concentration was increased. We confirmed the effect of formononetin on apoptosis and migration in endometriosis using fluorescence-activated cell sorting (FACS) and wound healing assays, respectively. A mouse model of endometriosis was prepared using a non-surgical method, as previously described. The mice were intraperitoneally administered formononetin for four weeks after dividing them into control, low-dose formononetin (40 mg/kg/day) treatment, and high-dose (80 mg/kg/day) formononetin treatment groups. All the mice were euthanized after formononetin treatment. Endometriotic lesions were retrieved and confirmed using hematoxylin and eosin (H&E) staining. Immunohistochemical (IHC) staining of p27 was performed. RESULTS We set the maximum concentration of formononetin administration to 80 μM through the CCK8 assay. Based on formononetin concentration, the expression levels of BAX, p53, pAKT, ERK, pERK, p27, and pSTAT3 proteins were measured using Western blot analysis (N = 4 per group). The expression level of pERK, p27, and pSTAT3 in eutopic endometrium with endometriosis tended to decrease with increasing formononetin concentration, and a significant decrease was noted at 80 μM. The expression of p27 in ectopic endometrium with endometriosis was also significantly decreased at 80 μM of formononetin. FACS analysis revealed that formononetin did not significantly affect apoptosis. In the wound healing assay, formononetin treatment revealed a more significant decrease in the proliferation of the eutopic endometrium in patients with endometriosis than in the eutopic endometrium without endometriosis. Relative expression of sex hormone receptors decreased with increasing formononetin doses. Although no significant differences were observed in the ER, PR-A, ERβ/ERα, and PR-B/PR-A, significant down-regulation of PR-B expression was noted after formononetin treatment at 80 μM. In the in vivo study, endometriotic lesions in the formononetin-treated group significantly decreased compared to those in the control group. The relative expression of p27 using IHC was highest in the control group and lowest in the high-dose formononetin treatment group. CONCLUSIONS Formononetin treatment was shown to inhibit the proliferation of eutopic and ectopic endometria in patients with endometriosis through the regulation of p27, pSTAT3, and PR-B. In an endometriosis mouse model, formononetin treatment significantly reduced the number of endometriotic lesions with decreased p27 expression. The results of this study suggest that formononetin may be used as a non-hormonal treatment option for endometriosis.
Collapse
Affiliation(s)
- Yunjeong Park
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Sung Pil Choo
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Gee Soo Jung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Sehee Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Wooseok Im
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyemin Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sihyun Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
102
|
Drouault M, Rouge M, Hanoux V, Séguin V, Garon D, Bouraïma-Lelong H, Delalande C. Ex vivo effects of bisphenol A or zearalenone on the prepubertal rat testis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104203. [PMID: 37394082 DOI: 10.1016/j.etap.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Bisphenol A (BPA) and zearalenone (ZEA) are two widespread xenoestrogens involved in male reproductive disorders. Few studies investigated the effects of these compounds on the prepubertal testis, which is highly sensitive to endocrine disruptors such as xenoestrogens. An ex vivo approach was performed to evaluate the effects of BPA or ZEA (10-11, 10-9, 10-6 M) on the testes of 20 and 25 dpp rats. To investigate the involvement of classical nuclear ER-mediated estrogen signaling in these effects, pre-incubation with an antagonist (ICI 182.780 10-6M) was performed. BPA and ZEA have similar effects on spermatogenesis- and steroidogenesis-related endpoints in the immature testis, but our study highlights different age-dependent patterns of sensitivity to each compound during the prepubertal period. Moreover, our results indicate that the effects of BPA are likely to be induced by nuclear ER, whereas those of ZEA appear to involve other mechanisms.
Collapse
Affiliation(s)
- M Drouault
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France
| | - M Rouge
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Hanoux
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Séguin
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - D Garon
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - H Bouraïma-Lelong
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - C Delalande
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France.
| |
Collapse
|
103
|
Slighoua M, Amrati FEZ, Chebaibi M, Mahdi I, Al Kamaly O, El Ouahdani K, Drioiche A, Saleh A, Bousta D. Quercetin and Ferulic Acid Elicit Estrogenic Activities In Vivo and In Silico. Molecules 2023; 28:5112. [PMID: 37446770 DOI: 10.3390/molecules28135112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we examined the sub-acute toxicity of quercetin and ferulic acid and evaluated their effects on protein, cholesterol, and estrogen levels in vivo. Six groups of female Wistar rats were fed by gavage. The first and second groups represent the positive (Clomiphene citrate 10 mg/kg) and negative (NaCl 0.9%) control groups, while the other groups received quercetin and ferulic acid at doses of 5 and 10 mg/kg/day for 28 days. The sub-acute toxicity was monitored by examining the weights, biochemical parameters (AST, ALT, ALP, urea, and CREA), and histological changes in the kidneys and liver of the treated animals. Furthermore, the in vivo estrogenic effects were studied in terms of the serum and ovarian cholesterol levels, serum estradiol, and uterine proteins. Finally, Docking studies were conducted to evaluate the binding affinity of quercetin and ferulic acid for alpha and beta estrogen receptors. Results showed that both compounds were devoid of any signs of nephrotoxicity or hepatotoxicity. Additionally, quercetin and ferulic acid caused significant estrogenic effects evidenced by an increase of 8.7 to 22.48% in serum estradiol, though to a lesser amount than in the reference drug-treated group (64.21%). Moreover, the two compounds decreased the serum cholesterol levels (12.26-32.75%) as well as the ovarian cholesterol level (11.9% to 41.50%) compared to the negative control. The molecular docking in estrogen alpha and estrogen beta active sites showed high affinity of quercetin (-10.444 kcal/mol for estrogen alpha and -10.662 kcal/mol for estrogen beta) and ferulic acid (-6.377 kcal/mol for estrogen alpha and -6.3 kcal/mol for estrogen beta) to these receptors. This study provides promising insights into the potential use of quercetin as a therapeutic agent for the management of female fertility issues.
Collapse
Affiliation(s)
- Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ismail Mahdi
- AgroBioSciences Research Division, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khadija El Ouahdani
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay 19 Ismail University, Meknes 50070, Morocco
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| |
Collapse
|
104
|
Bezerra PHA, Amaral C, Almeida CF, Correia-da-Silva G, Torqueti MR, Teixeira N. In Vitro Effects of Combining Genistein with Aromatase Inhibitors: Concerns Regarding Its Consumption during Breast Cancer Treatment. Molecules 2023; 28:4893. [PMID: 37446555 DOI: 10.3390/molecules28134893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The third-generation of aromatase inhibitors (AIs)-Exemestane (Exe), Letrozole (Let), and Anastrozole (Ana)-is the main therapeutic approach applied for estrogen receptor-positive (ER+) breast cancer (BC), the most common neoplasm in women worldwide. Despite their success, the development of resistance limits their efficacy. Genistein (G), a phytoestrogen present in soybean, has promising anticancer properties in ER+ BC cells, even when combined with anticancer drugs. Thus, the potential beneficial effects of combining G with AIs were investigated in sensitive (MCF7-aro) and resistant (LTEDaro) BC cells. METHODS The effects on cell proliferation and expression of aromatase, ERα/ERβ, and AR receptors were evaluated. RESULTS Unlike the combination of G with Ana or Let, which negatively affects the Ais' therapeutic efficacy, G enhanced the anticancer properties of the steroidal AI Exe, increasing the antiproliferative effect and apoptosis relative to Exe. The hormone targets studied were not affected by this combination when compared with Exe. CONCLUSIONS This is the first in vitro study that highlights the potential benefit of G as an adjuvant therapy with Exe, emphasizing, however, that soy derivatives widely used in the diet or applied as auxiliary medicines may increase the risk of adverse interactions with nonsteroidal AIs used in therapy.
Collapse
Affiliation(s)
- Patrícia H A Bezerra
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cristina F Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Maria Regina Torqueti
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
105
|
Chao LFI, Liu D, Siewers V. A highly selective cell-based fluorescent biosensor for genistein detection. ENGINEERING MICROBIOLOGY 2023; 3:100078. [PMID: 39629249 PMCID: PMC11611022 DOI: 10.1016/j.engmic.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 12/07/2024]
Abstract
Genistein, an isoflavone found mainly in legumes, has been shown to have numerous health benefits for humans. Therefore, there is substantial interest in producing it using microbial cell factories. To aid in screening for high genistein producing microbial strains, a cell-based biosensor for genistein was developed by repurposing the Gal4DBD-ERα-VP16 (GEV) transcriptional activator in Saccharomyces cerevisiae. In the presence of genistein, the GEV sensor protein binds to the GAL1 promoter and activates transcription of a downstream GFP reporter. The performance of the biosensor, as measured by fold difference in GFP signal intensity after external genistein induction, was improved by engineering the sensor protein, its promoter and the reporter promoter. Biosensor performance increased when the weak promoter REV1p was used to drive GEV sensor gene expression and the VP16 transactivating domain on GEV was replaced with the tripartite VPR transactivator that had its NLS removed. The biosensor performance further improved when the binding sites for the inhibitor Mig1 were removed from and two additional Gal4p binding sites were added to the reporter promoter. After genistein induction, our improved biosensor output a GFP signal that was 20 times higher compared to the uninduced state. Out of the 8 flavonoids tested, the improved biosensor responded only to genistein and in a somewhat linear manner. The improved biosensor also responded to genistein produced in vivo, with the GFP reporter intensity directly proportional to intracellular genistein concentration. When combined with fluorescence-based cell sorting technology, this biosensor could facilitate high-throughput screening of a genistein-producing yeast cell factory.
Collapse
Affiliation(s)
| | | | - Verena Siewers
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
106
|
Priyadarshini E, Parambil AM, Rajamani P, Ponnusamy VK, Chen YH. Exposure, toxicological mechanism of endocrine disrupting compounds and future direction of identification using nano-architectonics. ENVIRONMENTAL RESEARCH 2023; 225:115577. [PMID: 36871939 DOI: 10.1016/j.envres.2023.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Endocrine-disrupting compounds (EDC) are a group of exogenous chemicals that structurally mimic hormones and interfere with the hormonal signaling cascade. EDC interacts with hormone receptors, transcriptional activators, and co-activators, altering the signaling pathway at both genomic and non-genomic levels. Consequently, these compounds are responsible for adverse health ailments such as cancer, reproductive issues, obesity, and cardiovascular and neurological disorders. The persistent nature and increasing incidence of environmental contamination from anthropogenic and industrial effluents have become a global concern, resulting in a movement in both developed and developing countries to identify and estimate the degree of exposure to EDC. The U.S. Environment Protection Agency (EPA) has outlined a series of in vitro and in vivo assays to screen potential endocrine disruptors. However, the multidisciplinary nature and concerns over the widespread application demand alternative and practical techniques for identifying and estimating EDC. The review chronicles the state-of-art 20 years (1990-2023) of scientific literature regarding EDC's exposure and molecular mechanism, highlighting the toxicological effects on the biological system. Alteration in signaling mechanisms by representative endocrine disruptors such as bisphenol A (BPA), diethylstilbestrol (DES), and genistein has been emphasized. We further discuss the currently available assays and techniques for in vitro detection and propose the prominence of designing nano-architectonic-sensor substrates for on-site detection of EDC in the contaminated aqueous environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; PhD Program in Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
107
|
Lebachelier de la Riviere ME, Wu L, Gayet M, Bousquet M, Buron C, Vignault C, Téteau O, Desmarchais A, Maillard V, Uzbekova S, Guérif F, Lacroix M, Papillier P, Jarrier-Gaillard P, Binet A, Elis S. Cumulative and potential synergistic effects of seven different bisphenols on human granulosa cells in vitro? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121818. [PMID: 37182577 DOI: 10.1016/j.envpol.2023.121818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Bisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis. This study investigated the effects of seven BP analogues and their equimolar cocktail on human granulosa cells (hGC) and assessed BPA, BPS, BPF and BPAF level exposures in the follicular fluid of 277 women undergoing Assisted Reproductive Technology. The hGCs were recovered after women oocyte punctures and treated with the seven BP analogues (BPS, BPA, BPAF, BPF, BPAP, BPE and BPB) or their equimolar cocktail of 7 × 1.43 or 7 × 7.14 μM for each of the seven BPs, the sum of BPs reaching 10 ("∑BPs 10 μM"), or 50 μM ("∑BPs 50 μM"), respectively. Oestradiol and progesterone secretion, cell proliferation, viability and expression of steroidogenic enzymes were investigated. Progesterone secretion was decreased by 6 BPs 10 μM and the cocktail "∑BPs 10 μM", (-17.8 to -41.3%) and by all seven BPs 50 μM and "∑BPs 50 μM" (-21.8 to -84.2%). Oestradiol secretion was decreased only by 50 μM BPAF and BPAP (-37.8% and -44%, respectively), with corresponding decreases in CYP17A1 and CYP19A1 gene expression. Cellular proliferation was decreased after treatment with 50 μM BPAF (-32.2%), BPAP (-29%), BPB (-24%) and the equimolar cocktail "∑BPs 50 μM" (-33.1%). BPB (50 μM) and the cocktail "∑BPs 50 μM" increased HSD3B2 mRNA expression. At least one BP was detected in 64 of 277 (23.1%) women follicular fluids. Similar effects of the seven BPs or their cocktail were observed on progesterone secretion and/or on cell proliferation, suggesting cumulative effects of BPs. Our results highlight the urge to consider all BPs simultaneously and to further investigate the potential additive or synergistic effects of several BPs.
Collapse
Affiliation(s)
| | - Luyao Wu
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Manon Gayet
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Marie Bousquet
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Charlotte Buron
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Claire Vignault
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Ophélie Téteau
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Alice Desmarchais
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Virginie Maillard
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Svetlana Uzbekova
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Fabrice Guérif
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France; Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000, Tours, France
| | - Marlène Lacroix
- Therapeutic Innovations and Resistance (INTHERES), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Pascal Papillier
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | | | - Aurélien Binet
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France; Service de Chirurgie Pédiatrique, CHU Poitiers, Université de Poitiers, 86000, Poitiers, France
| | - Sebastien Elis
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
108
|
González-Gómez M, Reyes R, Damas-Hernández MDC, Plasencia-Cruz X, González-Marrero I, Alonso R, Bello AR. NTS, NTSR1 and ERs in the Pituitary-Gonadal Axis of Cycling and Postnatal Female Rats after BPA Treatment. Int J Mol Sci 2023; 24:ijms24087418. [PMID: 37108581 PMCID: PMC10138486 DOI: 10.3390/ijms24087418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The neuropeptide neurotensin (NTS) is involved in regulating the reproductive axis and is expressed at each level of this axis (hypothalamus-pituitary-gonads). This dependence on estrogen levels has been widely demonstrated in the hypothalamus and pituitary. We focused on confirming the relationship of NTS with estrogens and the gonadal axis, using a particularly important environmental estrogenic molecule, bisphenol-A (BPA). Based on the experimental models or in vitro cell studies, it has been shown that BPA can negatively affect reproductive function. We studied for the first time the action of an exogenous estrogenic substance on the expression of NTS and estrogen receptors in the pituitary-gonadal axis during prolonged in vivo exposure. The exposure to BPA at 0.5 and 2 mg/kg body weight per day during gestation and lactation was monitored through indirect immunohistochemical procedures applied to the pituitary and ovary sections. Our results demonstrate that BPA induces alterations in the reproductive axis of the offspring, mainly after the first postnatal week. The rat pups exposed to BPA exhibited accelerated sexual maturation to puberty. There was no effect on the number of rats born per litter, although the fewer primordial follicles suggest a shorter fertile life.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| | | | - Xiomara Plasencia-Cruz
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Rafael Alonso
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Aixa R Bello
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| |
Collapse
|
109
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Pinos H, Collado P. Genistein early in life Modifies the arcuate nucleus of the hypothalamus morphology differentially in male and female rats. Mol Cell Endocrinol 2023; 570:111933. [PMID: 37080379 DOI: 10.1016/j.mce.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
In the present work we analyzed the effects of postnatal exposure to two doses of genistein (10 μg/g or 50 μg/g) from postnatal (P) day 6 to P13, on the morphology of the arcuate nucleus (Arc). The analyses of Arc coronal brain sections at 90 days showed that the ArcMP had higher values in volume, Nissl-stained neurons and GPER-ir neurons in males than in females and the treatment with genistein abolished these sex differences in most of the parameters studied. Moreover, in males, but not in females, the GPER-ir neurons decreased in the ArcMP but increased in the ArcL with both doses of genistein. In the ArcLP, GPER-ir population increased with the lowest doses and decreased with the highest one in males. Our results confirm that the Arc subdivisions have differential vulnerability to the effects of genistein during development, depending on which neuromorphological parameters, dose and sex are analyzed.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28002, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain.
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| |
Collapse
|
110
|
Scarpetti L, Oturkar CC, Juric D, Shellock M, Malvarosa G, Post K, Isakoff S, Wang N, Nahed B, Oh K, Das GM, Bardia A. Therapeutic Role of Tamoxifen for Triple-Negative Breast Cancer: Leveraging the Interaction Between ERβ and Mutant p53. Oncologist 2023; 28:358-363. [PMID: 36772966 PMCID: PMC10078911 DOI: 10.1093/oncolo/oyac281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/30/2022] [Indexed: 02/12/2023] Open
Abstract
The absence of effective therapeutic targets and aggressive nature of triple-negative breast cancer (TNBC) renders this disease subset difficult to treat. Although estrogen receptor beta (ERβ) is expressed in TNBC, studies on its functional role have yielded inconsistent results. However, recently, our preclinical studies, along with other observations, have shown the potential therapeutic utility of ERβ in the context of mutant p53 expression. The current case study examines the efficacy of the selective estrogen receptor modulator tamoxifen in p53-mutant TNBC with brain metastases. Significant increase in ERβ protein expression and anti-proliferative interaction between mutant p53 and ERβ were observed after cessation of tamoxifen therapy, with significant regression of brain metastases. This case study provides supporting evidence for the use of tamoxifen in p53-mutant, ERβ+TNBC, especially in the setting of brain metastasis.
Collapse
Affiliation(s)
- Lauren Scarpetti
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Maria Shellock
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giuliana Malvarosa
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn Post
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Steven Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nancy Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Brian Nahed
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Oh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gokul M Das
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
111
|
Singh S, Verma SC, Kumar V, Sharma K, Singh D, Khan S, Gupta N, Singh R, Khan F, Chanda D, Mishra DP, Singh D, Roy P, Gupta A. Synthesis of amide derivatives of 3-aryl-3H-benzopyrans as osteogenic agent concomitant with anticancer activity. Bioorg Chem 2023; 133:106380. [PMID: 36731295 DOI: 10.1016/j.bioorg.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
The present study reports a series of 3-aryl-3H-benzopyran-based amide derivatives as osteogenic agents concomitant with anticancer activity. Six target compounds viz 22e, 22f, 23i, and 24b-d showed good osteogenic activity at 1 pM and 100 pM concentrations. One of the potential molecules, 24b, effectively induced ALP activity and mRNA expression of osteogenic marker genes at 1 pM and bone mineralization at 100 pM concentrations. These molecules also presented significant growth inhibition of osteosarcoma (MG63) and estrogen-dependent and -independent (MCF-7 and MDA-MB-231) breast cancer cells. The most active compound, 24b, inhibited the growth of all the cancer cells within the IC50 10.45-12.66 µM. The mechanistic studies about 24b showed that 24b induced apoptosis via activation of the Caspase-3 enzyme and inhibited cancer cell migration. In silico molecular docking performed for 24b revealed its interaction with estrogen receptor-β (ER-β) preferentially.
Collapse
Affiliation(s)
- Sarita Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Surendra Chandra Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Vinay Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kriti Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Diksha Singh
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Sana Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Neelam Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Romila Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Feroz Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Durga Prasad Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Atul Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India.
| |
Collapse
|
112
|
Tomei Torres FA, Masten SJ. Endocrine-disrupting substances: I. Relative risks of PFAS in drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:451-462. [PMID: 37119147 DOI: 10.2166/wh.2023.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Concentrations of per and polyfluorinated alkyl substances (PFAS) in drinking water are significantly lower than in vivo levels of the native target hormone. These concentrations are orders of magnitude lower than the hormone in question, particularly when corrected for transactivation. A pregnant woman can excrete about 7,000 μg/day of total estrogens. A low-dose oral contraceptive pill contains 20 μg estradiol. Soy-based baby formula contains phytoestrogens equivalent to a low-dose oral contraceptive pill. A woman on a low-dose oral hormone replacement therapy consumes about 0.5-2 mg/day of one or more estrogens. The levels of endocrine-disrupting substances (EDSs) exposure by oral, respiratory, or dermal routes have the potential to make removing PFAS from drinking water due to its estrogenic activity divert valuable resources. These levels become even less of a threat when their estrogenic potencies are compared with those of the target hormones present as contaminants in water and even more so when compared with levels commonly present in human tissues. The fact that PFAS constitute a tiny fraction compared to exposure to phytoestrogens makes the effort even more insignificant. If PFAS are to be removed from drinking water, it is not due to their estrogenic activity.
Collapse
Affiliation(s)
- Francisco Alberto Tomei Torres
- Ibero-American Society of Environmental Health (SIBSA), Zabala 3555, Ciudad Autónoma de Buenos Aires (CABA), Rep. Argentina, CP 1427 E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
113
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
114
|
Toyota R, Ito H, Sashide Y, Takeda M. Suppression of the Excitability of Rat Nociceptive Primary Sensory Neurons Following Local Administration of the Phytochemical, Quercetin. THE JOURNAL OF PAIN 2023; 24:540-549. [PMID: 36334874 DOI: 10.1016/j.jpain.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
Although the modulatory effect of quercetin on voltage-gated Na, K, and Ca channels has been studied in vitro, the in vivo effect of quercetin on the excitability of nociceptive primary neurons remains to be determined. The aim of the present study was to examine whether acute local quercetin administration to rats attenuates the excitability of nociceptive trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. Extracellular single unit recordings were made from TG neurons of anesthetized rats in response to orofacial non-noxious and noxious mechanical stimulation. The mean firing frequency of TG neurons in response to both non-noxious and noxious mechanical stimuli was dose-dependently inhibited by quercetin, and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. The inhibitory effect of quercetin lasted for 15 minutes and was reversible. The mean magnitude of inhibition on TG neuronal discharge frequency with 10 mM quercetin was almost equal to that of the local anesthetic, 2% lidocaine. These results suggest that local injection of quercetin into the peripheral receptive field suppresses the excitability of nociceptive primary sensory neurons in the TG, possibly via inhibition of voltage-gated Na channels and opening voltage-gated K channels. PERSPECTIVE: Local administration of the phytochemical, quercetin, as a local anesthetic may provide relief from trigeminal nociceptive pain with smallest side effects, thus contributing to the area of complementary and alternative medicines.
Collapse
Affiliation(s)
- Ryou Toyota
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Haruka Ito
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan..
| |
Collapse
|
115
|
Braxas H, Musazadeh V, Zarezadeh M, Ostadrahimi A. Genistein effectiveness in improvement of glucose and lipid metabolism and homocysteine levels: A systematic review and meta-analysis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
116
|
Liu J, Fu Y, Zhou S, Zhao P, Zhao J, Yang Q, Wu H, Ding M, Li Y. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. Poult Sci 2023; 102:102674. [PMID: 37104906 PMCID: PMC10160590 DOI: 10.1016/j.psj.2023.102674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aims to compare the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. A total of 360 53-week-old healthy Hyline brown laying hens were randomly divided into 3 groups (control, 0.05% quercetin, and 0.003% daidzein). Diets were fed for 10 wk, afterwards 1 bird per replicate (6 replicates) were euthanized for sampling blood, liver and cecal digesta. Compared with the control, quercetin significantly increased laying rate and decreased feed-to-egg weight ratio from wk 1 to 4, wk 5 to 10, and wk 1 to 10 (P < 0.05). Quercetin significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased catalase (CAT) activity and malondialdehyde (MDA) content in serum and liver (P < 0.05) and increased content of total antioxidant capacity (T-AOC) in liver (P < 0.05). Quercetin increased content of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3) and thyroxine (T4) in serum (P < 0.05). Quercetin significantly decreased the relative abundance of Bacteroidaceae and Bacteroides (P < 0.01) and significantly increased the relative abundance of Lactobacillaceae and Lactobacillus (P < 0.05) at family and genus levels in cecum. Daidzein did not significantly influence production performance from wk 1 to 10. Daidzein significantly increased SOD activity and decreased CAT activity and MDA content in serum and liver (P < 0.05), and increased T-AOC content in liver (P < 0.05). Daidzein increased content of FSH, IGF-1, T3 in serum (P < 0.05). Daidzein increased the relative abundance of Rikenellaceae RC9 gut group at genus level in cecum (P < 0.05). Quercetin increased economic efficiency by 137.59% and 8.77%, respectively, compared with daidzein and control. In conclusion, quercetin improved production performance through enhancing antioxidant state, hormone levels, and regulating cecal microflora in laying hens during the late laying period. Quercetin was more effective than daidzein in improving economic efficiency.
Collapse
|
117
|
Yousef MS, Rezk WR, El-Naby ASAHH, Mahmoud KGM, Takagi M, Miyamoto A, Megahed GA. In vitro effect of zearalenone on sperm parameters, oocyte maturation and embryonic development in buffalo. Reprod Biol 2023; 23:100732. [PMID: 36669377 DOI: 10.1016/j.repbio.2023.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
The negative impact of zearalenone (ZEN; potent estrogenic mycotoxin) exposure on buffalo embryo production has not yet been determined. In the current study, buffalo sperm and oocytes were exposed to ZEN at different concentrations during maturation. Sperms (with and without ZEN exposure) were incubated for 2 h and evaluated for motility, viability, acrosome integrity, normality, and ultrastructure. Matured oocytes exposed to ZEN were stained to determine their nuclear maturation. Further, their developmental ability was evaluated after in vitro fertilization. Our results showed the toxic effects of ZEN at high concentrations (2000 ng/mL) on different buffalo sperm parameters. The number of acrosome-intact sperm was reduced at 0 h after exposure to a concentration of ≥ 100 ng/mL. Furthermore, the maturation rate of buffalo oocytes (telophase I + metaphase II) was significantly decreased in ZEN-treated oocytes with a higher degeneration rate. Oocytes matured in 1000 ng/mL ZEN and subsequently exhibited considerable reduction in cleavage rate and blastocyst formation compared with control oocytes (2.6% vs. 13.1%). Moreover, the morula rate was decreased (p < 0.001) in ZEN-treated oocytes at concentrations of ≥ 10 ng/mL. Overall, the adverse effects of in vitro ZEN exposure on buffalo sperm parameters and oocyte meiotic progression with a notable reduction in cleavage, morula, and blastocyst rates were defined by these results. Altogether, buffaloes should be considered sensitive to ZEN exposure with respect to their reproductive function.
Collapse
Affiliation(s)
- Mohamed S Yousef
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt; Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080 8555, Japan.
| | - Walaa R Rezk
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Karima Gh M Mahmoud
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Mitsuhiro Takagi
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 1677-1, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080 8555, Japan.
| | - Gaber A Megahed
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
118
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
119
|
Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int J Mol Sci 2023; 24:ijms24054585. [PMID: 36902016 PMCID: PMC10002922 DOI: 10.3390/ijms24054585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Bisphenol A (BPA) is a phenolic compound used in plastics elaboration for food protection or packaging. BPA-monomers can be released into the food chain, resulting in continuous and ubiquitous low-dose human exposure. This exposure during prenatal development is especially critical and could lead to alterations in ontogeny of tissues increasing the risk of developing diseases in adulthood. The aim was to evaluate whether BPA administration (0.036 mg/kg b.w./day and 3.42 mg/kg b.w./day) to pregnant rats could induce liver injury by generating oxidative stress, inflammation and apoptosis, and whether these effects may be observed in female postnatal day-6 (PND6) offspring. Antioxidant enzymes (CAT, SOD, GR, GPx and GST), glutathione system (GSH/GSSG) and lipid-DNA damage markers (MDA, LPO, NO, 8-OHdG) were measured using colorimetric methods. Inducers of oxidative stress (HO-1d, iNOS, eNOS), inflammation (IL-1β) and apoptosis (AIF, BAX, Bcl-2 and BCL-XL) were measured by qRT-PCR and Western blotting in liver of lactating dams and offspring. Hepatic serum markers and histology were performed. Low dose of BPA caused liver injury in lactating dams and had a perinatal effect in female PND6 offspring by increasing oxidative stress levels, triggering an inflammatory response and apoptosis pathways in the organ responsible for detoxification of this endocrine disruptor.
Collapse
|
120
|
Paramanik V, Kurrey K, Singh P, Tiwari S. Roles of genistein in learning and memory during aging and neurological disorders. Biogerontology 2023; 24:329-346. [PMID: 36828983 DOI: 10.1007/s10522-023-10020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.
Collapse
Affiliation(s)
- Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India.
| | - Khuleshwari Kurrey
- Department of Psychiatry and Behavioral Sciences, Neurobiology Division, John Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Padmanabh Singh
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| | - Sneha Tiwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| |
Collapse
|
121
|
Protective Effects of Coumestrol on Metabolic Dysfunction and Its Estrogen Receptor-Mediated Action in Ovariectomized Mice. Nutrients 2023; 15:nu15040954. [PMID: 36839308 PMCID: PMC9966481 DOI: 10.3390/nu15040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Coumestrol, a phytoestrogen compound found in various plants, has been shown to act as a potent estrogen receptor (ER) agonist, with a higher binding affinity for ERβ than for ERα. However, there is currently limited information regarding its beneficial effects in postmenopausal disorders and its ER-mediated mechanisms. Herein, we investigated the effects of coumestrol (subcutaneous or oral treatment) on metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet, in comparison with the effects of 17β-estradiol (E2) replacement. Coumestrol was administered daily at a dose of 5 mg/kg for 10 weeks. Coumestrol treatment through the subcutaneous route stimulated uterine growth in OVX mice at a level lower than that of E2. E2 and coumestrol prevented body fat accumulation, adipocyte hypertrophy, and hepatic steatosis, and enhanced voluntary physical activity. Coumestrol showed estrogen-mimetic effects in the regulation of the protein expressions involved in browning of white fat and insulin signaling, including increased hepatic expression of fibroblast growth factor 21. Importantly, the metabolic effects of coumestrol (oral administration at 10 mg/kg for 7 weeks) were mostly abolished following co-treatment with an ERβ-selective antagonist but not with an ERα-selective antagonist, indicating that the metabolic actions of coumestrol in OVX mice are primarily mediated by ERβ. These findings provide important insights into the beneficial effects of coumestrol as a phytoestrogen supplement for the prevention and treatment of postmenopausal symptoms.
Collapse
|
122
|
Meligova AK, Siakouli D, Stasinopoulou S, Xenopoulou DS, Zoumpouli M, Ganou V, Gkotsi EF, Chatziioannou A, Papadodima O, Pilalis E, Alexis MN, Mitsiou DJ. ERβ1 Sensitizes and ERβ2 Desensitizes ERα-Positive Breast Cancer Cells to the Inhibitory Effects of Tamoxifen, Fulvestrant and Their Combination with All-Trans Retinoic Acid. Int J Mol Sci 2023; 24:ijms24043747. [PMID: 36835157 PMCID: PMC9959521 DOI: 10.3390/ijms24043747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Adjuvant endocrine therapy (AET) is the treatment of choice for early-stage estrogen receptor alpha (ERα)-positive breast cancer (BC). However, almost 40% of tamoxifen-treated cases display no response or a partial response to AET, thus increasing the need for new treatment options and strong predictors of the therapeutic response of patients at high risk of relapse. In addition to ERα, BC research has focused on ERβ1 and ERβ2 (isoforms of ERβ), the second ER isotype. At present, the impact of ERβ isoforms on ERα-positive BC prognosis and treatment remains elusive. In the present study, we established clones of MCF7 cells constitutively expressing human ERβ1 or ERβ2 and investigated their role in the response of MCF7 cells to antiestrogens [4-hydroxytamoxifen (OHΤ) and fulvestrant (ICI182,780)] and retinoids [all-trans retinoic acid (ATRA)]. We show that, compared to MCF7 cells, MCF7-ERβ1 and MCF7-ERβ2 cells were sensitized and desensitized, respectively, to the antiproliferative effect of the antiestrogens, ATRA and their combination and to the cytocidal effect of the combination of OHT and ATRA. Analysis of the global transcriptional changes upon OHT-ATRA combinatorial treatment revealed uniquely regulated genes associated with anticancer effects in MCF7-ERβ1 cells and cancer-promoting effects in MCF7-ERβ2 cells. Our data are favorable to ERβ1 being a marker of responsiveness and ERβ2 being a marker of resistance of MCF7 cells to antiestrogens alone and in combination with ATRA.
Collapse
Affiliation(s)
- Aggeliki K. Meligova
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dimitra Siakouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiria Stasinopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Despoina S. Xenopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Zoumpouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassiliki Ganou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni-Fani Gkotsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Michael N. Alexis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| | - Dimitra J. Mitsiou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| |
Collapse
|
123
|
An S, Hwang SY, Gong J, Ahn S, Park IG, Oh S, Chin YW, Noh M. Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis. J Chem Inf Model 2023; 63:856-869. [PMID: 36716271 DOI: 10.1021/acs.jcim.3c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we present a machine-learning model to predict the adiponectin-secretion-promoting activity of flavonoid-associated phytochemicals (FAPs). We modeled a structure-activity relationship between the chemical similarity of FAPs and their bioactivities using a random forest-based classifier, which provided the NR activity of each FAP as a probability. To link the classifier-predicted NR activity to the phenotype, we next designed a single-cell transcriptomics-based multiple linear regression model to generate the relative adiponectin score (RAS) of FAPs. In experimental validation, estimated RAS values of FAPs isolated from Scutellaria baicalensis exhibited a significant correlation with their adiponectin-secretion-promoting activity. The combined cheminformatics and bioinformatics approach enables the computational reconstruction of phenotype-based screening systems.
Collapse
Affiliation(s)
- Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Seok Young Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Junpyo Gong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Soyeon Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Young-Won Chin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
124
|
Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer's Disease? Int J Mol Sci 2023; 24:ijms24043205. [PMID: 36834617 PMCID: PMC9964432 DOI: 10.3390/ijms24043205] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis. The focus of this review is to evaluate clinical and observational studies in women, which have investigated the impact of estrogens on cognition or attempted to answer the prevailing question regarding the use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. The articles were retrieved through a systematic review of the databases: OVID, SCOPUS, and PubMed (keywords "memory", "dementia," "cognition," "Alzheimer's disease", "estrogen", "estradiol", "hormone therapy" and "hormone replacement therapy" and by searching reference sections from identified studies and review articles). This review presents the relevant literature available on the topic and discusses the mechanisms, effects, and hypotheses that contribute to the conflicting findings of HRT in the prevention and treatment of age-related cognitive deficits and AD. The literature suggests that estrogens have a clear role in modulating dementia risk, with reliable evidence showing that HRT can have both a beneficial and a deleterious effect. Importantly, recommendation for the use of HRT should consider the age of initiation and baseline characteristics, such as genotype and cardiovascular health, as well as the dosage, formulation, and duration of treatment until the risk factors that modulate the effects of HRT can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
|
125
|
Kamal NH, Heikal LA, Ali MM, Aly RG, Abdallah OY. Development and evaluation of local regenerative biomimetic bone-extracellular matrix scaffold loaded with nano-formulated quercetin for orthopedic fractures. BIOMATERIALS ADVANCES 2023; 145:213249. [PMID: 36565670 DOI: 10.1016/j.bioadv.2022.213249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The prevalence of bone injuries is greatly increasing each year and the proper healing of fractures without any complications is very challenging. Self-setting calcium phosphate cements (CPCs) have attracted great attention as bioactive synthetic bone substitutes. Quercetin (QT) is a multipurposed drug with reported bone-conserving properties. The loading of QT and QT-phospholipid complex within nanostructured lipid carriers (NLC) was proposed to overcome the poor physical properties of the drug and to introduce the use of bioactive excipients as phospholipids and olive oil. The aim of this work was to formulate a regenerative scaffold loaded with nano-formulated QT for local treatment of orthopedic fractures. For the first time, scaffolds composed of brushite CPC were prepared and loaded with quercetin lipid nano-systems. In vitro tests proved that the addition of lipid nano-systems did not deteriorate the properties of CPC where QT-NLC/CPC showed an adequate setting time, appropriate compressive strength, and porosity. The scanning electron microscope confirmed maintenance of nanoparticles integrity within the cement. Using a rat femur bone defect animal model, the histological results showed that the QT-NLC/CPC had a superior bone healing potential compared to crude unformulated QT/CPC. In conclusion, QT-NLC /CPC are promising lipid nano-composite materials that could enhance bone regeneration.
Collapse
Affiliation(s)
- Nermeen H Kamal
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Egypt.
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Mai M Ali
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Egypt.
| | - Rania G Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
126
|
Functions of Steroid Hormones in the Male Reproductive Tract as Revealed by Mouse Models. Int J Mol Sci 2023; 24:ijms24032748. [PMID: 36769069 PMCID: PMC9917565 DOI: 10.3390/ijms24032748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Steroid hormones are capable of diffusing through cell membranes to bind with intracellular receptors to regulate numerous physiological processes. Three classes of steroid hormones, namely androgens, estrogens and glucocorticoids, contribute to the development of the reproductive system and the maintenance of fertility. During the past 30 years, mouse models have been produced in which the expression of genes encoding steroid hormone receptors has been enhanced, partially compromised or eliminated. These mouse models have revealed many of the physiological processes regulated by androgens, estrogens and to a more limited extent glucocorticoids in the testis and male accessory organs. In this review, advances provided by mouse models that have facilitated a better understanding of the molecular regulation of testis and reproductive tract processes by steroid hormones are discussed.
Collapse
|
127
|
Di Pietro G, Forcucci F, Chiarelli F. Endocrine Disruptor Chemicals and Children's Health. Int J Mol Sci 2023; 24:2671. [PMID: 36768991 PMCID: PMC9916521 DOI: 10.3390/ijms24032671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are developing organisms. Considering the developmental origin of well-being and diseases, every adult organism expresses consequences of the environment in which it developed. The molecular mechanisms through which the main EDCs manifest their effects and their potential association with endocrine disorders, such as diabetes, obesity, thyroid disease and alteration of adrenal hormones, will be reviewed here. Despite 40 years having passed since the first study on EDCs, little is yet known about them; therefore, our purpose is to take stock of the situation to establish a starting point for further studies. Since there is plenty of evidence showing that exposure to EDCs may adversely impact the health of adults and children through altered endocrine function-suggesting their link to endocrinopathies-it is essential in this context to bear in mind what is already known about endocrine disruptors and to deepen our knowledge to establish rules of conduct aimed at limiting exposure to EDCs' negative effects. Considering that during the COVID-19 pandemic an increase in endocrine disruptor effects has been reported, it will also be useful to address this new phenomenon for better understanding its basis and limiting its consequences.
Collapse
Affiliation(s)
| | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
128
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
129
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
130
|
Seo H, Seo H, Byrd N, Kim H, Lee KG, Lee SH, Park Y. Human cell-based estrogen receptor beta dimerization assay. Chem Biol Interact 2023; 369:110264. [PMID: 36402211 DOI: 10.1016/j.cbi.2022.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Estrogen is not only responsible for important functions in the human body, such as cell growth, reproduction, differentiation, and development, but it is also deeply related to pathological processes, such as cancer, metabolic and cardiovascular diseases, and neurodegeneration. Estrogens and other estrogenic compounds have transcriptional activities through binding with the estrogen receptor (ER) to induce ER dimerization. The two estrogen receptor subtypes, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), show structural differences and have different expression ratios in specific cells and tissues. Currently, the methods for confirming the estrogenic properties of compounds are the binding (Test guideline no. 493) and transactivation (Test guideline no. 455) assays provided by the Organization for Economic Co-operation and Development (OECD). In a previous study, we developed an ERα dimerization assay based on the bioluminescence resonance energy transfer (BRET) system, but there are currently no available tests that can confirm the effect of estrogenic compounds on ERβ. Therefore, in this study, we developed a BRET-based ERβ dimerization assay to confirm the estrogenic prosperities of compounds. The BRET-based ERβ dimerization assay was verified using nine representative ER ligands and the results were compared with the dimerization activity of ERα. In conclusion, our BRET-based ERβ dimerization assay can provide information on the ERβ dimerization potential of estrogenic compounds.
Collapse
Affiliation(s)
- Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Nick Byrd
- Department of Chemistry and Biochemistry, Campden BRI, Chipping Campden, GL55 6LD, UK
| | - Hyejin Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
131
|
Ronchetti S, Labombarda F, Roig P, De Nicola AF, Pietranera L. Beneficial effects of the phytoestrogen genistein on hippocampal impairments of spontaneously hypertensive rats (SHR). J Neuroendocrinol 2023; 35:e13228. [PMID: 36690381 DOI: 10.1111/jne.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Hippocampal neuropathology is a recognized feature of the spontaneously hypertensive rat (SHR). The hippocampal alterations associate with cognitive impairment. We have shown that hippocampal abnormalities are reversed by 17β-estradiol, a steroid binding to intracellular receptors (estrogen receptor α and β subtypes) or the membrane-located G-protein coupled estradiol receptor. Genistein (GEN) is a neuroprotective phytoestrogen which binds to estrogen receptor β and G-protein coupled estradiol receptor. Here, we investigated whether GEN neuroprotection extends to SHR. For this purpose, we treated 5-month-old SHR for 2 weeks with 10 mg kg-1 daily s.c injections of GEN. We analyzed the expression of doublecortin+ neuronal progenitors, glial fibrillary acidic protein+ astrocytes and ionized calcium-binding adapter molecule 1+ microglia in the CA1 region and dentate gyrus of the hippocampus using immunocytochemistry, whereas a quantitative real-time polymerase chain reaction was used to measure the expression of pro- and anti-inflammatory factors tumor necrosis factor α, cyclooxygenase-2 and transforming growth factor β. We also evaluated hippocampal dependent memory using the novel object recognition test. The results showed a decreased number of doublecortin+ neural progenitors in the dentate gyrus of SHR that was reversed with GEN. The number of glial fibrillary acidic protein+ astrocytes in the dentate gyrus and CA1 was increased in SHR but significantly decreased by GEN treatment. Additionally, GEN shifted microglial morphology from the predominantly activated phenotype present in SHR, to the more surveillance phenotype found in normotensive rats. Furthermore, treatment with GEN decreased the mRNA of the pro-inflammatory factors tumor necrosis factor α and cyclooxygenase-2 and increased the mRNA of the anti-inflammatory factor transforming growth factor β. Discrimination index in the novel object recognition test was decreased in SHR and treatment with GEN increased this parameter. Our results indicate important neuroprotective effects of GEN at the neurochemical and behavioral level in SHR. Our data open an interesting possibility for proposing this phytoestrogen as an alternative therapy in hypertensive encephalopathy.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
132
|
QIU JIAYING, CHANG YAN, LIANG WENPENG, LIN MENGSI, XU HUI, XU WANQING, ZHU QINGWEN, ZHANG HAIBO, ZHANG ZHENYU. Pharmacological effects of denervated muscle atrophy due to metabolic imbalance in different periods. BIOCELL 2023; 47:2351-2359. [DOI: 10.32604/biocell.2023.031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2024]
|
133
|
Drzewiecki CM, Brinks AS, Sellinger EP, Doshi AD, Koh JY, Juraska JM. Brief postnatal exposure to bisphenol A affects apoptosis and gene expression in the medial prefrontal cortex and social behavior in rats with sex specificity. Neurotoxicology 2023; 94:126-134. [PMID: 36442689 PMCID: PMC9839503 DOI: 10.1016/j.neuro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor found in polycarbonate plastics and exposure in humans is nearly ubiquitous and it has widespread effects on cognitive, emotional, and reproductive behaviors in both humans and animal models. In our laboratory we previously found that perinatal BPA exposure results in a higher number of neurons in the adult male rat prefrontal cortex (PFC) and less play in adolescents of both sexes. Here we examine changes in the rate of postnatal apoptosis in the rat prefrontal cortex and its timing with brief BPA exposure. Because an increased number of neurons in the PFC is a characteristic of a subtype of autism spectrum disorder, we tested social preference following brief BPA exposure and also expression of a small group of genes. Males and females were exposed to BPA from postnatal days (P) 6 through 8 or from P10 through 12. Both exposures significantly decreased indicators of cell death in the developing medial prefrontal cortex in male subjects only. Additionally, males exposed to BPA from P6 - 8 showed decreased social preference and decreased cortical expression of Shank3 and Homer1, two synaptic scaffolding genes that have been implicated in social deficits. There were no significant effects of BPA in the female subjects. These results draw attention to the negative consequences following brief exposure to BPA during early development.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Currently at California National Primate Research Center, University of California-Davis, Davis, CA, 95616, USA
| | - Amara S Brinks
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Elli P Sellinger
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Aditi D Doshi
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA; Currently at Department of Psychology, University of Illinois at Chicago, 1007W Harrison St, Chicago, IL 60607, USA
| | - Jessie Y Koh
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA.
| |
Collapse
|
134
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
135
|
Abozaid OAR, Rashed LA, El-Sonbaty SM, Abu-Elftouh AI, Ahmed ESA. Mesenchymal Stem Cells and Selenium Nanoparticles Synergize with Low Dose of Gamma Radiation to Suppress Mammary Gland Carcinogenesis via Regulation of Tumor Microenvironment. Biol Trace Elem Res 2023; 201:338-352. [PMID: 35138531 PMCID: PMC9823077 DOI: 10.1007/s12011-022-03146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023]
Abstract
Breast cancer is one of the most prevalent and deadliest cancers among women in the world because of its aggressive behavior and inadequate response to conventional therapies. Mesenchymal stem cells (MSCs) combined with green nanomaterials could be an efficient tool in cell cancer therapy. This study examined the curative effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) with selenium nanoparticles (SeNPs) coated with fermented soymilk and a low dose of gamma radiation (LDR) in DMBA-induced mammary gland carcinoma in female rats. DMBA-induced mammary gland carcinoma as marked by an elevation of mRNA level of cancer promoter genes (Serpin and MIF, LOX-1, and COL1A1) and serum level of VEGF, TNF-α, TGF-β, CA15-3, and caspase-3 with the reduction in mRNA level of suppressor gene (FST and ADRP). These deleterious effects were hampered after treatment with BM-MSCs (1 × 106 cells/rat) once and daily administration of SeNPs (20 mg/kg body weight) and exposure once to (0.25 Gy) LDR. Finally, MSCs, SeNPs, and LDR notably modulated the expression of multiple tumor promoters and suppressor genes playing a role in breast cancer induction and suppression.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Laila A. Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Esraa S. A. Ahmed
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787 Egypt
| |
Collapse
|
136
|
Franssen D, Johansson HKL, Lopez-Rodriguez D, Lavergne A, Terwagne Q, Boberg J, Christiansen S, Svingen T, Parent AS. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1140886. [PMID: 37077353 PMCID: PMC10108553 DOI: 10.3389/fendo.2023.1140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. DESIGN Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d). RESULTS Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. CONCLUSION nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- *Correspondence: Delphine Franssen,
| | | | | | - Arnaud Lavergne
- GIGA-Bioinformatics, GIGA Institute, Université de Liège, Liège, Belgium
| | - Quentin Terwagne
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liege, Liege, Belgium
| |
Collapse
|
137
|
Malik P, Singh R, Kumar M, Malik A, Mukherjee TK. Understanding the Phytoestrogen Genistein Actions on Breast Cancer: Insights on Estrogen Receptor Equivalence, Pleiotropic Essence and Emerging Paradigms in Bioavailability Modulation. Curr Top Med Chem 2023; 23:1395-1413. [PMID: 36597609 DOI: 10.2174/1568026623666230103163023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023]
Abstract
Prevalent as a major phenolic ingredient of soy and soy products, genistein is recognized as an eminent phytoestrogen owing to its interacting ability with estrogen receptors (ERs). The metabolic conversion of plant-derived genistin to genistein by gut microbes and intestinal enzymes enhances its absorption at intestinal pH of ~7.5-7.8. Genistein interferes in breast cancer (BC) development via pleiotropic actions on cell proliferation, survival, angiogenesis, and apoptosis. Though multiple investigations have demonstrated genistein intake-driven reduced BC risk, similar efficacy has not been replicated in clinical trials. Furthermore, multiple studies have structurally and functionally equated genistein extents with 17-β-estradiol (E2), the most available physiological estrogen in females, culminating in aggravated BC growth. Of note, both genistein and E2 function via interacting with ERs (ERα and ERβ). However, although E2 shows almost equal affinity towards both ERα and ERβ, genistein shows more affinity towards ERβ than ERα. Our cautious literature survey revealed typical intake mode, ER expression pattern and the ratio of ERα and ERβ, transactivators/ regulators of ERα and ERβ expression and activities, patient age, and menopausal status as decisive factors affecting genistein BC activities. Of further interest are the mechanisms by which genistein inhibits triple-negative breast cancers (TNBCs), which lack ERs, progesterone receptors (PRs), and human epidermal growth factor receptors (HER2). Herein, we attempt to understand the dosage-specific genistein actions in BC cells and patients with an insight into its better response via derivative development, nanocarrier-assisted, and combinatorial delivery with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Anuj Malik
- Department of Pharmacy, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | | |
Collapse
|
138
|
Pahović PŠ, Iulini M, Maddalon A, Galbiati V, Buoso E, Dolenc MS, Corsini E. In Vitro Effects of Bisphenol Analogs on Immune Cells Activation and Th Differentiation. Endocr Metab Immune Disord Drug Targets 2023; 23:1750-1761. [PMID: 36797609 DOI: 10.2174/1871530323666230216150614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
AIMS Investigate the immunomodulatory effects of bisphenols in the THP-1 cell line and peripheral blood mononuclear cells in response to lipopolysaccharide (LPS) activation or to phorbol 12-myristate 13-acetate (PMA) and ionomycin. BACKGROUND We have previously demonstrated the usefulness of the evaluation of RACK1 expression as a link between endocrine disrupting activity and the immunotoxic effect of xenobiotics. We demonstrated that while BPA and BPAF reduced RACK1 expression, BPS was able to increase it. OBJECTIVE Bisphenol A (BPA) is one of the most commonly used chemicals in the manufacturing of polycarbonate plastics and plastic consumer products. Its endocrine disrupting (ED) potential and changes in European regulations have led to replacing BPA in many uses with structurally similar chemicals, like bisphenol AF (BPAF) and bisphenol S (BPS). However, emerging data indicated that bisphenol analogues may not be safer than BPA both in toxic effects and ED potential. METHODS THP-1 cell line and peripheral blood mononuclear cells were activated with lipopolysaccharide (LPS) or with phorbol 12-myristate 13-acetate (PMA) and ionomycin. RESULTS BPA and BPAF decreased LPS-induced expression of surface markers and the release of pro-inflammatory cytokines, while BPS increased LPS-induced expression of CD86 and cytokines. BPA, BPAF, and BPS affected PMA/ionomycin-induced T helper differentiation and cytokine release with gender-related alterations in some parameters investigated. CONCLUSION Data confirm that bisphenols can modulate immune cell differentiation and activation, further supporting their immunotoxic effects.
Collapse
Affiliation(s)
- Pia Štrukelj Pahović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Erica Buoso
- Department of Drugs Sciences, University of Pavia, Pavia, Italy
| | | | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
139
|
Inaba H, Iwata Y, Suzuki T, Horiuchi M, Surugaya R, Ijiri S, Uchiyama A, Takano R, Hara S, Yazawa T, Kitano T. Soy Isoflavones Induce Feminization of Japanese Eel ( Anguilla japonica). Int J Mol Sci 2022; 24:ijms24010396. [PMID: 36613840 PMCID: PMC9820629 DOI: 10.3390/ijms24010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Under aquaculture conditions, Japanese eels (Anguilla japonica) produce a high percentage of males. However, females gain higher body weight and have better commercial value than males, and, therefore, a high female ratio is required in eel aquaculture. In this study, we examined the effects of isoflavones, genistein, and daidzein on sex differentiation and sex-specific genes of eels. To investigate the effects of these phytoestrogens on the gonadal sex, we explored the feminizing effects of soy isoflavones, genistein, and daidzein in a dose-dependent manner. The results showed that genistein induced feminization more efficiently than daidzein. To identify the molecular mechanisms of sex-specific genes, we performed a comprehensive expression analysis by quantitative real-time PCR and RNA sequencing. Phenotypic males and females were produced by feeding elvers a normal diet or an estradiol-17β- or genistein-treated diet for 45 days. The results showed that female-specific genes were up-regulated and male-specific genes were down-regulated in the gonads, suggesting that genistein induces feminization by altering the molecular pathways responsible for eel sex differentiation.
Collapse
Affiliation(s)
- Hiroyuki Inaba
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Fisheries Administration Division, Bureau of Agriculture and Fisheries, Aichi Prefectural Governmental Office, 3-1-2 Sannomaru, Nakaku, Nagoya 460-8501, Aichi, Japan
| | - Yuzo Iwata
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Nishimikawa Agriculture, Forestry, and Fisheries Office of Aichi Prefectural Government, Myoudaijihonmachi, Okazaki 444-0860, Aichi, Japan
| | - Takashi Suzuki
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Marine Resources Research Center, Aichi Fisheries Research Institute, Toyohama, Minamichita 470-3412, Aichi, Japan
| | - Moemi Horiuchi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Ryohei Surugaya
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Ai Uchiyama
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, 2-9-22 Takamihara, Tsukuba 300-1252, Ibaraki, Japan
| | - Ryoko Takano
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, 2-9-22 Takamihara, Tsukuba 300-1252, Ibaraki, Japan
| | - Seiji Hara
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Fukui Prefectural Fish Farming Center, 50-1 Katsumi, Obama 917-0166, Fukui, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Correspondence: ; Tel.: +81-96-342-3031
| |
Collapse
|
140
|
Ahlin R, Nybacka S, Josefsson A, Stranne J, Steineck G, Hedelin M. The effect of a phytoestrogen intervention and impact of genetic factors on tumor proliferation markers among Swedish patients with prostate cancer: study protocol for the randomized controlled PRODICA trial. Trials 2022; 23:1041. [PMID: 36544211 PMCID: PMC9768998 DOI: 10.1186/s13063-022-06995-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A high intake of phytoestrogens, found in soy, rye, and seeds, is associated with a reduced risk of a prostate cancer diagnosis. Previously, we found that the overall decreased risk of prostate cancer diagnosis in males with a high intake of phytoestrogens was strongly modified by a nucleotide sequence variant in the estrogen receptor-beta (ERβ) gene. However, we do not know if phytoestrogens can inhibit the growth of prostate cancer in males with established diseases. If there is an inhibition or a delay, there is reason to believe that different variants of the ERβ gene will modify the effect. Therefore, we designed an intervention study to investigate the effect of the addition of foods high in phytoestrogens and their interaction with the ERβ genotype on prostate tumor proliferation in patients with prostate cancer. METHOD The PRODICA trial is a randomized ongoing intervention study in patients with low- and intermediate-risk prostate cancer with a Gleason score < 8, prostate-specific antigen (PSA) < 20, and scheduled for radical prostatectomy. The study is conducted at Sahlgrenska University Hospital in Gothenburg, Sweden. The intervention consists of a daily intake of soybeans and flaxseeds (~ 200 mg of phytoestrogens) until the surgery, approximately 6 weeks. The aim is to recruit 200 participants. The primary outcome is the difference in the proliferation marker Ki-67 between the intervention and the control groups. The genotype of ERβ will be investigated as an effect-modifying factor. Secondary outcomes include, e.g., concentrations of PSA and steroid hormones in the blood. DISCUSSION The results of the PRODICA trial will contribute important information on the relevance of increasing the intake of phytoestrogens in patients with prostate cancer who want to make dietary changes to improve the prognosis of their cancer. If genetic factors turn out to influence the effect of the intervention diet, dietary advice can be given to patients who most likely benefit from it. Dietary interventions are cost-effective, non-invasive, and result in few mild side effects. Lastly, the project will provide basic pathophysiological insights which could be relevant to the development of treatment strategies for patients with prostate cancer. TRIAL REGISTRATION CLINICALTRIALS gov NCT02759380. Registered on 3 May 2016.
Collapse
Affiliation(s)
- Rebecca Ahlin
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Box 423, 40530, Gothenburg, Sweden
| | - Sanna Nybacka
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Josefsson
- Department of Urology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Urology and Andrology, Institute of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Johan Stranne
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Gunnar Steineck
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Box 423, 40530, Gothenburg, Sweden
| | - Maria Hedelin
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Box 423, 40530, Gothenburg, Sweden. .,Regional Cancer Center West, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| |
Collapse
|
141
|
Pizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci 2022. [DOI: 10.1007/s12038-022-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
142
|
Luongo FP, Passaponti S, Haxhiu A, Raeispour M, Belmonte G, Governini L, Casarini L, Piomboni P, Luddi A. Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells. Int J Mol Sci 2022; 23:ijms232415540. [PMID: 36555195 PMCID: PMC9779643 DOI: 10.3390/ijms232415540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system.
Collapse
Affiliation(s)
- Francesca Paola Luongo
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Sofia Passaponti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Maryam Raeispour
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Giuseppe Belmonte
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577586632
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| |
Collapse
|
143
|
Yang L, Chen S, Chen Z, Sun X, Gao Q, Lei M, Hao L. Exploration of interaction property between nonylphenol and G protein-coupled receptor 30 based on molecular simulation and biological experiments. Steroids 2022; 188:109114. [PMID: 36154832 DOI: 10.1016/j.steroids.2022.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Nonylphenol (NP), a representative of environmental hormones, can cause extensive biological effects in the human body. In this study, we first analyzed the mutual binding modes of NP and G protein coupled estrogen receptor 30 (GPR30) by molecular simulation. The 3D structure of GPR30 was successfully constructed. We found that the binding sites of NP on GPR30 are similar to that of 17β-Estradiol (E2) on GPR30. The GPR30-E2 bond complex is more stable than GPR30-NP bond complex. Next CCK-8 assay was used to detect the regulatory effect of NP on SKBR-3 cell proliferation. When NP and E2 were used alone, low concentration could promote cell proliferation, while high concentration was the opposite. The presence of E2 can promote the cell proliferation effect of NP, and inhibit the inhibitory intensity. NP could promote both the cell proliferation effect and inhibition intensity of E2. Based on our results, we conclude that the binding modes of NP and GPR30 is similar to that of E2 and GPR30. In biology, NP can play estrogen role by activating GPR30 receptor, but it can also produce cytotoxicity at higher concentration.
Collapse
Affiliation(s)
- Lijuan Yang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zihao Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
144
|
Lapp HE, Margolis AE, Champagne FA. Impact of a bisphenol A, F, and S mixture and maternal care on the brain transcriptome of rat dams and pups. Neurotoxicology 2022; 93:22-36. [PMID: 36041667 PMCID: PMC9985957 DOI: 10.1016/j.neuro.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
Products containing BPA structural analog replacements have increased in response to growing public concern over adverse effects of BPA. Although humans are regularly exposed to a mixture of bisphenols, few studies have examined effects of prenatal exposure to BPA alternatives or bisphenol mixtures. In the present study, we investigate the effect of exposure to an environmentally-relevant, low-dose (150 ug/kg body weight per day) mixture of BPA, BPS, and BPF during gestation on the brain transcriptome in Long-Evans pups and dams using Tag RNA-sequencing. We also examined the association between dam licking and grooming, which also has enduring effects on pup neural development, and the transcriptomes. Associations between licking and grooming and the transcriptome were region-specific, with the hypothalamus having the greatest number of differentially expressed genes associated with licking and grooming in both dams and pups. Prenatal bisphenol exposure also had region-specific effects on gene expression and pup gene expression was affected more robustly than dam gene expression. In dams, the prelimbic cortex had the greatest number of differentially expressed genes associated with prenatal bisphenol exposure. Prenatal bisphenol exposure changed the expression of over 2000 genes in pups, with the majority being from the pup amygdala. We used Gene Set Enrichment Analysis (GSEA) to asses enrichment of gene ontology biological processes for each region. Top GSEA terms were diverse and varied by brain region and included processes known to have strong associations with steroid hormone regulation, cilium-related terms, metabolic/biosynthetic process terms, and immune terms. Finally, hypothesis-driven analysis of genes related to estrogen response, parental behavior, and epigenetic regulation of gene expression revealed region-specific expression associated with licking and grooming and bisphenol exposure that were distinct in dams and pups. These data highlight the effects of bisphenols on multiple physiological process that are highly dependent on timing of exposure (prenatal vs. adulthood) and brain region, and reiterate the contributions of multiple environmental and experiential factors in shaping the brain.
Collapse
Affiliation(s)
- H E Lapp
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA.
| | - A E Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - F A Champagne
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA
| |
Collapse
|
145
|
Pesonen M, Vähäkangas K. Contribution of common plastic-related endocrine disruptors to epithelial-mesenchymal transition (EMT) and tumor progression. CHEMOSPHERE 2022; 309:136560. [PMID: 36152835 DOI: 10.1016/j.chemosphere.2022.136560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many chemicals, including many endocrine disruptors (EDCs) are known to leach out from various plastic consumer products and waste, and are widespread in the environment. EDCs are a large group of contaminants that can interfere with hormonal metabolism or function. In addition, there are in the literature implications of contribution by EDCs in tumor progression, the last stage of carcinogenesis driven by cells with a metastatic phenotype. The process of epithelial cells losing their apical-basal polarity and cell-to-cell contacts, and acquiring migration and invasive properties typical of mesenchymal cells is called epithelial-mesenchymal transition (EMT). It is essential for tumor progression. In human cells, plastic-related EDCs, (phthalates, bisphenol A, and the alkylphenols: nonylphenol and octylphenol) reduce epithelial E-cadherin, and increase mesenchymal N-cadherin and extracellular matrix metalloproteinases. These changes are hallmarks of EMT. In xenograft mouse studies, EDCs increase migration of cells and metastatic growth in distant tissues. Their contribution to EMT and tumor progression, the topic of this review, is important from public health perspective, because of the ubiquitous exposure to these EDCs. In this mini-review we also discuss molecular mechanisms associated with EDC-induced EMT and tumor progression.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
146
|
Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects. Anim Reprod Sci 2022; 246:106896. [PMID: 34893378 DOI: 10.1016/j.anireprosci.2021.106896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
The renewal of the natural resources is one of the most concerning aspects of modern farming. In animal production, there are many barriers breeders and researchers have to overcome to develop new practices to improve reproductive potential and hasten sexual maturation of the commercially viable species, while maintaining meat quality and sustainability. With the utilization of molecular biology techniques, there have been relevant advances in the knowledge of spermatogenesis, especially in mammals, resulting in new possibilities to control male fertility and the selection of desirable characteristics. Most of these discoveries have not been implemented in animal production. In this review, recent studies are highlighted on the molecular pathways involved in spermatogenesis in the context of animal production. There is also exploration of the interaction between environmental factors and spermatogenesis and how this knowledge may revolutionize animal production techniques. Furthermore, new insights are described about the inheritance of desired characteristics in mammals and there is a review of nefarious actions of pollutants, nutrition, and metabolism on reproductive potential in subsequent generations. Even though there are these advances in knowledge base, results from recent studies indicate there are previously unrecognized environmental effects on spermatogenesis. The molecular mechanisms underlying this interaction are not well understood. Research in spermatogenesis, therefore, remains pivotal as a pillar of animal production sustainability.
Collapse
|
147
|
Zheng J, Reynolds JE, Long M, Ostertag C, Pollock T, Hamilton M, Dunn JF, Liu J, Martin J, Grohs M, Landman B, Huo Y, Dewey D, Kurrasch D, Lebel C. The effects of prenatal bisphenol A exposure on brain volume of children and young mice. ENVIRONMENTAL RESEARCH 2022; 214:114040. [PMID: 35952745 PMCID: PMC11959573 DOI: 10.1016/j.envres.2022.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical used for the manufacturing of plastics, epoxy resin, and many personal care products. This ubiquitous endocrine disruptor is detectable in the urine of over 80% of North Americans. Although adverse neurodevelopmental outcomes have been observed in children with high gestational exposure to BPA, the effects of prenatal BPA on brain structure remain unclear. Here, using magnetic resonance imaging (MRI), we studied the associations of maternal BPA exposure with children's brain structure, as well as the impact of comparable BPA levels in a mouse model. Our human data showed that most maternal BPA exposure effects on brain volumes were small, with the largest effects observed in the opercular region of the inferior frontal gyrus (ρ = -0.2754), superior occipital gyrus (ρ = -0.2556), and postcentral gyrus (ρ = 0.2384). In mice, gestational exposure to an equivalent level of BPA (2.25 μg BPA/kg bw/day) induced structural alterations in brain regions including the superior olivary complex (SOC) and bed nucleus of stria terminalis (BNST) with larger effect sizes (1.07≤ Cohens d ≤ 1.53). Human (n = 87) and rodent (n = 8 each group) sample sizes, while small, are considered adequate to perform the primary endpoint analysis. Combined, these human and mouse data suggest that gestational exposure to low levels of BPA may have some impacts on the developing brain at the resolution of MRI.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Madison Long
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Curtis Ostertag
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Pollock
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Max Hamilton
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Melody Grohs
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
148
|
Surface Plasmon Resonance (SPR) biosensor for detection of mycotoxins: A review. J Immunol Methods 2022; 510:113349. [PMID: 36088984 DOI: 10.1016/j.jim.2022.113349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Mycotoxin is one of the most important natural pollutants, which poses a global threat to food safety. However, the pollution of mold in food production is inevitable. The detection technology of mycotoxins in food production is an important means to prevent the damage of mycotoxins, so rapid detection and screening to avoid pollution diffusion is essential. The focus of this review is to update the literature on the detection of mycotoxins by surface plasmon resonance (SPR) technology, rather than just traditional chromatographic methods. As a relatively novel and simple analytical method, SPR has been proved to be fast, sensitive and label-free, and has been widely used in real-time qualitative and quantitative analysis of various pollutants. This paper aims to give a broad overview of the sensors for detection and analysis of several common mycotoxins.
Collapse
|
149
|
Fermentation Extract of Naringenin Increases the Expression of Estrogenic Receptor β and Modulates Genes Related to the p53 Signalling Pathway, miR-200c and miR-141 in Human Colon Cancer Cells Exposed to BPA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196588. [PMID: 36235125 PMCID: PMC9572342 DOI: 10.3390/molecules27196588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
The estrogenic receptor beta (ERβ) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERβ. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERβ, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (−3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERβ (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.
Collapse
|
150
|
Anuar AM, Minami A, Matsushita H, Ogino K, Fujita K, Nakao H, Kimura S, Sabaratnam V, Umehara K, Kurebayashi Y, Takahashi T, Kanazawa H, Wakatsuki A, Suzuki T, Takeuchi H. Ameliorating Effect of the Edible Mushroom Hericium erinaceus on Depressive-Like Behavior in Ovariectomized Rats. Biol Pharm Bull 2022; 45:1438-1443. [PMID: 36184501 DOI: 10.1248/bpb.b22-00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen deficiency during menopause causes a variety of neurological symptoms, including depression. The edible Lion's Mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (HE), is a medicinal mushroom that has the potential for a neuroprotective effect and ameliorating neurological diseases, such as depression, anxiety, and neurodegenerative diseases. HE contains phytoestrogens, including daidzein and genistein. However, the ameliorating effect of HE on menopausal symptoms is not well understood. Here we investigated the impact of methanol extract of the HE fruiting body on depressive-like behavior in postmenopausal model rats. The activation of estrogen receptor alpha (ERα) causes body weight loss and uterine weight gain. Body weight gain and uterine weight loss by estrogen deficiency in ovariectomized (OVX) rats were reversed with 17β-estradiol (E2) but not with HE. Thus, the phytoestrogens in HE may hardly activate ERα. Estrogen receptor beta (ERβ) is expressed in the brain, and activation of ERβ ameliorates menopausal depressive symptoms. Notably, depressive-like behavior in OVX rats evaluated in forced swim test was reduced by administration of not only E2 but also HE for 92 d. Long-term activation of ERα increases the risk of breast and uterine cancers. HE, therefore, may be effective in treating menopausal depression without the risk of carcinogenesis caused by ERα activation.
Collapse
Affiliation(s)
- Azliza Mad Anuar
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroshi Matsushita
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University
| | - Kanako Ogino
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kosei Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hatsune Nakao
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shota Kimura
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya.,Institute of Biological Sciences, Faculty of Science, University of Malaya
| | - Kaoru Umehara
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Akihiko Wakatsuki
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|