101
|
Shen Q, Zhang Y, Uray IP, Hill JL, Kim HT, Lu C, Young MR, Gunther EJ, Hilsenbeck SG, Chodosh LA, Colburn NH, Brown PH. The AP-1 transcription factor regulates postnatal mammary gland development. Dev Biol 2006; 295:589-603. [PMID: 16678816 DOI: 10.1016/j.ydbio.2006.03.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/25/2006] [Accepted: 03/29/2006] [Indexed: 12/17/2022]
Abstract
The AP-1 transcription factor is activated by multiple growth factors that are critical regulators of breast cell proliferation. We previously demonstrated that AP-1 blockade inhibits breast cancer cell growth in vitro. Yet a specific role of AP-1 in normal mammary gland development has not been studied. Using a bi-transgenic mouse expressing an inducible AP-1 inhibitor (Tam67), we found that the AP-1 factor regulates postnatal proliferation of mammary epithelial cells. Mammary epithelial proliferation was significantly reduced after AP-1 blockade in adult, prepubertal, pubertal, and hormone-stimulated mammary glands. In pubertal mice, mammary cell proliferation was greatly reduced, and the cells that did proliferate failed to express Tam67. We also observed structural changes such as suppressed branching and budding, reduced gland tree size, and less fat pad occupancy in developing mammary glands after AP-1 blockade. We further demonstrated that Tam67 suppressed the expression of AP-1-dependent genes (TIMP-1, vimentin, Fra-1, and fibronectin) and the AP-1-dependent growth regulatory genes (cyclin D1 and c-myc) in AP-1-blocked mammary glands. We therefore conclude that AP-1 factor is a pivotal regulator of postnatal mammary gland growth and development.
Collapse
Affiliation(s)
- Qiang Shen
- Breast Center, Baylor College of Medicine, MS600, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A 2006; 103:2196-201. [PMID: 16452162 PMCID: PMC1413744 DOI: 10.1073/pnas.0510974103] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estradiol is a major regulator of postnatal mammary gland development and thought to exert its effects through estrogen receptor alpha (ERalpha) expressed in the mammary gland stroma and epithelium. Previous studies, however, were confounded by the use of an ERalpha mutant strain that retains some of the protein with transactivation activity. Here, we use an ERalpha-/- mouse strain in which no ERalpha transcript can be detected to analyze mammary gland development in the complete absence of ERalpha signaling. The ERalpha-/- females show no development beyond a rudimentary ductal system. By grafting ERalpha-/- epithelium or stroma in combination with ERalpha WT stroma or epithelium, we show that the primary target for estradiol is the mammary epithelium, whereas a direct response of the mammary stroma is not required for mammary gland development to proceed normally. Mammary glands reconstituted with ERalpha-/- mammary epithelium exposed to pregnancy hormones show increased transcription of milk protein genes, indicating that ERalpha signaling is not an absolute requirement for a transcriptional response to pregnancy hormones. When ERalpha-/- mammary epithelial cells are in close vicinity to ERalpha WT cells, they proliferate and contribute to all aspects of mammary gland development, indicating that estradiol, like progesterone, orchestrates proliferation and morphogenesis by a paracrine mechanism, affecting nearby cells in the mammary epithelium.
Collapse
Affiliation(s)
- Sonia Mallepell
- *National Center of Competence in Research Molecular Oncology, Swiss Institute for Experimental Cancer Research, 155 Chemin des Boveresses, CH-1066 Epalinges s/Lausanne, Switzerland
| | - Andrée Krust
- Institut de Génétique et de Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris, Collège de France, BP 10142, 67404 Illkirch Cedex, France; and
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris, Collège de France, BP 10142, 67404 Illkirch Cedex, France; and
| | - Cathrin Brisken
- *National Center of Competence in Research Molecular Oncology, Swiss Institute for Experimental Cancer Research, 155 Chemin des Boveresses, CH-1066 Epalinges s/Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland
| |
Collapse
|
103
|
Sweeney C, Miller JK, Shattuck DL, Carraway KL. ErbB receptor negative regulatory mechanisms: implications in cancer. J Mammary Gland Biol Neoplasia 2006; 11:89-99. [PMID: 16865534 DOI: 10.1007/s10911-006-9015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of ErbB receptor tyrosine kinases (RTKs) must be precisely regulated to ensure the fidelity of developmental and homeostatic processes mediated by growth factors. Insufficient receptor stimulation will lead to defects in tissue development, while excessive stimulation can lead to hyperplastic events associated with cancer and other diseases. A coordinated balance of the intensity and timing of receptor signaling, achieved through both receptor activation and negative regulatory mechanisms, is required for signaling fidelity. While considerable effort has gone into understanding mechanisms by which ErbB receptors are activated, our understanding of the suppression of growth factor receptor activity remains limited. While ligand-stimulated receptor degradation is the most thoroughly examined mechanism for preventing hyper-signaling by ErbBs, recent studies indicate that several other mechanisms act directly on receptors to suppress receptor levels, or the magnitude or duration of receptor signaling. ErbB receptor overexpression or aberrant activation contributes to the progression of numerous solid tumor types. Hence, tumor cells must overcome these endogenous receptor negative regulatory mechanisms before they can exploit ErbB receptors to achieve uncontrolled growth. Here we will discuss several proteins that directly interact with ErbB receptors to suppress signaling, highlighting the potential impact of their loss on tumor progression.
Collapse
Affiliation(s)
- Colleen Sweeney
- UC Davis Cancer Center, Research Bldg. III, rm 1400, 4645 2nd Avenue, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
104
|
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22:287-309. [PMID: 16824016 PMCID: PMC2933192 DOI: 10.1146/annurev.cellbio.22.010305.104315] [Citation(s) in RCA: 764] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The microenvironment influences gene expression so that the behavior of a cell is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble local and systemic cues. We describe the essential roles of context and organ structure in directing mammary gland development and differentiated function and in determining the response to oncogenic insults, including mutations. We expand on the concept of "dynamic reciprocity" to present an integrated view of development, cancer, and aging and posit that genes are like the keys on a piano: Although they are essential, it is the context that makes the music.
Collapse
Affiliation(s)
- Celeste M. Nelson
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
105
|
Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2005; 366:2-16. [PMID: 16377102 DOI: 10.1016/j.gene.2005.10.018] [Citation(s) in RCA: 1386] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/15/2005] [Indexed: 11/27/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases (RTK). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Evidence suggests that the EGFR is involved in the pathogenesis and progression of different carcinoma types. The EGFR and EGF-like peptides are often over-expressed in human carcinomas, and in vivo and in vitro studies have shown that these proteins are able to induce cell transformation. Amplification of the EGFR gene and mutations of the EGFR tyrosine kinase domain have been recently demonstrated to occur in carcinoma patients. Interestingly, both these genetic alterations of the EGFR are correlated with high probability to respond to anti-EGFR agents. However, ErbB proteins and their ligands form a complex system in which the interactions occurring between receptors and ligands affect the type and the duration of the intracellular signals that derive from receptor activation. In fact, proteins of the ErbB family form either homo- or hetero-dimers following ligand binding, each dimer showing different affinity for ligands and different signaling properties. In this regard, evidence suggests that cooperation of multiple ErbB receptors and cognate ligands is necessary to induce cell transformation. In particular, the growth and the survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family. This phenomenon is also important for therapeutic approaches, since the response to anti-EGFR agents might depend on the total level of expression of ErbB receptors and ligands in tumor cells.
Collapse
Affiliation(s)
- Nicola Normanno
- Cell Biology and Preclinical Models Unit, INT-Fondazione Pascale, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Unique developmental features during puberty, pregnancy, lactation and post-lactation make the mammary gland a prime object to explore genetic circuits that control the specification, proliferation, differentiation, survival and death of cells. Steroids and simple peptide hormones initiate and carry out complex developmental programmes, and reverse genetics has been used to define the underlying mechanistic connections.
Collapse
Affiliation(s)
- Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
107
|
Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005; 7:245-51. [PMID: 16280048 PMCID: PMC1410762 DOI: 10.1186/bcr1331] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the rodent, epithelial end buds define the tips of elongating mammary ducts. These highly motile structures undergo repeated dichotomous branching as they aggressively advance through fatty stroma and, turning to avoid other ducts, they finally cease growth leaving behind the open, tree-like framework on which secretory alveoli develop during pregnancy. This review identifies the motility of end buds as a unique developmental marker that represents the successful integration of systemic and local mammotrophic influences, and covers relevant advances in ductal growth regulation, extracellular matrix (ECM) remodeling, and cell adhesion in the inner end bud. An unexpected growth-promoting synergy between insulin-like growth factor-1 and progesterone, in which ducts elongate without forming new end buds, is described as well as evidence strongly supporting self-inhibition of ductal elongation by end-bud-secreted transforming growth factor-beta acting on stromal targets. The influence of the matrix metalloproteinase ECM-remodeling enzymes, notably matrix metalloproteinase-2, on end bud growth is discussed in the broader context of enzymes that regulate the polysaccharide-rich glycosaminoglycan elements of the ECM. Finally, a critical, motility-enabling role for the cellular architecture of the end bud is identified and the contribution of cadherins, the netrin/neogenin system, and ErbB2 to the structure and motility of end buds is discussed.
Collapse
Affiliation(s)
- Lindsay Hinck
- Sinsheimer Laboratories, Department of Cell, Molecular and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
108
|
Kim H, Laing M, Muller W. c-Src-null mice exhibit defects in normal mammary gland development and ERalpha signaling. Oncogene 2005; 24:5629-36. [PMID: 16007215 DOI: 10.1038/sj.onc.1208718] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The c-Src tyrosine kinase has been implicated to play an integral role in modulating growth factor receptor, integrin and steroid receptor function. One class of steroid receptors that c-Src modulates is the estrogen receptor alpha (ERalpha). Although there is strong biochemical evidence supporting a role for c-Src in ERalpha signaling, the consequence of this association is unclear at the biological level. To explore the significance of c-Src in ERalpha signaling, we studied the development of various reproductive organs that are dependent on ERalpha in c-Src-deficient mice. We show that the loss of the c-Src tyrosine kinase correlates with defects in ductal development as well as in uterine and ovarian development. Genetic and biochemical analyses of c-Src-deficient mammary epithelial cells also revealed defects in the ability of mammary epithelial cells to activate a number of signaling pathways in response to exogenous estrogen stimulation. Taken together, these studies demonstrate that c-Src plays a role in ERalpha signaling in vivo.
Collapse
Affiliation(s)
- Harold Kim
- Department of Medical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
109
|
Mitrani E, Nadel G, Hasson E, Harari E, Shimoni Y. Epithelial-mesenchymal interactions allow for epidermal cells to display an in vivo-like phenotype in vitro. Differentiation 2005; 73:79-87. [PMID: 15811131 DOI: 10.1111/j.1432-0436.2005.07302002.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We here report that preservation of the basic epithelial-mesenchymal interactions allows for highly complex ex vivo function of epidermal cells. The approach taken is based on the preparation of organ fragments that preserve the basic epithelial/mesenchymal interactions but also ensure appropriate diffusion of nutrients and gases to all cells. Human and mice keratinocytes in such organ fragments, remain viable, proliferate and express epidermal-specific gene products when cultured in serum-free medium without added growth factors, for several weeks in vitro. When implanted into syngeneic animals they remain viable, become vascularized and continue to function and transcribe tissue-specific gene products for several months. Such fragments allow primary cells ex vivo to preserve most of the functional attributes of the in vivo system. Clearly, the effect of the extracellular matrix is critical in this system in order for the cells to proliferate and differentiate ex vivo. We are not aware of any other system which allows for localized expression of epidermal-specific genes ex vivo for significant periods in culture in defined serum-free medium.
Collapse
Affiliation(s)
- Eduardo Mitrani
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | | | |
Collapse
|
110
|
Crowley MR, Bowtell D, Serra R. TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma. Dev Biol 2005; 279:58-72. [PMID: 15708558 DOI: 10.1016/j.ydbio.2004.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 11/19/2004] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is thought to regulate ductal and lobuloalveolar development as well as involution in the mammary gland. In an attempt to understand the role TGF-beta plays during normal mammary gland development, and ultimately cancer, we previously generated transgenic mice that express a dominant-negative TGF-beta type II receptor under control of the metallothionine promoter (MT-DNIIR). Upon stimulation with zinc sulfate, the transgene was expressed in the mammary stroma and resulted in an increase in ductal side branching. In this study, mammary gland transplantation experiments confirm that the increase in side branching observed was due to DNIIR activity in the stroma. Development during puberty through the end buds was also accelerated. Cbl is a multifunctional intracellular adaptor protein that regulates receptor tyrosine kinase ubiquitination and downregulation. Mice with a targeted disruption of the c-Cbl gene displayed increased side branching similar to that observed in MT-DNIIR mice; however, end bud development during puberty was normal. Transplantation experiments showed that the mammary stroma was responsible for the increased side branching observed in Cbl-null mice. Cbl expression was reduced in mammary glands from DNIIR mice compared to controls and TGF-beta stimulated expression of Cbl in cultures of primary mammary fibroblasts. In addition, both TGF-beta and Cbl regulated platelet-derived growth factor receptor-alpha (PDGFR alpha) expression in vivo and in isolated mammary fibroblasts. The hypothesis that TGF-beta mediates the levels of PDGFR alpha protein via regulation of c-Cbl was tested. We conclude that TGF-beta regulates PDGFR alpha in the mammary stroma via a c-Cbl-independent mechanism. Finally, the effects of PDGF-AA on branching were determined. Treatment in vivo with PDGF-AA did not affect branching making a functional interaction between TGF-beta and PDGF unlikely.
Collapse
Affiliation(s)
- Michael R Crowley
- The Department of Cell Biology, The University of Alabama at Birmingham, 1918 University Boulevard 310, MCLM, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
111
|
Seidlová-Wuttke D, Hesse O, Jarry H, Rimoldi G, Thelen P, Christoffel V, Wuttke W. Belamcanda chinensis and the thereof purified tectorigenin have selective estrogen receptor modulator activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2004; 11:392-403. [PMID: 15330494 DOI: 10.1016/j.phymed.2004.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Belamcanda chinensis (BC) belongs to the family of iridaceae and the isoflavone tectorigenin has been isolated from the rhizome of this plant. Whether this isoflavone has estrogenic, possibly selective estrogen receptor modulator activities and if so, whether they are mediated via the estrogen receptor alpha or beta is unknown at present. Therefore, we performed binding studies with recombinant human ERalpha and ERbeta to show that tectorigenin binds to both receptor subtypes. In ERalpha-expressing MCF7 and ERbeta-expressing MDA-MB231 reporter gene transfected cells tectorigenin causes transactivation. When given intravenously to ovariectomized (ovx) rats, it inhibits pulsatile pituitary LH secretion. In postmenopausal women estrogen-unopposed LH pulses correlate with hot flushes. Therefore, suppression of pulsatile LH secretion may be beneficial in women suffering from hot flushes. Upon chronic application to ovx rats a BC extract containing 5% Belamcanda at a daily dose of 33 mg or 130 mg of the extract had no effect on uterine weight or on estrogen-regulated uterine gene expression while estrogenic effects in the bone, on bone mineral density of the metaphysis of the tibia could be established. Hence, tectorigenin may have antiosteoporotic effects also in postmenopausal women. Immunohistochemical staining of proliferating cell nuclear antigen--a proliferation marker--in the mammary gland did not indicate a mammotrophic effect of the tectorigenin-containing BC extract at both tested doses. In summary, tectorigenin or the B. chinensis extract containing tectorigenin had a strong hypothalamotropic and osteotropic effect but no effect in the uterus or the mammary gland. Therefore, tectorigenin may be in the future a clinically useful selective estrogen receptor modulator.
Collapse
Affiliation(s)
- D Seidlová-Wuttke
- Department of Clinical and Experimental Endocrinology, University of Goettingen, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
112
|
Hughes DPM, Thomas DG, Giordano TJ, Baker LH, McDonagh KT. Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 2004; 64:2047-53. [PMID: 15026342 DOI: 10.1158/0008-5472.can-03-3096] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is controversy over the role of Her-2 in osteosarcoma, with some investigators reporting association between expression and adverse outcome, whereas others point to the lack of gene amplification and membranous expression by immunohistochemistry (IHC) as inconsistent with biological significance. Her-2 normally requires pairing with epidermal growth factor receptor (EGFR), Her-3, or Her-4, but these have been less well studied in osteosarcoma. We evaluated the expression of each of these receptors in osteosarcoma and their potential to contribute to pathogenesis by examining a panel of low-passage primary osteosarcoma cell lines, comparing these with archival tumor specimens. Her-2 immunoreactivity was seen frequently in the diffuse staining pattern described previously. We observed EGFR in all samples by IHC. Her-3 expression was not observed. Her-4 expression was nuclear in distribution in all tumor samples and many cell line samples, consistent with activation and cleavage of the receptor. Quantified expression of Her-2 and EGFR mRNA by quantitative, real-time PCR in cell lines correlated with IHC for Her-2 but not for EGFR. Western blot identified full-length receptors for EGFR and Her-2 in all expected cell lines and showed Her-4 to be predominantly in the p80 form. Flow cytometry identified cell surface Her-2 and EGFR in all lines with receptor expression by IHC. We conclude that the cell surface expression of Her-2 and EGFR and the nuclear localization of the activated p80 fragment of Her-4 suggest that all three may be contributing to osteosarcoma pathogenesis. Therapy directed against this family of receptors may be beneficial for patients with osteosarcoma.
Collapse
MESH Headings
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Dennis P M Hughes
- Department of Pediatrics and Infectious Diseases, Division of Pediatric Hematology/Oncology, University of Michigan Medical Center, L2110 Women's Hospital, 0238, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0238, USA.
| | | | | | | | | |
Collapse
|
113
|
Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell WE, Lee DC. Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 2004; 279:24179-88. [PMID: 15066986 DOI: 10.1074/jbc.m312141200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.
Collapse
Affiliation(s)
- C Leann Hinkle
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Tan KP, Chen J, Ward WE, Thompson LU. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Exp Biol Med (Maywood) 2004; 229:147-57. [PMID: 14734793 DOI: 10.1177/153537020422900203] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The exposure of rats to 10% flaxseed (FS) or an equivalent level of its major lignan, secoisolariciresinol diglucoside (SDG), during suckling enhances mammary gland differentiation, which protects against mammary carcinogenesis at adulthood. We determined whether this diet-induced mammary gland differentiation is mediated through the estrogenic pathway via epidermal growth factor receptor (EGFR) and estrogen receptor (ER) signaling. Rats were fed the AIN-93G basal diet (BD) from day 7 of pregnancy until delivery and then randomized to consume BD, FS, or SDG during lactation. After weaning, female offspring were fed BD throughout the experiment. At postnatal day (PND) 21 and the proestrus phase on PND 49-51, mammary glands of offspring were analyzed for morphology, cell proliferation, and expression of EGFR, epidermal growth factor (EGF), transforming growth factor-alpha, ER-alpha, and ER-beta. At PND 21, compared with the BD control, the number of terminal end buds (TEBs) and terminal ducts were increased by FS, whereas mammary epithelial cell proliferation was increased by both FS and SDG, suggesting that mammary morphogenesis was enhanced. Epithelial EGFR and stromal fibroblast EGF were increased by SDG, whereas epithelial ER-beta was decreased by FS. Conversely, at PND 49-51, a lower number of TEBs but a higher ratio of lobules to TEBs with decreased expression of EGFR or EGF was observed in both treatment groups. EGFR expression was positively associated with EGF expression and cell proliferation in TEB epithelium at PND 21. Urinary lignans of lactating dams were related to their offspring's indices of mammary gland development. In conclusion, exposure to FS or SDG during suckling enhanced mammary gland morphogenesis by modulation of EGFR and ER signaling, which led to more differentiated mammary glands at PND 49-51. The physiological outcomes of FS and SDG were similar, which suggests that SDG is partly responsible for the mammary gland differentiation effect.
Collapse
Affiliation(s)
- Kah Poh Tan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto 150 College Street, Toronto, Ontario M5S 3E2, Canada
| | | | | | | |
Collapse
|
115
|
Rayner JL, Wood C, Fenton SE. Exposure parameters necessary for delayed puberty and mammary gland development in Long–Evans rats exposed in utero to atrazine. Toxicol Appl Pharmacol 2004; 195:23-34. [PMID: 14962502 DOI: 10.1016/j.taap.2003.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 11/08/2003] [Indexed: 11/17/2022]
Abstract
Our studies suggested that prenatal exposure to the herbicide atrazine (ATR) could delay vaginal opening (VO) and mammary development in the offspring of Long-Evans (LE) rats. To evaluate ATR exposure parameters required for pubertal delays, including mammary gland development, we used cross-fostering to determine if effects were strictly dam-mediated (via milk) or a direct effect (transplacental) on the pups. Timed-pregnant LE rats (N = 20/treatment group) were gavaged on gestational days (GD) 15-19 with 100 mg ATR/kg body weight (BW) or vehicle (controls, C). On PND1, half of all litters were cross-fostered, creating four treatment groups: C-C, ATR-C, C-ATR, and ATR-ATR (dam-milk source, respectively). A significant delay in VO and increase in VO BW was seen only in the litters receiving milk from ATR-exposed dams. However, mammary glands of female offspring (two per dam) in all groups exposed to ATR (ATR-C, C-ATR, and ATR-ATR) displayed significant delays in epithelial development. These changes were detected as early as PND4 and stunted development was evident through PND40. Further, at all developmental stages examined, offspring in the ATR-ATR group exhibited the least developed glands. These delays in pubertal endpoints do not appear to be related to body weight or endocrine hormone concentrations. Our data suggest that the delay in VO of ATR-exposed offspring (C-ATR lactationally, ATR-ATR lactationally and in utero) is mediated via the dam [milk], whereas brief direct exposure to ATR in utero can cause delays in mammary gland development. Our data suggest that milk-derived factors (growth factors or hormones), in addition to transplacental exposure during mammary bud outgrowth, may be involved in ATR mode of action on delayed mammary gland development.
Collapse
Affiliation(s)
- Jennifer L Rayner
- Reproductive Toxicology Division, Office of Research and Development, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
116
|
Abstract
Prolactin (PRL) is one of a family of related hormones including growth hormone (GH) and placental lactogen (PL) that are hypothesized to have arisen from a common ancestral gene about 500 million years ago. Over 300 different functions of PRL have been reported, highlighting the importance of this pituitary hormone. PRL is also synthesized by a number of extra-pituitary tissues including the mammary gland and the uterus. Most of PRL's actions are mediated by the unmodified 23 kDa peptide, however, PRL may be modified post-translation, thereby altering its biological effects. PRL exerts these effects by binding to its receptor, a member of the class I cytokine receptor super-family. This activates a number of signaling pathways resulting in the transcription of genes necessary for the tissue specific changes induced by PRL. Mouse knockout models of the major forms of the PRL receptor have confirmed the importance of PRLs role in reproduction. Further knockout models have provided insight into the importance of PRL signaling intermediates and the advent of transcript profiling has allowed the elucidation of a number of PRL target genes.
Collapse
Affiliation(s)
- Jessica Harris
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
117
|
Power KA, Thompson LU. Ligand-Induced Regulation of ERα and ERβ is Indicative of Human Breast Cancer Cell Proliferation. Breast Cancer Res Treat 2003; 81:209-21. [PMID: 14620916 DOI: 10.1023/a:1026114501364] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two estrogen receptors (ER), ERalpha and ERbeta, are expressed in breast cancer but their role in treatment response is unclear. The overall objective of this study was to determine if the presence of ERbeta protein in breast cancer cell lines is an indicator of a poor prognosis based on cell proliferation. In addition, we determined the effect of estradiol (E2) and selective estrogen receptor modulators (SERMs), such as tamoxifen and genistein, on ERalpha and ERbeta protein regulation, to help in the understanding of the mechanism behind their role in modulating cell proliferation. Using western blot and immunofluorescence analysis, the ER positive cell lines, MCF-7 and T47D, were found to contain both ERalpha and ERbeta, and thus were used as model systems. E2 and genistein, which increased cell proliferation in both cell lines, induced an up regulation of ERbeta in both cell lines. This suggests that an estrogenic response in breast cancer cells is indicated by an increase in ERbeta expression. Tamoxifen decreased cell proliferation in both cell lines, while up regulating ERalpha in both cell lines, suggesting that antiestrogenic response is indicated by an increase in ERalpha expression. Although a change in the ERalpha/ERbeta ratio may play a role in the effect seen in cell proliferation, this study indicates that ERbeta is a poor prognosticator of cell proliferation in breast cancer and that ERalpha is a positive prognosticator of responsiveness to antiestrogen treatment.
Collapse
Affiliation(s)
- Krista A Power
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
118
|
Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 2003; 6:1-11. [PMID: 14680479 PMCID: PMC314442 DOI: 10.1186/bcr634] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions.
Collapse
Affiliation(s)
- Jimmie E Fata
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco CA, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
119
|
Abstract
SHRs function as hormone activated, sequence specific DNA binding transcription factors that recruit multiple coactivator and other proteins to specific genes and generally stimulate transcription of these genes. SHR may have further genomic actions, that do not involve direct DNA binding, through protein-protein interactions with other sequence specific transcription factors, although these may still involve weak binding to nonconsensus steroid responsive elements in vivo. SHRs also appear to have nongenomic effects mediated through interactions with cytoplasmic signaling proteins. The major functions of SHRs in normal adult tissues appear to involve stimulation of differentiation, rather than proliferation. In contrast, the ER alpha and AR directly stimulate the growth of breast and prostate cancers, respectively, indicating a critical change in their functions. The ER alpha and AR appear to undergo further adaptation in tumor cells in response to hormonal therapies, that render these therapies ineffective. Understanding the molecular basis for these changes in SHR function during cancer development and progression may provide new targets for the generation of drugs to prevent and treat steroid stimulated cancers.
Collapse
Affiliation(s)
- Shinta Cheng
- Cancer Biology Program, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
120
|
Offterdinger M, Schneider SM, Grunt TW. Heregulin and retinoids synergistically induce branching morphogenesis of breast cancer cells cultivated in 3D collagen gels. J Cell Physiol 2003; 195:260-75. [PMID: 12652653 DOI: 10.1002/jcp.10237] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
C-erbB and retinoid receptor signaling control mammary epithelial cell proliferation, differentiation, and morphology. Here, we examined the morphogenetic activities of c-erbB specific ligands such as heregulin and of retinoids on non-malignant (primary, MTSV1-7) and malignant (T47D, SKBR-3) human mammary epithelial cells (HMEC) cultivated in 3D collagen type I gels. These cells are positive for both c-erbB and retinoid receptors. Non-malignant primary HMEC spontaneously formed branched structures in collagen, whereas SV40 large T antigen-immortalized non-tumorigenic MTSV1-7 spontaneously formed balls and required heregulin or retinoid X receptor alpha-selective retinoid Ro 25-7386 for branching, which was further stimulated by combination of both types of agents. In malignant cells, heregulin alone induced ball formation and cooperated either with Ro 25-7386 (T47D) or with retinoic acid receptor alpha-selective AM580 (SKBR-3) for branching morphogenesis, which was accompanied by changes in the subcellular distribution of alpha(2)beta(1)-integrin and E-cadherin, and by down-regulation of c-erbB-2, -3, or -4. Heregulin and/or retinoids correspondingly increased the integrin-dependent adhesion of malignant cells to type I collagen. Our data demonstrate cooperative signaling of c-erbB and retinoid receptor pathways at the levels of morphogenesis and immunophenotypic differentiation.
Collapse
Affiliation(s)
- Martin Offterdinger
- Signaling Networks Program, Clinical Division of Oncology, Department of Medicine I, University Hospital, Vienna, Austria
| | | | | |
Collapse
|
121
|
Means AL, Ray KC, Singh AB, Washington MK, Whitehead RH, Harris RC, Wright CVE, Coffey RJ, Leach SD. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology 2003; 124:1020-36. [PMID: 12671899 DOI: 10.1053/gast.2003.50150] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is expressed in both normal pancreatic islets and in pancreatic cancers, but its role in pancreatic physiology and disease is not known. This report examines the effects of HB-EGF overexpression in mouse pancreas. METHODS Transgenic mice were established using a tissue-specific promoter to express an HB-EGF complementary DNA in pancreatic beta cells, effectively elevating HB-EGF protein 3-fold over endogenous levels. RESULTS Mice overexpressing HB-EGF in pancreatic islets showed both endocrine and exocrine pancreatic defects. Initially, islets from transgenic mice failed to segregate alpha, beta, delta, and PP cells appropriately within islets, and had impaired separation from ducts and acini. Increased stroma was detected within transgenic islets, expanding with age to cause fibrosis of both endocrine and exocrine compartments. In addition to these structural abnormalities, subsets of transgenic mice developed profound hyperglycemia and/or proliferation of metaplastic ductal epithelium. Both conditions were associated with severe stromal expansion, suggesting a role for islet/stromal interaction in the onset of the pancreatic disease initiated by HB-EGF. Supporting this conclusion, primary mouse fibroblasts adhered to transgenic islets when the 2 tissues were cocultured in vitro, but did not interact with nontransgenic islets. CONCLUSIONS An elevation in HB-EGF protein in pancreatic islets led to altered interactions among islet cells and among islets, stromal tissues, and ductal epithelium. Many of the observed phenotypes appeared to involve altered cell adhesion. These data support a role for islet factors in the development of both endocrine and exocrine disease.
Collapse
Affiliation(s)
- Anna L Means
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 2003; 4:371-82. [PMID: 12636918 DOI: 10.1016/s1534-5807(03)00054-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Netrin-1 and its receptors play an essential role patterning the nervous system by guiding neurons and axons to their targets. To explore whether netrin-1 organizes nonneural tissues, we examined its role in mammary gland morphogenesis. Netrin-1 is expressed in prelumenal cells, and its receptor neogenin is expressed in a complementary pattern in adjacent cap cells of terminal end buds (TEBs). We discovered that loss of either gene results in disorganized TEBs characterized by exaggerated subcapsular spaces, breaks in basal lamina, dissociated cap cells, and an increased influx of cap cells into the prelumenal compartment. Cell aggregation assays demonstrate that neogenin mediates netrin-1-dependent cell clustering. Thus, netrin-1 appears to act locally through neogenin to stabilize the multipotent progenitor (cap) cell layer during mammary gland development. Our results suggest that netrin-1 and its receptor neogenin provide an adhesive, rather than a guidance, function during nonneural organogenesis.
Collapse
Affiliation(s)
- Karpagam Srinivasan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
123
|
Parmar H, Young P, Emerman JT, Neve RM, Dairkee S, Cunha GR. A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology 2002; 143:4886-96. [PMID: 12446616 DOI: 10.1210/en.2002-220570] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel system is described for studying the growth of normal human mammary epithelium in vivo as grafts in athymic nude mice. The key feature of this model is reconstitution of the epithelial-stromal interactions required for normal growth and differentiation of the human mammary epithelium, which produces ducts that are comparable to those in the normal human mammary gland. Human breast epithelial organoids were combined with mammary fibroblasts from mouse or human origin in collagen gels, which were subsequently transplanted under the renal capsule of female nude mice hosts. The resulting grafts showed an increase in the ductal density compared with that observed previously. These ducts expressed appropriate markers for luminal and myoepithelial cells and steroid receptors. Treatment of the host with diethylstilbestrol or estradiol and progesterone significantly increased the number of ducts observed and increased cell proliferation. The grafts also displayed production of beta-casein and milk fat globule membrane protein when the hosts were allowed to become pregnant. This model allows for a variety of epithelial and stromal cells to be used in combination, which would aid in understanding key factors that regulate normal human mammary gland development.
Collapse
Affiliation(s)
- Hema Parmar
- Department of Anatomy, University of California, San Francisco, California 94143-0130, USA
| | | | | | | | | | | |
Collapse
|
124
|
Deugnier MA, Faraldo MM, Janji B, Rousselle P, Thiery JP, Glukhova MA. EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties. J Cell Biol 2002; 159:453-63. [PMID: 12427868 PMCID: PMC2173063 DOI: 10.1083/jcb.200207138] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bilayered mammary epithelium comprises a luminal layer of secretory cells and a basal layer of myoepithelial cells. Numerous data suggest the existence of self-renewing, pluripotent mammary stem cells; however, their molecular characteristics and differentiation pathways are largely unknown. BC44 mammary epithelial cells in culture, display phenotypic characteristics of basal epithelium, i.e., express basal cytokeratins 5 and 14 and P-cadherin, but no smooth muscle markers. In vivo, after injection into the cleared mammary fat pad, these cells gave rise to bilayered, hollow, alveolus-like structures comprising basal cells expressing cytokeratin 5 and luminal cells positive for cytokeratin 8 and secreting beta-casein in a polarized manner into the lumen. The persistent stimulation of EGF receptor signaling pathway in BC44 cells in culture resulted in the loss of the in vivo morphogenetic potential and led to the induction of active MMP2, thereby triggering cell scattering and motility on laminin 5. These data (a) suggest that BC44 cells are capable of asymmetric division for self-renewal and the generation of a differentiated progeny restricted to the luminal lineage; (b) clarify the function of EGF in the control of the BC44 cell phenotypic plasticity; and (c) suggest a role for this phenomenon in the mammary gland development.
Collapse
Affiliation(s)
- Marie-Ange Deugnier
- CNRS-Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
125
|
Lamorte L, Rodrigues S, Naujokas M, Park M. Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program. J Biol Chem 2002; 277:37904-11. [PMID: 12138161 DOI: 10.1074/jbc.m201743200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.
Collapse
Affiliation(s)
- Louie Lamorte
- Departments of Biochemistry, Medicine, and Oncology, Molecular Oncology Group, McGill University Hospital Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | |
Collapse
|
126
|
|
127
|
Abstract
Formation of branching epithelial trees from unbranched precursors is a common process in animal organogenesis. In humans, for example, this process gives rise to the airways of the lungs, the urine-collecting ducts of the kidneys and the excretory epithelia of the mammary, prostate and salivary glands. Branching in these different organs, and in different animal classes and phyla, is morphologically similar enough to suggest that they might use a conserved developmental programme, while being dissimilar enough not to make it obviously certain that they do. In this article, I review recent discoveries about the molecular regulation of branching morphogenesis in the best-studied systems, and present evidence for and against the idea of there being a highly conserved mechanism. Overall, I come to the tentative conclusion that key mechanisms are highly conserved, at least within vertebrates, but acknowledge that more work needs to be done before the case is proved beyond reasonable doubt.
Collapse
Affiliation(s)
- Jamie A Davies
- Anatomy Building, Edinburgh University Medical School, Scotland.
| |
Collapse
|
128
|
Naylor MJ, Ormandy CJ. Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn 2002; 225:100-5. [PMID: 12203726 DOI: 10.1002/dvdy.10133] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Variations in mammary ductal side branching patterns are known to occur between different strains of mice and this is related to the rate of spontaneous mammary cancers, which are increased in those strains which show highly side-branched mammary architecture. The cause of the variation in ductal side branching between mouse strains is unknown, but epithelial, stromal, and endocrine factors have been implicated. To define the mammary elements responsible for controlling strain-specific ductal side branching patterns, we formed recombined mammary glands from epithelial and stroma elements taken from highly side-branched 129 and poorly side-branched C57BL/6J mammary glands and transplanted them to Rag1(-/-) hosts on the inbred C57BL/6J background. When 129 epithelium was recombined with C57BL/6J stroma the poorly side-branched C57BL/6J pattern was observed. C57BL/6J epithelium recombined with 129 stroma resulted in development of the highly side- branched pattern, as did 129 epithelium recombined with 129 stroma. All transplants used the same C57BL/6J endocrine background, demonstrating that strain differences in the mammary stroma are responsible for the strain-specific ductal side branching patterns and that strain differences in epithelium or endocrine background play no part. Genes currently known to influence side branching by means of the stroma include activin/inhibin, epidermal growth factor receptor (EGFR), Wnt-2, Wnt-5a, and Wnt-6. Of these, Wnt-5a mRNA expression was decreased in 129 mammary glands compared with C57BL/6J mammary glands, but in F2 129:C57BL/6J animals Wnt-5a mRNA expression level did not correlate with the highly variable side branching patterns observed. These experiments exclude variation in the expression level of known candidate genes as the mechanism responsible. Regardless of underlying mechanism, transplantation without regard to the genetic background of the stromal donor, whether inbred or mixed, will compromise experiments with side branching and associated gene expression endpoints.
Collapse
Affiliation(s)
- Matthew J Naylor
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | |
Collapse
|
129
|
Abstract
Knowledge about breast carcinogenesis has accumulated during the last decades but has barely been translated into strategies for early detection or prevention of this common disease. Changes in DNA methylation have been recognized as one of the most common molecular alterations in human neoplasia and hypermethylation of gene-promoter regions is being revealed as one of the most frequent mechanisms of loss of gene function. The heritability of methylation states and the secondary nature of the decision to attract or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory. According to Hanahan and Weinberg, there are six novel capabilities a cell has to acquire to become a cancer cell: limitless replicative potential, self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, sustained angiogenesis and tissue invasion and metastasis. This review highlights how DNA-methylation contributes to these features and offers suggestions about how these changes could be prevented, reverted or used as a 'tag' for early detection of breast cancer or, preferably, for detection of premalignant changes.
Collapse
Affiliation(s)
- Martin Widschwendter
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, 1441 Eastlake Avenue, MS 8302L, Los Angeles, California, CA 90089-9181, USA.
| | | |
Collapse
|
130
|
Gilmore AP, Valentijn AJ, Wang P, Ranger AM, Bundred N, O'Hare MJ, Wakeling A, Korsmeyer SJ, Streuli CH. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem 2002; 277:27643-50. [PMID: 12011069 DOI: 10.1074/jbc.m108863200] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.
Collapse
Affiliation(s)
- Andrew P Gilmore
- School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 2002; 143:2357-65. [PMID: 12021201 DOI: 10.1210/endo.143.6.8836] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complete mammary gland development takes place following puberty and depends on the estrogen receptor (ER)alpha and the progesterone receptor (PR) and is tightly regulated by the interaction of the mammary epithelium with the stromal compartment. Studies using mammary tissues of immature mice have indicated that stromal but not epithelial ER alpha is required for mammary gland growth. This study investigates whether these same tissue growth requirements of neonate tissue are necessary for mammary development and response in adult mice. Mammary epithelial cells were isolated from adult mice with a targeted disruption of the ER alpha gene (alpha ERKO) or from wild-type counterparts and injected into epithelial-free mammary fat pads of 3-wk-old female alpha ERKO or wild-type mice. Ten weeks after cell injection, analysis of mammary gland whole mounts showed that both stromal and epithelial ER alpha were required for complete mammary gland development in adult mice. However, when the mice were treated with high doses of estradiol (E2) and progesterone, stromal ER alpha was sufficient to generate full mammary gland growth. Surprisingly, ER alpha-deficient epithelial cells were able to proliferate and develop into a rudimentary mammary ductal structure in an ER alpha-negative stroma, indicating that neither stromal nor epithelial ER alpha are required for the mammary rudiment to form in the adult mouse, as confirmed by the phenotype of the alpha ERKO mammary gland. Use of this in vivo model system has demonstrated that neonatal and adult mammary tissues use a different tissue-specific role for ER alpha in mammary response. Immunostaining for ER alpha and PR in the mammary outgrowths supported the view that both stromal and epithelial ER alpha, in cooperation with epithelial PR, govern mammary gland development in adult mice.
Collapse
Affiliation(s)
- Stefan O Mueller
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
132
|
Stull MA, Richert MM, Loladze AV, Wood TL. Requirement for IGF-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. Endocrinology 2002; 143:1872-9. [PMID: 11956170 DOI: 10.1210/endo.143.5.8774] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of cyclin proteins is required for progression of cells through the G(1)-S and G(2)-M cell cycle checkpoints and is a primary mechanism by which mitogens regulate cell cycle progression. IGF-I and the epidermal growth factor (EGF)-related ligands are mitogens for mammary epithelial cells in vitro and are essential for growth of the mammary epithelium during development. We report here that IGF-I in combination with EGF or TGFalpha is synergistic in promoting DNA synthesis in mammary epithelial cells in the intact mammary gland cultured in vitro. We further investigated the role of IGF-I and EGF in cyclin expression and cell cycle progression in the mammary gland and demonstrate that IGF-I and EGF induce expression of early G(1) cyclins. However, we show that IGF-I, but not EGF, induces late G(1) and G(2) cyclins and is required for mammary epithelial cells to overcome the G(1)-S checkpoint. These data demonstrate that IGF-I is essential for cell cycle progression in mammary epithelial cells and that it is required for EGF-mediated progression past the G(1)-S checkpoint in these cells.
Collapse
Affiliation(s)
- Malinda A Stull
- Department of Neuroscience & Anatomy H109, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| | | | | | | |
Collapse
|
133
|
Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn 2002; 223:459-68. [PMID: 11921335 DOI: 10.1002/dvdy.10065] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Development and differentiation of the mammary gland occurs by means of critical stromal-epithelial interactions. Although many studies have attempted to understand these complex interactions, it has been difficult to demonstrate the essential role of adipose tissue in the development and function of the mammary gland. By using the A-ZIP/F-1 transgenic mice lacking in white adipose tissue (WAT), we have studied the role of adipocytes in mammary gland development and differentiation. In the absence of WAT, rudimentary mammary anlagen form but are unable to grow and branch normally, resulting in a few, short, severely distended ducts. However, during pregnancy, a tremendous amount of epithelial cell division and alveolar cell formation occurs even in the absence of adipocytes, illustrating that adipose tissue is not required for mammary gland differentiation. Mammary gland transplantation revealed that epithelial cells from these transgenic mice possess the potential for normal growth and differentiation when placed into a normal stromal environment. These experiments clearly demonstrate that the absence of adipocytes in the mammary gland results in disruption of stromal-epithelial interactions that prevent normal mammary gland development. The rudimentary epithelial anlage, however, contain mammary stem cells, which are fully capable of alveolar differentiation.
Collapse
Affiliation(s)
- Christine Couldrey
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland 29896, USA
| | | | | | | | | | | |
Collapse
|
134
|
Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH, Coffey RJ, Threadgill DW. Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci U S A 2002; 99:1521-6. [PMID: 11818567 PMCID: PMC122223 DOI: 10.1073/pnas.032678499] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used the hypomorphic Egfr(wa2) allele to genetically examine the impact of impaired epidermal growth factor receptor (Egfr) signaling on the Apc(Min) mouse model of familial adenomatous polyposis. Transfer of the Apc(Min) allele onto a homozygous Egfr(wa2) background results in a 90% reduction in intestinal polyp number relative to Apc(Min) mice carrying a wild-type Egfr allele. This Egfr effect is potentially synergistic with the actions of the modifier-of-min (Mom1) locus. Surprisingly, the size, expansion, and pathological progression of the polyps appear Egfr-independent. Histological examination of the ilea of younger animals revealed no differences in the number of microadenomas, the presumptive precursor lesions to gross intestinal polyps. Pharmacological inhibition with EKI-785, an Egfr tyrosine kinase inhibitor, produced similar results in the Apc(Min) model. These data suggest that normal Egfr activity is required for establishment of intestinal tumors in the Apc(Min) model between initiation and subsequent expansion of initiated tumors. The role of Egfr signaling during later stages of tumorigenesis was examined by using nude mice xenografts of two human colorectal cancer cell lines. Treatment with EKI-785 produced a dose-dependent reduction in tumor growth, suggesting that Egfr inhibitors may be useful for advanced colorectal cancer treatment.
Collapse
Affiliation(s)
- Reade B Roberts
- Department of Cell Biology, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Imagawa W, Pedchenko VK, Helber J, Zhang H. Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 2002; 80:213-30. [PMID: 11897505 DOI: 10.1016/s0960-0760(01)00188-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial/mesenchymal interactions begin during embryonic development of the mammary gland and continue throughout mammary gland development into adult life. Stromal and epithelial growth factors that may mediate interactions between these compartments of the mammary gland are reviewed. Since mammogenic hormones are the primary regulators of mammary gland development, special consideration is given to hormonal regulation of growth factors in order to explore the integration of hormones and growth factors in the regulation of mammary gland growth and neoplasia. Examination of hormonal regulation of the fibroblast growth factor (FGF)-7/FGFR2-IIIb receptor system in the mammary gland reveals that mammogenic hormones differentially regulate the synthesis of stromal growth factors and their epithelial receptors. These effects serve to optimize the action of estrogen and progesterone on mammary gland development and illustrate that the ratio of these two hormones is critical in regulating this growth factor axis. The role of stromal/epithelial mitogenic microenvironments in modulating the genotype and phenotype of preneoplastic and neoplastic lesions by chemical carcinogens is discussed. Finally, changes in growth factor expression during mammary tumor progression are described to illustrate the relative roles that stromally-derived and epithelial-derived growth factors may play during progression to hormone independent tumor growth.
Collapse
Affiliation(s)
- Walter Imagawa
- Department of Molecular and Integrative Physiology, Kansas Cancer Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160-7417, USA.
| | | | | | | |
Collapse
|
136
|
Jensen EV, Cheng G, Palmieri C, Saji S, Mäkelä S, Van Noorden S, Wahlström T, Warner M, Coombes RC, Gustafsson JA. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc Natl Acad Sci U S A 2001; 98:15197-202. [PMID: 11734621 PMCID: PMC65006 DOI: 10.1073/pnas.211556298] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the clinical importance of estrogen receptor (ER) beta in breast cancer, 29 archival primary breast cancer specimens, six locally recurrent cancers, and five benign mammary tumors were examined histochemically for ERalpha, ERbeta and the proliferation markers Ki67 and cyclin A. In benign tumors, most epithelial cells contained ERbeta, but ERalpha was rare. In primary cancers, both ERalpha and ERbeta occurred in epithelial cells, the presence of ERbeta being associated with elevated expression of Ki67 and cyclin A, and ERalpha with decreased levels. Thus, the highest content of proliferation markers was seen in primary cancers that were ERalpha(-) ERbeta(+). Most Ki67-containing cells coexpressed ERbeta, but few showed ERalpha. In locally recurring cancers, ERalpha, ERbeta, and Ki67 were more highly expressed than in the corresponding primary tumors, and many cells containing ERbeta, but few with ERalpha, expressed Ki67. Surprisingly, ERbeta, but not ERalpha, was seen in the stromal cells of both primary and recurrent cancers. Because the response of breast cancers to tamoxifen therapy is correlated with the presence of ERalpha, cancer cells that lack ERalpha but contain ERbeta and proliferation markers represent a novel population of apparently proliferating cells that probably are not targeted by the current antiestrogens. Thus, appropriate ERbeta-specific ligands, perhaps in combination with tamoxifen, may be useful in improving the treatment of breast cancers.
Collapse
Affiliation(s)
- E V Jensen
- Departments of Medical Nutrition and Biosciences, Karolinska Institute, Novum, S-141 86 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA. Mechanisms of estrogen action. Physiol Rev 2001; 81:1535-65. [PMID: 11581496 DOI: 10.1152/physrev.2001.81.4.1535] [Citation(s) in RCA: 1322] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our appreciation of the physiological functions of estrogens and the mechanisms through which estrogens bring about these functions has changed during the past decade. Just as transgenic mice were produced in which estrogen receptors had been inactivated and we thought that we were about to understand the role of estrogen receptors in physiology and pathology, it was found that there was not one but two distinct and functional estrogen receptors, now called ER alpha and ER beta. Transgenic mice in which each of the receptors or both the receptors are inactive have revealed a much broader role for estrogens in the body than was previously thought. This decade also saw the description of a male patient who had no functional ER alpha and whose continued bone growth clearly revealed an important function of estrogen in men. The importance of estrogen in both males and females was also demonstrated in the laboratory in transgenic mice in which the aromatase gene was inactivated. Finally, crystal structures of the estrogen receptors with agonists and antagonists have revealed much about how ligand binding influences receptor conformation and how this conformation influences interaction of the receptor with coactivators or corepressors and hence determines cellular response to ligands.
Collapse
Affiliation(s)
- S Nilsson
- KaroBio AB and Department of Biosciences, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37 Suppl 4:S3-8. [PMID: 11597398 DOI: 10.1016/s0959-8049(01)00230-1] [Citation(s) in RCA: 1102] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors and their transmembrane receptor tyrosine kinases play important roles in cell proliferation, survival, migration and differentiation. One group of growth factors, comprising epidermal growth factor (EGF)-like proteins and neuregulins, stimulates cells to divide by activating members of the EGF receptor (EGFR) family, which consists of the EGFR itself and the receptors known as HER2-4. This highly conserved signalling module plays a fundamental role in the morphogenesis of a diverse spectrum of organisms, ranging from humans to nematodes, and has also been implicated in the development and growth of many types of human tumour cells. In humans, more than 30 ligands and the EGFR family of four receptors lie at the head of a complex, multi-layered signal-transduction network. Different activated receptor-ligand complexes vary in both the strength and type of cellular responses that they induce. Analysis of the multiple processes that modulate EGFR signal transduction, such as receptor heterodimerisation and endocytosis, has revealed new therapeutic opportunities and elucidated mechanisms contributing to the efficacy of existing anticancer treatments.
Collapse
Affiliation(s)
- Y Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
139
|
Sanghi S, Kumar R, Lumsden A, Dickinson D, Klepeis V, Trinkaus-Randall V, Frierson HF, Laurie GW. cDNA and genomic cloning of lacritin, a novel secretion enhancing factor from the human lacrimal gland. J Mol Biol 2001; 310:127-39. [PMID: 11419941 DOI: 10.1006/jmbi.2001.4748] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiple extracellular factors are hypothesized to promote the differentiation of unstimulated and/or stimulated secretory pathways in exocrine secretory cells, but the identity of differentiation factors, particularly those organ-specific, remain largely unknown. Here, we report on the identification of a novel secreted glycoprotein, lacritin, that enhances exocrine secretion in overnight cultures of lacrimal acinar cells which otherwise display loss of secretory function. Lacritin mRNA and protein are highly expressed in human lacrimal gland, moderately in major and minor salivary glands and slightly in thyroid. No lacritin message or protein is detected elsewhere among more than 50 human tissues examined. Lacritin displays partial similarity to the glycosaminoglycan-binding region of brain-specific neuroglycan C (32 % identity over 102 amino acid residues) and to the possibly mucin-like amino globular region of fibulin-2 (30 % identity over 81 amino acid residues), and localizes primarily to secretory granules and secretory fluid. The lacritin gene consists of five exons, displays no alternative splicing and maps to 12q13. Recombinant lacritin augments unstimulated but not stimulated acinar cell secretion, promotes ductal cell proliferation, and stimulates signaling through tyrosine phosphorylation and release of calcium. It binds collagen IV, laminin-1, entactin/nidogen-1, fibronectin and vitronectin, but not collagen I, heparin or EGF. As an autocrine/paracrine enhancer of the lacrimal constitutive secretory pathway, ductal cell mitogen and stimulator of corneal epithelial cells, lacritin may play a key role in the function of the lacrimal gland-corneal axis.
Collapse
Affiliation(s)
- S Sanghi
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Hirai Y, Radisky D, Boudreau R, Simian M, Stevens ME, Oka Y, Takebe K, Niwa S, Bissell MJ. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta. J Cell Biol 2001; 153:785-94. [PMID: 11352939 PMCID: PMC2192384 DOI: 10.1083/jcb.153.4.785] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 03/30/2001] [Indexed: 11/22/2022] Open
Abstract
We have shown previously that epimorphin (EPM), a protein expressed on the surface of myoepithelial and fibroblast cells of the mammary gland, acts as a multifunctional morphogen of mammary epithelial cells. Here, we present the molecular mechanism by which EPM mediates luminal morphogenesis. Treatment of cells with EPM to induce lumen formation greatly increases the overall expression of transcription factor CCAAT/enhancer binding protein (C/EBP)beta and alters the relative expression of its two principal isoforms, LIP and LAP. These alterations were shown to be essential for the morphogenetic activities, since constitutive expression of LIP was sufficient to produce lumen formation, whereas constitutive expression of LAP blocked EPM-mediated luminal morphogenesis. Furthermore, in a transgenic mouse model in which EPM expression was expressed in an apolar fashion on the surface of mammary epithelial cells, we found increased expression of C/EBPbeta, increased relative expression of LIP to LAP, and enlarged ductal lumina. Together, our studies demonstrate a role for EPM in luminal morphogenesis through control of C/EBPbeta expression.
Collapse
Affiliation(s)
- Yohei Hirai
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Derek Radisky
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Rosanne Boudreau
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Marina Simian
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Mary E. Stevens
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Yumiko Oka
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Kyoko Takebe
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Shinichiro Niwa
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Mina J. Bissell
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| |
Collapse
|
141
|
Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001; 67:93-109. [PMID: 11519870 DOI: 10.1023/a:1010615124301] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted, myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM), alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18, keratin 19, EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of alpha6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.
Collapse
Affiliation(s)
- J Stingl
- Department of Anatomy, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
142
|
Raafat AM, Li S, Bennett JM, Hofseth LJ, Haslam SZ. Estrogen and estrogen plus progestin act directly on the mammary gland to increase proliferation in a postmenopausal mouse model. J Cell Physiol 2001; 187:81-9. [PMID: 11241352 DOI: 10.1002/1097-4652(2001)9999:9999<::aid-jcp1056>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hormone replacement therapy (HRT) with ovarian hormones is an important therapeutic modality for postmenopausal women. However, a negative side effect of HRT is an increased risk of breast cancer. Surgical induction of menopause by ovariectomy (OVX) in mice is an experimental model that may provide insights into the effects of hormone replacement therapy on the human breast. We have developed a mouse model of early and late postmenopausal states to investigate the effects of HRT on the normal mammary gland. The purpose of this study was to determine if HRT-induced proliferation was due to the direct action of the hormones on the mammary gland, or mediated systemically by hormones or growth factors produced elsewhere in the body. Estrogen (E) or E plus the synthetic progestin, R5020, were implanted directly into the mammary glands of early (1 week post OVX) and late (5 week post OVX) postmenopausal mice instead of administration by injection. We report that responses of early and late postmenopausal mice to implanted hormones were the same as those observed previously with systemically administered hormones. Implanted E conferred an enhanced proliferative response in the late postmenopausal gland characterized morphologically by enlarged duct ends. E+R5020 implants induced similar degrees of cell proliferation in both postmenopausal states but the morphological responses differed. Ductal sidebranching was observed in early postmenopausal mice, whereas duct end enlargement was observed in late postmenopausal mice. The differences in morphological response to E+R5020 in 5 week post OVX were associated with an inability of E to induce progesterone receptors (PR) in the late postmenopausal gland. The responses of the late postmenopausal glands to E and E+P were very similar to that observed previously in immature pubertal glands in ovary-intact mice. In pubertal mice, PR cannot be induced by E unless the mammary gland is pre-treated with EGF-containing implants. Similarly, herein pre-treatment of the late postmenopausal mammary gland with EGF-containing implants restored PR induction by E. Thus, EGF may determine the sensitivity of the mammary gland to E and E+P in late postmenopause and at puberty.
Collapse
Affiliation(s)
- A M Raafat
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
143
|
Cunha GR, Wiesen JF, Werb Z, Young P, Hom YK, Cooke PS, Lubahn DB. Paracrine mechanisms of mouse mammary ductal growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 480:93-7. [PMID: 10959414 DOI: 10.1007/0-306-46832-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ductal growth during puberty is stimulated by estrogens, which elicit their effects via specific estrogen receptors, ER alpha and ER beta. Analysis of mice with targeted disruption of ER alpha or ER beta has emphasized the importance of ER alpha in mammary gland development. In the mouse mammary gland, ER alpha are expressed in both epithelial and stromal cells (Kurita and Cunha, unpublished), which raises the possibility that the growth and morphogenetic effects of estrogen could be mediated via either epithelial or stromal ER. The aim of this paper is to review the role of epithelial versus stromal ER in mammary ductal-alveolar growth to assess the importance of paracrine mechanisms.
Collapse
Affiliation(s)
- G R Cunha
- Anatomy Department University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Mammary glands develop postnatally by branching morphogenesis creating an arborated ductal system on which secretory lobuloalveoli develop at pregnancy. This review focuses on the interrelated questions of how ductal and alveolar morphogenesis and growth are regulated in the mouse mammary gland and covers progress made over approximately the last decade. After a brief overview of glandular development, advances in understanding basic structural questions concerning mechanisms of duct assembly, elongation, and bifurcation are considered. Turning to growth regulation, remarkable progress has taken place based largely on the study of genetically engineered mice that lack or overexpress a single gene. The use of mammary glands from these and wildtype animals in sophisticated epithelial-stromal or epithelial-epithelial recombination experiments are reviewed and demonstrate paracrine mechanisms of action for the classical endocrine mammogens, estrogen, progesterone, growth hormone, and prolactin. In addition, IGF-1, EGF, or related peptides, and elements of the activin/inhibin family, were shown to be necessary for ductal growth. The inhibition of ductal growth, and in particular, lateral branching, is necessary to preserve stromal space for later lobuloalveolar development. Excellent evidence that TGF-beta1 naturally inhibits this infilling, possibly by blocking hepatocyte growth factor synthesis, is reviewed along with evidence indicating that the action of TGF-beta1 is modulated by its association with the extracellular matrix. Finally, experimental approaches that may help integrate the wealth of new findings are discussed.
Collapse
Affiliation(s)
- G B Silberstein
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
145
|
Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, Kopchick JJ, Oka T, Kelly PA, Hennighausen L. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol 2001; 229:163-75. [PMID: 11133161 DOI: 10.1006/dbio.2000.9961] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin (Prl)-induced phosphorylation of Stat (signal transducer and activator of transcription) 5 is considered a key event in functional mammary development and differentiation. We now demonstrate that not only Prl, but also growth hormone (GH) and epidermal growth factor (EGF), can activate Stat5 in mammary tissue. We investigated the roles of these hormones in mammary development using mice in which the respective receptors had been inactivated. Although Prl receptor (PrlR)-null mice are infertile, we were able to maintain pregnancies in a few mice by treatment with progesterone. Mammary tissue in these mice was severely underdeveloped and exhibited limited differentiation as assessed by the phosphorylation status of Stat5 and the expression of milk protein genes. PrlR +/- mice showed impaired mammary development and alveolar differentiation during pregnancy, which corresponded with reduced phosphorylation levels of Stat5a and 5b, and impaired expression of milk protein genes. Development of the glands in these mice was arrested at around day 13 of pregnancy. While Prl activated Stat5 only in the epithelium, GH and EGF activated Stat5 preferentially in the stroma. To assess the relevance of the GH receptor (GHR) in the mammary gland, we transplanted GHR-null epithelium into cleared fat pads of wild-type mice. These experiments demonstrated that the GHR in the epithelium is not required for functional mammary development. Similarly, the EGFR in the epithelium is not required for alveolar development. In contrast, epithelial PrlR is required for mammary development and milk protein gene expression during pregnancy. Although GH is not required for alveolar development, we were able to demonstrate its lactogenic function in cultured mammary epithelium from PrlR-null mice. However, ductal development in GHR-null mice was impaired, supporting the notion that GH signals through the stromal compartment. Our findings demonstrate that GH, Prl, and EGF activate Stat5 in separate compartments, which in turn reflects their specific roles in ductal and alveolar development and differentiation.
Collapse
Affiliation(s)
- M I Gallego
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Grant SL, Douglas AM, Goss GA, Begley CG. Oncostatin M and leukemia inhibitory factor regulate the growth of normal human breast epithelial cells. Growth Factors 2001; 19:153-62. [PMID: 11811789 DOI: 10.3109/08977190109001083] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have previously reported the inhibitory effects of oncostatin M (OSM) and leukemia inhibitory factor (LIF) on the proliferation of breast cancer cell lines. In this study, we examined the action of OSM and LIF on normal, non-malignant human breast epithelial cells (HBECs). We demonstrated expression of three components of the OSM receptor; gp130, the leukemia inhibitory factor receptor (LIFRbeta) and the OSM specific receptor (OSMRbeta). Treatment of the normal HBECs with OSM and LIF resulted in inhibition of proliferation, even in the presence of the breast mitogen, epidermal growth factor (EGF), which is required for HBEC growth. The inhibition was associated with a reduction of cells in the S-phase of the cell cycle and an accumulation of cells in G0/G1. These results suggest a previously unrecognised physiological role for these growth factors in the regulation of normal breast epithelium.
Collapse
Affiliation(s)
- S L Grant
- The Rotary Bone Marrow Research Laboratories, The Cooperative Research Centre for Cellular Growth Factors and The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | | | | | | |
Collapse
|
147
|
Gustafsson JA, Warner M. Estrogen receptor beta in the breast: role in estrogen responsiveness and development of breast cancer. J Steroid Biochem Mol Biol 2000; 74:245-8. [PMID: 11162931 DOI: 10.1016/s0960-0760(00)00130-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Breast cancer is one of the most common forms of cancer observed in women. Endogenous estrogen is thought to play a major role in its development and estrogen receptor blockers are the most important drugs in its treatment. It has long been thought that any conditions or exposures, which enhance estrogenic responses, would result in an increased risk for breast cancer. The discovery of the second estrogen receptor, ERbeta, which can have effects opposite to those of the well-known 'original' estrogen receptor (now called ERalpha) challenges this simplistic view. In order to understand breast cancer one must first understand how the normal breast is maintained. The functions of ERbeta in the breast remain to be defined but from what we have learnt about its activities in in vitro systems, this estrogen receptor may have a protective role in the breast. Studies in human and rodent breasts as well as in human breast cancer biopsies reveal that ERbeta is by far the more abundant of the two ERs. Despite the role of estrogen in proliferation of the breast, neither of the two ERs appears to located in epithelial cells which divide in response to estrogen. In order to define the functions of ERbeta in the normal and malignant breast, we have created mice in which the ERbeta gene has been inactivated. Studies of the breasts of ERbeta knock out mice (BERKO) revealed abnormal epithelial growth, overexpression of Ki67 and severe cystic breast disease as mice age.
Collapse
Affiliation(s)
- J A Gustafsson
- Department of Medical Nutrition, NOVUM, Karolinska Institute, Huddinge University Hospital, S-141 86, Huddinge, Sweden.
| | | |
Collapse
|
148
|
Dehnhard M, Claus R, Munz O, Weiler U. Course of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) in mammary secretions of the goat during end-pregnancy and early lactation. JOURNAL OF VETERINARY MEDICINE. A, PHYSIOLOGY, PATHOLOGY, CLINICAL MEDICINE 2000; 47:533-40. [PMID: 11244861 DOI: 10.1046/j.1439-0442.2000.00315.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epidermal growth factor (EGF) plays a crucial role in mammogenesis in many species. In ruminants, studies are limited, as EGF does not occur in peripheral plasma and specific analytical systems do not exist. Therefore a heterologous radioimmunoassay based on rhEGF was set up to monitor EGF in mammary gland secretions from goats during end-pregnancy and early lactation. IGF-I was measured with an established radioimmunoassay. Samples were collected from 13 goats for 25 days ante-partum and 25 days post-partum. Mammary gland secretions were obtained ante-partum by removing a small amount of the udder secretions (control half) or milking (stimulated half). Post-partum normal milk samples were collected. Blood samples were drawn by jugular venipuncture for the same period. EGF was found to occur in different molecular weight forms in the mammary glands. For routine measurements these proteins were extracted with acetone and not further separated. IGF-I and EGF concentrations in mammary secretions and similarly IGF-I in blood were high ante-partum and decreased slightly towards birth. IGF-I but not EGF is found in the peripheral plasma. Whereas IGF-I concentrations in blood were quite constant post-partum, IGF-I and EGF dropped in mammary secretions close to the detection limits. The decrease was more pronounced in the stimulated half than in the control half. The data support a synergistic role for EGF and IGF-I for mammogenesis. Both factors are further influenced by the milking stimulus and thus the functional state of the udder.
Collapse
Affiliation(s)
- M Dehnhard
- Institut für Tierhaltung und Tierzüchtung, Universität Hohenheim, Stuttgart, Germany.
| | | | | | | |
Collapse
|
149
|
Miettinen PJ, Huotari M, Koivisto T, Ustinov J, Palgi J, Rasilainen S, Lehtonen E, Keski-Oja J, Otonkoski T. Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 2000; 127:2617-27. [PMID: 10821760 DOI: 10.1242/dev.127.12.2617] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pancreatic acini and islets are believed to differentiate from common ductal precursors through a process requiring various growth factors. Epidermal growth factor receptor (EGF-R) is expressed throughout the developing pancreas. We have analyzed here the pancreatic phenotype of EGF-R deficient (−/−) mice, which generally die from epithelial immaturity within the first postnatal week. The pancreata appeared macroscopically normal. The most striking feature of the EGF-R (−/−) islets was that instead of forming circular clusters, the islet cells were mainly located in streak-like structures directly associated with pancreatic ducts. Based on BrdU-labelling, proliferation of the neonatal EGF-R (−/−) beta-cells was significantly reduced (2.6+/−0.4 versus 5.8+/−0.9%, P<0.01) and the difference persisted even at 7–11 days of age. Analysis of embryonic pancreata revealed impaired branching morphogenesis and delayed islet cell differentiation in the EGF-R (−/−) mice. Islet development was analyzed further in organ cultures of E12.5 pancreata. The proportion of insulin-positive cells was significantly lower in the EGF-R (−/−) explants (27+/−6 versus 48+/−8%, P<0.01), indicating delayed differentiation of the beta cells. Branching of the epithelium into ducts was also impaired. Matrix metalloproteinase (MMP-2 and MMP-9) activity was reduced 20% in EGF-R (−/−) late-gestation pancreata, as measured by gelatinase assays. Furthermore, the levels of secreted plasminogen activator inhibitor-1 (PAI-1) were markedly higher, while no apparent differences were seen in the levels of active uPA and tPa between EGF-R (−/−) and wild-type pancreata. Our findings suggest that the perturbation of EGF-R-mediated signalling can lead to a generalized proliferation defect of the pancreatic epithelia associated with a delay in beta cell development and disturbed migration of the developing islet cells as they differentiate from their precursors. Upregulated PAI-1 production and decreased gelatinolytic activity correlated to this migration defect. An intact EGF-R pathway appears to be a prerequisite for normal pancreatic development.
Collapse
Affiliation(s)
- P J Miettinen
- Department of Pathology and Transplantation Laboratory, The Haartman Institute, and Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Stern DF. Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases. Breast Cancer Res 2000; 2:176-83. [PMID: 11250707 PMCID: PMC138772 DOI: 10.1186/bcr51] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2000] [Accepted: 02/21/2000] [Indexed: 01/19/2023] Open
Abstract
ERBB family receptor tyrosine kinases are overexpressed in a significant subset of breast cancers. One of these receptors, HER2/neu, or ErbB-2, is the target for a new rational therapeutic antibody, Herceptin. Other inhibitors that target this receptor, and another family member, the epidermal growth factor (EGF) receptor, are moving into clinical trials. Both of these receptors are sometimes overexpressed in breast cancer, and still subject to regulation by hormones and other physiological regulators. Optimal use of therapeutics targeting these receptors will require consideration of the several modes of regulation of these receptors and their interactions with steroid receptors.
Collapse
Affiliation(s)
- D F Stern
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA.
| |
Collapse
|