101
|
Checheneva TM, Kirpicheva IV. Inheritance of differences in organ hairiness in Arabidopsis thaliana (L.) Heynh. plants. CYTOL GENET+ 2011. [DOI: 10.3103/s009545271101004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
102
|
Tominaga-Wada R, Ishida T, Wada T. New insights into the mechanism of development of Arabidopsis root hairs and trichomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:67-106. [PMID: 21199780 DOI: 10.1016/b978-0-12-385859-7.00002-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the mechanisms leading to the developmental end state of plant cells. Both root hairs and trichomes differentiate from epidermal cells and molecular genetic analyses using Arabidopsis mutants have demonstrated that the differentiation of root hairs and trichomes is regulated by similar molecular mechanisms. Molecular-genetic approaches have led to the identification of many genes that are involved in epidermal cell differentiation, most of which encode transcription factors that induce the expression of genes active in both root hair and trichome development. Control of cell growth after fate determination has also been studied using Arabidopsis mutants.
Collapse
Affiliation(s)
- Rumi Tominaga-Wada
- Interdisciplinary Research Organization, University of Miyazaki, Gakuen Kibanadai-nishi, Miyazaki, Japan
| | | | | |
Collapse
|
103
|
Ahmad M, Cho WK, Rim Y, Huang L, Kim JY. How to assess the intercellular trafficking of transcription factors. Methods Mol Biol 2011; 754:235-245. [PMID: 21720956 DOI: 10.1007/978-1-61779-154-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Non-cell-autonomous (NCA) control of plant development is an emerging field. Transcription factors (TFs) are the most important plant proteins involved in development and cell fate determination. In plants specialized intercellular symplastic channels, called plasmodesmata (PD), facilitate and regulate the NCA action of TFs. NCA-TFs move from cell to cell either selectively or non-selectively depending upon the specific interactions with PD or the pathway proteins. Here we describe different approaches to establish the role of TFs in NCA control of its function and the characteristic movement behavior.
Collapse
Affiliation(s)
- Munawar Ahmad
- Division of Applied Life Science (BK21 program), Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea.
| | | | | | | | | |
Collapse
|
104
|
Mathur J, Radhamony R, Sinclair AM, Donoso A, Dunn N, Roach E, Radford D, Mohaghegh PSM, Logan DC, Kokolic K, Mathur N. mEosFP-based green-to-red photoconvertible subcellular probes for plants. PLANT PHYSIOLOGY 2010; 154:1573-87. [PMID: 20940350 PMCID: PMC2996014 DOI: 10.1104/pp.110.165431] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/11/2010] [Indexed: 05/23/2023]
Abstract
Photoconvertible fluorescent proteins (FPs) are recent additions to the biologists' toolbox for understanding the living cell. Like green fluorescent protein (GFP), monomeric EosFP is bright green in color but is efficiently photoconverted into a red fluorescent form using a mild violet-blue excitation. Here, we report mEosFP-based probes that localize to the cytosol, plasma membrane invaginations, endosomes, prevacuolar vesicles, vacuoles, the endoplasmic reticulum, Golgi bodies, mitochondria, peroxisomes, and the two major cytoskeletal elements, filamentous actin and cortical microtubules. The mEosFP fusion proteins are smaller than GFP/red fluorescent protein-based probes and, as demonstrated here, provide several significant advantages for imaging of living plant cells. These include an ability to differentially color label a single cell or a group of cells in a developing organ, selectively highlight a region of a cell or a subpopulation of organelles and vesicles within a cell for tracking them, and understanding spatiotemporal aspects of interactions between similar as well as different organelles. In addition, mEosFP probes introduce a milder alternative to fluorescence recovery after photobleaching, whereby instead of photobleaching, photoconversion followed by recovery of green fluorescence can be used for estimating subcellular dynamics. Most importantly, the two fluorescent forms of mEosFP furnish bright internal controls during imaging experiments and are fully compatible with cyan fluorescent protein, GFP, yellow fluorescent protein, and red fluorescent protein fluorochromes for use in simultaneous, multicolor labeling schemes. Photoconvertible mEosFP-based subcellular probes promise to usher in a much higher degree of precision to live imaging of plant cells than has been possible so far using single-colored FPs.
Collapse
Affiliation(s)
- Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Shahriari M, Keshavaiah C, Scheuring D, Sabovljevic A, Pimpl P, Häusler RE, Hülskamp M, Schellmann S. The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:71-85. [PMID: 20663085 DOI: 10.1111/j.1365-313x.2010.04310.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant-negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant-negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell-cycle regulation.
Collapse
Affiliation(s)
- Mojgan Shahriari
- Biozentrum Köln, University of Cologne, Zülpicher Street 47 b, 50674 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Gilding EK, Marks MD. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:304-17. [PMID: 21070410 DOI: 10.1111/j.1365-313x.2010.04329.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transcriptome analysis using the Affymetrix ATH1 platform has been completed on purified trichomes from the gl3-sst mutant. These trichomes display immature features, such as glassy cell walls and blunted branches. The gl3-sst trichome transcriptome was greatly enriched for genes involved in lipid biosynthesis, including those mediating the synthesis of fatty acids and wax. In addition, gl3-sst trichomes displayed reduced expression of the R3 MYBs TRY and CPC, which normally function to limit trichome development. The expression of the MIXTA-like MYB gene NOK was elevated. Members of the MIXTA-like family promote conical cell outgrowth, and in some cases, trichome initiation in diverse plant species. In contrast, NOK limits trichome outgrowth in wild-type Arabidopsis plants. Similar to other MIXTA-like genes, NOK was required for the expansion of gl3-sst trichomes, as the gl3-sst nok double mutant trichomes were greatly reduced in size. Expression of NOK in nok mutants reduced branch formation, whereas in gl3-sst nok, NOK expression promoted trichome cell outgrowth, illustrating duel roles for NOK in both promoting and limiting trichome development. MIXTA-like genes from phylogenetically diverse plant species could substitute for NOK in both nok and gl3-sst nok backgrounds. These findings suggest that certain aspects of NOK and MIXTA-like gene function have been conserved.
Collapse
Affiliation(s)
- Edward K Gilding
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108-1095, USA
| | | |
Collapse
|
107
|
Cullin 4-ring finger-ligase plays a key role in the control of endoreplication cycles in Arabidopsis trichomes. Proc Natl Acad Sci U S A 2010; 107:15275-80. [PMID: 20696906 DOI: 10.1073/pnas.1006941107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
One of the predominant cell-cycle programs found in mature tissues is endoreplication, also known as endoreduplication, that leads to cellular polyploidy. A key question for the understanding of endoreplication cycles is how oscillating levels of cyclin-dependent kinase activity are generated that control repeated rounds of DNA replication. The APC/C performs a pivotal function in the mitotic cell cycle by promoting anaphase and paving the road for a new round of DNA replication. However, using marker lines and plants in which APC/C components are knocked down, we show here that outgrowing and endoreplicating Arabidopsis leaf hairs display no or very little APC/C activity. Instead we find that RBX1-containing Cullin-RING E3 ubiquitin-Ligases (CRLs) are of central importance for the progression through endoreplication cycles; in particular, we have identified CULLIN4 as a major regulator of endoreplication in Arabidopsis trichomes. We have incorporated our findings into a bio-mathematical simulation presenting a robust two-step model of endoreplication control with one type of cyclin-dependent kinase inhibitor function for entry and a CRL-dependent oscillation of cyclin-dependent kinase activity via degradation of a second type of CDK inhibitor during endoreplication cycles.
Collapse
|
108
|
Bramsiepe J, Wester K, Weinl C, Roodbarkelari F, Kasili R, Larkin JC, Hülskamp M, Schnittger A. Endoreplication controls cell fate maintenance. PLoS Genet 2010; 6:e1000996. [PMID: 20585618 PMCID: PMC2891705 DOI: 10.1371/journal.pgen.1000996] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/19/2010] [Indexed: 01/23/2023] Open
Abstract
Cell-fate specification is typically thought to precede and determine cell-cycle regulation during differentiation. Here we show that endoreplication, also known as endoreduplication, a specialized cell-cycle variant often associated with cell differentiation but also frequently occurring in malignant cells, plays a role in maintaining cell fate. For our study we have used Arabidopsis trichomes as a model system and have manipulated endoreplication levels via mutants of cell-cycle regulators and overexpression of cell-cycle inhibitors under a trichome-specific promoter. Strikingly, a reduction of endoreplication resulted in reduced trichome numbers and caused trichomes to lose their identity. Live observations of young Arabidopsis leaves revealed that dedifferentiating trichomes re-entered mitosis and were re-integrated into the epidermal pavement-cell layer, acquiring the typical characteristics of the surrounding epidermal cells. Conversely, when we promoted endoreplication in glabrous patterning mutants, trichome fate could be restored, demonstrating that endoreplication is an important determinant of cell identity. Our data lead to a new model of cell-fate control and tissue integrity during development by revealing a cell-fate quality control system at the tissue level. Differentiating cells often amplify their nuclear DNA content through a special cell-cycle variant, called endoreplication, in which cell division is skipped. Although this process is widespread from humans to plants, not much is currently known about the biological importance of endoreplication. Moreover, the control of cell-cycle activities has been thought to follow developmental decisions and the adoption of a specific cell fate. Here we have uncovered a previously unrecognized function of endoreplication in maintaining cell identity, presenting a striking example of how cell fate and cell-cycle progression are linked. Using leaf hairs on the reference plant Arabidopsis as a model, we show that compromising endoreplication leads to dedifferentiation of the newly forming leaf hair cell. Live observations of young Arabidopsis leaves revealed that dedifferentiating leaf hairs underwent repeated rounds of cell division and were re-integrated into the epidermal cell layer acquiring the typical characteristics of the surrounding epidermal cells. Conversely, promoting endoreplication in mutants that fail to develop hairs could at least partially restore their differentiation program. With this, our findings also pinpoint an important role of the social context of a cell, revealing a differentiation control system at the tissue level.
Collapse
Affiliation(s)
- Jonathan Bramsiepe
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Katja Wester
- Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
| | - Christina Weinl
- Unigruppe am Max-Planck-Institut für Pflanzenzüchtungsforschung, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
| | - Farshad Roodbarkelari
- Unigruppe am Max-Planck-Institut für Pflanzenzüchtungsforschung, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
| | - Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - John C. Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Martin Hülskamp
- Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
| | - Arp Schnittger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Unigruppe am Max-Planck-Institut für Pflanzenzüchtungsforschung, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
- * E-mail:
| |
Collapse
|
109
|
Szymanski DB, Cosgrove DJ. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 2010; 19:R800-11. [PMID: 19906582 DOI: 10.1016/j.cub.2009.07.056] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Underlying the architectural complexity of plants are diverse cell types that, under the microscope, easily reveal relationships between cell structure and specialized functions. Much less obvious are the mechanisms by which the cellular growth machinery and mechanical properties of the cell interact to dictate cell shape. The recent combined use of mutants, genomic analyses, sophisticated spectroscopies, and live cell imaging is providing new insight into how cytoskeletal systems and cell wall biosynthetic activities are integrated during morphogenesis. The purpose of this review is to discuss the unique geometric properties and physical processes that regulate plant cell expansion, then to overlay on this mechanical system some of the recent discoveries about the protein machines and cellular polymers that regulate cell shape. In the end, we hope to make clear that there are many interesting opportunities to develop testable mathematical models that improve our understanding of how subcellular structures, protein motors, and extracellular polymers can exert effects at spatial scales that span cells, tissues, and organs.
Collapse
Affiliation(s)
- Daniel B Szymanski
- Department of Agronomy, Lily Hall of Life Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
110
|
Balkunde R, Pesch M, Hülskamp M. Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr Top Dev Biol 2010; 91:299-321. [PMID: 20705186 DOI: 10.1016/s0070-2153(10)91010-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aerial organs of plants typically produce trichomes that may adopt various functions, including light, wind, frost, and herbivore protection. Trichomes are of epidermal origin regularly distributed on the surface. The mechanism by which trichome differentiation is triggered in individual cells in a field of protodermal cells is best studied in Arabidopsis thaliana. The genetic analysis has revealed a number of key genes controlling this patterning process, and further molecular analysis has enabled the in-depth cell-biological and biochemical analysis. The established models explain trichome patterning by the mutual interaction between positive and negative factors. Three activators, a bHLH (helix-loop-helix), a R2R3 MYB-related transcription factor, and a WD40 domain protein, form an active complex. The activity of this complex is counteracted by R3 MYB factors that compete with the R2R3 MYB for binding to the bHLH factor. The R3 MYBs can move between cells and thereby mediate cellular interactions. This general model cannot explain all genetic observations and recent data suggest the existence of several parallel patterning mechanisms. In this chapter we aim to summarize the current data and sketch possible alternative, not mutually exclusive theoretical models.
Collapse
|
111
|
Abstract
Arabidopsis trichomes are giant single epidermal cells that are easily accessible for genetic, genomic and cell-biological analysis. They have therefore become a convenient model system to study developmental and physiological processes. Trichome studies are greatly facilitated by methods specifically applicable for this particular cell type. In addition, it is very important to use conventions and definitions that have been developed to make studies comparable and capture the relevant aspects. This chapter will highlight these two aspects of trichome analysis.
Collapse
|
112
|
Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal SED, Szymanski DB. The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. PLANT PHYSIOLOGY 2009; 151:2095-109. [PMID: 19801398 PMCID: PMC2785977 DOI: 10.1104/pp.109.143859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) "distorted group" mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.
Collapse
|
113
|
Pang Y, Wenger JP, Saathoff K, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA. A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. PLANT PHYSIOLOGY 2009; 151:1114-29. [PMID: 19710231 PMCID: PMC2773055 DOI: 10.1104/pp.109.144022] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/21/2009] [Indexed: 05/18/2023]
Abstract
WD40 repeat proteins regulate biosynthesis of anthocyanins, proanthocyanidins (PAs), and mucilage in the seed and the development of trichomes and root hairs. We have cloned and characterized a WD40 repeat protein gene from Medicago truncatula (MtWD40-1) via a retrotransposon-tagging approach. Deficiency of MtWD40-1 expression blocks accumulation of mucilage and a range of phenolic compounds, including PAs, epicatechin, other flavonoids, and benzoic acids, in the seed, reduces epicatechin levels without corresponding effects on other flavonoids in flowers, reduces isoflavone levels in roots, but does not impair trichome or root hair development. MtWD40-1 is expressed constitutively, with highest expression in the seed coat, where its transcript profile temporally parallels those of PA biosynthetic genes. Transcript profile analysis revealed that many genes of flavonoid biosynthesis were down-regulated in a tissue-specific manner in M. truncatula lines harboring retrotransposon insertions in the MtWD40-1 gene. MtWD40-1 complemented the anthocyanin, PA, and trichome phenotypes of the Arabidopsis (Arabidopsis thaliana) transparent testa glabrous1 mutant. We discuss the function of MtWD40-1 in natural product formation in M. truncatula and the potential use of the gene for engineering PAs in the forage legume alfalfa (Medicago sativa).
Collapse
|
114
|
Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, Yu B, Pravitasari A, Batteas JD, Stark RE, Jenks MA, Rose JKC. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:363-77. [PMID: 19594708 DOI: 10.1111/j.1365-313x.2009.03969.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato (Solanum lycopersicum) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 (cd1), cd2 and cd3, the fruit cuticles of which have a dramatic (95-98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.
Collapse
Affiliation(s)
- Tal Isaacson
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Vernoud V, Laigle G, Rozier F, Meeley RB, Perez P, Rogowsky PM. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:883-94. [PMID: 19453441 DOI: 10.1111/j.1365-313x.2009.03916.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the genes controlling the differentiation and maintenance of epidermal cell fate are members of the HD-ZIP IV class family of plant-specific transcription factors, most of which are specifically expressed in the epidermis of tissues. Here, we report the functional analysis of the maize HD-ZIP IV gene OCL4 (outer cell layer 4) via the phenotypic analysis of two insertional mutants, and of OCL4-RNAi transgenic plants. In all three materials, the macrohairs, one of the three types of trichomes present on adult maize leaf blades, developed ectopically at the margin of juvenile and adult leaves. Consistent with this phenotype, OCL4 is expressed in the epidermis of the leaf blade, with a maximum at the margin of young leaf primordia. Expression of OCL4 in the model plant Arabidopsis under the control of the GLABRA2 (GL2) promoter, a member of the Arabidopsis HD-ZIP IV family involved in trichome differentiation, did not complement the gl2-1 mutant, but instead aggravated its phenotype. The construct also caused a glabrous appearance of rosette leaves in transformed control plants of the Ler ecotype, suggesting that OCL4 inhibits trichome development both in maize and Arabidopsis. Furthermore, insertional mutants showed a partial male sterility that is likely to result from the presence of an extra subepidermal cell layer with endothecium characteristics in the anther wall. Interestingly, the epidermis-specific OCL4 expression in immature anthers was restricted to the region of the anther locule where the extra cell layer differentiated. Taken together these results suggest that OCL4 inhibits trichome development and influences division and/or differentiation of the anther cell wall.
Collapse
Affiliation(s)
- Vanessa Vernoud
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon1, IFR128 BioSciences Lyon-Gerland, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France.
| | | | | | | | | | | |
Collapse
|
116
|
Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA. Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. MOLECULAR PLANT 2009; 2:803-822. [PMID: 19626137 PMCID: PMC2713768 DOI: 10.1093/mp/ssp037] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 04/27/2009] [Indexed: 05/18/2023]
Abstract
Transcriptome analyses have been performed on mature trichomes isolated from wild-type Arabidopsis leaves and on leaf trichomes isolated from the gl3-sst sim double mutant, which exhibit many attributes of immature trichomes. The mature trichome profile contained many highly expressed genes involved in cell wall synthesis, protein turnover, and abiotic stress response. The most highly expressed genes in the gl3-sst sim profile encoded ribosomal proteins and other proteins involved in translation. Comparative analyses showed that all but one of the genes encoding transcription factors previously found to be important for trichome formation, and many other trichome-important genes, were preferentially expressed in gl3-sst sim trichomes. The analysis of genes preferentially expressed in gl3-sst sim led to the identification of four additional genes required for normal trichome development. One of these was the HDG2 gene, which is a member of the HD-ZIP IV transcription factor gene family. Mutations in this gene did not alter trichome expansion, but did alter mature trichome cell walls. Mutations in BLT resulted in a loss of trichome branch formation. The relationship between blt and the phenotypically identical mutant, sti, was explored. Mutations in PEL3, which was previously shown to be required for development of the leaf cuticle, resulted in the occasional tangling of expanding trichomes. Mutations in another gene encoding a protein with an unknown function altered trichome branch formation.
Collapse
Affiliation(s)
- M David Marks
- Department of Plant Biology, University of Minnesota, St Paul, MN 551108, USA.
| | - Jonathan P Wenger
- Department of Plant Biology, University of Minnesota, St Paul, MN 551108, USA
| | - Edward Gilding
- Department of Plant Biology, University of Minnesota, St Paul, MN 551108, USA
| | - Ross Jilk
- Department of Chemistry, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
117
|
Kang YH, Kirik V, Hulskamp M, Nam KH, Hagely K, Lee MM, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. THE PLANT CELL 2009; 21:1080-94. [PMID: 19395683 PMCID: PMC2685616 DOI: 10.1105/tpc.108.063180] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/19/2009] [Accepted: 04/10/2009] [Indexed: 05/18/2023]
Abstract
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.
Collapse
Affiliation(s)
- Yeon Hee Kang
- Department of Biology, Yonsei University, 134 Sinchon-dong, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
118
|
Reina-Pinto JJ, Voisin D, Kurdyukov S, Faust A, Haslam RP, Michaelson LV, Efremova N, Franke B, Schreiber L, Napier JA, Yephremov A. Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. THE PLANT CELL 2009; 4:625-8. [PMID: 19376931 PMCID: PMC2685613 DOI: 10.1105/tpc.109.065565] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/09/2009] [Accepted: 03/31/2009] [Indexed: 05/20/2023]
Abstract
Very-long-chain fatty acids (VLCFAs) are important functional components of various lipid classes, including cuticular lipids in the higher plant epidermis and lipid-derived second messengers. Here, we report the characterization of transgenic Arabidopsis thaliana plants that epidermally express FATTY ACID ELONGATION1 (FAE1), the seed-specific beta-ketoacyl-CoA synthase (KCS) catalyzing the first rate-limiting step in VLCFA biosynthesis. Misexpression of FAE1 changes the VLCFAs in different classes of lipids but surprisingly does not complement the KCS fiddlehead mutant. FAE1 misexpression plants are similar to the wild type but display an essentially glabrous phenotype, owing to the selective death of trichome cells. This cell death is accompanied by membrane damage, generation of reactive oxygen species, and callose deposition. We found that nuclei of arrested trichome cells in FAE1 misexpression plants cell-autonomously accumulate high levels of DNA damage, including double-strand breaks characteristic of lipoapoptosis. A chemical genetic screen revealed that inhibitors of KCS and phospholipase A2 (PLA2), but not inhibitors of de novo ceramide biosynthesis, rescue trichome cells from death. These results support the functional role of acyl chain length of fatty acids and PLA2 as determinants for programmed cell death, likely involving the exchange of VLCFAs between phospholipids and the acyl-CoA pool.
Collapse
|
119
|
Plett JM, Mathur J, Regan S. Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3923-33. [PMID: 19648171 PMCID: PMC2736899 DOI: 10.1093/jxb/erp228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The single-celled trichome of Arabidopsis thaliana is a widely used model system for studying cell development. While the pathways that control the later stages of trichome development are well characterized, the early signalling events that co-ordinate these pathways are less well understood. Hormones such as gibberellic acid, salicylic acid, cytokinins, and ethylene are known to affect trichome initiation and development. To understand the role of the plant hormone ethylene in trichome development, an Arabidopsis loss-of-function ethylene receptor mutant, etr2-3, which has completely unbranched trichomes, is analysed in this study. It was hypothesized that ETR2 might affect the assembly of the microtubule cytoskeleton based on analysis of the cytoskeleton in developing trichomes, and exposures to paclitaxol and oryzalin, which respectively act either to stabilize or depolymerize the cytoskeleton. Through epistatic and gene expression analyses it is shown that ETR2 is positioned upstream of CHROMATIN ASSEMBLY FACTOR1 and TRYPTICHON and is independent of the GLABRA2 and GLABRA3 pathways. These results help extend understanding of the early events that control trichome development and identify a signalling pathway through which ethylene affects trichome branching.
Collapse
Affiliation(s)
- Jonathan M. Plett
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Sharon Regan
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
120
|
Wang S, Chen JG. Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2. PLANT & CELL PHYSIOLOGY 2008; 49:1792-804. [PMID: 18948276 DOI: 10.1093/pcp/pcn159] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transcription factors regulate gene expression by directly binding the cis-acting regulatory elements of target genes via their DNA-binding domains or by interacting with other transcription factors. Trichome cell fate determination in Arabidopsis utilizes a lateral inhibition mechanism that relies on the interplay of transcription factors. GLABRA1 (GL1), an R2R3 MYB transcription factor, GLABRA3 (GL3), a basic helix-loop-helix (bHLH) transcription factor, and TRANSPARENT TESTA GLABRA1 (TTG1), a WD40 protein, are believed to form a transcriptional activator complex to control the transcription of GLABRA2 (GL2), which in turn induces trichome formation in shoots. However, the molecular mechanism of the regulation of GL2 expression by this activator complex is still poorly understood. Here we report that GL1 and GL3 control GL2 expression by a previously unrecognized mechanism in which in addition to the protein-protein interaction between GL1 and GL3, concurrent binding of GL1 and GL3 to the promoter of GL2 via their own DNA-binding domains is probably required to activate GL2. We demonstrate that disruption or deletion of the DNA-binding domains in either GL1 or GL3 completely abolishes the transcriptional activity of the GL1-GL3 complex in activating GL2. These results provide new insight into the interplay of GL1 and GL3 transcription factors in the activation of GL2.
Collapse
Affiliation(s)
- Shucai Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
121
|
Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Hülskamp M, Larkin J, Schnittger A. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. PLANT PHYSIOLOGY 2008; 148:1583-602. [PMID: 18805951 PMCID: PMC2577251 DOI: 10.1104/pp.108.126979] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/17/2008] [Indexed: 05/18/2023]
Abstract
Leaf hairs (trichomes) of Arabidopsis (Arabidopsis thaliana) have been extensively used as a model to address general questions in cell and developmental biology. Here, we lay the foundation for a systems-level understanding of the biology of this model cell type by performing genome-wide gene expression analyses. We have identified 3,231 genes that are up-regulated in mature trichomes relative to leaves without trichomes, and we compared wild-type trichomes with two mutants, glabra3 and triptychon, that affect trichome morphology and physiology in contrasting ways. We found that cell wall-related transcripts were particularly overrepresented in trichomes, consistent with their highly elaborated structure. In addition, trichome expression maps revealed high activities of anthocyanin, flavonoid, and glucosinolate pathways, indicative of the roles of trichomes in the biosynthesis of secondary compounds and defense. Interspecies comparisons revealed that Arabidopsis trichomes share many expressed genes with cotton (Gossypium hirsutum) fibers, making them an attractive model to study industrially important fibers. In addition to identifying physiological processes involved in the development of a specific cell type, we also demonstrated the utility of transcript profiling for identifying and analyzing regulatory gene function. One of the genes that are differentially expressed in fibers is the MYB transcription factor GhMYB25. A combination of transcript profiling and map-based cloning revealed that the NOECK gene of Arabidopsis encodes AtMYB106, a MIXTA-like transcription factor and homolog of cotton GhMYB25. However, in contrast to Antirrhinum, in which MIXTA promotes epidermal cell outgrowth, AtMYB106 appears to function as a repressor of cell outgrowth in Arabidopsis.
Collapse
Affiliation(s)
- Marc J Jakoby
- University of Cologne, Department of Botany III, University Group at the Max Planck Institute for Plant Breeding Research, Max-Delbrück-Laboratorium, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Marks MD, Betancur L, Gilding E, Chen F, Bauer S, Wenger JP, Dixon RA, Haigler CH. A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:483-92. [PMID: 18643981 DOI: 10.1111/j.1365-313x.2008.03611.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new procedure has been developed for the isolation of wild-type and mutant Arabidopsis trichomes. The isolated trichomes maintained enzymatic activity and were used for DNA, protein, and RNA isolation. The RNA was used to generate probes suitable for Affymetrix analysis. The validity of the Affymetrix results was confirmed by quantitative PCR analysis on a subset of genes that are preferentially expressed in trichomes or leaves. Sufficient quantities of trichomes were isolated to probe the biochemical nature of trichome cell walls. These analyses provide evidence for the presence of lignin in Arabidopsis trichome cell walls. The monosaccharide analysis and positive staining with ruthenium red indicates that the walls also contain a large portion of pectin. The 2.23-fold ratio of pectin-related sugars compared with potential cellulosic glucose suggests that the polysaccharides of the trichome cell walls are more like those of typical primary walls even though the wall becomes quite thick. Overall, these analyses open the door to using the Arabidopsis trichome cell wall as an excellent model to probe various questions concerning plant cell wall biosynthesis.
Collapse
Affiliation(s)
- M David Marks
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave., St Paul, MN 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Cotton (Gossypium hirsutum L.) fibers are single highly elongated cells derived from the outer epidermis of ovules. A large number of genes are required for fiber differentiation and development, but so far, little is known about how these genes control and regulate the process of fiber development. Here we examine the role of the cotton-fiber-specific R2R3 MYB gene GhMYB109 in cotton fiber development. Transgenic reporter gene analysis revealed that a 2-kb GhMYB109 promoter was sufficient to confirm its fiber-specific expression. Antisense-mediated suppression of GhMYB109 led to a substantial reduction in fiber length. Consistently, several genes related to cotton fiber growth were found to be significantly reduced in the transgenic cotton. Our results showed that GhMYB109 is required for cotton fiber development and reveal a largely conserved mechanism of the R2R3 MYB transcription factor in cell fate determination in plants.
Collapse
|
124
|
Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. PHYSIOLOGIA PLANTARUM 2008; 134:174-82. [PMID: 18507789 DOI: 10.1111/j.1399-3054.2008.01115.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most of the plant homeodomain-containing proteins play important roles in organ patterning and development, and Arabidopsis GLABRA2 (GL2), a member of the class IV homeodomain-leucine zipper (HD-ZIP) proteins, is a trichome and non-root hair cell regulator. Here we report the analysis of two cotton homeodomain-containing proteins, GaHOX1 and GaHOX2, isolated from the diploid cotton Gossypium arboreum. Both GaHOX1 and GaHOX2 belong to the class IV HD-ZIP family. When expressed under the control of the GL2 promoter, GaHOX1 rescued trichome development of an Arabidopsis glabrous mutant of gl2-2 (SALK_130213), whereas GaHOX2 did not. On the other hand, expression of GaHOX1 with a Cauliflower mosaic virus (CaMV) 35S promoter in the wild-type Arabidopsis plants suppressed the trichome development just as the GL2 ectopic expression. Expression analysis by Northern, RT-PCR and in situ hybridization indicated that GaHOX1 is predominantly expressed in cotton fiber cells at early developmental stages, consistent with its putative role in regulating cotton fiber development, while GaHOX2 is expressed in both fiber and other ovular tissues, including outer and inner integuments. Our results suggest that GaHOX1 is a functional homolog of GL2 in plant trichome development.
Collapse
Affiliation(s)
- Xue-Ying Guan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
125
|
Zhang C, Mallery EL, Schlueter J, Huang S, Fan Y, Brankle S, Staiger CJ, Szymanski DB. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. THE PLANT CELL 2008; 20:995-1011. [PMID: 18424615 PMCID: PMC2390748 DOI: 10.1105/tpc.107.055350] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/26/2008] [Accepted: 03/25/2008] [Indexed: 05/18/2023]
Abstract
During polarized growth and tissue morphogenesis, cells must reorganize their cytoplasm and change shape in response to growth signals. Dynamic polymerization of actin filaments is one cellular component of polarized growth, and the actin-related protein 2/3 (ARP2/3) complex is an important actin filament nucleator in plants. ARP2/3 alone is inactive, and the Arabidopsis thaliana WAVE complex translates Rho-family small GTPase signals into an ARP2/3 activation response. The SCAR subunit of the WAVE complex is the primary activator of ARP2/3, and plant and vertebrate SCARs are encoded by a small gene family. However, it is unclear if SCAR isoforms function interchangeably or if they have unique properties that customize WAVE complex functions. We used the Arabidopsis distorted group mutants and an integrated analysis of SCAR gene and protein functions to address this question directly. Genetic results indicate that each of the four SCARs functions in the context of the WAVE-ARP2/3 pathway and together they define the lone mechanism for ARP2/3 activation. Genetic interactions among the scar mutants and transgene complementation studies show that the activators function interchangeably to meet the threshold for ARP2/3 activation in the cell. Interestingly, double, triple, and quadruple mutant analyses indicate that individual SCAR genes vary in their relative importance depending on the cell type, tissue, or organ that is analyzed. Differences among SCARs in mRNA levels and the biochemical efficiency of ARP2/3 activation may explain the functional contributions of individual genes.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Kryvych S, Nikiforova V, Herzog M, Perazza D, Fisahn J. Gene expression profiling of the different stages of Arabidopsis thaliana trichome development on the single cell level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:160-73. [PMID: 18160300 DOI: 10.1016/j.plaphy.2007.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Indexed: 05/24/2023]
Abstract
Leaf hairs (trichomes) of Arabidopsis thaliana are a model system for studying cell development, differentiation and cell cycle regulation. To exploit this model system with ultimate spatial resolution we applied single cell sampling, thus avoiding the averaging effect induced by complex tissue mixtures. In particular, we analysed gene expression profiles of two selected stages of the developing trichome: trichome initial cells and mature trichomes, as well as pavement cells. Ten single cells per sample were collected by glass microcapillaries and used for the generation of radioactive probes for subsequent hybridization to nylon filters representing approximately 8000 genes of A. thaliana. Functional categorization of genes transcribed in trichome initials, mature trichomes and pavement cells demonstrated involvement of these surface cells in the stress response. In silico promoter analysis of genes preferentially expressed in trichome initials revealed enrichment in MYB-binding sites and presence of elements involved in hormonal, metal, sulphur response and cell cycle regulation. Three candidate genes preferentially expressed in trichome initials were selected for further analysis: At3g16980 (putative RNA polymerase II), At5g15230 (GASA4) and At4g27260 (GH3.5, WES1). Promoter:GUS studies confirmed expression of the putative RNA polymerase II and the gibberellin responsive GASA4 in trichome initials and partially in mature trichomes. Functional implication of the three selected candidates in trichome development and hence in cell cycle regulation in A. thaliana is discussed. We suggest that these genes are involved in differentiation and initiation of endocycling during trichome development.
Collapse
Affiliation(s)
- Sergiy Kryvych
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
127
|
Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:365-86. [PMID: 18257710 DOI: 10.1146/annurev.arplant.59.032607.092949] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichomes and root hairs differentiate from epidermal cells in the aerial tissues and roots, respectively. Because trichomes and root hairs are easily accessible, particularly in the model plant Arabidopsis, their development has become a well-studied model of cell differentiation and growth. Molecular genetic analyses using Arabidopsis mutants have demonstrated that the differentiation of trichomes and root hair/hairless cells is regulated by similar molecular mechanisms. Transcriptional complexes regulate differentiation into trichome cells and root hairless cells, and formation of the transcriptional complexes is inhibited in neighboring cells. Control of cell growth after fate determination has also been analyzed using Arabidopsis mutants. The progression of endoreduplication cycles, reorientation of microtubules, and organization of the actin cytoskeleton play important roles in trichome growth. Various cellular components such as ion channels, the actin cytoskeleton, microtubules and cell wall materials, and intracellular signal transduction act to establish and maintain root hair tip growth.
Collapse
Affiliation(s)
- Tetsuya Ishida
- Plant Science Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | |
Collapse
|
128
|
Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. PLANT PHYSIOLOGY 2007; 145:736-46. [PMID: 17885086 PMCID: PMC2048771 DOI: 10.1104/pp.107.104521] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/04/2007] [Indexed: 05/17/2023]
Abstract
The development of trichomes (leaf hairs) from pluripotent epidermal cells in Arabidopsis (Arabidopsis thaliana) provides a powerful system to investigate the regulatory motifs involved in plant cell differentiation. We show here that trichome initiation is triggered within 4 h of the induction of the GLABRA3 (GL3) basic helix-loop-helix transcription factor. Within this developmental window, GL3 binds to the promoters of at least three genes previously implicated in the development and patterning of trichomes (GL2, CAPRICE, and ENHANCER OF TRIPTYCHON AND CAPRICE1) and activates their transcription. The in vivo binding of GL3 to the promoters of these genes requires the presence of the R2R3-MYB factor GL1, supporting a model in which a GL3-GL1 complex is part of the trichome initiation enhanceosome. In contrast, GL3 is recruited to its own promoter in a GL1-independent manner, and this results in decreased GL3 expression, suggesting the presence of a GL3 negative autoregulatory loop. In support of genetic analyses indicating that ENHANCER OF GL3 (EGL3) is partially redundant with GL3, we show that EGL3 shares some direct targets with GL3. However, our results suggest that GL3 and EGL3 work independently of each other. Taken together, our results provide a regulatory framework to understand early events of epidermal cell differentiation.
Collapse
Affiliation(s)
- Kengo Morohashi
- Department of Plant Cellular and Molecular Biology , The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Marks MD, Gilding E, Wenger JP. Genetic interaction between glabra3-shapeshifter and siamese in Arabidopsis thaliana converts trichome precursors into cells with meristematic activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:352-61. [PMID: 17764505 DOI: 10.1111/j.1365-313x.2007.03243.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The identity of many genes required for trichome differentiation is known. This paper describes a novel interaction between mutant alleles of two such genes. One of the alleles, called gl3-sst, is derived from the GL3 locus, which encodes a basic helix-loop-helix type transcription factor. The mutation in the gl3-sst protein modifies its ability to form a complex with the GL1 protein (a MYB transcription factor required for trichome formation), leading to changes in gene expression compared with wild type during gl3-sst mutant trichome development. The other mutant allele, sim, is a likely loss of function allele derived from the SIM locus, which is predicted to encode a negative regulator of D-type cyclin activity. The gl3-sst sim double mutant exhibits mounds of cells derived from the proliferation of single trichome precursors. The ectopic expression of a D-type cyclin gene in gl3-sst mimics the double mutant phenotype. Thus, an interaction between altered trichome gene expression caused by the gl3-sst mutation and relaxed regulation of D-type cyclin activity in the double mutant converted a non-dividing cell into a novel highly proliferating cell type.
Collapse
Affiliation(s)
- M David Marks
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave., St Paul, MN 55108-1095, USA.
| | | | | |
Collapse
|
130
|
Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. THE PLANT CELL 2007; 19:2531-43. [PMID: 17766401 PMCID: PMC2002633 DOI: 10.1105/tpc.107.052274] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana TRANSPARENT TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is expressed in young leaves, trichomes, seed coats, and root hairless cells. An examination of several trichome and root hair mutants indicates that MYB and bHLH genes regulate TTG2 expression. Two MYB binding sites in the TTG2 5' regulatory region act as cis regulatory elements and as direct targets of R2R3 MYB transcription factors such as WEREWOLF, GLABRA1, and TRANSPARENT TESTA2. Mutations in TTG2 cause phenotypic defects in trichome development and seed color pigmentation. Transgenic plants expressing a chimeric repressor version of the TTG2 protein (TTG2:SRDX) showed defects in trichome formation, anthocyanin accumulation, seed color pigmentation, and differentiation of root hairless cells. GLABRA2 (GL2) expression was markedly reduced in roots of ProTTG2:TTG2:SRDX transgenic plants, suggesting that TTG2 is involved in the regulation of GL2 expression, although GL2 expression in the ttg2 mutant was similar to that in the wild type. Our analysis suggests a new step in a regulatory cascade of epidermal differentiation, in which complexes containing R2R3 MYB and bHLH transcription factors regulate the expression of TTG2, which then regulates GL2 expression with complexes containing R2R3 MYB and bHLH in the differentiation of trichomes and root hairless cells.
Collapse
Affiliation(s)
- Tetsuya Ishida
- Plant Science Center, RIKEN, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Tominaga R, Iwata M, Okada K, Wada T. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. THE PLANT CELL 2007; 19:2264-77. [PMID: 17644729 PMCID: PMC1955706 DOI: 10.1105/tpc.106.045732] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the developmental end state of plant cells. Two types of MYB transcription factors, R2R3-MYB and R3-MYB, are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of the R2R3-type MYB gene WEREWOLF (WER) and the R3-type MYB gene CAPRICE (CPC). Chimeric constructs made from the R3 MYB regions of WER and CPC used in reciprocal complementation experiments showed that the CPC R3 region cannot functionally substitute for the WER R3 region in the differentiation of hairless cells. However, WER R3 can substantially substitute for CPC R3. There are no differences in yeast interaction assays of WER or WER chimera proteins with GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). CPC and CPC chimera proteins also have similar activity in preventing GL3 WER and EGL3 WER interactions. Furthermore, we showed by gel mobility shift assays that WER chimera proteins do not bind to the GL2 promoter region. However, a CPC chimera protein, which harbors the WER R3 motif, still binds to the GL2 promoter region.
Collapse
Affiliation(s)
- Rumi Tominaga
- Plant Science Center, RIKEN, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | |
Collapse
|
133
|
Schellmann S, Hülskamp M, Uhrig J. Epidermal pattern formation in the root and shoot of Arabidopsis. Biochem Soc Trans 2007; 35:146-8. [PMID: 17233622 DOI: 10.1042/bst0350146] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Root hair formation, stomata development on hypocotyls and trichome formation on leaves in Arabidopsis represent three model systems for epidermal patterning in plants that involve a common set of genes or corresponding homologues. The resulting pattern and the developmental readout are, however, strikingly different. Trichomes become regularly spaced on the leaf surface. Root hairs and stomata-bearing cells are formed in rows at specific locations with reference to the underlying cortex cells. In this review, we summarize the mechanistic similarities and discuss differences that might account for the different outcome of patterning in each system.
Collapse
Affiliation(s)
- S Schellmann
- Universität zu Köln, Lehrstuhl für Botanik, III, Gyrhofstrasse 15, Köln, Germany
| | | | | |
Collapse
|
134
|
Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T. Characterization of the class IV homeodomain-Leucine Zipper gene family in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:1363-75. [PMID: 16778018 PMCID: PMC1533922 DOI: 10.1104/pp.106.077388] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) genome contains 16 genes belonging to the class IV homeodomain-Leucine zipper gene family. These include GLABRA2, ANTHOCYANINLESS2, FWA, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1), and PROTODERMAL FACTOR2 (PDF2). Our previous study revealed that atml1 pdf2 double mutants have severe defects in the shoot epidermal cell differentiation. Here, we have characterized additional members of this gene family, which we designated HOMEODOMAIN GLABROUS1 (HDG1) through HDG12. Analyses of transgenic Arabidopsis plants carrying the gene-specific promoter fused to the bacterial beta-glucuronidase reporter gene revealed that some of the promoters have high activities in the epidermal layer of the shoot apical meristem and developing shoot organs, while others are temporarily active during reproductive organ development. Expression profiles of highly conserved paralogous gene pairs within the family were found to be not necessarily overlapping. Analyses of T-DNA insertion mutants of these HDG genes revealed that all mutants except hdg11 alleles exhibit no abnormal phenotypes. hdg11 mutants show excess branching of the trichome. This phenotype is enhanced in hdg11 hdg12 double mutants. Double mutants were constructed for other paralogous gene pairs and genes within the same subfamily. However, novel phenotypes were observed only for hdg3 atml1 and hdg3 pdf2 mutants that both exhibited defects in cotyledon development. These observations suggest that some of the class IV homeodomain-Leucine zipper members act redundantly with other members of the family during various aspects of cell differentiation. DNA-binding sites were determined for two of the family members using polymerase chain reaction-assisted DNA selection from random oligonucleotides with their recombinant proteins. The binding sites were found to be similar to those previously identified for ATML1 and PDF2, which correspond to the pseudopalindromic sequence 5'-GCATTAAATGC-3' as the preferential binding site.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
135
|
Brand L, Hörler M, Nüesch E, Vassalli S, Barrell P, Yang W, Jefferson RA, Grossniklaus U, Curtis MD. A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:1194-204. [PMID: 16896232 PMCID: PMC1533952 DOI: 10.1104/pp.106.081299] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 06/22/2006] [Accepted: 06/24/2006] [Indexed: 05/11/2023]
Abstract
Developmental progression and differentiation of distinct cell types depend on the regulation of gene expression in space and time. Tools that allow spatial and temporal control of gene expression are crucial for the accurate elucidation of gene function. Most systems to manipulate gene expression allow control of only one factor, space or time, and currently available systems that control both temporal and spatial expression of genes have their limitations. We have developed a versatile two-component system that overcomes these limitations, providing reliable, conditional gene activation in restricted tissues or cell types. This system allows conditional tissue-specific ectopic gene expression and provides a tool for conditional cell type- or tissue-specific complementation of mutants. The chimeric transcription factor XVE, in conjunction with Gateway recombination cloning technology, was used to generate a tractable system that can efficiently and faithfully activate target genes in a variety of cell types. Six promoters/enhancers, each with different tissue specificities (including vascular tissue, trichomes, root, and reproductive cell types), were used in activation constructs to generate different expression patterns of XVE. Conditional transactivation of reporter genes was achieved in a predictable, tissue-specific pattern of expression, following the insertion of the activator or the responder T-DNA in a wide variety of positions in the genome. Expression patterns were faithfully replicated in independent transgenic plant lines. Results demonstrate that we can also induce mutant phenotypes using conditional ectopic gene expression. One of these mutant phenotypes could not have been identified using noninducible ectopic gene expression approaches.
Collapse
Affiliation(s)
- Lukas Brand
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Serna L, Martin C. Trichomes: different regulatory networks lead to convergent structures. TRENDS IN PLANT SCIENCE 2006; 11:274-80. [PMID: 16697247 DOI: 10.1016/j.tplants.2006.04.008] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/22/2006] [Accepted: 04/26/2006] [Indexed: 05/09/2023]
Abstract
Sometimes, proteins, biological structures or even organisms have similar functions and appearances but have evolved through widely divergent pathways. There is experimental evidence to suggest that different developmental pathways have converged to produce similar outgrowths of the aerial plant epidermis, referred to as trichomes. The emerging picture suggests that trichomes in Arabidopsis thaliana and, perhaps, in cotton develop through a transcriptional regulatory network that differs from those regulating trichome formation in Antirrhinum and Solanaceous species. Several lines of evidence suggest that the duplication of a gene controlling anthocyanin production and subsequent divergence might be the major force driving trichome formation in Arabidopsis, whereas the multicellular trichomes of Antirrhinum and Solanaceous species appear to have a different regulatory origin.
Collapse
Affiliation(s)
- Laura Serna
- Environmental Sciences Faculty, University of Castilla-La Mancha, 45071 Toledo, Spain.
| | | |
Collapse
|
137
|
Gruber MY, Wang S, Ethier S, Holowachuk J, Bonham-Smith PC, Soroka J, Lloyd A. "HAIRY CANOLA"--Arabidopsis GL3 induces a dense covering of trichomes on Brassica napus seedlings. PLANT MOLECULAR BIOLOGY 2006; 60:679-98. [PMID: 16649106 DOI: 10.1007/s11103-005-5472-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/27/2005] [Indexed: 05/05/2023]
Abstract
Transformation with the Arabidopsis bHLH gene 35S:GLABRA3 (GL3) produced novel B. napus plants with an extremely dense coverage of trichomes on seedling tissues (stems and young leaves). In contrast, trichomes were strongly induced in seedling stems and moderately induced in leaves of a hairy, purple phenotype transformed with a 2.2 kb allele of the maize anthocyanin regulator LEAF COLOUR (Lc), but only weakly induced by BOOSTER (B-Peru), the maize Lc 2.4 kb allele, or the Arabidopsis trichome MYB gene GLABRA1 (GL1). B. napus plants containing only the GL3 transgene had a greater proportion of trichomes on the adaxial leaf surface, whereas all other plant types had a greater proportion on the abaxial surface. Progeny of crosses between GL3+ and GL1+ plants resulted in trichome densities intermediate between a single-insertion GL3+ plant and a double-insertion GL3+ plant. None of the transformations stimulated trichomes on Brassica cotyledons or on non-seedling tissues. A small portion of bHLH gene-induced trichomes had a swollen terminal structure. The results suggest that trichome development in B. napus may be regulated differently from Arabidopsis. They also imply that insertion of GL3 into Brassica species under a tissue-specific promoter has strong potential for developing insect-resistant crop plants.
Collapse
Affiliation(s)
- M Y Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | | | | | | | | | | | | |
Collapse
|
138
|
Stadler R, Lauterbach C, Sauer N. Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. PLANT PHYSIOLOGY 2005; 139:701-12. [PMID: 16169962 PMCID: PMC1255989 DOI: 10.1104/pp.105.065607] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Developing Arabidopsis (Arabidopsis thaliana) seeds and embryos represent a complex set of cell layers and tissues that mediate the transport and partitioning of carbohydrates, amino acids, hormones, and signaling molecules from the terminal end of the funicular phloem to and between these seed tissues and eventually to the growing embryo. This article provides a detailed analysis of the symplastic domains and the cell-to-cell connectivity from the end of the funiculus to the embryo, and within the embryo during its maturation. The cell-to-cell movement of the green fluorescent protein or of mobile and nonmobile green fluorescent protein fusions was monitored in seeds and embryos of plants expressing the corresponding cDNAs under the control of various promoters (SUC2, SUC3, TT12, and GL2) shown to be active in defined seed or embryo cell layers (SUC3, TT12, and GL2) or only outside the developing Arabidopsis seed (AtSUC2). Cell-to-cell movement was also analyzed with the low-molecular-weight fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate. The analyses presented identify a phloem-unloading domain at the end of the funicular phloem, characterize the entire outer integument as a symplastic extension of the phloem, and describe the inner integument and the globular stage embryo plus the suspensor as symplastic domains. The results also show that, at the time of hypophysis specification, the symplastic connectivity between suspensor and embryo is reduced or interrupted and that the embryo develops from a single symplast (globular and heart stage) to a mature embryo with new symplastic domains.
Collapse
Affiliation(s)
- Ruth Stadler
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
139
|
Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. TRENDS IN PLANT SCIENCE 2005; 10:472-7. [PMID: 16153880 DOI: 10.1016/j.tplants.2005.08.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/26/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
In the angiosperms, fertilization initiates the formation of the seed from the ovule, including the differentiation of the seed coat from the ovule integuments. Seed coat differentiation includes some of the most dramatic cellular changes of seed development and culminates in the death of the seed coat cells. Recently, genetic analyses in Arabidopsis have contributed substantially to our understanding of many aspects of seed coat biology and it might not be long before the entire differentiation pathway is understood. Such an advance would contribute substantially to our understanding of many important cellular events, including secondary cell wall synthesis, cell morphogenesis, vacuolar targeting and cell death, and would provide tools for the manipulation of seed dormancy and germination.
Collapse
Affiliation(s)
- George Haughn
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V7R 2T4.
| | | |
Collapse
|
140
|
Mauricio R. Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana. Genetica 2005; 123:75-85. [PMID: 15881682 DOI: 10.1007/s10709-002-2714-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although much is known about the molecular genetic basis of trichome development in Arabidopsis thaliana, less is known about the underlying genetic basis of continuous variation in a trait known to be of adaptive importance: trichome density. The density of leaf trichomes is known to be a major determinant of herbivore damage in natural populations of A. thaliana and herbivores are a significant selective force on genetic variation for trichome density. A number of developmental changes occur during ontogeny in A. thaliana, including changes in trichome density. I used multiple interval mapping (MIM) analysis to identify QTL responsible for trichome density on both juvenile leaves and adult leaves in replicate, independent trials and asked whether those QTL changed with ontogeny. In both juvenile and adult leaves, I detected a single major QTL on chromosome 2 that explained much of the genetic variance. Although additional QTL were detected, there were no consistent differences in the genetic architecture of trichome density measured on juvenile and adult leaves. The finding of a single QTL of major effect for a trait of known adaptive importance suggests that genes of major effect may play an important role in adaptation.
Collapse
Affiliation(s)
- Rodney Mauricio
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
141
|
Weinl C, Marquardt S, Kuijt SJH, Nowack MK, Jakoby MJ, Hülskamp M, Schnittger A. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. THE PLANT CELL 2005; 17:1704-22. [PMID: 15749764 PMCID: PMC1143071 DOI: 10.1105/tpc.104.030486] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 05/18/2023]
Abstract
In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.
Collapse
Affiliation(s)
- Christina Weinl
- Unigruppe am Max-Planck-Institut für Züchtungsforschung, Lehrstuhl für Botanik III, Max-Delbrück-Laboratorium, 50829 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
142
|
Kim JY, Rim Y, Wang J, Jackson D. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 2005; 19:788-93. [PMID: 15805469 PMCID: PMC1074316 DOI: 10.1101/gad.332805] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell-to-cell trafficking of regulatory proteins is a novel mechanism for communication during cell fate specification in plants. Although several developmental proteins traffic cell-to-cell, no signals that are both necessary and sufficient for this function in developmental proteins have been described. We developed a novel trafficking assay using trichome rescue in Arabidopsis. Fusion to KNOTTED1 (KN1) conferred gain-of-trafficking function to the cell-autonomous GLABROUS1 (GL1) protein. We show that the KNOX homeodomain (HD) is necessary and sufficient for intercellular trafficking, identifying a novel function for the HD as the minimal sequence required for trafficking of KN1 and its associated mRNA.
Collapse
Affiliation(s)
- Jae-Yean Kim
- Division of Applied Life Science (BK21 program), Environmental Biotechnology National Core Research Center, PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | | | | | | |
Collapse
|
143
|
Pesch M, Hülskamp M. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Genet Dev 2005; 14:422-7. [PMID: 15261659 DOI: 10.1016/j.gde.2004.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During plant epidermal differentiation, root hairs and leaf hairs (trichomes) become specified in a regular pattern. Although the underlying mechanisms appear to be different in that the position of root hairs is determined by their position with respect to the underlying cortical cells and that of the trichomes appears to be generated de novo, a common set of genes was found to operate in both systems. A complex of transcription factors appears to be involved in creating the pattern and cell-cell movement of small transcription factors is postulated to mediate cell-cell communication.
Collapse
Affiliation(s)
- Martina Pesch
- Universität zu Köln, Lehrstuhl für Botanik III, Gyrhofstr. 15, Köln, Germany
| | | |
Collapse
|
144
|
Szymanski DB. Breaking the WAVE complex: the point of Arabidopsis trichomes. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:103-12. [PMID: 15653407 DOI: 10.1016/j.pbi.2004.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Actin filaments comprise an essential cytoskeletal array that organizes the cytoplasm during growth and cell division. In growing cells, actin filaments carry out many functions. Actin filaments position the endomembrane system and act as a substrate on which organelle motility occurs. Other actin-filament arrays appear to be more dynamic and to reorganize in response to growth signals and external cues. The diverse cellular functions of the actin cytoskeleton are mediated by actin-binding proteins that nucleate, destabilize, and bundle actin filaments. The distorted trichome morphology mutants provide a simple genetic system in which to study mechanisms of actin-dependent morphogenesis. Recent results from several groups indicate that 'distorted group' genes encode subunits of the actin-related protein (Arp)2/3 and WAVE complexes, and function in a cell morphogenesis pathway.
Collapse
Affiliation(s)
- Daniel B Szymanski
- Agronomy Department, Purdue University, Lilly Hall of Life Sciences, 915 West State Street, West Lafayette, Indiana 47907-2054, USA.
| |
Collapse
|
145
|
Abstract
Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
Collapse
Affiliation(s)
- Viola Willemsen
- Department of Molecular Genetics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
146
|
Esch JJ, Chen MA, Hillestad M, Marks MD. Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:860-9. [PMID: 15584952 DOI: 10.1111/j.1365-313x.2004.02259.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A screen of activation-tagged Arabidopsis lines resulted in the identification of At1g01380, which encodes a small R3 single repeat MYB gene, as a negative regulator of trichome initiation. Plants that overexpress this gene have fewer trichomes. The gene is closely related to the previously identified negative regulator TRY, and has a similar pattern of expression as TRY in developing leaves. As previously shown for TRY, At1g01380 protein can inhibit the interaction between the positive trichome regulators GL1 and GL3, and likely limits trichome initiation via this inhibition. While TRY and At1g01380 are closely related, they are not completely functionally equivalent. When placed under the transcriptional control of the TRY promoter, At1g01380 can only partially rescue the try mutant. Interestingly, Atg01380 is highly expressed in gl3-sst trichomes, while TRY expression is greatly reduced. The mutation in gl3-sst causes a reduced interaction between the GL1 and GL3 proteins and results in fewer leaf trichomes that develop in clusters. The differential expression of TRY and At1g01380 in this mutant can be used to explain how its altered trichome pattern in gl3-sst [corrected] is generated.
Collapse
Affiliation(s)
- Jeffrey J Esch
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | |
Collapse
|
147
|
Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M, Mathur J. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. PLANT & CELL PHYSIOLOGY 2004; 45:813-22. [PMID: 15295064 DOI: 10.1093/pcp/pch103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis, based on the randomly misshapen phenotype of leaf epidermal trichomes, eight genes have been grouped into a 'DISTORTED' class. Three of the DIS genes, WURM, DISTORTED1 and CROOKED have been cloned recently and encode the ARP2, ARP3 and ARPC5 subunits respectively, of a conserved actin modulating ARP2/3 complex. Here we identify a fourth gene, DISTORTED2 as the Arabidopsis homolog of the ARPC2 subunit of the ARP2/3 complex. Like other mutants in the complex dis2 trichomes also display supernumerary, randomly localized cortical actin patches. In addition dis2 trichomes possess abnormally clustered endoplasmic microtubules near sites of actin aggregation. Since microtubules are strongly implicated in the establishment and maintenance of growth directionality in higher plants our observations of aberrant microtubule clustering in dis2 trichomes suggests a convincing explanation for the randomly distorted trichome phenotype in dis mutants. In addition, the close proximity of microtubule clusters to the arbitrarily dispersed cortical actin patches in the dis mutants provides fresh insights into cytoskeletal interactions leading us to suggest that in higher plants microtubule arrangements directed towards the establishment and maintenance of polar growth-directionality are guided by cortical actin behavior and organization.
Collapse
Affiliation(s)
- Rainer Saedler
- Botanical Institute III, University of Köln, Gyrhofstrasse 13, D-50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Oyama RK, Baum DA. Phylogenetic relationships of North American Antirrhinum (Veronicaceae). AMERICAN JOURNAL OF BOTANY 2004; 91:918-925. [PMID: 21653448 DOI: 10.3732/ajb.91.6.918] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Species of the genus Antirrhinum (Veronicaceae) provide excellent opportunities for research on plant evolution given their extensive morphological and ecological diversity. These opportunities are enhanced by genetic and developmental data from the model organism Antirrhinum majus. The genus Antirrhinum includes 15 New World species in section Saerorhinum and 21 Old World species in sections Antirrhinum and Orontium. Phylogenetic analyses of sequences of the internal transcribed spacer region (ITS) of nuclear ribosomal DNA were conducted for 19 Antirrhinum species, including all species from the New World, and 13 related genera in the tribe Antirrhineae. These analyses confirm the monophyly of Antirrhinum given the inclusion of the small genus Mohavea and exclusion of A. cyathiferum. The New World species, all of which are tetraploid, form a clade that is weakly supported as sister to the Old World sect. Orontium. The Old World species in sect. Antirrhinum form a well-supported clade that is sister to the remainder of the genus. In addition, both molecular and morphological data are used in the most comprehensive effort to date focused on recovering the phylogenetic relationships among the extremely diverse species in section Saerorhinum.
Collapse
Affiliation(s)
- Ryan K Oyama
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
| | | |
Collapse
|
149
|
Affiliation(s)
- Martin Hülskamp
- University of Köln, Botanical Institute III, Gyrhofstrasse 15, 50931 Cologne, Germany.
| |
Collapse
|
150
|
El-Din El-Assal S, Le J, Basu D, Mallery EL, Szymanski DB. DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:526-38. [PMID: 15086808 DOI: 10.1111/j.1365-313x.2004.02065.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Arabidopsis trichomes are unicellular, branched structures that have highly constrained requirements for the cytoskeleton. The 'distorted group' genes function downstream from microtubule-based branch initiation, and are required during the actin-dependent phase of polarized stalk and branch expansion. Of the eight known 'distorted group' genes, a subset encode homologs of ARP2/3 complex subunits. In eukaryotic cells, the seven-protein ARP2/3 complex nucleates actin filament networks that push on the plasma membrane and organelles. In plants cells, the existence and function of an ARP2/3 complex is unclear. In this paper, we report that DISTORTED2 (DIS2) encodes a paralogue of the ARP2/3 complex subunit ARPC2. DIS2 has ARPC2 activity, based on its ability to rescue the growth defects of arpc2 (arc35Delta) null yeast cells. Like known ARPC2s, DIS2 physically interacts with ARPC4. Mutations in DIS2 cause a distorted trichome phenotype, defects in cell-cell adhesion, and a modest reduction in shoot FW. The actin cytoskeleton in dis2 trichomes is extensive, but developing branches fail to generate and maintain highly organized cytoplasmic actin bundles.
Collapse
Affiliation(s)
- Salah El-Din El-Assal
- Agronomy Department, Purdue University, Lilly Hall, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|