101
|
Chen R, Luo L, Li K, Li Q, Li W, Wang X. Dormancy-Associated Gene 1 (OsDRM1) as an axillary bud dormancy marker: Retarding Plant Development, and Modulating Auxin Response in Rice (Oryza sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154117. [PMID: 37924628 DOI: 10.1016/j.jplph.2023.154117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
Dormancy-Associated Genes 1/Auxin-Repressed Proteins (DRM1/ARP) are associated with bud dormancy, repression of plant growth, and responsiveness to hormones. To further explore the function of DRM1 proteins in rice, we isolated a dormancy-associated gene1 (OsDRM1) through microarray analysis. In situ hybridization analyses revealed that OsDRM1 is predominantly expressed in dormant axillary buds, while it is weakly expressed in growing buds, indicating that OsDRM1 gene can be used as a molecular marker for bud dormancy in rice. Overexpression of OsDRM1 in transgenic plants delayed axillary bud outgrowth by suppressing cell division within the buds. Further studies in OsDRM1-overexpressing transgenic plants showed a reduction in plant height, inhibition of root and hypocotyl elongation, and delayed heading time. Under auxin treatment, overexpression of OsDRM1 in transgenic lines partially rescued the shortened length of the primary and crown root. Taken together, these results indicated that OsDRM1 delayed bud growth by arresting the cell cycle and act as a growth repressor affect rice development by modulated auxin signaling.
Collapse
Affiliation(s)
- Ruihong Chen
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Li
- College of Forest, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Li
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wang
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
102
|
Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay SK. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111881. [PMID: 37806453 DOI: 10.1016/j.plantsci.2023.111881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Glutathione peroxidases (GPXs) are known to play an essential role in guarding cells against oxidative stress by catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. The current study aims functional characterization of the TaGPX1-D gene of bread wheat (Triticum aestivum) for salinity and osmotic stress tolerance. To achieve this, we initially performed the spot assays of TaGPX1-D expressing yeast cells. The growth of recombinant TaGPX1-D expressing yeast cells was notably higher than the control cells under stress conditions. Later, we generated transgenic Arabidopsis plants expressing the TaGPX1-D gene and investigated their tolerance to various stress conditions. The transgenic plants exhibited improved tolerance to both salinity and osmotic stresses compared to the wild-type plants. The higher germination rates, increased antioxidant enzymes activities, improved chlorophyll, carotenoid, proline and relative water contents, and reduced hydrogen peroxide and MDA levels in the transgenic lines supported the stress tolerance mechanism. Overall, this study demonstrated the role of TaGPX1-D in abiotic stress tolerance, and it can be used for improving the tolerance of crops to environmental stressors, such as salinity and osmotic stress in future research.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
103
|
Yang G, Feng M, Yu K, Cui G, Zhou Y, Sun L, Gao L, Zhang Y, Peng H, Yao Y, Hu Z, Rossi V, De Smet I, Ni Z, Sun Q, Xin M. Paternally imprinted LATE-FLOWERING2 transcription factor contributes to paternal-excess interploidy hybridization barriers in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2587-2603. [PMID: 37846823 DOI: 10.1111/jipb.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution, and is commonly employed in wheat breeding programs. Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination, but the underlying mechanism is poorly understood. Here, we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid (Triticum durum, AABB) and hexaploid wheat (Triticum aestivum, AABBDD). In the paternal- versus the maternal-excess cross, the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed, causing reduced germination percentage. The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types. Furthermore, expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses, leading to increased number of imprinted genes. The endosperm-specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele-specific DNA methylation. Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019, leading to reduced storage protein and starch accumulation during endosperm development in paternal-excess cross, as confirmed by interploidy crosses between tetraploid wild-type and clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-associated protein 9 generated hexaploid mutants. These findings reveal a contribution of genomic imprinting to paternal-excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal-excess interploidy crosses in wheat breeding programs.
Collapse
Affiliation(s)
- Guanghui Yang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Man Feng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guangxian Cui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yan Zhou
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, 24126, Italy
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
104
|
Jia Q, Song J, Zheng C, Fu J, Qin B, Zhang Y, Liu Z, Jia K, Liang K, Lin W, Fan K. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean ( Glycine max) and Functional Analysis of GmCHX20a on Salt Response. Int J Mol Sci 2023; 24:16560. [PMID: 38068884 PMCID: PMC10705888 DOI: 10.3390/ijms242316560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Monovalent cation proton antiporters (CPAs) play crucial roles in ion and pH homeostasis, which is essential for plant development and environmental adaptation, including salt tolerance. Here, 68 CPA genes were identified in soybean, phylogenetically dividing into 11 Na+/H+ exchangers (NHXs), 12 K+ efflux antiporters (KEAs), and 45 cation/H+ exchangers (CHXs). The GmCPA genes are unevenly distributed across the 20 chromosomes and might expand largely due to segmental duplication in soybean. The GmCPA family underwent purifying selection rather than neutral or positive selections. The cis-element analysis and the publicly available transcriptome data indicated that GmCPAs are involved in development and various environmental adaptations, especially for salt tolerance. Based on the RNA-seq data, twelve of the chosen GmCPA genes were confirmed for their differentially expression under salt or osmotic stresses using qRT-PCR. Among them, GmCHX20a was selected due to its high induction under salt stress for the exploration of its biological function on salt responses by ectopic expressing in Arabidopsis. The results suggest that the overexpression of GmCHX20a increases the sensitivity to salt stress by altering the redox system. Overall, this study provides comprehensive insights into the CPA family in soybean and has the potential to supply new candidate genes to develop salt-tolerant soybean varieties.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Jiahui Fu
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Bin Qin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kunzhi Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kai Fan
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| |
Collapse
|
105
|
Wei Z, Zhang H, Fang M, Lin S, Zhu M, Li Y, Jiang L, Cui T, Cui Y, Kui H, Peng L, Gou X, Li J. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. MOLECULAR PLANT 2023; 16:1759-1772. [PMID: 37742075 DOI: 10.1016/j.molp.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Photosynthetic efficiency is the primary determinant of crop yield, including vegetative biomass and grain yield. Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits. In this study, we identified an Arabidopsis gain-of-function mutant, cogwheel1-3D, that shows a significantly enlarged rosette and increased biomass compared with wild-type plants. Overexpression of COG1, a Dof transcription factor, recapitulated the phenotype of cogwheel1-3D, whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass. Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis. Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins. Physiological, biochemical, and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves. Furthermore, combined results of bioinformatic, genetic, and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species. These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxiu Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Limin Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianliang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
106
|
Yang YZ, Ding S, Liu XY, Xu C, Sun F, Tan BC. The DEAD-box RNA helicase ZmRH48 is required for the splicing of multiple mitochondrial introns, mitochondrial complex biosynthesis, and seed development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2456-2468. [PMID: 37594235 DOI: 10.1111/jipb.13558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA-protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
107
|
Enomoto T, Tanaka N, Fujiwara T, Nishida S. Role of Potassium-Dependent Alternative Splicing of MYB59 in the Maintenance of Potassium Concentration in Shoots of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1159-1166. [PMID: 37494427 DOI: 10.1093/pcp/pcad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Potassium (K) is a major plant nutrient. K+ is taken up by channel and transporter proteins in roots and translocated from roots to shoots via the xylem. In Arabidopsis thaliana, the K+ transporter NPF7.3 mediates K+ loading into the xylem and the transcription factor MYB59 is responsible for NPF7.3 expression. Here, we demonstrate that MYB59 is regulated by alternative splicing in response to K availability. Three splicing isoforms of MYB59 are detected in roots: an isoform with the first intron spliced out encodes a protein with the full DNA-binding motif (MYB59α), and two isoforms with the first intron retained partially or completely encode a protein missing part of the DNA-binding motif (MYB59β). Functional analysis showed that only MYB59α is capable of inducing the expression of NPF7.3. The abundance of the MYB59α isoform increased under low K, but the total abundance of MYB59 transcripts did not change, indicating that MYB59α is increased by modification of the splicing pattern in response to low K. Although MYB59α is increased by low K, NPF7.3 expression remained constant independent of K. In addition, there was no significant difference in NPF7.3 expression between an MYB59 knockout mutant and the wild type under normal K. These results suggest that an unknown mechanism is involved in NPF7.3 expression under normal K and switches roles with MYB59 under low K. We propose that the regulation of MYB59 by alternative splicing is required for the maintenance of shoot K concentration in adaptation to low K.
Collapse
Affiliation(s)
- Takuo Enomoto
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502 Japan
| | - Nobuhiro Tanaka
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, 305-8518 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Japan
| | - Sho Nishida
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502 Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Karimoto, Kagoshima, 890-0065 Japan
| |
Collapse
|
108
|
Drummond RSM, Lee HW, Luo Z, Dakin JF, Janssen BJ, Snowden KC. Varying the expression pattern of the strigolactone receptor gene DAD2 results in phenotypes distinct from both wild type and knockout mutants. FRONTIERS IN PLANT SCIENCE 2023; 14:1277617. [PMID: 37900765 PMCID: PMC10600376 DOI: 10.3389/fpls.2023.1277617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
The action of the petunia strigolactone (SL) hormone receptor DAD2 is dependent not only on its interaction with the PhMAX2A and PhD53A proteins, but also on its expression patterns within the plant. Previously, in a yeast-2-hybrid system, we showed that a series of a single and double amino acid mutants of DAD2 had altered interactions with these binding partners. In this study, we tested the mutants in two plant systems, Arabidopsis and petunia. Testing in Arabidopsis was enabled by creating a CRISPR-Cas9 knockout mutant of the Arabidopsis strigolactone receptor (AtD14). We produced SL receptor activity in both systems using wild type and mutant genes; however, the mutants had functions largely indistinguishable from those of the wild type. The expression of the wild type DAD2 from the CaMV 35S promoter in dad2 petunia produced plants neither quite like the dad2 mutant nor the V26 wild type. These plants had greater height and leaf size although branch number and the plant shape remained more like those of the mutant. These traits may be valuable in the context of a restricted area growing system such as controlled environment agriculture.
Collapse
Affiliation(s)
- Revel S. M. Drummond
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | | | | | | | - Kimberley C. Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
109
|
Méndez-López E, Aranda MA. A regulatory role for the redox status of the pepino mosaic virus coat protein. PLoS Pathog 2023; 19:e1011732. [PMID: 37851701 PMCID: PMC10615272 DOI: 10.1371/journal.ppat.1011732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Cysteine oxidations play important regulatory roles during animal virus infections. Despite the importance of redox modifications during plant infections, no plant virus protein has yet been shown to be regulated by cysteine oxidation. The potexvirus pepino mosaic virus (PepMV) is pandemic in tomato crops. Previously we modeled the structure of the PepMV particle and coat protein (CP) by cryo-electron microscopy and identified critical residues of the CP RNA-binding pocket that interact with the viral RNA during particle formation and viral cell-to-cell movement. The PepMV CP has a single cysteine residue (Cys127) central to its RNA binding pocket, which is highly conserved. Here we show that the Cys127Ser replacement diminishes PepMV fitness, and that PepMV CPWT is oxidized in vivo while CPC127S is not. We also show that Cys127 gets spontaneously glutathionylated in vitro, and that S-glutathionylation blocks in vitro the formation of virion-like particles (VLPs). VLPs longer than 200 nm could be formed after in planta CPC127S overexpression, while very short and dispersed VLPs were observed after CPWT overexpression. Our results strongly suggest that the CP redox status regulates CP functions via cysteine oxidation.
Collapse
Affiliation(s)
- Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
110
|
Zhu Q, Deng L, Chen J, Rodríguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li CB, van der Knaap E, Li C. Redesigning the tomato fruit shape for mechanized production. NATURE PLANTS 2023; 9:1659-1674. [PMID: 37723204 DOI: 10.1038/s41477-023-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jie Chen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yasin Topcu
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - David Francis
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Samuel Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Esther van der Knaap
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
111
|
Shoji T, Sugawara S, Mori T, Kobayashi M, Kusano M, Saito K. Induced production of specialized steroids by transcriptional reprogramming in Petunia hybrida. PNAS NEXUS 2023; 2:pgad326. [PMID: 37920550 PMCID: PMC10619512 DOI: 10.1093/pnasnexus/pgad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
Plants produce specialized metabolites with defensive properties that are often synthesized through the coordinated regulation of metabolic genes by transcription factors in various biological contexts. In this study, we investigated the regulatory function of the transcription factor PhERF1 from petunia (Petunia hybrida), which belongs to a small group of ETHYLENE RESPONSE FACTOR (ERF) family members that regulate the biosynthesis of bioactive alkaloids and terpenoids in various plant lineages. We examined the effects of transiently overexpressing PhERF1 in petunia leaves on the transcriptome and metabolome, demonstrating the production of a class of specialized steroids, petuniolides, and petuniasterones in these leaves. We also observed the activation of many metabolic genes, including those involved in sterol biosynthesis, as well as clustered genes that encode new metabolic enzymes, such as cytochrome P450 oxidoreductases, 2-oxoglutarate-dependent dioxygenases, and BAHD acyltransferases. Furthermore, we determined that PhERF1 transcriptionally induces downstream metabolic genes by recognizing specific cis-regulatory elements in their promoters. This study highlights the potential of evolutionarily conserved transcriptional regulators to induce the production of specialized products through transcriptional reprogramming.
Collapse
Affiliation(s)
- Tsubasa Shoji
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
112
|
McInnes KJ, van der Hooft JJJ, Sharma A, Herzyk P, Hundleby PAC, Schoonbeek HJ, Amtmann A, Ridout C, Jenkins GI. Overexpression of Brassica napus COMT1 in Arabidopsis heightens UV-B-mediated resistance to Plutella xylostella herbivory. Photochem Photobiol Sci 2023; 22:2341-2356. [PMID: 37505444 PMCID: PMC10509076 DOI: 10.1007/s43630-023-00455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.
Collapse
Affiliation(s)
- Kirsty J McInnes
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Natural and Environmental Sciences, Newcastle University, King's Road, Newcastle, NE1 7RU, UK
| | - Justin J J van der Hooft
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
- Bioinformatics Group, Plant Sciences Group, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Ashutosh Sharma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pawel Herzyk
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | | | | | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
113
|
Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5667-5681. [PMID: 37555400 PMCID: PMC10540739 DOI: 10.1093/jxb/erad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.
Collapse
Affiliation(s)
- Yuki Doll
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
114
|
Crean EE, Bilstein-Schloemer M, Maekawa T, Schulze-Lefert P, Saur IML. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5854-5869. [PMID: 37474129 PMCID: PMC10540733 DOI: 10.1093/jxb/erad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) recognize pathogen effectors to mediate plant disease resistance often involving host cell death. Effectors escape NLR recognition through polymorphisms, allowing the pathogen to proliferate on previously resistant host plants. The powdery mildew effector AVRA13-1 is recognized by the barley NLR MLA13 and activates host cell death. We demonstrate here that a virulent form of AVRA13, called AVRA13-V2, escapes MLA13 recognition by substituting a serine for a leucine residue at the C-terminus. Counterintuitively, this substitution in AVRA13-V2 resulted in an enhanced MLA13 association and prevented the detection of AVRA13-1 by MLA13. Therefore, AVRA13-V2 is a dominant-negative form of AVRA13 and has probably contributed to the breakdown of Mla13 resistance. Despite this dominant-negative activity, AVRA13-V2 failed to suppress host cell death mediated by the MLA13 autoactive MHD variant. Neither AVRA13-1 nor AVRA13-V2 interacted with the MLA13 autoactive variant, implying that the binding moiety in MLA13 that mediates association with AVRA13-1 is altered after receptor activation. We also show that mutations in the MLA13 coiled-coil domain, which were thought to impair Ca2+ channel activity and NLR function, instead resulted in MLA13 autoactive cell death. Our results constitute an important step to define intermediate receptor conformations during NLR activation.
Collapse
Affiliation(s)
- Emma E Crean
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | | | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Paul Schulze-Lefert
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
115
|
Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. THE PLANT CELL 2023; 35:3889-3910. [PMID: 37399070 PMCID: PMC10533334 DOI: 10.1093/plcell/koad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.
Collapse
Affiliation(s)
- Haoran Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Man Feng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sufang Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
116
|
Wallner ES, Dolan L, Bergmann DC. Arabidopsis stomatal lineage cells establish bipolarity and segregate differential signaling capacity to regulate stem cell potential. Dev Cell 2023; 58:1643-1656.e5. [PMID: 37607546 DOI: 10.1016/j.devcel.2023.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Cell polarity combined with asymmetric cell divisions (ACDs) generates cellular diversity. In the Arabidopsis stomatal lineage, a single cortical polarity domain marked by BASL orients ACDs and is segregated to the larger daughter to enforce cell fate. We discovered a second, oppositely positioned polarity domain defined by OCTOPUS-LIKE (OPL) proteins, which forms prior to ACD and is segregated to the smaller (meristemoid) daughter. Genetic and misexpression analyses show that OPLs promote meristemoid-amplifying divisions and delay stomatal fate progression. Polarity mediates OPL segregation into meristemoids but is not required for OPL function. OPL localization and activity are largely independent of other stomatal polarity genes and of the brassinosteroid signaling components associated with OPLs in other contexts. While OPLs are unique to seed plants, ectopic expression in the liverwort Marchantia suppressed epidermal fate progression, suggesting that OPLs engage ancient and broadly conserved pathways to regulate cell division and cell fate.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Gregor Mendel Institute, Dr.-Bohr-Gasse 3, 1030 Wien, Austria; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| | - Liam Dolan
- Gregor Mendel Institute, Dr.-Bohr-Gasse 3, 1030 Wien, Austria
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
117
|
Liu W, Lowrey H, Leung CC, Adamchek C, Du J, He J, Chen M, Gendron JM. The circadian clock regulates PIF3 protein stability in parallel to red light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558326. [PMID: 37781622 PMCID: PMC10541125 DOI: 10.1101/2023.09.18.558326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.
Collapse
|
118
|
Nagahage ISP, Matsuda K, Miyashita K, Fujiwara S, Mannapperuma C, Yamada T, Sakamoto S, Ishikawa T, Nagano M, Ohtani M, Kato K, Uchimiya H, Mitsuda N, Kawai‐Yamada M, Demura T, Yamaguchi M. NAC domain transcription factors VNI2 and ATAF2 form protein complexes and regulate leaf senescence. PLANT DIRECT 2023; 7:e529. [PMID: 37731912 PMCID: PMC10507225 DOI: 10.1002/pld3.529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.
Collapse
Affiliation(s)
| | - Kohei Matsuda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
| | - Kyoko Miyashita
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Sumire Fujiwara
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Takuya Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Shingo Sakamoto
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Global Zero‐Emission Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Minoru Nagano
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
- Present address:
College of Life SciencesRitsumeikan UniversityKusatsuJapan
| | - Misato Ohtani
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
- Present address:
Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Ko Kato
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
| | - Hirofumi Uchimiya
- Institute for Environmental Science and TechnologySaitama UniversitySaitamaJapan
| | - Nobutaka Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Global Zero‐Emission Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Taku Demura
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
| | | |
Collapse
|
119
|
Dong Y, Srour O, Lukhovitskaya N, Makarian J, Baumberger N, Galzitskaya O, Elser D, Schepetilnikov M, Ryabova LA. Functional analogs of mammalian 4E-BPs reveal a role for TOR in global plant translation. Cell Rep 2023; 42:112892. [PMID: 37516965 DOI: 10.1016/j.celrep.2023.112892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) regulates global protein synthesis through inactivation of eIF4E-binding proteins (m4E-BPs) in response to nutrient and energy availability. Until now, 4E-BPs have been considered as metazoan inventions, and how target of rapamycin (TOR) controls cap-dependent translation initiation in plants remains obscure. Here, we present short unstructured 4E-BP-like Arabidopsis proteins (4EBP1/4EBP2) that are non-homologous to m4E-BPs except for the eIF4E-binding motif and TOR phosphorylation sites. Unphosphorylated 4EBPs exhibit strong affinity toward eIF4Es and can inhibit formation of the cap-binding complex. Upon TOR activation, 4EBPs are phosphorylated, probably when bound directly to TOR, and likely relocated to ribosomes. 4EBPs can suppress a distinct set of mRNAs; 4EBP2 predominantly inhibits translation of core cell-cycle regulators CycB1;1 and CycD1;1, whereas 4EBP1 interferes with chlorophyll biosynthesis. Accordingly, 4EBP2 overexpression halts early seedling development, which is overcome by induction of Glc/Suc-TOR signaling. Thus, TOR regulates cap-dependent translation initiation by inactivating atypical 4EBPs in plants.
Collapse
Affiliation(s)
- Yihan Dong
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ola Srour
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Joelle Makarian
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Baumberger
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Oxana Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - David Elser
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mikhail Schepetilnikov
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
120
|
Allen PJ, Napoli RS, Parish RW, Li SF. MYB-bHLH-TTG1 in a Multi-tiered Pathway Regulates Arabidopsis Seed Coat Mucilage Biosynthesis Genes Including PECTIN METHYLESTERASE INHIBITOR14 Required for Homogalacturonan Demethylesterification. PLANT & CELL PHYSIOLOGY 2023; 64:906-919. [PMID: 37354456 PMCID: PMC10434736 DOI: 10.1093/pcp/pcad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 06/26/2023]
Abstract
MYB-bHLH-TTG1 (MBW) transcription factor (TF) complexes regulate Arabidopsis seed coat biosynthesis pathways via a multi-tiered regulatory mechanism. The MYB genes include MYB5, MYB23 and TRANSPARENT TESTA2 (TT2), which regulate GLABRA2 (GL2), HOMEODOMAIN GLABROUS2 (HDG2) and TRANSPARENT TESTA GLABRA2 (TTG2). Here, we examine the role of PECTIN METHYLESTERASE INHIBITOR14 (PMEI14) in seed coat mucilage pectin methylesterification and provide evidence in support of multi-tiered regulation of seed coat mucilage biosynthesis genes including PMEI14. The PMEI14 promoter was active in the seed coat and developing embryo. A pmei14 mutant exhibited stronger attachment of the outer layer of seed coat mucilage, increased mucilage homogalacturonan demethylesterification and reduced seed coat radial cell wall thickness, results consistent with decreased PMEI activity giving rise to increased PME activity. Reduced mucilage release from the seeds of myb5, myb23, tt2 and gl2, hdg2, ttg2 triple mutants indicated that HDG2 and MYB23 play minor roles in seed coat mucilage deposition. Chromatin immunoprecipitation analysis found that MYB5, TT8 and seven mucilage pathway structural genes are directly regulated by MYB5. Expression levels of GL2, HDG2, TTG2 and nine mucilage biosynthesis genes including PMEI14 in the combinatorial mutant seeds indicated that these genes are positively regulated by at least two of those six TFs and that TTG1 and TTG2 are major regulators of PMEI14 expression. Our results show that MYB-bHLH-TTG1 complexes regulate mucilage biosynthesis genes, including PMEI14, both directly and indirectly via a three-tiered mechanism involving GL2, HDG2 and TTG2.
Collapse
Affiliation(s)
- Patrick J Allen
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Ross S Napoli
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Roger W Parish
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Song Feng Li
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| |
Collapse
|
121
|
Wang C, Quadrado M, Mireau H. Interplay of endonucleolytic and exonucleolytic processing in the 3'-end formation of a mitochondrial nad2 RNA precursor in Arabidopsis. Nucleic Acids Res 2023; 51:7619-7630. [PMID: 37293952 PMCID: PMC10415111 DOI: 10.1093/nar/gkad493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Initiation and termination of plant mitochondrial transcription are poorly controlled steps. Precursor transcripts are thus often longer than necessary, and 3'-end processing as well as control of RNA stability are essential to produce mature mRNAs in plant mitochondria. Plant mitochondrial 3' ends are determined by 3'-to-5' exonucleolytic trimming until the progression of mitochondrial exonucleases along transcripts is stopped by stable RNA structures or RNA binding proteins. In this analysis, we investigated the function of the endonucleolytic mitochondrial stability factor 1 (EMS1) pentatricopeptide repeat (PPR) protein and showed that it is essential for the production and the stabilization of the mature form of the nad2 exons 1-2 precursor transcript, whose 3' end corresponds to the 5' half of the nad2 trans-intron 2. The accumulation of an extended rather than a truncated form of this transcript in ems1 mutant plants suggests that the role of EMS1 in 3' end formation is not strictly limited to blocking the passage of 3'-5' exonucleolytic activity, but that 3' end formation of the nad2 exons 1-2 transcript involves an EMS1-dependent endonucleolytic cleavage. This study demonstrates that the formation of the 3' end of mitochondrial transcripts may involve an interplay of endonucleolytic and exonucleolytic processing mediated by PPR proteins.
Collapse
Affiliation(s)
- Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Martine Quadrado
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
122
|
Simkin AJ, Alqurashi M, Lopez-Calcagno PE, Headland LR, Raines CA. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency. PLANT PHYSIOLOGY 2023; 192:2989-3000. [PMID: 37099455 PMCID: PMC11025378 DOI: 10.1093/plphys/kiad256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) reversibly converts 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate coupled with the reduction of NADPH to NADP+. The GAPDH enzyme that functions in the Calvin-Benson cycle is assembled either from 4 glyceraldehyde-3-phosphate dehydrogenase A (GAPA) subunit proteins forming a homotetramer (A4) or from 2 GAPA and 2 glyceraldehyde-3-phosphate dehydrogenase B (GAPB) subunit proteins forming a heterotetramer (A2B2). The relative importance of these 2 forms of GAPDH in determining the rate of photosynthesis is unknown. To address this question, we measured the photosynthetic rates of Arabidopsis (Arabidopsis thaliana) plants containing reduced amounts of the GAPDH A and B subunits individually and jointly, using T-DNA insertion lines of GAPA and GAPB and transgenic GAPA and GAPB plants with reduced levels of these proteins. Here, we show that decreasing the levels of either the A or B subunits decreased the maximum efficiency of CO2 fixation, plant growth, and final biomass. Finally, these data showed that the reduction in GAPA protein to 9% wild-type levels resulted in a 73% decrease in carbon assimilation rates. In contrast, eliminating GAPB protein resulted in a 40% reduction in assimilation rates. This work demonstrates that the GAPA homotetramer can compensate for the loss of GAPB, whereas GAPB alone cannot compensate fully for the loss of the GAPA subunit.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mohammed Alqurashi
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Patricia E Lopez-Calcagno
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lauren R Headland
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christine A Raines
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
123
|
Hao G, Naumann TA, Chen H, Bai G, McCormick S, Kim HS, Tian B, Trick HN, Naldrett MJ, Proctor R. Fusarium graminearum Effector FgNls1 Targets Plant Nuclei to Induce Wheat Head Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:478-488. [PMID: 36853197 DOI: 10.1094/mpmi-12-22-0254-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases of wheat and barley worldwide. Effectors suppress host immunity and promote disease development. The genome of F. graminearum contains hundreds of effectors with unknown function. Therefore, investigations of the functions of these effectors will facilitate developing novel strategies to enhance wheat resistance to FHB. We characterized a F. graminearum effector, FgNls1, containing a signal peptide and multiple eukaryotic nuclear localization signals. A fusion protein of green fluorescent protein and FgNls1 accumulated in plant cell nuclei when transiently expressed in Nicotiana benthamiana. FgNls1 suppressed Bax-induced cell death when co-expressed in N. benthamiana. We revealed that the expression of FgNLS1 was induced in wheat spikes infected with F. graminearum. The Fgnls1 mutants significantly reduced initial infection and FHB spread within a spike. The function of FgNLS1 was restored in the Fgnls1-complemented strains. Wheat histone 2B was identified as an interacting protein by FgNls1-affinity chromatography. Furthermore, transgenic wheat plants that silence FgNLS1 expression had significantly lower FHB severity than control plants. This study demonstrates a critical role of FgNls1 in F. graminearum pathogenesis and indicates that host-induced gene silencing targeting F. graminearum effectors is a promising approach to enhance FHB resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guixia Hao
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Todd A Naumann
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, U.S.A
| | - Susan McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Michael J Naldrett
- Nebraska Center for Biotechnology, Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Robert Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| |
Collapse
|
124
|
Sowders JM, Jewell JB, Tripathi D, Tanaka K. The intrinsically disordered C-terminus of purinoceptor P2K1 fine-tunes plant responses to extracellular ATP. FEBS Lett 2023; 597:2059-2071. [PMID: 37465901 PMCID: PMC10530300 DOI: 10.1002/1873-3468.14703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
P2K1 is a plant-specific purinoceptor that perceives extracellular ATP (eATP), a signaling molecular implicated in various physiological processes. Interestingly, P2K1 harbors a C-terminal intrinsically disordered region (IDR). When we overexpressed a truncated P2K1 (P2K1t ) lacking the IDR, primary root growth completely ceased in response to eATP. We investigated the functional roles of the IDR in P2K1 using a combination of molecular genetics, calcium imaging, gene expression analysis, and histochemical approaches. We found that the P2K1t variant gave rise to an amplified response to eATP, through accumulation of superoxide, altered cell wall integrity, and ultimate cell death in the primary root tip. Together, these observations underscore the significant involvement of the C-terminal tail of P2K1 in root growth regulation.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Jeremy B. Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
125
|
Rosas-Saavedra C, Quiroz LF, Parra S, Gonzalez-Calquin C, Arias D, Ocarez N, Lopez F, Stange C. Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2788. [PMID: 37570943 PMCID: PMC10421225 DOI: 10.3390/plants12152788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.
Collapse
Affiliation(s)
- Carolina Rosas-Saavedra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Luis Felipe Quiroz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Samuel Parra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Christian Gonzalez-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Nallat Ocarez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Instituto de Investigaciones Agropecuarias (INIA), La Platina, Research Centre, Av. Santa Rosa 11610, Santiago 8820000, Chile
| | - Franco Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| |
Collapse
|
126
|
Ohno S, Kokado R, Makishima R, Doi M. BpCYP76AD15 is involved in betaxanthin biosynthesis in bougainvillea callus. PLANTA 2023; 258:47. [PMID: 37474871 DOI: 10.1007/s00425-023-04202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
MAIN CONCLUSION BpCYP76AD15 is involved in betaxanthin biosynthesis in callus, but not in bracts, in bougainvillea. Bougainvillea (Bougainvillea peruviana) is a climbing tropical ornamental tree belonging to Nyctaginaceae. Pigments that are conferring colorful bracts in bougainvillea are betalains, and that conferring yellow color are betaxanthins. In general, for red-to-purple betacyanin biosynthesis, α clade CYP76AD that has tyrosine hydroxylase and DOPA oxygenase activity is required, while for betaxanthin biosynthesis, β clade CYP76AD that has only tyrosine hydroxylase is required. To date, betaxanthin biosynthesis pathway genes have not been identified yet in bougainvillea. Since bougainvillea is phylogenetically close to four-O-clock (Mirabilis jalapa), and it was reported that β clade CYP76AD, MjCYP76AD15, is involved in floral betaxanthin biosynthesis in four-O-clock. Thus, we hypothesized that orthologous gene of MjCYP76AD15 in bougainvillea might be involved in bract betaxanthin biosynthesis. To test the hypothesis, we attempted to identify β clade CYP76AD gene from yellow bracts by RNA-seq; however, we could not. Instead, we found that callus accumulated betaxanthin and that β clade CYP76AD gene, BpCYP76AD15, were expressed in callus. We validated BpCYP76AD15 function by transgenic approach (agro-infiltration and over-expression in transgenic tobacco), and it was suggested that BpCYP76AD15 is involved in betaxanthin biosynthesis in callus, but not in bracts in bougainvillea. Interestingly, our data also indicate the existence of two pathways for betaxanthin biosynthesis (β clade CYP76AD-dependent and -independent), and the latter pathway is important for betaxanthin biosynthesis in bougainvillea bracts.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Rika Kokado
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Rikako Makishima
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
127
|
Ogura N, Sasagawa Y, Ito T, Tameshige T, Kawai S, Sano M, Doll Y, Iwase A, Kawamura A, Suzuki T, Nikaido I, Sugimoto K, Ikeuchi M. WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. SCIENCE ADVANCES 2023; 9:eadg6983. [PMID: 37418524 PMCID: PMC10328406 DOI: 10.1126/sciadv.adg6983] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Plants can regenerate their bodies via de novo establishment of shoot apical meristems (SAMs) from pluripotent callus. Only a small fraction of callus cells is eventually specified into SAMs but the molecular mechanisms underlying fate specification remain obscure. The expression of WUSCHEL (WUS) is an early hallmark of SAM fate acquisition. Here, we show that a WUS paralog, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), negatively regulates SAM formation from callus in Arabidopsis thaliana. WOX13 promotes non-meristematic cell fate via transcriptional repression of WUS and other SAM regulators and activation of cell wall modifiers. Our Quartz-Seq2-based single cell transcriptome revealed that WOX13 plays key roles in determining cellular identity of callus cell population. We propose that reciprocal inhibition between WUS and WOX13 mediates critical cell fate determination in pluripotent cell population, which has a major impact on regeneration efficiency.
Collapse
Affiliation(s)
- Nao Ogura
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Yohei Sasagawa
- Department of Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan
| | - Tasuku Ito
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Toshiaki Tameshige
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama 244-0813, Japan
| | - Satomi Kawai
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Masaki Sano
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Yuki Doll
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Itoshi Nikaido
- Department of Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 119-0033, Japan
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
128
|
Zhou F, Wu H, Chen Y, Wang M, Tuskan GA, Yin T. Function and molecular mechanism of a poplar placenta limited MIXTA gene in regulating differentiation of plant epidermal cells. Int J Biol Macromol 2023; 242:124743. [PMID: 37150377 DOI: 10.1016/j.ijbiomac.2023.124743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
The placenta in fruits of most plants either desiccate and shrink as the fruits mature or develop further to form the fleshy tissues. In poplars, placental epidermal cells protrude collectively to produce catkin fibers. In this study, three carpel limited MIXTA genes, PdeMIXTA02, PdeMIXTA03, PdeMIXTA04, were find to specifically expressed in carpel immediately after pollination. Heterologous expression of the three genes in Arabidopsis demonstrated that PdeMIXTA04 significantly promoted trichomes density and could restore trichomes in the trichomeless mutant. By contrast, such functions were not observed with PdeMIXTA02, PdeMIXTA03. In situ hybridization revealed that PdeMIXTA04 was explicitly expressed in poplar placental epidermal cells. We also confirmed trichome-specific expression of the PdeMIXTA04 promoter. Multiple experimental proofs have confirmed the interaction between PdeMIXTA04, PdeMYC and PdeWD40, indicating PdeMIXTA04 functioned through the MYB-bHLH-WD40 ternary complex. Our work provided distinctive understanding of the molecular mechanism triggering differentiation of poplar catkins.
Collapse
Affiliation(s)
- Fangwei Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxiu Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
129
|
Yang Y, Steidele CE, Rössner C, Löffelhardt B, Kolb D, Leisen T, Zhang W, Ludwig C, Felix G, Seidl MF, Becker A, Nürnberger T, Hahn M, Gust B, Gross H, Hückelhoven R, Gust AA. Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms. Nat Commun 2023; 14:3621. [PMID: 37336953 DOI: 10.1038/s41467-023-39208-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.
Collapse
Affiliation(s)
- Yuankun Yang
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| | - Christina E Steidele
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Chair of Phytopathology, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Clemens Rössner
- Institute of Botany, Developmental Biology of Plants, Justus-Liebig-University Gießen, Gießen, Germany
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Dagmar Kolb
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Thomas Leisen
- Department of Biology, Phytopathology group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Weiguo Zhang
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Faculty of Life Science, Northwest University, Xi'an, China
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Georg Felix
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Annette Becker
- Institute of Botany, Developmental Biology of Plants, Justus-Liebig-University Gießen, Gießen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Matthias Hahn
- Department of Biology, Phytopathology group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| |
Collapse
|
130
|
Tomoi T, Tameshige T, Betsuyaku E, Hamada S, Sakamoto J, Uchida N, Torii K, Shimizu KK, Tamada Y, Urawa H, Okada K, Fukuda H, Tatematsu K, Kamei Y, Betsuyaku S. Targeted single-cell gene induction by optimizing the dually regulated CRE/ loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1171531. [PMID: 37351202 PMCID: PMC10283073 DOI: 10.3389/fpls.2023.1171531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/24/2023]
Abstract
Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.
Collapse
Affiliation(s)
- Takumi Tomoi
- Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eriko Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Saki Hamada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, United States
| | - Kentaro K. Shimizu
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- Ryukoku Extention Center Shiga, Ryukoku University, Otsu, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
131
|
Inaba H, Oikawa K, Ishikawa K, Kodama Y, Matsuura K, Numata K. Binding of Tau-derived peptide-fused GFP to plant microtubules in Arabidopsis thaliana. PLoS One 2023; 18:e0286421. [PMID: 37267323 DOI: 10.1371/journal.pone.0286421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Studies on how exogenous molecules modulate properties of plant microtubules, such as their stability, structure, and dynamics, are important for understanding and modulating microtubule functions in plants. We have developed a Tau-derived peptide (TP) that binds to microtubules and modulates their properties by binding of TP-conjugated molecules in vitro. However, there was no investigation of TPs on microtubules in planta. Here, we generated transgenic Arabidopsis thaliana plants stably expressing TP-fused superfolder GFP (sfGFP-TP) and explored the binding properties and effects of sfGFP-TP on plant microtubules. Our results indicate that the expressed sfGFP-TP binds to the plant microtubules without inhibiting plant growth. A transgenic line strongly expressing sfGFP-TP produced thick fibrous structures that were stable under conditions where microtubules normally depolymerize. This study generates a new tool for analyzing and modulating plant microtubules.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
132
|
Yan Y, Guo YT, Chang CY, Li XM, Zhang MQ, Ding CH, Cui D, Sun C, Ren Y, Wang ML, Xie C, Ni Z, Sun Q, Chen F, Gou 缑金营 JY. HSP90.2 modulates 2Q2-mediated wheat resistance against powdery mildew. PLANT, CELL & ENVIRONMENT 2023; 46:1935-1945. [PMID: 36890722 DOI: 10.1111/pce.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a critical food crop feeding the world, but pathogens threaten its production. Wheat Heat Shock Protein 90.2 (HSP90.2) is a pathogen-inducible molecular chaperone folding nascent preproteins. Here, we used wheat HSP90.2 to isolate clients regulated at the posttranslational level. Tetraploid wheat hsp90.2 knockout mutant was susceptible to powdery mildew, while the HSP90.2 overexpression line was resistant, suggesting that HSP90.2 was essential for wheat resistance against powdery mildew. We next isolated 1500 clients of HSP90.2, which contained a wide variety of clients with different biological classifications. We utilized 2Q2, a nucleotide-binding leucine repeat-rich protein, as a model to investigate the potential of HSP90.2 interactome in fungal resistance. The transgenic line co-suppressing 2Q2 was more susceptible to powdery mildew, suggesting 2Q2 as a novel Pm-resistant gene. The 2Q2 protein resided in chloroplasts, and HSP90.2 played a critical role in the accumulation of 2Q2 in thylakoids. Our data provided over 1500 HSP90.2 clients with a potential regulation at the protein folding process and contributed a nontypical approach to isolate pathogenesis-related proteins.
Collapse
Affiliation(s)
- Yan Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Ting Guo
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chao-Yan Chang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiao-Ming Li
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mei-Qi Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ci-Hang Ding
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Dangqun Cui
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jin-Ying Gou 缑金营
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
133
|
Mangano S, Muñoz A, Fernández-Calvino L, Castellano MM. HOP co-chaperones contribute to GA signaling by promoting the accumulation of the F-box protein SNE in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100517. [PMID: 36597357 PMCID: PMC10203442 DOI: 10.1016/j.xplc.2023.100517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Gibberellins (GAs) play important roles in multiple developmental processes and in plant response to the environment. Within the GA pathway, a central regulatory step relies on GA-dependent degradation of the DELLA transcriptional regulators. Nevertheless, the relevance of the stability of other key proteins in this pathway, such as SLY1 and SNE (the F-box proteins involved in DELLA degradation), remains unknown. Here, we take advantage of mutants in the HSP70-HSP90 organizing protein (HOP) co-chaperones and reveal that these proteins contribute to the accumulation of SNE in Arabidopsis. Indeed, HOP proteins, along with HSP90 and HSP70, interact in vivo with SNE, and SNE accumulation is significantly reduced in the hop mutants. Concomitantly, greater accumulation of the DELLA protein RGA is observed in these plants. In agreement with these molecular phenotypes, hop mutants show a hypersensitive response to the GA inhibitor paclobutrazol and display a partial response to the ectopic addition of GA when GA-regulated processes are assayed. These mutants also display different phenotypes associated with alterations in the GA pathway, such as reduced germination rate, delayed bolting, and reduced hypocotyl elongation in response to warm temperatures. Remarkably, ectopic overexpression of SNE reverts the delay in germination and the thermally dependent hypocotyl elongation defect of the hop1 hop2 hop3 mutant, revealing that SNE accumulation is the key aspect of the hop mutant phenotypes. Together, these data reveal a pivotal role for HOP in SNE accumulation and GA signaling.
Collapse
Affiliation(s)
- Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBA, CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lourdes Fernández-Calvino
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
134
|
Kusová A, Steinbachová L, Přerovská T, Drábková LZ, Paleček J, Khan A, Rigóová G, Gadiou Z, Jourdain C, Stricker T, Schubert D, Honys D, Schrumpfová PP. Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions. PLANT MOLECULAR BIOLOGY 2023; 112:61-83. [PMID: 37118559 PMCID: PMC10167121 DOI: 10.1007/s11103-023-01348-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
Telomere repeat binding proteins (TRBs) belong to a family of proteins possessing a Myb-like domain which binds to telomeric repeats. Three members of this family (TRB1, TRB2, TRB3) from Arabidopsis thaliana have already been described as associated with terminal telomeric repeats (telomeres) or short interstitial telomeric repeats in gene promoters (telo-boxes). They are also known to interact with several protein complexes: telomerase, Polycomb repressive complex 2 (PRC2) E(z) subunits and the PEAT complex (PWOs-EPCRs-ARIDs-TRBs). Here we characterize two novel members of the TRB family (TRB4 and TRB5). Our wide phylogenetic analyses have shown that TRB proteins evolved in the plant kingdom after the transition to a terrestrial habitat in Streptophyta, and consequently TRBs diversified in seed plants. TRB4-5 share common TRB motifs while differing in several others and seem to have an earlier phylogenetic origin than TRB1-3. Their common Myb-like domains bind long arrays of telomeric repeats in vitro, and we have determined the minimal recognition motif of all TRBs as one telo-box. Our data indicate that despite the distinct localization patterns of TRB1-3 and TRB4-5 in situ, all members of TRB family mutually interact and also bind to telomerase/PRC2/PEAT complexes. Additionally, we have detected novel interactions between TRB4-5 and EMF2 and VRN2, which are Su(z)12 subunits of PRC2.
Collapse
Affiliation(s)
- Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Paleček
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahamed Khan
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Rigóová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Zuzana Gadiou
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claire Jourdain
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Tino Stricker
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
135
|
Ohashi-Ito K, Iwamoto K, Yamagami A, Nakano T, Fukuda H. HD-ZIP III-dependent local promotion of brassinosteroid synthesis suppresses vascular cell division in Arabidopsis root apical meristem. Proc Natl Acad Sci U S A 2023; 120:e2216632120. [PMID: 37011193 PMCID: PMC10104508 DOI: 10.1073/pnas.2216632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Kuninori Iwamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Ayumi Yamagami
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Takeshi Nakano
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Bioscience and Biotechnology, Faculty of Environmental Sciences, Kyoto University of Advanced Science, Kyoto621-8555, Japan
| |
Collapse
|
136
|
Méndez-López E, Donaire L, Gosálvez B, Díaz-Vivancos P, Sánchez-Pina MA, Tilsner J, Aranda MA. Tomato SlGSTU38 interacts with the PepMV coat protein and promotes viral infection. THE NEW PHYTOLOGIST 2023; 238:332-348. [PMID: 36631978 DOI: 10.1111/nph.18728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Pepino mosaic virus (PepMV) is pandemic in tomato crops, causing important economic losses world-wide. No PepMV-resistant varieties have been developed yet. Identification of host factors interacting with PepMV proteins is a promising source of genetic targets to develop PepMV-resistant varieties. The interaction between the PepMV coat protein (CP) and the tomato glutathione S-transferase (GST) SlGSTU38 was identified in a yeast two-hybrid (Y2H) screening and validated by directed Y2H and co-immunoprecipitation assays. SlGSTU38-knocked-out Micro-Tom plants (gstu38) generated by the CRISPR/Cas9 technology together with live-cell imaging were used to understand the role of SlGSTU38 during infection. The transcriptomes of healthy and PepMV-infected wild-type (WT) and gstu38 plants were profiled by RNA-seq analysis. SlGSTU38 functions as a PepMV-specific susceptibility factor in a cell-autonomous manner and relocalizes to the virus replication complexes during infection. Besides, knocking out SlGSTU38 triggers reactive oxygen species accumulation in leaves and the deregulation of stress-responsive genes. SlGSTU38 may play a dual role: On the one hand, SlGSTU38 may exert a proviral function depending on its specific interaction with the PepMV CP; and on the other hand, SlGSTU38 may delay PepMV-infection sensing by participating in the redox intracellular homeostasis in a nonspecific manner.
Collapse
Affiliation(s)
- Eduardo Méndez-López
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Blanca Gosálvez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Pedro Díaz-Vivancos
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - M Amelia Sánchez-Pina
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St. Andrews, St. Andrews, KY16 9ST, UK
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
137
|
Lee SW, Choi D, Moon H, Kim S, Kang H, Paik I, Huq E, Kim DH. PHYTOCHROME-INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA-QUINE STARCH in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:110-123. [PMID: 36710626 DOI: 10.1111/tpj.16124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.
Collapse
Affiliation(s)
- Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sujeong Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Inyup Paik
- Department of Molecular Biosciences, the University of Texas at Austin, Texas, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, the University of Texas at Austin, Texas, 78712, USA
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
138
|
Ta KN, Shimizu-Sato S, Agata A, Yoshida Y, Taoka KI, Tsuji H, Akagi T, Tanizawa Y, Sano R, Nosaka-Takahashi M, Suzuki T, Demura T, Toyoda A, Nakamura Y, Sato Y. A leaf-emanated signal orchestrates grain size and number in response to maternal resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994645 DOI: 10.1111/tpj.16219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.
Collapse
Affiliation(s)
- Kim Nhung Ta
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Vietnam Japan University, Vietnam National University, Hanoi, Vietnam
| | - Sae Shimizu-Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ayumi Agata
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yuri Yoshida
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ken-Ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Misuzu Nosaka-Takahashi
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yutaka Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| |
Collapse
|
139
|
Singh P, Stevenson SR, Dickinson PJ, Reyna-Llorens I, Tripathi A, Reeves G, Schreier TB, Hibberd JM. C 4 gene induction during de-etiolation evolved through changes in cis to allow integration with ancestral C 3 gene regulatory networks. SCIENCE ADVANCES 2023; 9:eade9756. [PMID: 36989352 PMCID: PMC10058240 DOI: 10.1126/sciadv.ade9756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
C4 photosynthesis has evolved by repurposing enzymes found in C3 plants. Compared with the ancestral C3 state, accumulation of C4 cycle proteins is enhanced. We used de-etiolation of C4 Gynandropsis gynandra and C3 Arabidopsis thaliana to understand this process. C4 gene expression and chloroplast biogenesis in G. gynandra were tightly coordinated. Although C3 and C4 photosynthesis genes showed similar induction patterns, in G. gynandra, C4 genes were more strongly induced than orthologs from A. thaliana. In vivo binding of TGA and homeodomain as well as light-responsive elements such as G- and I-box motifs were associated with the rapid increase in transcripts of C4 genes. Deletion analysis confirmed that regions containing G- and I-boxes were necessary for high expression. The data support a model in which accumulation of transcripts derived from C4 photosynthesis genes in C4 leaves is enhanced because modifications in cis allowed integration into ancestral transcriptional networks.
Collapse
|
140
|
Chen P, De Winne N, De Jaeger G, Ito M, Heese M, Schnittger A. KNO1‐mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes homologous recombination. EMBO J 2023; 42:e111980. [PMID: 36970874 PMCID: PMC10183828 DOI: 10.15252/embj.2022111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
Homologous recombination (HR) is a key DNA damage repair pathway that is tightly adjusted to the state of a cell. A central regulator of homologous recombination is the conserved helicase-containing Bloom syndrome complex, renowned for its crucial role in maintaining genome integrity. Here, we show that in Arabidopsis thaliana, Bloom complex activity is controlled by selective autophagy. We find that the recently identified DNA damage regulator KNO1 facilitates K63-linked ubiquitination of RMI1, a structural component of the complex, thereby triggering RMI1 autophagic degradation and resulting in increased homologous recombination. Conversely, reduced autophagic activity makes plants hypersensitive to DNA damage. KNO1 itself is also controlled at the level of proteolysis, in this case mediated by the ubiquitin-proteasome system, becoming stabilized upon DNA damage via two redundantly acting deubiquitinases, UBP12 and UBP13. These findings uncover a regulatory cascade of selective and interconnected protein degradation steps resulting in a fine-tuned HR response upon DNA damage.
Collapse
|
141
|
Rosas-Diaz T, Cana-Quijada P, Wu M, Hui D, Fernandez-Barbero G, Macho AP, Solano R, Castillo AG, Wang XW, Lozano-Duran R, Bejarano ER. The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36946519 DOI: 10.1111/jipb.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.
Collapse
Affiliation(s)
- Tabata Rosas-Diaz
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Pepe Cana-Quijada
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Du Hui
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Araceli G Castillo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, D-72076, Germany
| | - Eduardo R Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
142
|
Deng L, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li CB, Zhong S, Li C. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. THE PLANT CELL 2023; 35:1038-1057. [PMID: 36471914 PMCID: PMC10015170 DOI: 10.1093/plcell/koac349] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
143
|
Ke W, Xing J, Chen Z, Zhao Y, Xu W, Tian L, Guo J, Xie X, Du D, Wang Z, Li Y, Xu J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. The TaTCP4/10-B1 cascade regulates awn elongation in wheat (Triticum aestivum L.). PLANT COMMUNICATIONS 2023:100590. [PMID: 36919240 PMCID: PMC10363512 DOI: 10.1016/j.xplc.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield. The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat. However, the mechanism of awn inhibition centered around B1 remains to be clarified. Here, we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data; this variant causes an amino acid substitution and premature termination, resulting in a long-awn phenotype. Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin- and auxin-promoted cell division. Moreover, B1 directly repressed the expression of TaRAE2 and TaLks2, whose orthologs have been reported to promote awn development in rice or barley. More importantly, we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1, and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10. Taken together, our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.
Collapse
Affiliation(s)
- Wensheng Ke
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lulu Tian
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinquan Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yufeng Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
144
|
Ishikawa K, Kobayashi M, Kusano M, Numata K, Kodama Y. Using the organelle glue technique to engineer the plant cell metabolome. PLANT CELL REPORTS 2023; 42:599-607. [PMID: 36705704 DOI: 10.1007/s00299-023-02982-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
By using the organelle glue technique, we artificially manipulated organelle interactions and controlled the plant metabolome at the pathway level. Plant cell metabolic activity changes with fluctuating environmental conditions, in part via adjustments in the arrangement and interaction of organelles. This hints at the potential for designing plants with desirable metabolic activities for food and pharmaceutical industries by artificially controlling the interaction of organelles through genetic modification. We previously developed a method called the organelle glue technique, in which chloroplast-chloroplast adhesion is induced in plant cells using the multimerization properties of split fluorescent proteins. Here, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants in which chloroplasts adhere to each other and performed metabolome analysis to examine the metabolic changes in these lines. In plant cells expressing a construct encoding the red fluorescent protein mCherry targeted to the chloroplast outer envelope by fusion with a signal sequence (cTP-mCherry), chloroplasts adhered to each other and formed chloroplast aggregations. Mitochondria and peroxisomes were embedded in the aggregates, suggesting that normal interactions between chloroplasts and these organelles were also affected. Metabolome analysis of the cTP-mCherry-expressing Arabidopsis shoots revealed significantly higher levels of glycine, serine, and glycerate compared to control plants. Notably, these are photorespiratory metabolites that are normally transported between chloroplasts, mitochondria, and peroxisomes. Together, our data indicate that chloroplast-chloroplast adhesion alters organellar interactions with mitochondria and peroxisomes and disrupts photorespiratory metabolite transport. These results highlight the possibility of controlling plant metabolism at the pathway level by manipulating organelle interactions.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan.
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
145
|
Hossain MF, Dutta AK, Suzuki T, Higashiyama T, Miyamoto C, Ishiguro S, Maruta T, Muto Y, Nishimura K, Ishida H, Aboulela M, Hachiya T, Nakagawa T. Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, affects cytokinesis of guard mother cells and exine formation of pollen in Arabidopsis thaliana. PLANTA 2023; 257:64. [PMID: 36811672 DOI: 10.1007/s00425-023-04097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.
Collapse
Affiliation(s)
- Md Firose Hossain
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan
| | - Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Chiharu Miyamoto
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Sumie Ishiguro
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takanori Maruta
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Yuki Muto
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Hideki Ishida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan.
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan.
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan.
| |
Collapse
|
146
|
Hirano T, Okamoto A, Oda Y, Sakamoto T, Takeda S, Matsuura T, Ikeda Y, Higaki T, Kimura S, Sato MH. Ab-GALFA, A bioassay for insect gall formation using the model plant Arabidopsis thaliana. Sci Rep 2023; 13:2554. [PMID: 36781988 PMCID: PMC9925437 DOI: 10.1038/s41598-023-29302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Insect galls are abnormal plant organs formed by gall-inducing insects to provide shelter and nutrients for themselves. Although insect galls are spatialized complex structures with unique shapes and functions, the molecular mechanism of the gall formation and the screening system for the gall inducing effectors remains unknown. Here, we demonstrate that an extract of a gall-inducing aphid, Schlechtendalia chinensis, induces an abnormal structure in the root-tip region of Arabidopsis seedlings. The abnormal structure is composed of stem-like cells, vascular, and protective tissues, as observed in typical insect galls. Furthermore, we confirm similarities in the gene expression profiles between the aphid-treated seedlings and the early developmental stages of Rhus javanica galls formed by S. chinensis. Based on the results, we propose a model system for analyzing the molecular mechanisms of gall formation: the Arabidopsis-based Gall-Forming Assay (Ab-GALFA). Ab-GALFA could be used not only as a model to elucidate the mechanisms underlying gall formation, but also as a bioassay system to isolate insect effector molecules of gall-induction.
Collapse
Affiliation(s)
- Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan
- Center for Frontier Natural History, Kyoto Prefectural University, Shimogamo-Hangi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Ayaka Okamoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Tomoaki Sakamoto
- Laboratory of Plant Ecological and Evolutionary Developmental Biology, Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, 603-8555, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 74 Oji, Kitainayazuma, Seika-Cho, Soraku-Gun, Kyoto, 619-0244, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Takumi Higaki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Seisuke Kimura
- Laboratory of Plant Ecological and Evolutionary Developmental Biology, Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, 603-8555, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan.
- Center for Frontier Natural History, Kyoto Prefectural University, Shimogamo-Hangi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan.
| |
Collapse
|
147
|
Wangpaiboon K, Charoenwongpaiboon T, Klaewkla M, Field RA, Panpetch P. Cassava pullulanase and its synergistic debranching action with isoamylase 3 in starch catabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1114215. [PMID: 36778707 PMCID: PMC9911869 DOI: 10.3389/fpls.2023.1114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Pullulanase (EC 3.2.1.41, PUL), a debranching enzyme belonging to glycoside hydrolase family 13 subfamily 13, catalyses the cleavage of α-1,6 linkages of pullulan and β-limit dextrin. The present work studied PUL from cassava Manihot esculenta Crantz (MePUL) tubers, an important economic crop. The Mepul gene was successfully cloned and expressed in E. coli and rMePUL was biochemically characterised. MePUL was present as monomer and homodimer, as judged by apparent mass of ~ 84 - 197 kDa by gel permeation chromatography analysis. Optimal pH and temperature were at pH 6.0 and 50 °C, and enzyme activity was enhanced by the addition of Ca2+ ions. Pullulan is the most favourable substrate for rMePUL, followed by β-limit dextrin. Additionally, maltooligosaccharides were potential allosteric modulators of rMePUL. Interestingly, short-chain maltooligosaccharides (DP 2 - 4) were significantly revealed at a higher level when rMePUL was mixed with cassava isoamylase 3 (rMeISA3), compared to that of each single enzyme reaction. This suggests that MePUL and MeISA3 debranch β-limit dextrin in a synergistic manner, which represents a major starch catabolising process in dicots. Additionally, subcellular localisation suggested the involvement of MePUL in starch catabolism, which normally takes place in plastids.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Methus Klaewkla
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Pawinee Panpetch
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
148
|
Liaqat A, Alfatih A, Jan SU, Sun L, Zhao P, Xiang C. Transcription elongation factor AtSPT4-2 positively modulates salt tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:49. [PMID: 36683032 PMCID: PMC9869573 DOI: 10.1186/s12870-023-04060-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salt stress significantly influences plant growth and reduces crop yield. It is highly anticipated to develop salt-tolerant crops with salt tolerance genes and transgenic technology. Hence, it is critical to identify salt tolerance genes that can be used to improve crop salt tolerance. RESULTS We report that the transcription elongation factor suppressor of Ty 4-2 (SPT4-2) is a positive modulator of salt tolerance in Arabidopsis thaliana. AtSPT4-2 expression is induced by salt stress. Knockout mutants of AtSPT4-2 display a salt-sensitive phenotype, whereas AtSPT4-2 overexpression lines exhibit enhanced salt tolerance. Comparative transcriptomic analyses revealed that AtSPT4-2 may orchestrate the expression of genes associated with salt tolerance, including stress-responsive markers, protein kinases and phosphatases, salt-responsive transcription factors and those maintaining ion homeostasis, suggesting that AtSPT4-2 improves salt tolerance mainly by maintaining ion homeostasis and enhancing stress tolerance. CONCLUSIONS AtSPT4-2 positively modulates salt tolerance by maintaining ion homeostasis and regulating stress-responsive genes and serves as a candidate for the improvement of crop salt tolerance.
Collapse
Affiliation(s)
- Ayesha Liaqat
- Division of Life Sciences and Medicine; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Alamin Alfatih
- Division of Life Sciences and Medicine; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China.
| | - Sami Ullah Jan
- Division of Life Sciences and Medicine; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Liangqi Sun
- Division of Life Sciences and Medicine; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Pingxia Zhao
- Division of Life Sciences and Medicine; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China.
| | - Chengbin Xiang
- Division of Life Sciences and Medicine; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China.
| |
Collapse
|
149
|
Shiba Y, Takahashi T, Ohashi Y, Ueda M, Mimuro A, Sugimoto J, Noguchi Y, Igawa T. Behavior of Male Gamete Fusogen GCS1/HAP2 and the Regulation in Arabidopsis Double Fertilization. Biomolecules 2023; 13:biom13020208. [PMID: 36830580 PMCID: PMC9953686 DOI: 10.3390/biom13020208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In the sexual reproduction of flowering plants, two independent fertilization events occur almost simultaneously: two identical sperm cells fuse with either the egg cell or the central cell, resulting in embryo and endosperm development to produce a seed. GCS1/HAP2 is a sperm cell membrane protein essential for plasma membrane fusion with both female gametes. Other sperm membrane proteins, DMP8 and DMP9, are more important for egg cell fertilization than that of the central cell, suggesting its regulatory mechanism in GCS1/HAP2-driving gamete membrane fusion. To assess the GCS1/HAP2 regulatory cascade in the double fertilization system of flowering plants, we produced Arabidopsis transgenic lines expressing different GCS1/HAP2 variants and evaluated the fertilization in vivo. The fertilization pattern observed in GCS1_RNAi transgenic plants implied that sperm cells over the amount of GCS1/HAP2 required for fusion on their surface could facilitate membrane fusion with both female gametes. The cytological analysis of the dmp8dmp9 sperm cell arrested alone in an embryo sac supported GCS1/HAP2 distribution on the sperm surface. Furthermore, the fertilization failures with both female gametes were caused by GCS1/HAP2 secretion from the egg cell. These results provided a possible scenario of GCS1/HAP2 regulation, showing a potential scheme for capturing additional GCS1/HAP2-interacting proteins.
Collapse
Affiliation(s)
- Yuka Shiba
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Taro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yukino Ohashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Department of Ecological Developmental Adaptability Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Sendai 980-8578, Japan
| | - Amane Mimuro
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Jin Sugimoto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yuka Noguchi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
- Plant Molecular Science Center, Chiba University, 1-33 Yayoi, Chiba-shi 263-8522, Japan
- Correspondence:
| |
Collapse
|
150
|
Wang X, Teng C, Wei H, Liu S, Xuan H, Peng W, Li Q, Hao H, Lyu Q, Lyu S, Fan Y. Development of a set of novel binary expression vectors for plant gene function analysis and genetic transformation. FRONTIERS IN PLANT SCIENCE 2023; 13:1104905. [PMID: 36714700 PMCID: PMC9877630 DOI: 10.3389/fpls.2022.1104905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
With the advent of multiple omics and Genome-Wide Association Studies (GWAS) technology, genome-scale functional analysis of candidate genes is to be conducted in diverse plant species. Construction of plant binary expression vectors is the prerequisite for gene function analysis. Therefore, it is of significance to develop a set of plant binary expression vectors with highly efficient, inexpensive, and convenient cloning method, and easy-to-use in screening of positive recombinant in Escherichia coli. In this study, we developed a set of plant binary expression vectors, termed pBTR vectors, based on Golden Gate cloning using BsaI restriction site. Foreign DNA fragment of interest (FDI) can be cloned into the destination pBTR by one-step digestion-ligation reaction in a single tube, and even the FDI contains internal BsaI site(s). Markedly, in one digestion-ligation reaction, multiple FDIs (exemplified by cloning four soybean Glyma.02g025400, Glyma.05g201700, Glyma.06g165700, and Glyma.17g095000 genes) can be cloned into the pBTR vector to generate multiple corresponding expression constructs (each expression vector carrying an FDI). In addition, the pBTR vectors carry the visual marker, a brightness monomeric red fluorescent protein mScarlet-I, that can be observed with the unaided eye in screening of positive recombinants without the use of additional reagents/equipment. The reliability of the pBTR vectors was validated in plants by overexpression of AtMyb75/PAP1 in tomato and GUSPlus in soybean roots via Agrobacterium rhizogenes-mediated transformation, promoter activity analysis of AtGCSpro in Arabidopsis via A. tumefaciens-mediated transformation, and protein subcellular localization of the Vitis vinifera VvCEB1opt in tobacco, respectively. These results demonstrated that the pBTR vectors can be used in analysis of gene (over)expression, promoter activity, and protein subcellular localization. These vectors will contribute to speeding up gene function analysis and the process of plant molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shanhua Lyu
- *Correspondence: Shanhua Lyu, ; ; Yinglun Fan,
| | - Yinglun Fan
- *Correspondence: Shanhua Lyu, ; ; Yinglun Fan,
| |
Collapse
|