101
|
Ahmed M, Hassan K, Ahmed H. Case of Resistance to Thyroid Hormones With a Relatively Rare Mutation in Thyroid Hormones Receptor. Cureus 2021; 13:e14911. [PMID: 34113521 PMCID: PMC8184159 DOI: 10.7759/cureus.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Normal thyroid hormone level is essential to maintain the normal physiologic function of the human body. Disturbances of these hormone levels have variable clinical manifestations ranging from asymptomatic to severe illness. Resistance to thyroid hormone (RTH) is a syndrome characterized by reduced intracellular action of T3, the active thyroid hormone. It is a rare autosomal dominant condition and occurs mostly due to heterogeneous mutations in the thyroid hormone receptor. Other causes of RTH include thyroid hormone cell membrane transport defect and thyroid hormone metabolism defect. Affected individuals present with symptoms of both increased and decreased thyroid hormone action, depending on the tissue’s predominant receptor isoform expression, the magnitude of hormonal resistance, and the effectiveness of compensatory mechanisms. Here, we share our experience in diagnosing a case of RTH confirmed with a genetic test and found to have sequence variant mutation that is not well described in the literature previously due to the absence of genetic conclusive evidence.
Collapse
Affiliation(s)
- Mohanad Ahmed
- Internal Medicine, Hamad Medical Corporation, Doha, QAT
| | - Khalid Hassan
- Internal Medicine, Hamad Medical Corporation, Doha, QAT
| | - Hind Ahmed
- Department of Endocrinology, Hamad Medical Corporation, Doha, QAT
| |
Collapse
|
102
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
103
|
de Lima Junior NC, Camilo JF, do Carmo PR, de Andrade MN, Braz BF, Santelli RE, de Brito Gitirana L, Ferreira ACF, de Carvalho DP, Miranda-Alves L, Dias GRM. Subacute exposure to lead promotes disruption in the thyroid gland function in male and female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115889. [PMID: 33223335 DOI: 10.1016/j.envpol.2020.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Exposure to heavy metals, such as lead, is a global public health problem. Lead has a long historic relation to several adverse health conditions and was recently classified as an endocrine disruptor. The aim of this study was to investigate the effects of subacute exposure to lead on the thyroid gland function. Adult male and female Wistar rats received a lead acetate solution containing 10 or 25 mg/kg, by gavage, three times a week, for 14 days. One week later, behavioral testing showed no alterations in anxiety and motor-exploratory parameters, as evaluated by Open-Field and Plus-Maze Tests, but impairment in learning and memory was found in the male 25 mg/kg lead-treated group and in both female lead-treated groups, as evaluated by the Inhibitory Avoidance Test. After one week, serum levels of tT3 were reduced in the 25 mg/kg female group and in the 10 mg∕ kg male group. However, tT4 levels were increased in the 25 mg/kg male group and in both female treated groups. TSH levels did not change and lead serum levels were undetectable. Morphologic alterations were observed in the thyroid gland, including abnormal thyroid parenchyma follicles of different sizes, epithelial stratification and vacuolization of follicular cells, decrease in colloid eosinophilia and vascular congestion, accompanied by morphometric alterations. An increase in collagen deposition was also observed. No differences were observed in TPO activity or protein expression, H2O2 generation by NADPH oxidases or hepatic D1 mRNA expression. However, thyroid NIS protein expression was considerably decreased in the male and female lead-treated groups, while TSHr expression was decreased in the 25 mg/kg female lead-treated group. These findings demonstrated that subacute exposure to lead acetate disrupts thyroid gland function in both sexes, leading to morphophysiological impairment and to changes in learning and memory abilities.
Collapse
Affiliation(s)
- Niedson Correia de Lima Junior
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Franco Camilo
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pâmella Rodrigues do Carmo
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelle Novaes de Andrade
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Pharmacology and Medicinal Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bernardo Ferreira Braz
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ricardo Erthal Santelli
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lycia de Brito Gitirana
- Laboratory of Integrative Histology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise Pires de Carvalho
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Pharmacology and Medicinal Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Glaecir Roseni Mundstock Dias
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
104
|
White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17:199-214. [PMID: 33504979 PMCID: PMC8880688 DOI: 10.1038/s41582-020-00447-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.
Collapse
|
105
|
Pagnin M, Kondos-Devcic D, Chincarini G, Cumberland A, Richardson SJ, Tolcos M. Role of thyroid hormones in normal and abnormal central nervous system myelination in humans and rodents. Front Neuroendocrinol 2021; 61:100901. [PMID: 33493504 DOI: 10.1016/j.yfrne.2021.100901] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.
Collapse
Affiliation(s)
- Maurice Pagnin
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Delphi Kondos-Devcic
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | | | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
106
|
McNerney C, Johnston RJ. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids. VITAMINS AND HORMONES 2021; 116:51-90. [PMID: 33752828 DOI: 10.1016/bs.vh.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cones are the color-detecting photoreceptors of the vertebrate eye. Cones are specialized into subtypes whose functions are determined by the expression of color-sensitive opsin proteins. Organisms differ greatly in the number and patterning of cone subtypes. Despite these differences, thyroid hormone is an important regulator of opsin expression in most vertebrates. In this chapter, we outline how the timing of thyroid hormone signaling controls cone subtype fates during retinal development. We first examine our current understanding of cone subtype specification in model organisms and then describe advances in human stem cell-derived organoid technology that identified mechanisms controlling development of the human retina.
Collapse
Affiliation(s)
- Christina McNerney
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
107
|
Burakgazi Dalkilic E. Effects of antiepileptic drugs on hormones. Neurosci Lett 2021; 754:135800. [PMID: 33705937 DOI: 10.1016/j.neulet.2021.135800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
|
108
|
Zhou X, Zhang M, Wang Y, Xia H, Zhu L, Li G, Rong L, Dong H, Chen R, Tang S, Yu M. Cholinesterase homozygous genotype as susceptible biomarker of hypertriglyceridaemia for pesticide-exposed agricultural workers. Biomarkers 2021; 26:335-342. [PMID: 33617373 DOI: 10.1080/1354750x.2021.1893815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Dyslipidemia is an emerging metabolic disorder among pesticide-exposed agricultural workers, and this study was aimed to explore biomarkers of hypertriglyceridaemia susceptibility. METHODS This cross-sectional study recruited 72 pesticide-exposed subjects and 78 non-exposed controls. Lipid profile, cholinesterase activity, and thyroid hormones were analysed with routine assays. Six loci, including rs11206244 and rs2235544 for deiodinase 1, rs12885300 and rs225014 for deiodinase 2, rs1803274 for butyrylcholinesterase, and rs3757869 for acetylcholinesterase were genotyped using an improved multiplex ligation detection reaction technique. RESULTS Pesticide-exposed subjects showed higher levels of triglyceride than controls (p = 0.009), although there were comparable cholinesterase activity and genotype frequencies of all six loci between pesticide-exposed subjects and controls. Pesticide-exposed subjects with homozygous genotype of cholinesterase had increased triglyceride levels than controls (p < 0.05). The percentage of hypertriglyceridaemia was 28.6% and 8.8% for pesticide-exposed subjects and controls with homozygous butyrylcholinesterase genotype (p = 0.007) and 20.8% and 14.3% with homozygous acetylcholinesterase genotype (p = 0.792), respectively. Multivariate logistic regression analyses found that odds ratio of hypertriglyceridaemia is 21.92 and 4.56 for pesticide-exposed subjects with homozygous genotype of butyrylcholinesterase (p = 0.001) and acetylcholinesterase (p = 0.036), respectively. CONCLUSIONS Cholinesterase homozygous genotype might be a potential susceptible biomarker in screening pesticide-exposed agricultural workers vulnerable to hypertriglyceridaemia.
Collapse
Affiliation(s)
- Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing, China
| | - Min Zhang
- Department of Occupational Diseases, Hangzhou Medical College, Hangzhou, China
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing, China
| | - Hailing Xia
- Department of Occupational Diseases, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- Department of Occupational Diseases, Hangzhou Medical College, Hangzhou, China
| | - Guangyi Li
- Institute of Endemic and Chronic Disease Control and Prevention, Zibo centers for Disease Control and Prevention, Zibo, China
| | - Li Rong
- Clinical Medical Laboratory, Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry, Beijing, China
| | - Huahuang Dong
- Clinical Medical Laboratory, Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry, Beijing, China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing, China
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing, China
| | - Min Yu
- Department of Occupational Diseases, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
109
|
Moreau M, Benhaddou S, Dard R, Tolu S, Hamzé R, Vialard F, Movassat J, Janel N. Metabolic Diseases and Down Syndrome: How Are They Linked Together? Biomedicines 2021; 9:biomedicines9020221. [PMID: 33671490 PMCID: PMC7926648 DOI: 10.3390/biomedicines9020221] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21, associated with intellectual disabilities. Down syndrome is associated with anomalies of both the nervous and endocrine systems. Over the past decades, dramatic advances in Down syndrome research and treatment have helped to extend the life expectancy of these patients. Improved life expectancy is obviously a positive outcome, but it is accompanied with the need to address previously overlooked complications and comorbidities of Down syndrome, including obesity and diabetes, in order to improve the quality of life of Down syndrome patients. In this focused review, we describe the associations between Down syndrome and comorbidities, obesity and diabetes, and we discuss the understanding of proposed mechanisms for the association of Down syndrome with metabolic disorders. Drawing molecular mechanisms through which Type 1 diabetes and Type 2 diabetes could be linked to Down syndrome could allow identification of novel drug targets and provide therapeutic solutions to limit the development of metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Manon Moreau
- Laboratoire Processus Dégénératifs, Université de Paris, BFA, UMR 8251, CNRS, Stress et Vieillissemen, F-75013 Paris, France; (M.M.); (S.B.); (R.D.)
| | - Soukaina Benhaddou
- Laboratoire Processus Dégénératifs, Université de Paris, BFA, UMR 8251, CNRS, Stress et Vieillissemen, F-75013 Paris, France; (M.M.); (S.B.); (R.D.)
| | - Rodolphe Dard
- Laboratoire Processus Dégénératifs, Université de Paris, BFA, UMR 8251, CNRS, Stress et Vieillissemen, F-75013 Paris, France; (M.M.); (S.B.); (R.D.)
- Genetics Deptartment, CHI Poissy St Germain-en-Laye, F-78300 Poissy, France;
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, F-78350 Jouy-en-Josas, France
| | - Stefania Tolu
- Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; (S.T.); (R.H.); (J.M.)
| | - Rim Hamzé
- Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; (S.T.); (R.H.); (J.M.)
| | - François Vialard
- Genetics Deptartment, CHI Poissy St Germain-en-Laye, F-78300 Poissy, France;
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, F-78350 Jouy-en-Josas, France
| | - Jamileh Movassat
- Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; (S.T.); (R.H.); (J.M.)
| | - Nathalie Janel
- Laboratoire Processus Dégénératifs, Université de Paris, BFA, UMR 8251, CNRS, Stress et Vieillissemen, F-75013 Paris, France; (M.M.); (S.B.); (R.D.)
- Correspondence: ; Tel.: +33-1-57-27-83-60; Fax: +33-1-57-27-83-54
| |
Collapse
|
110
|
Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review. Nutrients 2021; 13:nu13020529. [PMID: 33561976 PMCID: PMC7915253 DOI: 10.3390/nu13020529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension, and neurodegenerative disease. These unique properties are attributed to the phytochemicals with potent antioxidant activities in olive oil. Olive leaf also harbours similar bioactive compounds. Several studies have reported the effects of olive phenolics, olive oil, and leaf extract in the modulation of thyroid activities. A systematic review of the literature was conducted to identify relevant studies on the effects of olive derivatives on thyroid function. A comprehensive search was conducted in October 2020 using the PubMed, Scopus, and Web of Science databases. Cellular, animal, and human studies reporting the effects of olive derivatives, including olive phenolics, olive oil, and leaf extracts on thyroid function were considered. The literature search found 445 articles on this topic, but only nine articles were included based on the inclusion and exclusion criteria. All included articles were animal studies involving the administration of olive oil, olive leaf extract, or olive pomace residues orally. These olive derivatives were consistently demonstrated to have thyroid-stimulating activities in euthyroid or hypothyroid animals, but their mechanisms of action are unknown. Despite the positive results, validation of the beneficial health effects of olive derivatives in the human population is lacking. In conclusion, olive derivatives, especially olive oil and leaf extract, could stimulate thyroid function. Olive pomace residue is not suitable for pharmaceutical or health supplementation purposes. Therapeutic applications of olive oil and leaf extract, especially in individuals with hypothyroidism, require further validation through human studies.
Collapse
|
111
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
112
|
Stanculescu D, Larsson L, Bergquist J. Hypothesis: Mechanisms That Prevent Recovery in Prolonged ICU Patients Also Underlie Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:628029. [PMID: 33585528 PMCID: PMC7876311 DOI: 10.3389/fmed.2021.628029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Here the hypothesis is advanced that maladaptive mechanisms that prevent recovery in some intensive care unit (ICU) patients may also underlie Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these mechanisms are: (a) suppression of the pituitary gland's pulsatile secretion of tropic hormones, and (b) a "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. This hypothesis should be investigated through collaborative research projects.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
113
|
A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 2021; 95:807-836. [PMID: 33398420 DOI: 10.1007/s00204-020-02961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
This review summarises the current state of knowledge regarding the physiology and control of production of thyroid hormones, the effects of chemicals in perturbing their synthesis and release that result in thyroid cancer. It does not consider the potential neurodevelopmental consequences of low thyroid hormones. There are a number of known molecular initiating events (MIEs) that affect thyroid hormone synthesis in mammals and many chemicals are able to activate multiple MIEs simultaneously. AOP analysis of chemical-induced thyroid cancer in rodents has defined the key events that predispose to the development of rodent cancer and many of these will operate in humans under appropriate conditions, if they were exposed to high enough concentrations of the affecting chemicals. There are conditions however that, at the very least, would indicate significant quantitative differences in the sensitivity of humans to these effects, with rodents being considerably more sensitive to thyroid effects by virtue of differences in the biology, transport and control of thyroid hormones in these species as opposed to humans where turnover is appreciably lower and where serum transport of T4/T3 is different to that operating in rodents. There is heated debate around claimed qualitative differences between the rodent and human thyroid physiology, and significant reservations, both scientific and regulatory, still exist in terms of the potential neurodevelopmental consequences of low thyroid hormone levels at critical windows of time. In contrast, the situation for the chemical induction of thyroid cancer, through effects on thyroid hormone production and release, is less ambiguous with both theoretical, and actual data, showing clear dose-related thresholds for the key events predisposing to chemically induced thyroid cancer in rodents. In addition, qualitative differences in transport, and quantitative differences in half life, catabolism and turnover of thyroid hormones, exist that would not operate under normal situations in humans.
Collapse
|
114
|
Kim J, Lee G, Lee YM, Zoh KD, Choi K. Thyroid disrupting effects of perfluoroundecanoic acid and perfluorotridecanoic acid in zebrafish (Danio rerio) and rat pituitary (GH3) cell line. CHEMOSPHERE 2021; 262:128012. [PMID: 33182161 DOI: 10.1016/j.chemosphere.2020.128012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 05/26/2023]
Abstract
Due to global restriction on perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the use of long-chain perfluoroalkyl substances (PFASs, C > 8) and their environmental occurrences have increased. PFOS and PFOA have been known for thyroid disruption, however, knowledge is still limited on thyroid disrupting effects of long-chain PFASs (C > 10). In this study, two long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA), were chosen and investigated for thyroid disrupting effects, using zebrafish embryo/larvae and rat pituitary cell line (GH3). For comparison, PFOA was also added as a test chemical and also investigated for its thyroid disruption potential. Following a 5 d exposure to PFTrDA, zebrafish larvae showed upregulation of the genes responsible for thyroid hormone synthesis (tshβ, nkx2.1, nis, tpo, mct8) and (de)activation (dio1, dio2). In contrast, both PFUnDA and PFOA induced no regulatory changes except for upregulation of a thyroid metabolism related gene (ugt1ab). Morphological changes such as decreased eyeball size, increased yolk sac size, or deflated swim bladder, occurred following exposure to PFUnDA, PFTrDA, and PFOA. In GH3 cells, exposure to PFUnDA and PFTrDA upregulated Tshβ gene, suggesting that these PFCAs increase thyroid hormone synthesis through stimulation by Tsh. In summary, both long-chain PFCAs could cause transcriptional changes of thyroid regulating genes that may lead to increased malformation of the zebrafish larvae, but the pathway of thyroid disruption appears to be different by the chain length. Confirmation and validation in adult fish following long term exposure are warranted.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Young-Min Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
115
|
van der Spek AH, Fliers E, Boelen A. Thyroid Hormone and Deiodination in Innate Immune Cells. Endocrinology 2021; 162:6016930. [PMID: 33275661 DOI: 10.1210/endocr/bqaa200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormone has recently been recognized as an important determinant of innate immune cell function. Highly specialized cells of the innate immune system, including neutrophils, monocytes/macrophages, and dendritic cells, are capable of identifying pathogens and initiating an inflammatory response. They can either phagocytose and kill microbes, or recruit other innate or adaptive immune cells to the site of inflammation. Innate immune cells derive from the hematopoietic lineage and are generated in the bone marrow, from where they can be recruited into the blood and tissues in the case of infection. The link between the immune and endocrine systems is increasingly well established, and recent studies have shown that innate immune cells can be seen as important thyroid hormone target cells. Tight regulation of cellular thyroid hormone availability and action is performed by thyroid hormone transporters, receptors, and the deiodinase enzymes. Innate immune cells express all these molecular elements of intracellular thyroid hormone metabolism. Interestingly, there is recent evidence for a causal relationship between cellular thyroid hormone status and innate immune cell function. This review describes the effects of modulation of intracellular thyroid hormone metabolism on innate immune cell function, specifically neutrophils, macrophages, and dendritic cells, with a special focus on the deiodinase enzymes. Although there are insufficient data at this stage for conclusions on the clinical relevance of these findings, thyroid hormone metabolism may partially determine the innate immune response and, by inference, the clinical susceptibility to infections.
Collapse
Affiliation(s)
- Anne H van der Spek
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Eric Fliers
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| |
Collapse
|
116
|
Frare C, Williams CT, Drew KL. Thermoregulation in hibernating mammals: The role of the "thyroid hormones system". Mol Cell Endocrinol 2021; 519:111054. [PMID: 33035626 PMCID: PMC8091518 DOI: 10.1016/j.mce.2020.111054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/15/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Hibernation is a unique evolutionary adaptation to conserve energy. During the pre-hibernation (i.e. fall) season, a progressive decline in core body temperature and further decrease in metabolism underlie a seasonal modulation in thermoregulation. The onset of hibernation requires marked changes in thermoregulatory attributes including adjustment in body temperature and tissue specific increases in thermogenic capacity. The hibernation season is characterized by a regulated suppression in thermogenesis allowing the onset of torpor interrupted by periodic activation of thermogenesis to sustain interbout arousals. Thyroid hormones are known to regulate both body temperature and metabolism, and for this reason, the hypothalamic-pituitary-thyroid axis and thyroid hormones have been investigated as modulators of thermogenesis in the phenomenon of hibernation, but the mechanisms remain poorly understood. In this review, we present an overview of what is known about the thermogenic roles of thyroid hormones in hibernating species across seasons and within the hibernating season (torpor-interbout arousal cycle). Overall, the hypothalamic-pituitary-thyroid axis and thyroid hormones play a role in the pre-hibernation season to enhance thermogenic capacity. During hibernation, thermogenesis is attenuated at the level of sympathetic premotor neurons within the raphe pallidus and by deiodinase expression in the hypothalamus. Further, as recent work highlights the direct effect of thyroid hormones within the central nervous system in activating thermogenesis, we speculate how similar mechanisms may occur in hibernating species to modulate thermogenesis across seasons and to sustain interbout arousals. However, further experiments are needed to elucidate the role of thyroid hormones in hibernation, moving towards the understanding that thyroid hormones metabolism, transport and availability within tissues may be the most telling indicator of thyroid status.
Collapse
Affiliation(s)
- C Frare
- Department of Chemistry and Biochemistry University of Alaska Fairbanks, Fairbanks, AK, 99775, USA; Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry University of Alaska Fairbanks, Fairbanks, AK, 99775, USA; Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA.
| |
Collapse
|
117
|
Maushart CI, Senn JR, Loeliger RC, Kraenzlin ME, Müller J, Becker AS, Balaz M, Wolfrum C, Burger IA, Betz MJ. Free Thyroxine Levels are Associated with Cold Induced Thermogenesis in Healthy Euthyroid Individuals. Front Endocrinol (Lausanne) 2021; 12:666595. [PMID: 34194392 PMCID: PMC8236885 DOI: 10.3389/fendo.2021.666595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormone (TH) is an important regulator of mammalian metabolism and facilitates cold induced thermogenesis (CIT) in brown adipose tissue (BAT). Profound hypothyroidism or hyperthyroidism lead to alterations in BAT function and CIT. In euthyroid humans the inter-individual variation of thyroid hormones is relatively large. Therefore, we investigated whether levels of free thyroxine (T4) or free triiodothyronine (T3) are positively associated with CIT in euthyroid individuals. We performed an observational study in 79 healthy, euthyroid volunteers (mean age 25.6 years, mean BMI 23.0 kg · m-2). Resting energy expenditure (REE) was measured by indirect calorimetry during warm conditions (EEwarm) and after a mild cold stimulus of two hours (EEcold). CIT was calculated as the difference between EEcold and EEwarm. BAT activity was assessed by 18F-FDG-PET after a mild cold stimulus in a subset of 26 participants. EEcold and CIT were significantly related to levels of free T4 (R2 = 0.11, p=0.0025 and R2 = 0.13, p=0.0011, respectively) but not to free T3 and TSH. Cold induced BAT activity was also associated with levels of free T4 (R2 = 0.21, p=0.018). CIT was approximately fourfold higher in participants in the highest tertile of free T4 as compared to the lowest tertile. Additionally, free T4 was weakly, albeit significantly associated with outdoor temperature seven days prior to the respective study visit (R2 = 0.06, p=0.037). These finding suggests that variations in thyroid hormone levels within the euthyroid range are related to the capability to adapt to cool temperatures and affect energy balance.
Collapse
Affiliation(s)
- Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jaël Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rahel Catherina Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marius E. Kraenzlin
- SpezialLABOR Hormone - Knochenstoffwechsel, University of Basel, Basel, Switzerland
| | - Julian Müller
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Anton S. Becker
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Irene A. Burger
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Matthias Johannes Betz,
| |
Collapse
|
118
|
Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin Cancer Biol 2020; 83:36-56. [PMID: 33242578 DOI: 10.1016/j.semcancer.2020.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Understanding of cancer with the help of ever-expanding cutting edge technological tools and bioinformatics is revolutionizing modern cancer research by broadening the space of discovery window of various genomic and epigenomic processes. Genomics data integrated with multi-omics layering have advanced cancer research. Uncovering such layers of genetic mutations/modifications, epigenetic regulation and their role in the complex pathophysiology of cancer progression could lead to novel therapeutic interventions. Although a plethora of literature is available in public domain defining the role of various tumor driver gene mutations, understanding of epigenetic regulation of cancer is still emerging. This review focuses on epigenetic regulation association with the pathogenesis of non-melanoma skin cancer (NMSC). NMSC has higher prevalence in Caucasian populations compared to other races. Due to lack of proper reporting to cancer registries, the incidence rates for NMSC worldwide cannot be accurately estimated. However, this is the most common neoplasm in humans, and millions of new cases per year are reported in the United States alone. In organ transplant recipients, the incidence of NMSC particularly of squamous cell carcinoma (SCC) is very high and these SCCs frequently become metastatic and lethal. Understanding of solar ultraviolet (UV) light-induced damage and impaired DNA repair process leading to DNA mutations and nuclear instability provide an insight into the pathogenesis of metastatic neoplasm. This review discusses the recent advances in the field of epigenetics of NMSCs. Particularly, the role of DNA methylation, histone hyperacetylation and non-coding RNA such as long-chain noncoding (lnc) RNAs, circular RNAs and miRNA in the disease progression are summarized.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
119
|
Sawant OB, Jidigam VK, Wilcots K, Fuller RD, Samuels I, Rao S. Thyroid Activating Enzyme, Deiodinase II Is Required for Photoreceptor Function in the Mouse Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 33237298 PMCID: PMC7691789 DOI: 10.1167/iovs.61.13.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a severe complication of premature infants, leading to vision loss when untreated. Presently, the molecular mechanisms underlying ROP are still far from being clearly understood. This study sought to investigate whether thyroid hormone (TH) signaling contributes to the neuropathology of ROP using the mouse model of ROP to evaluate longitudinal photoreceptor function. Methods Animals were exposed to hyperoxia from P7 to P12 to induce retinopathy, thereafter the animals were returned to room air (normoxia). The thyroid-activating enzyme type 2 deiodinases (Dio2) knockout (KO) mice and the littermate controls that were exposed to hyperoxia or maintained in room air and were then analyzed. The retinal function was evaluated using electroretinograms (ERGs) at three and seven weeks followed by histologic assessments with neuronal markers to detect cellular changes in the retina. Rhodopsin protein levels were measured to validate the results obtained from the immunofluorescence analyses. Results In the ROP group, the photoreceptor ERG responses are considerably lower both in the control and the Dio2 KO animals at P23 compared to the non-ROP group. In agreement with the ERG responses, loss of Dio2 results in mislocalized cone nuclei, and abnormal rod bipolar cell dendrites extending into the outer nuclear layer. The retinal function is compromised in the adult Dio2 KO animals, although the cellular changes are less severe. Despite the reduction in scotopic a-wave amplitudes, rhodopsin levels are similar in the adult mice, across all genotypes irrespective of exposure to hyperoxia. Conclusions Using the mouse model of ROP, we show that loss of Dio2 exacerbates the effects of hyperoxia-induced retinal deficits that persist in the adults. Our data suggest that aberrant Dio2/TH signaling is an important factor in the pathophysiology of the visual dysfunction observed in the oxygen-induced retinopathy model of ROP.
Collapse
Affiliation(s)
- Onkar B. Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Eversight, Cleveland, Ohio, United States
| | - Vijay K. Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States
| | - Rebecca D. Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ivy Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
120
|
Song Y, Guo X, Fu J, He B, Wang X, Dai W, Zhang H, Zhang Q. Dual-targeting nanovesicles enhance specificity to dynamic tumor cells in vitro and in vivo via manipulation of αv β3-ligand binding. Acta Pharm Sin B 2020; 10:2183-2197. [PMID: 33304785 PMCID: PMC7715539 DOI: 10.1016/j.apsb.2020.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The dynamic or flowing tumor cells just as leukemia cells and circulating tumor cells face a microenvironment difference from the solid tumors, and the related targeting nanomedicines are rarely reported. The existence of fluidic shear stress in blood circulation seems not favorable for the binding of ligand modified nanodrugs with their target receptor. Namely, the binding feature is very essential in this case. Herein, we utilized HSPC, PEG-DSPE, cholesterol and two αvβ3 ligands (RGDm7 and DT4) with different binding rates to build dual-targeting nanovesicles, in an effort to achieve a “fast-binding/slow-unbinding” function. It was demonstrated that the dual-targeting nanovesicles actualized efficient cellular uptake and antitumor effect in vitro both for static and dynamic tumor cells. Besides, the potency of the dual-targeting vesicles for flowing tumor cells was better than that for static tumor cells. Then, a tumor metastasis mice model and a leukemia mice model were established to detect the killing ability of the drug-loaded dual-targeting vesicles to dynamic tumor cells in vivo. The therapy efficacy of the dual-targeting system was higher than other controls including single-targeting ones. Generally, it seems possible to strengthen drug-targeting to dynamic tumor cells via the control of ligand–receptor interaction.
Collapse
Key Words
- C6, coumarin-6
- CTCs, circulating tumor cells
- Circulating tumor cells
- DOX, doxorubicin
- DT4, d-thyroxine
- Dual-targeting
- EPR, enhanced permeability and retention
- FSS, fluidic shear stress
- Flowing condition
- Fluidic shear stress
- LIPO, lipid vesicles
- Leukemia
- Lipid vesicle
- PDI, polydispersity index
- PET, positron emission computed tomography
- RGD, Arginine-glycine-aspartic acid
- RGDm7, cRGD-ACP-K
- ROI, regions of interests
- SPR, surface plasmon resonance
- T3, 3,3′,5-triiodothyronine
- T4, thyroxine
Collapse
Affiliation(s)
- Yang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangfu Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- Guangzhou Medical University, School of Pharmaceutical Sciences, Guangzhou 511436, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author.
| |
Collapse
|
121
|
Gauthier BR, Sola‐García A, Cáliz‐Molina MÁ, Lorenzo PI, Cobo‐Vuilleumier N, Capilla‐González V, Martin‐Montalvo A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell 2020; 19:e13260. [PMID: 33048427 PMCID: PMC7681062 DOI: 10.1111/acel.13260] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age‐related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death. Moreover, both hyperthyroidism and hypothyroidism have been associated with the development of certain types of diabetes and cancers, indicating a great complexity of the molecular mechanisms controlled by thyroid hormones. In this review, we describe the latest findings in thyroid hormone research in the field of aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While aging studies indicate that the direct modulation of thyroid hormones is not a viable strategy to promote healthy aging or longevity and the development of thyromimetics is challenging due to inefficacy and potential toxicity, we argue that interventions based on the use of modulators of thyroid hormone function might provide therapeutic benefit in certain types of diabetes and cancers.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEM Instituto de Salud Carlos III Madrid Spain
| | - Alejandro Sola‐García
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - María Ángeles Cáliz‐Molina
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Petra Isabel Lorenzo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Nadia Cobo‐Vuilleumier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Vivian Capilla‐González
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Alejandro Martin‐Montalvo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| |
Collapse
|
122
|
Escalona-Garrido C, Vázquez P, Mera P, Zagmutt S, García-Casarrubios E, Montero-Pedrazuela A, Rey-Stolle F, Guadaño-Ferraz A, Rupérez FJ, Serra D, Herrero L, Obregon MJ, Valverde ÁM. Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Mol Metab 2020; 42:101097. [PMID: 33049408 PMCID: PMC7600394 DOI: 10.1016/j.molmet.2020.101097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.
Collapse
Affiliation(s)
- Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ester García-Casarrubios
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Maria Jesus Obregon
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| |
Collapse
|
123
|
Lu L, Wu H, Cui S, Zhan T, Zhang C, Lu S, Liu W, Zhuang S. Pentabromoethylbenzene Exposure Induces Transcriptome Aberration and Thyroid Dysfunction: In Vitro, in Silico, and in Vivo Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12335-12344. [PMID: 32835475 DOI: 10.1021/acs.est.0c03308] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pentabromoethylbenzene (PBEB), as one of the novel brominated flame retardants (NFBRs), has caused increasing public concern for health risks. Till now, information regarding potential effects of PBEB on thyroid function remains unclear. Herein, we investigated thyroid disruption of PBEB in vitro and in silico and evaluated thyroid dysfunction induced by PBEB using Sprague-Dawley rats. PBEB showed thyroid receptor (TR) β antagonistic activity with IC50 of 9.82 × 10-7 M in the dual-luciferase reporter gene assay and induced relative reorientation of helix 11 (H11) and H12 of the TR ligand binding domain as revealed by molecular dynamics simulations. PBEB (0.2, 2, 20 mg/kg BW/d) markedly altered the transcriptome profile of thyroid with induction of 17, 42, and 119 differentially expressed genes (DEGs) involved in thyroid hormone signaling and synthesis pathway, of which transthyretin and albumin are common DEGs. The 28-d exposure to PBEB significantly decreased the triiodothyronine level (from 7.23 to 5.67 ng/mL) and increased the thyrotropin level (from 7.88 to 12.86 mU/L) for female rats. PBEB consequently reduced thyroid weight and altered its morphology with more depleted follicles. Overall, our study provides the first account of evidence on PBEB exerted thyroid disruption, transcriptome aberration, and morphological alteration, facilitating health risk assessment of PBEB and structurally related NBFRs.
Collapse
Affiliation(s)
- Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjie Zhan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, Texas 77058, United States
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
124
|
Borisov DV, Gubaeva DN, Praskurnichiy EA. [Use of thyroid hormones in the treatment of cardiovascular diseases: literature review]. ACTA ACUST UNITED AC 2020; 66:6-14. [PMID: 33351333 DOI: 10.14341/probl12471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases remain the leading cause of death all over the world. Thyroid hormones play a significant role in the regulation of cardiac function. According to a number of researches, patients with cardiovascular diseases usually have a decrease in the concentration of thyroid hormones in the blood serum, which may be associated with a poor prognosis. Today it still remains unclear whether the change in the bioavailability of thyroid hormones in the myocardium is a favorable physiological mechanism or a replication of an adaptation disorder. Experimental researches suggest that thyroid hormone therapy may be applied in clinical cardiology. This review describes the results of researches examining the use of thyroid hormones in patients with cardiovascular diseases, as well as experiment data on animal models. The available data on the use of thyroid hormones in patients with acute myocardial infarction and heart failure allow us to suggest that normalization of thyroid hormone levels is a safe and potentially effective treatment method in the group of patients with cardiovascular disease. At the same time, the data on the use of thyroid hormones in patients who have undergone an open-heart surgery or heart transplantation are limited. However, at present, it is difficult to draw unambiguous conclusions about the benefits, as well as about the possible risk of using thyroid hormones in the described conditions. Large-scale clinical researches are required to confirm the safety and evaluate the effectiveness of such therapy. Moreover, it is necessary to set parameters for evaluating the safety and effectiveness and understand which hormone (thyroxine or triiodothyronine), what dosage and at what stage of the disease should be applied. Until we do not have answers for these questions, thyroid hormone therapy in patients with cardiovascular diseases should remain within the research field.
Collapse
|
125
|
Uter JC, Krämer UM, Schöls L, Rodriguez-Fornells A, Göbel A, Heldmann M, Lichtner P, Brabant G, Münte TF. Single Nucleotide Polymorphisms in Thyroid Hormone Transporter Genes MCT8, MCT10 and Deiodinase DIO2 Contribute to Inter-Individual Variance of Executive Functions and Personality Traits. Exp Clin Endocrinol Diabetes 2020; 128:573-581. [PMID: 31820424 DOI: 10.1055/a-1065-1786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thyroid hormones are modulators of cognitive functions, and changes in hormone levels affect intelligence, memory, attention and executive function. Single nucleotide polymorphisms (SNPs) of transporter proteins MCT8, MCT10 and deiodinase 2 (DIO2) influence thyroid metabolism and could therefore contribute to inter-individual variance of cognitive functions. This study investigates the influence of these SNPs using an extensive neuropsychological test battery. 656 healthy participants aged 18-39 years were genotyped for four SNPs: MCT8 (rs5937843 and rs6647476), MCT10 (rs14399) and DIO2 (rs225014) and underwent eleven different neuropsychological tests as well as four personality questionnaires. Test results were compared between homo- and heterozygous carriers and for the X-linked MCT8 additionally between men and women. Personality questionnaires revealed that Risk Seeking was reduced in homozygous T carriers and highest in homozygous C carriers of the DIO2 SNP and that both polymorphisms of MCT8 had an additive effect on Physical Aggression in men. Neuropsychological testing indicated that MCT10 affects nonverbal reasoning abilities, DIO2 influences working memory and verbal fluency and MCT8 influences attention, alertness and planning. This pilot study suggests an influence of polymorphisms in thyroid hormone transporter genes and deiodinase on cognitive domains and personality traits.
Collapse
Affiliation(s)
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Anna Göbel
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
126
|
Lyu Q, Wang H, Kang Y, Wu X, Zheng HS, Laprocina K, Junghans K, Ding X, Huang CCJ. RNA-Seq Reveals Sub-Zones in Mouse Adrenal Zona Fasciculata and the Sexually Dimorphic Responses to Thyroid Hormone. Endocrinology 2020; 161:5875105. [PMID: 32697836 PMCID: PMC7446775 DOI: 10.1210/endocr/bqaa126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The sex-specific prevalence of adrenal diseases has been known for a long time. However, the reason for the high prevalence of these diseases in females is not completely understood. Mouse studies have shown that the adult adrenal gland is sexually dimorphic at different levels such as transcriptome, histology, and cell renewal. Here we used RNA-seq to show that in prepubertal mice, male and female adrenal glands were not only sexually dimorphic but also responded differently to the same external stimulus. We previously reported that thyroid hormone receptor β1 (TRβ1) in the adrenal gland is mainly expressed in the inner cortex and the fate of this TRβ1-expressing cell population can be changed by thyroid hormone (triiodothyronine; T3) treatment. In the present study, we found that adrenal glands in prepubertal mice were sexually dimorphic at the level of the transcriptome. Under T3 treatment, prepubertal females had 1162 genes differentially expressed between the saline and T3 groups, whereas in males of the same age, only 512 genes were T3-responsive. Immunostaining demonstrated that several top sexually dimorphic T3-responsive genes, including Cyp2f2 and Dhcr24, were specifically expressed in the adrenal inner cortex, precisely in an area partially overlapping with the X-zone. Under T3 treatment, a unique cortical layer that surrounds the adrenal X-zone expanded significantly, forming a distinct layer peculiar to females. Our findings identified novel marker genes for the inner adrenal cortex, indicating there are different sub-zones in the zona fasciculata. The results also highlight the sex-specific response to thyroid hormone in the mouse adrenal gland.
Collapse
Affiliation(s)
- Qiongxia Lyu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
- College of Animal Science & Technology, Henan University of Science and
Technology, LuoYang, Henan, China
| | - Hui Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
- College of Informatics, HuaZhong Agricultural University, Wuhan,
Hubei, China
| | - Yuan Kang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University
of Arizona, Tucson, Arizona
| | - Huifei Sophia Zheng
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
| | - Karly Laprocina
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
| | - Kristina Junghans
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, The University
of Arizona, Tucson, Arizona
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama
- Center for Neurosciences Initiative, Auburn University, Auburn,
Alabama
- Correspondence: Chen-Che Jeff Huang, DVM, PhD, Department of Anatomy, Physiology and Pharmacology,
College of Veterinary Medicine, Auburn University, 221 Greene Hall, Auburn, AL 36849, USA.
| |
Collapse
|
127
|
Abdel-Moneim A, Gaber AM, Gouda S, Osama A, Othman SI, Allam G. Relationship of thyroid dysfunction with cardiovascular diseases: updated review on heart failure progression. Hormones (Athens) 2020; 19:301-309. [PMID: 32488814 DOI: 10.1007/s42000-020-00208-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Heart disease remains the leading cause of death globally. Heart failure (HF) is a clinical syndrome that results from impairment of the ability of the ventricle to fill with or eject blood. Over the past two decades, accumulated evidence has revealed the contribution of thyroid hormones to cardiovascular (CV) events, exerting their action through genomic and non-genomic pathways within the cardiomyocytes. The pivotal role of thyroid hormones in maintaining cardiac homeostasis has been observed in previous investigations which suggest that the CV system is adversely impacted by fluctuations in thyroid hormone levels, such as those that occur in hypothyroidism, hyperthyroidism, and low triiodothyronine syndrome (LT3S). Thyroid dysfunction has direct effects on myocardial contractility, systolic and diastolic blood pressure, heart mass, heart rate, ejection fraction, and heart output, which may ultimately lead to HF. Recent clinical data have shown that thyroid hormone replacement therapy for hypothyroid patients appears to provide the potential for reducing CV events. Therefore, this review aims to address the impact of thyroid hormone dysfunction on pathophysiological mechanisms contributing to the development and progression of HF.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salem St., Beni Suef, 62511,, Egypt.
| | - Asmaa M Gaber
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salem St., Beni Suef, 62511,, Egypt
| | - Sherouk Gouda
- Zoology/Chemistry Program, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Aya Osama
- Zoology/Chemistry Program, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Sarah I Othman
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gamal Allam
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Egyptian-Korean Faculty for Technological Industry and Energy, Beni-Suef Technological University, Beni-Suef, Egypt
| |
Collapse
|
128
|
Kang D, Lee J, Wu C, Guo X, Lee BJ, Chun JS, Kim JH. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med 2020; 52:1198-1208. [PMID: 32788658 PMCID: PMC7423502 DOI: 10.1038/s12276-020-0408-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/16/2023] Open
Abstract
As an essential nutrient and trace element, selenium is required for living organisms and its beneficial roles in human health have been well recognized. The role of selenium is mainly played through selenoproteins synthesized by the selenium metabolic system. Selenoproteins have a wide range of cellular functions including regulation of selenium transport, thyroid hormones, immunity, and redox homeostasis. Selenium deficiency contributes to various diseases, such as cardiovascular disease, cancer, liver disease, and arthropathy—Kashin–Beck disease (KBD) and osteoarthritis (OA). A skeletal developmental disorder, KBD has been reported in low-selenium areas of China, North Korea, and the Siberian region of Russia, and can be alleviated by selenium supplementation. OA, the most common form of arthritis, is a degenerative disease caused by an imbalance in matrix metabolism and is characterized by cartilage destruction. Oxidative stress serves as a major cause of the initiation of OA pathogenesis. Selenium deficiency and dysregulation of selenoproteins are associated with impairments to redox homeostasis in cartilage. We review the recently explored roles of selenium metabolism and selenoproteins in cartilage with an emphasis on two arthropathies, KBD and OA. Moreover, we discuss the potential of therapeutic strategies targeting the biological functions of selenium and selenoproteins for OA treatment. Selenium, a micronutrient found in brazil nuts, shiitake mushrooms, and most meats, may aid in treating joint diseases, including the most common form of arthritis, osteoarthritis (OA). In addition to thyroid hormone metabolism and immunity, selenium is important in antioxidant defense. Oxidative damage can destroy cartilage and harm joints, and selenium deficiency is implicated in several joint diseases. Jin-Hong Kim at Seoul National University in South Korea and co-workers reviewed selenium metabolism, focusing on OA and and Kashin–Beck disease, a skeletal development disorder prevalent in selenium-deficient areas of northeast Asia. They report that selenium-containing proteins protect cells against oxidative damage and that selenium is crucial to cartilage production. Further investigation of selenium metabolism may point the way to new treatments for OA and other joint diseases.
Collapse
Affiliation(s)
- Donghyun Kang
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Cuiyan Wu
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Byeong Jae Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
129
|
Sabatino L, Kusmic C, Iervasi G. Modification of cardiac thyroid hormone deiodinases expression in an ischemia/reperfusion rat model after T3 infusion. Mol Cell Biochem 2020; 475:205-214. [PMID: 32780210 DOI: 10.1007/s11010-020-03873-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
The deiodinases regulate the activation and inactivation of Thyroid hormones (TH), in both physiological and pathological conditions. The three deiodinases, DIO1, DIO2 and DIO3, have different catalytic role and cellular and tissue distribution. Aim of this study is to evaluate a rat model of regional ischemia/reperfusion (I/R), the modification of cardiac main function after the administration of 6 µg/kg/day of triiodothyronine (T3), and the associated to DIO1, DIO2 and DIO3 gene expression. We also aim to study DIO1 and DIO2 protein levels in different left ventricular regions after an ischemic event. Four groups of rats were studied: sham-operated, sham-operated + T3, I/R rats and I/R rats + T3. DIO1, DIO2 and DIO3 expression were evaluated in I/R region (AAR: area-at-risk) and in a more distant region from ischemic wound (RZ: remote zone). In I/R group, circulating free-T3 (FT3) levels were significantly decreased with respect to basal values, whereas in I/R + T3 rats, FT3 levels were comparable to basal values. In AAR of I/R + T3 rats, DIO1 and DIO2 gene expression significantly increased with respect to sham. In RZ, DIO1 and DIO3 gene expression was significantly lower in sham and I/R rats when compared to I/R + T3. In sham + T3 group, DIO1 and DIO2 gene expression was not detectable, whereas DIO3 was significantly higher than in the other three groups. The present study gives interesting new insights on DIO1, DIO2 and DIO3 in the ischemic heart and their role in relation to T3-mediated amelioration of cardiac function and structure.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council (C.N.R.), Pisa, Italy.
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council (C.N.R.), Pisa, Italy
| | - Giorgio Iervasi
- Institute of Clinical Physiology, National Research Council (C.N.R.), Pisa, Italy
| |
Collapse
|
130
|
Labadie JD, Elvers I, Feigelson HS, Magzamen S, Yoshimoto J, Dossey J, Burnett R, Avery AC. Genome-wide association analysis of canine T zone lymphoma identifies link to hypothyroidism and a shared association with mast-cell tumors. BMC Genomics 2020; 21:464. [PMID: 32631225 PMCID: PMC7339439 DOI: 10.1186/s12864-020-06872-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/26/2020] [Indexed: 01/23/2023] Open
Abstract
Background T zone lymphoma (TZL), a histologic variant of peripheral T cell lymphoma, represents about 12% of all canine lymphomas. Golden Retrievers appear predisposed, representing over 40% of TZL cases. Prior research found that asymptomatic aged Golden Retrievers frequently have populations of T zone-like cells (phenotypically identical to TZL) of undetermined significance (TZUS), potentially representing a pre-clinical state. These findings suggest a genetic risk factor for this disease and caused us to investigate potential genes of interest using a genome-wide association study of privately-owned U.S. Golden Retrievers. Results Dogs were categorized as TZL (n = 95), TZUS (n = 142), or control (n = 101) using flow cytometry and genotyped using the Illumina CanineHD BeadChip. Using a mixed linear model adjusting for population stratification, we found association with genome-wide significance in regions on chromosomes 8 and 14. The chromosome 14 peak included four SNPs (Odds Ratio = 1.18–1.19, p = .3 × 10− 5–5.1 × 10− 5) near three hyaluronidase genes (SPAM1, HYAL4, and HYALP1). Targeted resequencing of this region using a custom sequence capture array identified missense mutations in all three genes; the variant in SPAM1 was predicted to be damaging. These mutations were also associated with risk for mast cell tumors among Golden Retrievers in an unrelated study. The chromosome 8 peak contained 7 SNPs (Odds Ratio = 1.24–1.42, p = 2.7 × 10− 7–7.5 × 10− 5) near genes involved in thyroid hormone regulation (DIO2 and TSHR). A prior study from our laboratory found hypothyroidism is inversely associated with TZL risk. No coding mutations were found with targeted resequencing but identified variants may play a regulatory role for all or some of the genes. Conclusions The pathogenesis of canine TZL may be related to hyaluronan breakdown and subsequent production of pro-inflammatory and pro-oncogenic byproducts. The association on chromosome 8 may indicate thyroid hormone is involved in TZL development, consistent with findings from a previous study evaluating epidemiologic risk factors for TZL. Future work is needed to elucidate these mechanisms.
Collapse
Affiliation(s)
- Julia D Labadie
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Ingegerd Elvers
- Department of Medical Biochemistry and Microbiology, Uppsala University, Broad Institute of MIT and Harvard, Cambridge, Massachusetts and Science for Life Laboratory, Uppsala, Sweden
| | | | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeremy Dossey
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Burnett
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anne C Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
131
|
Choi S, Kim MJ, Park YJ, Kim S, Choi K, Cheon GJ, Cho YH, Jeon HL, Yoo J, Park J. Thyroxine-binding globulin, peripheral deiodinase activity, and thyroid autoantibody status in association of phthalates and phenolic compounds with thyroid hormones in adult population. ENVIRONMENT INTERNATIONAL 2020; 140:105783. [PMID: 32464474 DOI: 10.1016/j.envint.2020.105783] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Exposure to consumer chemicals such as phthalates and phenolic compounds has been associated with thyroid hormone disruption in humans. However, information related to factors that may influence such associations, e.g., transport and activation of the hormones, and autoimmunity status, is limited. In the present study, we employed a subpopulation of adults (n = 1,254) who participated in the Korean National Environmental Health Survey (KoNEHS) 2015-2017, and associated urinary concentrations of major phthalate metabolites, bisphenol A (BPA), and parabens, with thyroid hormone-related measures, including free and total T3 and T4, TSH, thyroxine-binding globulin (TBG), calculated peripheral deiodinase (DIO) activity, and thyroid autoantibodies of thyroperoxidase (TPO) and thyroglobulin (Tg). Phthalate metabolites were negatively associated with total T4 and free T3, and positively associated with total T3. These observations could be explained by TBG levels and calculated peripheral DIO activity that were positively associated with phthalates exposure. In contrast, BPA was positively associated with total T4 and negatively associated with total T3, without any changes in TBG concentration. Serum TPO and Tg antibodies were not associated with urinary phthalate metabolites and BPA. However, thyroid autoantibody status appeared to modulate the association of some phthalates with thyroid hormones. For parabens, little to negligible association was observed. The results of our observation show potential underlying mechanisms of phthalates-induced thyroid hormone disruption, and suggests the importance of consideration of thyroid autoimmunity status in association studies for thyroid disrupting chemicals.
Collapse
Affiliation(s)
- Sohyeon Choi
- College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Min Joo Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Hye Li Jeon
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jiyoung Yoo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea.
| |
Collapse
|
132
|
Chakraborty A, Singh V, Singh K, Rajender S. Excess iodine impairs spermatogenesis by inducing oxidative stress and perturbing the blood testis barrier. Reprod Toxicol 2020; 96:128-140. [PMID: 32593569 DOI: 10.1016/j.reprotox.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023]
Abstract
Approximately 2 billion people worldwide are susceptible to iodine deficiency. Iodine deficiency has largely been tackled by iodine fortification in salt; however indiscriminate use of iodine raises the risk of iodine toxicity. In this study, we aimed to investigate the molecular mechanisms underlying adverse effect of excess iodine on spermatogenesis. Sprague Dawley (SD) rats were orally administered with 0.7 mg potassium iodide (KI)/100 g Bw and 3.5 mg potassium iodide (KI)/100 g Bw for a period of 60 days. This resulted in significant loss of sperm count and motility. Molecular investigations provided evidence for the generation of oxidative stress with high SOD levels, reduced Nrf2, HO-1 and increased NF-kB and Follistatin. Further investigations showed increased apoptosis evidenced by reduced expression of anti-apoptotic (BCL-2, Survivin), increased expression of pro-apoptotic (Bid, Bax) markers, and increased expression of p53 and other modulators/effectors of apoptosis (cytochrome c, cleaved PARP, caspase3 and caspase9). Analysis of the blood testis barrier proteins showed reduced expression of tight junction (JAM-A, Tricellulin), ectoplasmic specialization (Integrin- β1), adherens junction (N-Cadherin, E-cadherin, β-catenin) proteins, and reduced expression of other junction protein coding genes (Claudin1, Claudin 5, Occludin, ZO-1, Testin, Fibronectin, CAR-F). Focal adhesion kinase (FAK) and key regulators of spermatogenesis (c-Kit receptor, androgen receptor) were also parallelly decreased. Further investigation showed reduced expression of germ cell proliferation and differentiation markers (PCNA, Cyclin D1, c-Kit, Cdk-4). These findings collectively explain the loss of spermatogenesis under excess iodine conditions. In conclusion, excess iodine causes loss of spermatogenesis by inducing oxidative stress and disrupting the blood testis barrier and cytoskeleton.
Collapse
Affiliation(s)
- Arijit Chakraborty
- School of Life Sciences, Royal Global University, Betkuchi, Guwahati, Assam -781035, India; Department of Molecular & Human Genetics, Banaras Hindu University, Uttar Pradesh -221005, India
| | - Vertika Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Uttar Pradesh -221005, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Uttar Pradesh -221005, India.
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh -226031, India.
| |
Collapse
|
133
|
Importance of Thyroid Hormone level and Genetic Variations in Deiodinases for Patients after Acute Myocardial Infarction: A Longitudinal Observational Study. Sci Rep 2020; 10:9169. [PMID: 32514186 PMCID: PMC7280282 DOI: 10.1038/s41598-020-66006-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to examine the influence of thyroid hormone (TH) levels and genetic polymorphisms of deiodinases on long-term outcomes after acute myocardial infarction (AMI). In total, 290 patients who have experienced AMI were evaluated for demographic, clinical characteristics, risk factors, TH and NT-pro-BNP. Polymorphisms of TH related genes were included deiodinase 1 (DIO1) (rs11206244-C/T, rs12095080-A/G, rs2235544-A/C), deiodinase 2 (DIO2) (rs225015-G/A, rs225014-T/C) and deiodinase 3 (DIO3) (rs945006-T/G). Both all-cause and cardiac mortality was considered key outcomes. Cox regression model showed that NT-pro-BNP (HR = 2.11; 95% CI = 1.18– 3.78; p = 0.012), the first quartile of fT3, and DIO1 gene rs12095080 were independent predictors of cardiac-related mortality (HR = 1.74; 95% CI = 1.04–2.91; p = 0.034). The DIO1 gene rs12095080 AG genotype (OR = 3.97; 95% CI = 1.45–10.89; p = 0.005) increased the risk for cardiac mortality. Lower fT3 levels and the DIO1 gene rs12095080 are both associated with cardiac-related mortality after AMI.
Collapse
|
134
|
Nock S, Johann K, Harder L, Wirth EK, Renko K, Hoefig CS, Kracke V, Hackler J, Engelmann B, Rauner M, Köhrle J, Schomburg L, Homuth G, Völker U, Brabant G, Mittag J. CD5L Constitutes a Novel Biomarker for Integrated Hepatic Thyroid Hormone Action. Thyroid 2020; 30:908-923. [PMID: 32183611 DOI: 10.1089/thy.2019.0635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRβ-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.
Collapse
Affiliation(s)
- Sebastian Nock
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Kornelia Johann
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Lisbeth Harder
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
- Medizinische Klinik für Endokrinologie und Stoffwechselmedizin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Carolin S Hoefig
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Vanessa Kracke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Beatrice Engelmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Martina Rauner
- Department of Medicine III; Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Georg Homuth
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Brabant
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| |
Collapse
|
135
|
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J Clin Med 2020; 9:E1679. [PMID: 32492950 PMCID: PMC7355968 DOI: 10.3390/jcm9061679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Collapse
Affiliation(s)
- Marco Colella
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario De Felice
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
136
|
Dratman MB, Martin JV. The many faces of thyroxine. AIMS Neurosci 2020; 7:17-29. [PMID: 32455163 PMCID: PMC7242060 DOI: 10.3934/neuroscience.2020002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 11/18/2022] Open
Abstract
Hönes et al. have recently shown that in vivo interference with the apparatus of the nuclear receptor-mediated, gene-driven mechanism of triiodothyronine (T3) actions fails to eliminate all actions of T3. However, the investigators conducting that study provided little information regarding the mechanisms that might be responsible for conferring those implied gene-independent effects. Dratman has long ago suggested a system wherein such gene-free mechanisms might operate. Therefore, since news of that discovery was originally published in 1974, it seems appropriate to describe the progress made since then. We propose that thyroxine and triiodothyronine have many different structural properties that may confer a series of different capabilities on their functions. These conform with our proposal that a series of catecholamine analogs and their conversion to iodothyronamines, allows them to perform many of the functions that previously were attributed to nuclear receptors regulating gene expression. The actions of deiodinases and the differential distribution of iodine substituents are among the critical factors that allow catecholamine analogs to change their effects into ones that either activate their targets or block them. They do this by using two different deiodinases to vary the position of an iodide ion on the diphenylether backbones of thyroxine metabolites. A panoply of these structural features imparts major unique functional properties on the behavior of vertebrates in general and possibly on Homo sapiens in particular.
Collapse
Affiliation(s)
- Mary B Dratman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph V Martin
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ 08102, USA
| |
Collapse
|
137
|
Wang C, Zhu J, Zhang Z, Chen H, Ji M, Chen C, Hu Y, Yu Y, Xia R, Shen J, Gong X, Wang SL. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases. CHEMOSPHERE 2020; 246:125774. [PMID: 31901531 DOI: 10.1016/j.chemosphere.2019.125774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Hypothyroidism is commonly associated with substantial adverse impacts on human health, and polybrominated diphenyl ether (PBDE), a kind of classic thyroid hormone disruptor, was speculated to be a potential environmental factor, but its effect on thyroxine metabolism has received little attention. In the present study, we investigated the role and mechanism of rno-miR-224-5p in deiodinase-mediated thyroxine metabolism in rats treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), a predominant PBDE congener in humans. BDE47 decreased plasma triiodothyronine (T3) and thyroxine (T4) and increased reverse T3 (rT3) in the rats, and the expression of type 1 deiodinase (DIO1) and type 3 deiodinase (DIO3) increased in both the rats and H4-II-E cells. Rno-miR-224-5p was predicted to target dio1 instead of dio3, according to the TargetScan, miRmap.org and microRNA.org databases. Experiments showed that the rno-miR-224-5p level was decreased by BDE47 in a dose-dependent manner and confirmed that rno-miR-224-5p downregulated both DIO1 and DIO3 in the H4-II-E cells and in the rats, as determined using mimics and an inhibitor of rno-miR-224-5p. Furthermore, DIO1 was observed to be a direct functional target of rno-miR-224-5p, whereas DIO3 was indirectly regulated by rno-miR-224-5p via the phosphorylation of the MAPK/ERK (but not p38 or JNK) pathway. Reportedly, DIO1 and DIO3 act principally as inner-ring deiodinases and are responsible for the conversion of T4 to rT3, but not to T3, and the final clearance of thyroxine (mainly in the form of T2). Our results demonstrated that BDE47 induced low levels of T3 conversion through DIO1 and DIO3, which were regulated by rno-miR-224-5p. The findings suggest a novel additional mechanism of PBDE-induced thyroxine metabolism disorder that differs from that of PBDEs as environmental thyroid disruptors.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Chao Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
138
|
da Silva LA, Wouk J, Weber VMR, de Almeida P, Martins JC, Malfatti CR, Osiecki R. Correlation Between Insulin Levels and Thyroid Hormones in Diabetic Animals After Caffeine Consumption Associated with Exercise. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666181211144036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction:
Thyroid hormones (TH) are important determinants of glucose homeostasis,
and in contrast, insulin is the first hormone responsible for glycemic control.
Objective:
The objective of the present study was to correlate the levels of insulin and thyroid hormones
in diabetic animals after caffeine consumption associated with physical exercise.
Methods:
A total of 48 animals, 60 days old were allocated in eight experimental groups: Control,
Diabetic, Exercise, Diabetes + exercise, Caffeine, Diabetes + Caffeine, Caffeine + Exercise, and Diabetes
+ Exercise + Caffeine. Diabetes model was induced by intraperitoneal administration of 120
mg/kg of alloxan. On the test day, 6 mg/kg of caffeine was administrated 30 minutes before physical
exercise. After, animals performed a 60 minutes’ session of predominantly aerobic exercise, using an
overload of 6% of their body’s weight. Blood has been collected by a caudal puncture to future insulin,
TSH, T3, and T4 analyses.
Results:
After caffeine treatment and training, insulin values were higher for the control groups
(231%) when compared to the diabetic groups. A significant increase in plasmatic insulin concentration
was found in caffeine group (95%) and Exercise+Caffeine group (56%) when compared to Control
and Exercise groups. TSH values were increased for Diabetes, Diabetes+Caffeine and Diabetes+
Exercise+Caffeine groups (30%) compared to the other groups. A reduction in T4 values occurred
in the animals of groups Diabetes+Exercise and Diabetes +Caffeine (66%) compared to the
Control group. T3 values were significantly increased for the Diabetes+Exercise group (70%) when
compared to the Diabetes+Exercise+Caffeine group.
Conclusion:
Physical exercise and caffeine consumption were able to promote hormonal changes in
diabetic animals after 30 days of training. The study showed a reduction in the serum concentration
of thyroid hormones, but insulin levels were higher.
Collapse
Affiliation(s)
| | - Jéssica Wouk
- Post-graduation of Pharmaceutical Science, Midwest State University of Parana, Guarapuava, Parana, Brazil
| | | | - Pablo de Almeida
- Post-graduation of Pharmaceutical Science, Midwest State University of Parana, Guarapuava, Parana, Brazil
| | - Julio C.L. Martins
- Academia Militar das Agulhas Negras - AMAN, Resende, Rio de Janeiro, Brazil
| | - Carlos R.M. Malfatti
- Post-graduation of Pharmaceutical Science, Midwest State University of Parana, Guarapuava, Parana, Brazil
| | - Raul Osiecki
- Post-graduation of Physical Education, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
139
|
Yang Q, Liu W, Sun D, Wang C, Li Y, Bi X, Gu P, Feng H, Wu F, Hou L, Hou C, Li Y. Yinning Tablet, a hospitalized preparation of Chinese herbal formula for hyperthyroidism, ameliorates thyroid hormone-induced liver injury in rats: Regulation of mitochondria-mediated apoptotic signals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112602. [PMID: 32004632 DOI: 10.1016/j.jep.2020.112602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/01/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperthyroidism is closely associated with liver injury. The preliminary clinical observation suggests that Yinning Tablet, a hospitalized preparation of traditional Chinese formula for hyperthyroidism, improves not only hyperthyroidism, but also hyperthyroidism-associated liver injury. AIM To evaluate the effect and underlying mechanisms of Yinning Tablet on thyroid hormone-induced liver injury. MATERIALS AND METHODS Female rats were orally administered L-thyroxine (1 mg/kg) once daily for 60 days, and co-treated with the carefully identified Yinning Tablet extract (0.6-2.4 g/kg) during the last 30 days. Blood and liver variables were determined enzymatically, histologically, by ELISA, radioimmunoassay, Real-Time PCR or Western blot, respectively. RESULTS Co-treatment with the extract attenuated L-thyroxine-induced increases in serum alanine transaminase and aspartate transaminase activities, the ratio of liver weight to body weight, cytoplasmic vacuolization in hepatocytes, infiltrated inflammatory cells and confused structures in liver tissue, accompanied by attenuation of increased serum triiodo-l-thyronine concentration and hepatic deiodinase type I overexpression in rats. Importantly, Yinning Tablet suppressed L-thyroxine-triggered hepatic Bax, cleaved caspases-3, -8 and -9 protein overexpression, and Bcl-2 protein downregulation. Furthermore, the increases in cytochrome c protein expression, Ca2+-ATPase activity and malondialdehyde content, and decreases in activities of Na+/K+-ATPase, catalase, superoxide dismutase and glutathione peroxidase, and total antioxidant capacity in liver tissue were attenuated. CONCLUSION The present results suggest that Yinning Tablet ameliorates thyroid hormone-induced liver injury in rats by regulating mitochondria-mediated apoptotic signals. Our findings go insight into the pharmacological basis of the hospitalized preparation for treatment of hyperthyroidism-associated liver injury.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongmei Sun
- Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, 528244, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yangxue Li
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Xiaoli Bi
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuqi Hou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW, 2000, Australia
| |
Collapse
|
140
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
141
|
Sarkar D, Chandra AK, Chakraborty A, Ghosh S, Chattopadhyay S, Singh LH, Ray I. Effects of bamboo shoots (Bambusa balcooa) on thyroid hormone synthesizing regulatory elements at cellular and molecular levels in thyrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112463. [PMID: 31838178 DOI: 10.1016/j.jep.2019.112463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bamboo shoots (BS) are consumed in various forms and used largely in naturopathy for curing ailments since ancient times to present days. It is eaten in South East Asian countries in several indigenous preparations. In north east India, it is consumed predominantly and used as natural cure to treat various diseases. Although known for its beneficial effects, adverse effects including goitrogenic/antithyroidal potential are emerging. AIM OF THE STUDY Endemic goiter exists in Manipur, India even after adequate iodine intake for consumption of BS. It is thus important to study the impact of this goitrogenic food on certain thyroid hormone synthesizing regulatory factors at cellular and molecular level in thyrocytes. MATERIALS AND METHODS Phytochemical analysis of BS - Bambusa balcooa Roxb (BSBR) extract conducted. IC50 of the extract on thyrocytes in culture was determined. To study the antithyroid effects of this goitrogenic food, activity status of Na+-K+-ATPase, TPO and Deiodinase, mRNA and protein expressions of NIS, TPO and PAX8 were investigated with and without extra iodine in culture media. Simultaneously ROS generation in terms of H2O2 and antioxidant status, NO, LPO were assayed. RESULTS Activities of the studied enzymes decreased depending on dose and time with increased H2O2, decreased antioxidants followed by increased NO with LPO. DNA damage and LDH also increased while mRNA and protein expression of NIS, TPO and PAX8 were downregulated. Extra iodine ameliorated all such effects partially. CONCLUSIONS Bioactive constituents of the extract imbalances oxidative status of thyrocytes impairing action of hormone synthesizing elements at cellular and molecular level.
Collapse
Affiliation(s)
- Deotima Sarkar
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009, India
| | - Amar K Chandra
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
| | - Arijit Chakraborty
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009, India
| | - Sayan Ghosh
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009, India
| | - Sreya Chattopadhyay
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009, India
| | - Laishram Hemchandra Singh
- Department of Zoology, DM College of Science (Govt. of Manipur), Imphal West, Manipur, 795 001, India
| | - Indrajit Ray
- Department of Human Physiology, Ramkrishna Mahavidyalaya (Govt. of Tripura), Kailashahar, Unakoti District, Tripura, 799 277, India
| |
Collapse
|
142
|
Nappi A, Di Cicco E, Miro C, Cicatiello AG, Sagliocchi S, Mancino G, Ambrosio R, Luongo C, Di Girolamo D, De Stefano MA, Porcelli T, Stornaiuolo M, Dentice M. The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas. Cancers (Basel) 2020; 12:cancers12030715. [PMID: 32197405 PMCID: PMC7140064 DOI: 10.3390/cancers12030715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | | | - Cristina Luongo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Daniela Di Girolamo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Tommaso Porcelli
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
143
|
Protein-protein interactions of ER-resident selenoproteins with their physiological partners. Biochimie 2020; 171-172:197-204. [PMID: 32188576 DOI: 10.1016/j.biochi.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
ER is a highly specialized complex of branched microtubules enclosed in a membrane and communicating with each other, its functions in the cell are important and very diverse: lipid and phospholipid synthesis, calcium storage, hormone synthesis, protein synthesis and maturation, membrane production, toxin neutralization, etc. The high concentration of calcium ions and the oxidizing properties of the contents of the ER cavities contribute to the proper synthesis and folding of proteins designed for secretion or exposure on the surface of the cell membrane. However, disturbance of redox regulation can lead to the accumulation of improperly folded proteins in the ER, disruption of calcium regulation, which can cause ER-stress. This review is devoted to the role of ER-resident selenoproteins in the processes occurring in this organelle of a cell. The main emphasis is placed on the study of protein-protein interactions of selenoproteins with their physiological partners; this will facilitate understanding of their functional purpose in this organelle. Currently, 7 selenoproteins are known that are localized in the ER, but the functions of most of them are not at all clear, for some, physiological partners have been identified. It is known that selenoproteins are oxidoreductases with antioxidant properties, this is extremely important for the normal functioning of ER. Therefore, this review can be very useful for understanding the full picture of the functions of ER-resident selenoproteins obtained on the basis of recent data.
Collapse
|
144
|
Szlejf C, Suemoto CK, Janovsky CCPS, Barreto SM, Diniz MDFHS, Lotufo PA, Bensenor IM. Thyroid Function and Sarcopenia: Results from the ELSA-Brasil Study. J Am Geriatr Soc 2020; 68:1545-1553. [PMID: 32167571 DOI: 10.1111/jgs.16416] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES We aimed to investigate the association of subclinical thyroid disease and thyroid hormone levels with sarcopenia and its defining components in community-dwelling middle-aged and older adults without overt thyroid dysfunction. DESIGN Cross-sectional study. SETTING Active and retired employees from public institutions located in six Brazilian cities. PARTICIPANTS A total of 6974 participants from the ELSA-Brasil study's second wave, aged 50 years and older, without overt thyroid dysfunction and with complete data for exposure, outcome, and covariates. METHODS Serum levels of thyrotropin (TSH), free thyroxine, and free triiodothyronine (FT3) were measured and divided in quintiles for the analyses. Participants were classified with euthyroidism, subclinical hypothyroidism, and subclinical hyperthyroidism. Muscle mass was assessed by bioelectrical impedance analysis and muscle strength by handgrip strength. Sarcopenia was defined according to the Foundation for the National Institutes of Health criteria. Possible confounders included sociodemographic characteristics, clinical conditions, and lifestyle. Analyses were performed separately for middle-aged and older adults (≥65 y). RESULTS The frequencies of sarcopenia, low muscle mass, low muscle strength, subclinical hypothyroidism, and subclinical hyperthyroidism were 1.5%, 20.8%, 3.8%, 9.1%, and .9%, respectively. Subclinical thyroid dysfunction was not associated with sarcopenia and its defining components. Among older adults, TSH had a U-shaped association with sarcopenia and low muscle strength. The odds ratios (ORs) (95% confidence intervals [CIs]) for the associations of the first, second, fourth, and fifth quintile with sarcopenia, respectively, were 5.18 (1.47-18.28), 6.28 (1.82-21.73), 4.12 (1.15-14.76), and 4.81 (1.35-17.10), and with low muscle strength was (OR (95% CI) for the first, second, and fifth quintiles, respectively: 1.43 (1.16-5.07), 2.07 (1.24-4.70), and 2.18 (1.03-4.60). Additionally, FT3 had a negative association with muscle mass in both age strata. CONCLUSION Subtle thyroid hormone alterations are associated with sarcopenia or its defining components in middle-aged and older adults without overt thyroid dysfunction. J Am Geriatr Soc 68:1545-1553, 2020.
Collapse
Affiliation(s)
- Claudia Szlejf
- Center for Clinical and Epidemiological Research, Hospital Universitário, University of São Paulo, São Paulo, Brazil
| | - Claudia K Suemoto
- Center for Clinical and Epidemiological Research, Hospital Universitário, University of São Paulo, São Paulo, Brazil.,Division of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
| | - Carolina C P S Janovsky
- Center for Clinical and Epidemiological Research, Hospital Universitário, University of São Paulo, São Paulo, Brazil
| | - Sandhi M Barreto
- Faculty of Medicine, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, Hospital Universitário, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Isabela M Bensenor
- Center for Clinical and Epidemiological Research, Hospital Universitário, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
145
|
Lee SH, Seo H, Lee HS, Park Y. Development and characterization of a human cell line-based transactivation assay to assess thyroid EDCs. ENVIRONMENTAL RESEARCH 2020; 182:109110. [PMID: 31918317 DOI: 10.1016/j.envres.2020.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Thyroid hormones (THs) are one of the most important hormones, playing key roles in the regulation of various physiological functions. Although THs have important function in human, in vitro test methods based on human cells are currently insufficient to effectively screen and test TH-related endocrine disrupting chemicals (EDCs). We established a TH agonist TA assay using the adenocarcinomic human alveolar basal epithelial cell line A549 to test and screen potential TH agonists. To establish the TH agonist TA assay, a TRE-secNluc-IRES-EGFP reporter cassette was constructed and transfected into the A549 cell line using a retrovirus. We evaluated the TH agonistic properties of several chemicals which were tested by existing thyroid agonists testing method (OECD GD 207). Comparing the results of the TH agonist TA assay with the OECD GD 207, T3, T4, tiratricol, and tetrac (natural TH and 3,3',5,5'-tetraiodothyroacetic acid derivatives), which are TH agonists according to the OECD GD 207, also tested positive in the TH agonist TA assay using the A549 cell line. These results suggested that the TH agonist TA assay developed in this study using a human cell line can provide the information, such as accuracy and specificity to TH agonistic properties of chemicals.
Collapse
Affiliation(s)
- Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Hyeyeong Seo
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
146
|
Gao Y, Liu Z, Jia D, Hu Q, Li L, Tang R, Li D. Acute microcystin-LR exposure interfere thyroid hormones homeostasis in adult zebrafish (Danio rerio). CHEMOSPHERE 2020; 243:125258. [PMID: 31734598 DOI: 10.1016/j.chemosphere.2019.125258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Microcystin-LR (MC-LR) in the aquatic environment may disturb thyroid hormone (TH) homeostasis. It is not clear how MC-LR affects downstream biological processes after TH disturbance. After exposure to 50, 100, 200 and 400 μg/L MC-LR for 24, 48, 72, or 96 h, alterations of the TH metabolism of adult zebrafish at thyroxine (T4), triiodothyronine (T3) levels, and iodothyronine deiodinase (Dio) activity, were observed. After exposure to MC-LR at 400 μg/L, T3 and T4 levels decreased significantly in females (p < 0.05) and returned to normal levels at 96 h. In males, T4 levels were not significantly different between groups. The expression of corticotropin releasing hormone, thyroid-stimulating hormone beta subunit, transthyretin, sodium/iodide cotransporter, thrombopoietin, thyroid hormone receptor alpha and beta changed, but not in a dose-dependent manner. Acute MC-LR exposure induced a negative feedback regulation of the hypothalamic-pituitary-thyroid axis in adult zebrafish, and females were more sensitive than males. In conclusion, acute MC-LR exposure disrupted the TH metabolism by altering Dio activity and gene expression of the HPT axis; these changes may affect the complement system through regulation of c9 mRNA synthesis.
Collapse
Affiliation(s)
- Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Kunming, 650201, China
| | - Zidong Liu
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Kunming, 650201, China
| | - Qing Hu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Kunming, 650201, China
| | - Li Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Rong Tang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Dapeng Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
147
|
Leitch VD, Bassett JHD, Williams GR. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16:147-164. [PMID: 31974498 DOI: 10.1038/s41574-019-0304-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Royal Melbourne Institute of Technology (RMIT) Centre for Additive Manufacturing, RMIT University, Melbourne, VIC, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
148
|
Silvestrini A, Mordente A, Martino G, Bruno C, Vergani E, Meucci E, Mancini A. The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview. Curr Med Chem 2020; 27:423-449. [PMID: 29421998 DOI: 10.2174/0929867325666180201111159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/28/2022]
Abstract
Selenium is a trace element, nutritionally classified as an essential micronutrient, involved in maintaining the correct function of several enzymes incorporating the selenocysteine residue, namely the selenoproteins. The human selenoproteome including 25 proteins is extensively described here. The most relevant selenoproteins, including glutathione peroxidases, thioredoxin reductases and iodothyronine deiodinases are required for the proper cellular redox homeostasis as well as for the correct thyroid function, thus preventing oxidative stress and related diseases. This review summarizes the main advances on oxidative stress with a focus on selenium metabolism and transport. Moreover, thyroid-related disorders are discussed, considering that the thyroid gland contains the highest selenium amount per gram of tissue, also for future possible therapeutic implication.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Giuseppe Martino
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Antonio Mancini
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| |
Collapse
|
149
|
Barreto-Chaves MLM, Senger N, Fevereiro MR, Parletta AC, Takano APC. Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 2020; 9:EC-19-0543.R1. [PMID: 32101527 PMCID: PMC7159257 DOI: 10.1530/ec-19-0543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
The cardiac growth process (hypertrophy) is a crucial phenomenon conserved across a wide array of species and it is critically involved in maintenance of cardiac homeostasis. This process enables organism adaptation to changes of systemic demand and occurs due to a plethora of responses, depending on the type of signal or stimuli received. The growth of cardiac muscle cells in response to environmental conditions depends on the type, strength and duration of stimuli, and results in adaptive physiologic response or non-adaptive pathologic response. Thyroid hormones (TH) have a direct effect on the heart and induce a cardiac hypertrophy phenotype, which may evolve to heart failure. In this review, we summarize the literature on TH function in heart presenting results from experimental studies. We discuss the mechanistic aspects of TH associated with cardiac myocyte hypertrophy, increased cardiac myocyte contractility and electrical remodeling as well as the signaling pathways associated. In addition to classical crosstalk with the Sympathetic Nervous System (SNS), emerging work points to the new endocrine interaction between TH and Renin-Angiotensin System (RAS) is also explored. Given the inflammatory potential of the angiotensin II peptide, this new interaction may open the door for new therapeutic approaches that target key mechanisms responsible for TH-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- M L M Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - N Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M R Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A C Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A P C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
150
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|