101
|
Ahmed T, Borthwick NJ, Gilmour J, Hayes P, Dorrell L, Hanke T. Control of HIV-1 replication in vitro by vaccine-induced human CD8(+) T cells through conserved subdominant Pol epitopes. Vaccine 2016; 34:1215-24. [PMID: 26784683 PMCID: PMC4769096 DOI: 10.1016/j.vaccine.2015.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/21/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Objective The specificity of CD8+ T cells is critical for early control of founder/transmitted and reactivated HIV-1. To tackle HIV-1 variability and escape, we designed vaccine immunogen HIVconsv assembled from 14 highly conserved regions of mainly Gag and Pol proteins. When administered to HIV-1-negative human volunteers in trial HIV-CORE 002, HIVconsv vaccines elicited CD8+ effector T cells which inhibited replication of up to 8 HIV-1 isolates in autologous CD4+ cells. This inhibition correlated with interferon-γ production in response to Gag and Pol peptide pools, but direct evidence of the inhibitory specificity was missing. Here, we aimed to define through recognition of which epitopes these effectors inhibit HIV-1 replication. Design CD8+ T-cells from the 3 broadest HIV-1 inhibitors out of 23 vaccine recipients were expanded in culture by Gag or Pol peptide restimulation and tested in viral inhibition assay (VIA) using HIV-1 clade B and A isolates. Methods Frozen PBMCs were expanded first using peptide pools from Gag or Pol conserved regions and tested on HIV-1-infected cells in VIA or by individual peptides for their effector functions. Single peptide specificities responsible for inhibition of HIV-1 replication were then confirmed by single-peptide expanded effectors tested on HIV-1-infected cells. Results We formally demonstrated that the vaccine-elicited inhibitory human CD8+ T cells recognized conserved epitopes of both Pol and Gag proteins. We defined 7 minimum epitopes, of which 3 were novel, presumably naturally subdominant. The effectors were oligofunctional producing several cytokines and chemokines and killing peptide-pulsed target cells. Conclusions These results implicate the use of functionally conserved regions of Pol in addition to the widely used Gag for T-cell vaccine design. Proportion of volunteers developing these effectors and their frequency in circulating PBMC are separate issues, which can be addressed, if needed, by more efficient vector and regimen delivery of conserved immunogens.
Collapse
Affiliation(s)
- Tina Ahmed
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Nicola J Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London SW10 9NH, United Kingdom; Faculty of Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London SW10 9NH, United Kingdom
| | - Lucy Dorrell
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London SW10 9NH, United Kingdom; Nuffield Department of Medicine, NDM Research Building, University of Oxford, Oxford OX3 7FZ, United Kingdom; Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Japan.
| |
Collapse
|
102
|
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
|
103
|
Composite Sequence-Structure Stability Models as Screening Tools for Identifying Vulnerable Targets for HIV Drug and Vaccine Development. Viruses 2015; 7:5718-35. [PMID: 26556362 PMCID: PMC4664974 DOI: 10.3390/v7112901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/03/2023] Open
Abstract
Rapid evolution and high sequence diversity enable Human Immunodeficiency Virus (HIV) populations to acquire mutations to escape antiretroviral drugs and host immune responses, and thus are major obstacles for the control of the pandemic. One strategy to overcome this problem is to focus drugs and vaccines on regions of the viral genome in which mutations are likely to cripple function through destabilization of viral proteins. Studies relying on sequence conservation alone have had only limited success in determining critically important regions. We tested the ability of two structure-based computational models to assign sites in the HIV-1 capsid protein (CA) that would be refractory to mutational change. The destabilizing mutations predicted by these models were rarely found in a database of 5811 HIV-1 CA coding sequences, with none being present at a frequency greater than 2%. Furthermore, 90% of variants with the low predicted stability (from a set of 184 CA variants whose replication fitness or infectivity has been studied in vitro) had aberrant capsid structures and reduced viral infectivity. Based on the predicted stability, we identified 45 CA sites prone to destabilizing mutations. More than half of these sites are targets of one or more known CA inhibitors. The CA regions enriched with these sites also overlap with peptides shown to induce cellular immune responses associated with lower viral loads in infected individuals. Lastly, a joint scoring metric that takes into account both sequence conservation and protein structure stability performed better at identifying deleterious mutations than sequence conservation or structure stability information alone. The computational sequence-structure stability approach proposed here might therefore be useful for identifying immutable sites in a protein for experimental validation as potential targets for drug and vaccine development.
Collapse
|
104
|
Phanuphak N, Lo YR, Shao Y, Solomon SS, O'Connell RJ, Tovanabutra S, Chang D, Kim JH, Excler JL. HIV Epidemic in Asia: Implications for HIV Vaccine and Other Prevention Trials. AIDS Res Hum Retroviruses 2015; 31:1060-76. [PMID: 26107771 DOI: 10.1089/aid.2015.0049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An overall decrease of HIV prevalence is now observed in several key Asian countries due to effective prevention programs. The decrease in HIV prevalence and incidence may further improve with the scale-up of combination prevention interventions. The implementation of future prevention trials then faces important challenges. The opportunity to identify heterosexual populations at high risk such as female sex workers may rapidly wane. With unabating HIV epidemics among men who have sex with men (MSM) and transgender (TG) populations, an effective vaccine would likely be the only option to turn the epidemic. It is more likely that efficacy trials will occur among MSM and TG because their higher HIV incidence permits smaller and less costly trials. The constantly evolving patterns of HIV-1 diversity in the region suggest close monitoring of the molecular HIV epidemic in potential target populations for HIV vaccine efficacy trials. CRF01_AE remains predominant in southeast Asian countries and MSM populations in China. This relatively steady pattern is conducive to regional efficacy trials, and as efficacy warrants, to regional licensure. While vaccines inducing nonneutralizing antibodies have promise against HIV acquisition, vaccines designed to induce broadly neutralizing antibodies and cell-mediated immune responses of greater breadth and depth in the mucosal compartments should be considered for testing in MSM and TG. The rationale and design of efficacy trials of combination prevention modalities such as HIV vaccine and preexposure prophylaxis (PrEP) remain hypothetical, require high adherence to PrEP, are more costly, and present new regulatory challenges. The prioritization of prevention interventions should be driven by the HIV epidemic and decided by the country-specific health and regulatory authorities. Modeling the impact and cost-benefit may help this decision process.
Collapse
Affiliation(s)
| | - Ying-Ru Lo
- HIV, Hepatitis, and STI Unit, WHO Regional Office for the Western Pacific, Manila, Philippines
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sunil Suhas Solomon
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Robert J. O'Connell
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jean Louis Excler
- U.S. Military HIV Research Program, Bethesda, Maryland
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| |
Collapse
|
105
|
Seki S, Matano T. Development of a Sendai virus vector-based AIDS vaccine inducing T cell responses. Expert Rev Vaccines 2015; 15:119-27. [PMID: 26512881 DOI: 10.1586/14760584.2016.1105747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Virus-specific CD8(+) T-cell responses play a major role in the control of HIV replication, and induction of HIV-specific T-cell responses is an important strategy for AIDS vaccine development. Optimization of the delivery system and immunogen would be the key for the development of an effective T cell-based AIDS vaccine. Heterologous prime-boost vaccine regimens using multiple viral vectors are a promising protocol for efficient induction of HIV-specific T-cell responses, and the development of a variety of potent viral vectors have been attempted. This review describes the current progress of the development of T cell-based AIDS vaccines using viral vectors, focusing on Sendai virus vectors, whose phase I clinical trials have been performed.
Collapse
Affiliation(s)
- Sayuri Seki
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan
| | - Tetsuro Matano
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan.,b The Institute of Medical Science , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
106
|
Ishii H, Matano T. Development of an AIDS vaccine using Sendai virus vectors. Vaccine 2015; 33:6061-5. [PMID: 26232346 DOI: 10.1016/j.vaccine.2015.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Development of an effective AIDS vaccine is crucial for the control of global human immunodeficiency virus type 1 (HIV-1) prevalence. We have developed a novel AIDS vaccine using a Sendai virus (SeV) vector and investigated its efficacy in a macaque AIDS model of simian immunodeficiency virus (SIV) infection. Its immunogenicity and protective efficacy have been shown, indicating that the SeV vector is a promising delivery tool for AIDS vaccines. Here, we describe the potential of SeV vector as a vaccine antigen delivery tool to induce effective immune responses against HIV-1 infection.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
107
|
Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, Longo O, Francavilla V, Buttò S, Titti F, Monini P, Ensoli F, Ensoli B. Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Expert Opin Biol Ther 2015; 15 Suppl 1:S13-29. [PMID: 26096836 DOI: 10.1517/14712598.2015.1021328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Classical approaches aimed at targeting the HIV-1 envelope as well as other structural viral proteins have largely failed. The HIV-1 transactivator of transcription (Tat) is a key HIV virulence factor, which plays pivotal roles in virus gene expression, replication, transmission and disease progression. Notably, anti-Tat Abs are uncommon in natural infection and, when present, correlate with the asymptomatic state and lead to lower or no disease progression. Hence, targeting Tat represents a pathogenesis-driven intervention. AREAS COVERED Here, we review the rationale and the translational development of a therapeutic vaccine targeting the Tat protein. Preclinical and Phase I studies, Phase II trials with Tat in anti-Tat Ab-negative, virologically suppressed highly active antiretroviral therapy-treated subjects in Italy and South Africa were conducted. The results indicate that Tat-induced immune responses are necessary to restore immune homeostasis, to block the replenishment and to reduce the size of the viral reservoir. Additionally, they may help in establishing key parameters for highly active antiretroviral therapy intensification and a functional cure. EXPERT OPINION We propose the therapeutic setting as the most feasible to speed up the testing and comparison of preventative vaccine candidates, as the distinction lies in the use of the vaccine in uninfected versus infected subjects and not in the vaccine formulation.
Collapse
Affiliation(s)
- Aurelio Cafaro
- Istituto Superiore di Sanità, National AIDS Center , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vaccine 2015; 33 Suppl 4:D4-12. [PMID: 26100921 DOI: 10.1016/j.vaccine.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
| |
Collapse
|
109
|
Haynes BF. New approaches to HIV vaccine development. Curr Opin Immunol 2015; 35:39-47. [PMID: 26056742 DOI: 10.1016/j.coi.2015.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 11/25/2022]
Abstract
Development of a safe and effective vaccine for HIV is a major global priority. However, to date, efforts to design an HIV vaccine with methods used for development of other successful viral vaccines have not succeeded due to HIV diversity, HIV integration into the host genome, and ability of HIV to consistently evade anti-viral immune responses. Recent success in isolation of potent broadly neutralizing antibodies (bnAbs), in discovery of mechanisms of bnAb induction, and in discovery of atypical mechanisms of CD8T cell killing of HIV-infected cells, have opened new avenues for strategies for HIV vaccine design.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
110
|
Multilayered HIV-1 gag-specific T-cell responses contribute to slow progression in HLA-A*30-B*13-C*06-positive patients. AIDS 2015; 29:993-1002. [PMID: 25756195 PMCID: PMC4444423 DOI: 10.1097/qad.0000000000000652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective: The HLA-A∗30-B∗13-C∗06 haplotype is reported to be associated with slow disease progression in the HIV-1-infected Northern Han Chinese population, but the mechanism remains unknown. Design: Gag-specific T-cell responses and gag sequencing were performed in nine B′ clade HIV-1-infected HLA-A∗30-B∗13-C∗06-positive slow progressors to understand HLA-associated viral control. Methods: Interferon-γ ELISPOT assays were performed to determine the Gag-specific T-cell responses and cross-reactivity to variant peptides. Longitudinal HIV-1 gag sequencing was performed at the clonal level. Results: The overlapping peptides (OLP)-48: RQANFLGKIWPSHKGRPGNF (RL42 Gag434-453); OLP-2: GQLDRWEKIRLRPGGKKKYR (RL42 Gag11-30); OLP-15: VQNLQGQMVHQPISPRTLNA (RL42 Gag135-154) and OLP-16: HQPISPRTLNAWVKVVEEKA (RL42 Gag144-163) were dominant in HLA-A∗30-B∗13-C∗06-positive patients. A new epitope [HQPISPRTL (Gag144-152, HL9)] within OLP-15 and OLP-16 was identified. Results showed that strong cross-reactive responses to multiple immunodominant peptides were associated with better clinical outcomes. In addition, efficient cross-recognition of HL9 autologous variants developed in patients was associated with high CD4+ T-cell counts. However, two patients who had developed mutations to their dominant responses during the follow-up experienced decrease in CD4+ T-cell counts. It appears that Gag-specific T-cell responses against one or more unmutated epitopes or cross-recognition of autologous epitope variants contribute to slow disease progression in HLA-A∗30-B∗13-C∗06-positive patients. Conclusion: We conclude that a single ‘appropriate’ Gag-specific T-cell response appears to be sufficient to protect patients from disease progression. HLA-A∗30-B∗13-C∗06-positive individuals benefited from having a choice of numerous immunodominant gag epitopes for T cells to react. The study offers new insight for future design of T-cell-based HIV-1 vaccine.
Collapse
|
111
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
112
|
Early Kinetics of the HLA Class I-Associated Peptidome of MVA.HIVconsv-Infected Cells. J Virol 2015; 89:5760-71. [PMID: 25810538 PMCID: PMC4442425 DOI: 10.1128/jvi.03627-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Cytotoxic T cells substantially contribute to the control of intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). Here, we evaluated the immunopeptidome of Jurkat cells infected with the vaccine candidate MVA.HIVconsv, which delivers HIV-1 conserved antigenic regions by using modified vaccinia virus Ankara (MVA). We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 6,358 unique peptides associated with the class I human leukocyte antigen (HLA), of which 98 peptides were derived from the MVA vector and 7 were derived from the HIVconsv immunogen. Human vaccine recipients responded to the peptide sequences identified by LC-MS/MS. Peptides derived from the conserved HIV-1 regions were readily detected as early as 1.5 h after MVA.HIVconsv infection. Four of the seven conserved peptides were monitored between 0 and 3.5 h of infection by using quantitative mass spectrometry (Q-MS), and their abundance in HLA class I associations reflected levels of the whole HIVconsv protein in the cell. While immunopeptides delivered by the incoming MVA vector proteins could be detected, all early HIVconsv-derived immunopeptides were likely synthesized de novo. MVA.HIVconsv infection generally altered the composition of HLA class I-associated human (self) peptides, but these changes corresponded only partially to changes in the whole cell host protein abundance. IMPORTANCE The vast changes in cellular antigen presentation after infection of cells with a vectored vaccine, as shown here for MVA.HIVconsv, highlight the complexity of factors that need to be considered for efficient antigen delivery and presentation. Identification and quantitation of HLA class I-associated peptides by Q-MS will not only find broad application in T-cell epitope discovery but also inform vaccine design and allow evaluation of efficient epitope presentation using different delivery strategies.
Collapse
|
113
|
Borthwick NJ, Rosario M, Schiffner T, Bowles E, Ahmed T, Liljeström P, Stewart-Jones GE, Drijfhout JW, Melief CJM, Hanke T. Humoral responses to HIVconsv induced by heterologous vaccine modalities in rhesus macaques. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:82-93. [PMID: 26029368 PMCID: PMC4444151 DOI: 10.1002/iid3.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Abstract
Vaccines delivering T cell immunogen HIVconsv vectored by plasmid DNA, non-replicating simian adenovirus and non-replicating modified vaccinia virus Ankara (MVA) are under clinical evaluation in phase I/IIa trials in UK, Europe, and Africa. While these vaccines aim to induce effector T cell responses specific for HIV-1, we here characterized the humoral responses induced by HIVconsv administration to macaques using six different vaccine modalities: plasmid DNA, human adenovirus serotype 5, simian adenovirus serotype 63, MVA, Semliki Forest virus replicons, and adjuvanted overlapping synthetic long peptides (SLP). We found that only the SLP formulation, but none of the genetic vaccine platforms induced antibodies recognizing linear HIVconsv epitopes, median 32/46 SLP.HIVconsv peptides. These antibodies bound to 15-mer and SLP peptides, recombinant gp120 and trimeric gp140 of HIV-1 Bal, YU2, JRFL, and UG037, but failed to react with HIV-1 Bal and IIIB virions and HIV-1 Bal- and IIIB-infected human cells, and consequently failed to induce neutralizing antibodies. The HIVconsv immunogen contains conserved regions derived from Gag, Pol, Vif, and Env proteins of HIV-1, and antibodies induced by the SLP.HIVconsv vaccination resulted in positive signals in routine HIV-1 tests. Thus, only HIVconsv delivered by SLP resulted in seroconversion, an observation that provides important guidance for recruiting volunteers into future clinical trials. Furthermore, our data confirms that vaccine delivery by SLP induces humoral as well as cellular immune responses and could be considered for inclusion in future vaccine regimens where this is required.
Collapse
Affiliation(s)
- Nicola J Borthwick
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ, UK
| | - Maximillian Rosario
- Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| | - Torben Schiffner
- Nuffield Department of Medicine, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road Oxford, OX1 3RE, UK
| | - Emma Bowles
- Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| | - Tina Ahmed
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ, UK
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Guillaume E Stewart-Jones
- Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| | - Jan W Drijfhout
- Departement of Immunohematology and Blood Transfusion, Leiden University Medical Centre Leiden, the Netherlands
| | - Cornelis J M Melief
- Departement of Immunohematology and Blood Transfusion, Leiden University Medical Centre Leiden, the Netherlands
| | - Tomáš Hanke
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ, UK ; Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| |
Collapse
|
114
|
Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes. J Virol 2015; 89:5330-9. [PMID: 25741000 DOI: 10.1128/jvi.00020-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. IMPORTANCE HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted and 3 HLA-B*67:01-restricted CTLs, suggesting that these CTLs play a predominant role in HIV-1 control. The 13 CTLs showed synergistic effects on HIV-1 control. Twelve out of these 13 epitopes were recognized as conserved or cross-recognized ones. These findings strongly suggest that these 12 epitopes are candidates for antigens for AIDS vaccines.
Collapse
|
115
|
Hancock G, Yang H, Yorke E, Wainwright E, Bourne V, Frisbee A, Payne TL, Berrong M, Ferrari G, Chopera D, Hanke T, Mothe B, Brander C, McElrath MJ, McMichael A, Goonetilleke N, Tomaras GD, Frahm N, Dorrell L. Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses. PLoS Pathog 2015; 11:e1004658. [PMID: 25723536 PMCID: PMC4344337 DOI: 10.1371/journal.ppat.1004658] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called “beneficial” regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control. Attempts to develop an HIV vaccine that elicits potent cell-mediated immunity have so far been unsuccessful. This is due in part to the use of immunogens that appear to recapitulate responses induced naturally by HIV that are, at best, partially effective. We previously showed that the capacity of CD8+ T cells from patients to block HIV replication in culture is strongly correlated with HIV control in vivo, therefore, we investigated the virological determinants of potent CD8+ T cell inhibitory activity. We observed that CD8+ T cells from patients with naturally low plasma viral loads (viremic controllers) were better able to inhibit the replication of diverse HIV strains in vitro than CD8+ T cells from HIV-noncontroller patients. Importantly, we also found that the potency of the antiviral activity in the latter group was strongly correlated with recognition of selected regions across the viral proteome that are critical to viral fitness. Vaccines that encode full-length viral proteins rarely elicited responses to these vulnerable regions. Taken together, our results provide insight into the characteristics of effective cell-mediated immune responses against HIV and how these may inform the design of better immunogens.
Collapse
Affiliation(s)
- Gemma Hancock
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Emma Wainwright
- Department of Sexual Health, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Victoria Bourne
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alyse Frisbee
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Tamika L. Payne
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mark Berrong
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Denis Chopera
- Institute of Infectious Diseases and Molecular Medicine & Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Tomas Hanke
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Beatriz Mothe
- Irsicaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Christian Brander
- Irsicaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M. Juliana McElrath
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Georgia D. Tomaras
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
116
|
Mothe B, Hu X, Llano A, Rosati M, Olvera A, Kulkarni V, Valentin A, Alicea C, Pilkington GR, Sardesai NY, Rocafort M, Crespo M, Carrillo J, Marco A, Mullins JI, Dorrell L, Hanke T, Clotet B, Pavlakis GN, Felber BK, Brander C. A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques. J Transl Med 2015; 13:60. [PMID: 25879820 PMCID: PMC4336696 DOI: 10.1186/s12967-015-0392-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/13/2015] [Indexed: 12/03/2022] Open
Abstract
Background None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs. Methods To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1. Results Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4+ and CD8+ T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4+ and CD8+ T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ+ CD8+ T cells being Granzyme B+ and able to degranulate (CD107a+). Conclusions These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0392-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Mothe
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain. .,'Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain. .,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | - Margherita Rosati
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Alex Olvera
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Antonio Valentin
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | | | - Muntsa Rocafort
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | - Manel Crespo
- HIV Unit, Hospital de la Vall d'Hebrón, Barcelona, Spain.
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | | | | | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, UK.
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain. .,'Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain. .,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - George N Pavlakis
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Christian Brander
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain. .,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
117
|
Holst PJ, Jensen BAH, Ragonnaud E, Thomsen AR, Christensen JP. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection. PLoS One 2015; 10:e0117242. [PMID: 25679375 PMCID: PMC4334508 DOI: 10.1371/journal.pone.0117242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.
Collapse
Affiliation(s)
- Peter J. Holst
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Benjamin A. H. Jensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Emeline Ragonnaud
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan R. Thomsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Jan P. Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
118
|
Mooij P, Koopman G, Drijfhout JW, Nieuwenhuis IG, Beenhakker N, Koestler J, Bogers WMJM, Wagner R, Esteban M, Pantaleo G, Heeney JL, Jacobs BL, Melief CJM. Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1. J Gen Virol 2015; 96:1478-1483. [PMID: 25667320 DOI: 10.1099/vir.0.000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ivonne G Nieuwenhuis
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Niels Beenhakker
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Josef Koestler
- University of Regensburg, Franz-Josef-Strauss Allee 11, D93053 Regensburg, Germany
| | - Willy M J M Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Ralf Wagner
- University of Regensburg, Franz-Josef-Strauss Allee 11, D93053 Regensburg, Germany
| | | | - Giuseppe Pantaleo
- Swiss Vaccine Research Institute, Lausanne, Switzerland.,Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Cornelis J M Melief
- ISA pharmaceuticals, J.H. Oortweg 19-21, 2333 CH Leiden, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
119
|
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is expected to have the greatest impact on HIV-1 spread and remains a global scientific priority. Only one candidate vaccine has significantly reduced HIV-1 acquisition, yet at a limited efficacy of 31%, and none have delayed disease progression in vaccinated individuals. Thus, the challenge remains to develop HIV-1 immunogens that will elicit protective immunity. A combination of two independent approaches - namely the elicitation of broadly neutralising antibodies (bNAb) to prevent or reduce acquisition of infection and stimulation of effective cytotoxic T lymphocyte (CTL) responses to slow disease progression in breakthrough infections (recent evidence suggests that CTLs could also block HIV-1 from establishing persistent infection) - is the current ideal. The purpose of this review is to summarise strategies and progress in the design and testing of HIV-1 immunogens to elicit bNAb and protective CTL immune responses. Recent advances in mimicking the functional native envelope trimer structure and in designing structurally-stabilised bNAb epitope forms to drive development of germline precursors to mature bNAb are highlighted. Systematic or computational approaches to T cell immunogen design aimed at covering viral diversity, increasing the breadth of immune responses and/or reducing viable viral escape are discussed. We also discuss a recent novel vaccine vector approach shown to induce extremely broad and persistent T cell responses that could clear highly pathogenic simian immunodeficiency virus (SIV) early after infection in the monkey model. While in vitro and animal model data are promising, Phase II and III human clinical trials are ultimately needed to determine the efficacy of immunogen design approaches.
Collapse
Affiliation(s)
- Jaclyn K Mann
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
| | - Thumbi Ndung’u
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139 USA
- />Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|
120
|
Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 2015; 517:381-5. [PMID: 25561180 PMCID: PMC4406054 DOI: 10.1038/nature14053] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Despite antiretroviral therapy (ART), human immunodeficiency virus (HIV)-1 persists in a stable latent reservoir, primarily in resting memory CD4(+) T cells. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed and tested both in vitro and in vivo. A key remaining question is whether virus-specific immune mechanisms, including cytotoxic T lymphocytes (CTLs), can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad-spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir.
Collapse
|
121
|
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 73:169-79. [PMID: 25528627 DOI: 10.1016/j.pharma.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies.
Collapse
Affiliation(s)
- A L de Goede
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands.
| | - A G Vulto
- Department of Hospital Pharmacy, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| | - R A Gruters
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
122
|
Optimizing parallel induction of HIV type 1-specific antibody and T-cell responses by multicomponent subunit vaccines. AIDS 2014; 28:2495-504. [PMID: 25229267 DOI: 10.1097/qad.0000000000000468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Protection against HIV type 1 (HIV-1) infection/AIDS will likely require concerted actions of protective CD8(+) killer T cells and protective antibodies. The challenges in inducing such effectors by active immunization are such that the T-cell and antibody vaccine components require separate development. Here, a rational attempt is taken to combine two separately optimized heterologous regimens into a single T-cell-inducing and antibody-inducing vaccination schedule with minimal induction of unprotective Env-specific T cells. DESIGN Clade A BG505 Env-derived uncleaved gp140 (BG505u) and conserved region tHIVc immunogens were utilized and presented to the immune system using non-replicating simian (chimpanzee) adenovirus ChAdV-63 (C) and poxvirus-modified vaccinia virus Ankara MVA (M). In addition, purified BG505 gp120 (P) was used for antibody induction. METHODS BALB/c mice were vaccinated to elicit Env antibodies alone using ChAdV63.BG505u. MVA.BG505u and BG505 gp120 in regimens CMP, CPP and PPP, and in combination with the ChAdV63.tHIVc and MVA.tHIVc components in regimens CMP+CMM, CPP+CMM and PPP+CMM. Antibody and T-cell responses to BG505 Env and conserved regions of the HIV-1 proteome were determined. RESULTS Although all three regimens delivering BG505 Env induced similar levels of antibodies, BG505-specific T cells were induced in the CMP>CPP>PPP hierarchy, which was maintained during coinduction of tHIVc-specific T cells. Adjuvanted BG505 PPP decreased induction of tHIVc-specific T cells and tHIVc T-cell induction decreased induction of BG505 Ab. As expected, the antibodies that were induced neutralized tier 1 HIV-1 strains. CONCLUSION These results inform designs of initial human studies combining separately optimized T-cell and B-cell HIV-1 vaccines into a single regimen.
Collapse
|
123
|
Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. J Virol 2014; 88:12937-48. [PMID: 25165115 PMCID: PMC4249072 DOI: 10.1128/jvi.01004-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED We investigated the hypothesis that the correlation between the class I HLA types of an individual and whether that individual spontaneously controls HIV-1 is mediated by the targeting of specific epitopes by CD8(+) T cells. By measuring gamma interferon enzyme-linked immunosorbent spot (ELISPOT) assay responses to a panel of 257 optimally defined epitopes in 341 untreated HIV-infected persons, including persons who spontaneously control viremia, we found that the correlation between HLA types and control is mediated by the targeting of specific epitopes. Moreover, we performed a graphical model-based analysis that suggested that the targeting of specific epitopes is a cause of such control--that is, some epitopes are protective rather than merely associated with control--and identified eight epitopes that are significantly protective. In addition, we use an in silico analysis to identify protein regions where mutations are likely to affect the stability of a protein, and we found that the protective epitopes identified by the ELISPOT analysis correspond almost perfectly to such regions. This in silico analysis thus suggests a possible mechanism for control and could be used to identify protective epitopes that are not often targeted in natural infection but that may be potentially useful in a vaccine. Our analyses thus argue for the inclusion (and exclusion) of specific epitopes in an HIV vaccine. IMPORTANCE Some individuals naturally control HIV replication in the absence of antiretroviral therapy, and this ability to control is strongly correlated with the HLA class I alleles that they express. Here, in a large-scale experimental study, we provide evidence that this correlation is mediated largely by the targeting of specific CD8(+) T-cell epitopes, and we identify eight epitopes that are likely to cause control. In addition, we provide an in silico analysis indicating that control occurs because mutations within these epitopes change the stability of the protein structures. This in silico analysis also identified additional epitopes that are not typically targeted in natural infection but may lead to control when included in a vaccine, provided that other epitopes that would otherwise distract the immune system from targeting them are excluded from the vaccine.
Collapse
Affiliation(s)
- Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Carl Kadie
- Microsoft Research, Redmond, Washington, USA
| | | | - Daniel Karel
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ariel Goldenthal
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Oliver B Davis
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Tienho Lin
- Microsoft Research, Los Angeles, California, USA
| | - Jian Peng
- Microsoft Research, Los Angeles, California, USA
| | - Alicja Piechocka
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
124
|
Tongo M, Burgers WA. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses 2014; 6:3968-90. [PMID: 25341662 PMCID: PMC4213573 DOI: 10.3390/v6103968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022] Open
Abstract
The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
125
|
HIV-1 conserved elements p24CE DNA vaccine induces humoral immune responses with broad epitope recognition in macaques. PLoS One 2014; 9:e111085. [PMID: 25338098 PMCID: PMC4206485 DOI: 10.1371/journal.pone.0111085] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
To target immune responses towards invariable regions of the virus, we engineered DNA-based immunogens encoding conserved elements (CE) of HIV-1 p24gag. This conserved element vaccine is designed to avoid decoy epitopes by focusing responses to critical viral elements. We previously reported that vaccination of macaques with p24CE DNA induced robust cellular immune responses to CE that were not elicited upon wild type p55gag DNA vaccination. p24CE DNA priming followed by p55gag DNA boost provided a novel strategy to increase the magnitude and breadth of the cellular immune responses to HIV-1 Gag, including the induction of strong, multifunctional T-cell responses targeting epitopes within CE. Here, we examined the humoral responses induced upon p24CE DNA or p55gag DNA vaccination in macaques and found that although both vaccines induced robust p24gag binding antibody responses, the responses induced by p24CE DNA showed a unique broad range of linear epitope recognition. In contrast, antibodies elicited by p55gag DNA vaccine failed to recognize p24CE protein and did not recognize linear epitopes spanning the CE. Interestingly, boosting of p24CE DNA primed animals with p55gag DNA resulted in augmentation of antibodies able to recognize p24gag as well as the p24CE proteins, thereby inducing broadest immunity. Our results indicate that an effectively directed vaccine strategy that includes priming with the conserved element vaccine followed by boost with the complete immunogen induces broad cellular and humoral immunity focused on the conserved regions of the virus. This novel and effective strategy to broaden responses could be applied against other antigens of highly diverse pathogens.
Collapse
|
126
|
Njuguna IN, Ambler G, Reilly M, Ondondo B, Kanyugo M, Lohman-Payne B, Gichuhi C, Borthwick N, Black A, Mehedi SR, Sun J, Maleche-Obimbo E, Chohan B, John-Stewart GC, Jaoko W, Hanke T. PedVacc 002: a phase I/II randomized clinical trial of MVA.HIVA vaccine administered to infants born to human immunodeficiency virus type 1-positive mothers in Nairobi. Vaccine 2014; 32:5801-8. [PMID: 25173484 PMCID: PMC4414927 DOI: 10.1016/j.vaccine.2014.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND A safe, effective vaccine for breastfeeding infants born to HIV-1-positive mothers could complement antiretroviral therapy (ART) for prevention of mother-to-child transmission of HIV-1. To date, only a few HIV-1 vaccine candidates have been tested in infants. TRIAL DESIGN A phase I/II randomized controlled trial PedVacc 002 was conducted to determine the safety and immunogenicity of a single, low dose of MVA.HIVA vaccine delivered intramuscularly to healthy 20-week-old infants born to HIV-1-positive mothers in Nairobi, Kenya. METHODS Pregnant HIV-1-positive women in the 2nd/3rd trimester of gestation were enrolled, provided with ART and self-selected their infant-feeding modality. Infants received nevirapine and cotrimoxazole prophylaxis. At 20 weeks of age, eligible HIV-1-negative infants were randomized to vaccine versus no-treatment arms and followed to 48 weeks of age for assessments of vaccine safety, HIV-1-specific T-cell responses and antibodies to routine childhood vaccines. RESULTS Between February and November 2010, 182 mothers were screened, 104 were eligible and followed on ART during pregnancy/postpartum, of whom 73 had eligible infants at 20 weeks postpartum. Thirty-six infants were randomized to vaccine and 37 to no treatment. Eighty-four percent of infants breastfed, and retention at 48 weeks was 99%. Adverse events were rare and similar between the two arms. HIV-1-specific T-cell frequencies in interferon-γ ELISPOT assay were transiently higher in the MVA.HIVA arm (p=0.002), but not above the threshold for a positive assay. Protective antibody levels were adequate and similar between arms for all routine childhood vaccines except HBV, where 71% of MVA.HIVA subjects compared to 92% of control subjects were protected (p=0.05). CONCLUSIONS This trial tested for the first time an MVA-vectored candidate HIV-1 vaccine in HIV-1-exposed infants in Africa, demonstrating trial feasibility and vaccine safety, low immunogenicity, and compatibility with routine childhood vaccinations. These results are reassuring for use of the MVA vector in more potent prime-boost regimens.
Collapse
Affiliation(s)
- Irene N Njuguna
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Gwen Ambler
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | - Mercy Kanyugo
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Barbara Lohman-Payne
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Christine Gichuhi
- Department of Clinical Medicine and Therapeutics, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | | | - Antony Black
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Shams-Rony Mehedi
- Statistics and Data Management Department, Medical Research Council Unit, Fajara, The Gambia
| | - Jiyu Sun
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Elizabeth Maleche-Obimbo
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Bhavna Chohan
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Grace C John-Stewart
- Departments of Pediatrics, Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA 98104, USA
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
127
|
Characterization of T-cell responses to conserved regions of the HIV-1 proteome in BALB/c mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1565-72. [PMID: 25230940 PMCID: PMC4248756 DOI: 10.1128/cvi.00587-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A likely requirement for a protective vaccine against human immunodeficiency virus type 1 (HIV-1)/AIDS is, in addition to eliciting antibody responses, induction of effective T cells. To tackle HIV-1 diversity by T-cell vaccines, we designed an immunogen, HIVconsv, derived from the most functionally conserved regions of the HIV-1 proteome and demonstrated its high immunogenicity in humans and rhesus macaques when delivered by regimens combining plasmid DNA, nonreplicating simian (chimpanzee) adenovirus ChAdV-63, and nonreplicating modified vaccinia virus Ankara (MVA) as vectors. Here, we aimed to increase the decision power for iterative improvements of this vaccine strategy in the BALB/c mouse model. First, we found that prolonging the period after the ChAdV63.HIVconsv prime up to 6 weeks increased the frequencies of HIV-1-specific, gamma interferon (IFN-γ)-producing T cells induced by the MVA.HIVconsv boost. Induction of strong responses allowed us to map comprehensively the H-2d-restricted T-cell responses to these regions and identified 8 HIVconsv peptides, of which three did not contain a previously described epitope and were therefore considered novel. Induced effector T cells were oligofunctional and lysed sensitized targets in vitro. Our study therefore provides additional tools for studying and optimizing vaccine regimens in this commonly used small animal model, which will in turn guide vaccine improvements in more expensive nonhuman primate and human clinical trials.
Collapse
|
128
|
Ensoli B, Cafaro A, Monini P, Marcotullio S, Ensoli F. Challenges in HIV Vaccine Research for Treatment and Prevention. Front Immunol 2014; 5:417. [PMID: 25250026 PMCID: PMC4157563 DOI: 10.3389/fimmu.2014.00417] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022] Open
Abstract
Many attempts have been made or are ongoing for HIV prevention and HIV cure. Many successes are in the list, particularly for HIV drugs, recently proposed also for prevention. However, no eradication of infection has been achieved so far with any drug. Further, a residual immune dysregulation associated to chronic immune activation and incomplete restoration of B and T cell subsets, together with HIV DNA persistence in reservoirs, are still unmet needs of the highly active antiretroviral therapy, causing novel “non-AIDS related” diseases that account for a higher risk of death even in virologically suppressed patients. These “ART unmet needs” represent a problem, which is expected to increase by ART roll out. Further, in countries such as South Africa, where six millions of individuals are infected, ART appears unable to contain the epidemics. Regretfully, all the attempts at developing a preventative vaccine have been largely disappointing. However, recent therapeutic immunization strategies have opened new avenues for HIV treatment, which might be exploitable also for preventative vaccine approaches. For example, immunization strategies aimed at targeting key viral products responsible of virus transmission, activation, and maintenance of virus reservoirs may intensify drug efficacy and lead to a functional cure providing new perspectives also for prevention and future virus eradication strategies. However, this approach imposes new challenges to the scientific community, vaccine developers, and regulatory bodies, such as the identification of novel immunological and virological biomarkers to assess efficacy end-points, taking advantage from the natural history of infection and exploiting lessons from former trials. This review will focus first on recent advancement of therapeutic strategies, then on the progresses made in preventative approaches, discussing concepts, and problems for the way ahead for the development of vaccines for HIV treatment and prevention.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | - Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | | | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute, "Istituti Fisioterapici Ospitalieri" , Rome , Italy
| |
Collapse
|
129
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
130
|
Hayton EJ, Rose A, Ibrahimsa U, Del Sorbo M, Capone S, Crook A, Black AP, Dorrell L, Hanke T. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial. PLoS One 2014; 9:e101591. [PMID: 25007091 PMCID: PMC4090156 DOI: 10.1371/journal.pone.0101591] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022] Open
Abstract
Trial Design HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee) adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. Methods Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. Results Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1) and predominantly transient (<48 hours). Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range) of 633 (231-1533) post-vaccination, which is of no safety concern. Conclusions These data demonstrate safety and good tolerability of the pSG2.HIVconsv DNA, ChAdV63.HIVconsv and MVA.HIVconsv vaccines and together with their high immunogenicity support their further development towards efficacy studies. Trial Registration ClinicalTrials.gov NCT01151319
Collapse
Affiliation(s)
- Emma-Jo Hayton
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Annie Rose
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Umar Ibrahimsa
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | | | | | - Alison Crook
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Antony P. Black
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lucy Dorrell
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Tomáš Hanke
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
131
|
Haynes BF, Moody MA, Alam M, Bonsignori M, Verkoczy L, Ferrari G, Gao F, Tomaras GD, Liao HX, Kelsoe G. Progress in HIV-1 vaccine development. J Allergy Clin Immunol 2014; 134:3-10; quiz 11. [PMID: 25117798 DOI: 10.1016/j.jaci.2014.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
The past 2 years have seen a number of basic and translational science advances in the quest for development of an effective HIV-1 vaccine. These advances include discovery of new envelope targets of potentially protective antibodies, demonstration that CD8(+) T cells can control HIV-1 infection, development of immunogens to overcome HIV-1 T-cell epitope diversity, identification of correlates of transmission risk in an HIV-1 efficacy trial, and mapping of the coevolution of HIV-1 founder envelope mutants in infected subjects with broad neutralizing antibodies, thereby defining broad neutralizing antibody developmental pathways. Despite these advances, a promising HIV-1 vaccine efficacy trial published in 2013 did not prevent infection, and the HIV-1 vaccine field is still years away from deployment of an effective vaccine. This review summarizes what some of the scientific advances have been, what roadblocks still remain, and what the most promising approaches are for progress in design of successful HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC.
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, NC; Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Munir Alam
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Durham, NC; Department of Pathology, Duke University School of Medicine, Durham, NC
| | - Guido Ferrari
- Duke Human Vaccine Institute, Durham, NC; Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Feng Gao
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC; Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
132
|
Saubi N, Gea-Mallorquí E, Ferrer P, Hurtado C, Sánchez-Úbeda S, Eto Y, Gatell JM, Hanke T, Joseph J. Engineering new mycobacterial vaccine design for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14017. [PMID: 26015961 PMCID: PMC4362382 DOI: 10.1038/mtm.2014.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/26/2014] [Indexed: 02/05/2023]
Abstract
In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Ester Gea-Mallorquí
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical Engineering, Group of Bioprocess Engineering and Applied Biocatalysis, School of Engineering, Autonomous University of Barcelona , Barcelona, Catalonia, Spain
| | - Carmen Hurtado
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Sara Sánchez-Úbeda
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Yoshiki Eto
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Josep M Gatell
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford , Oxford, UK ; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford, UK
| | - Joan Joseph
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| |
Collapse
|
133
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
134
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
135
|
Liu Y, Rao U, McClure J, Konopa P, Manocheewa S, Kim M, Chen L, Troyer RM, Tebit DM, Holte S, Arts EJ, Mullins JI. Impact of mutations in highly conserved amino acids of the HIV-1 Gag-p24 and Env-gp120 proteins on viral replication in different genetic backgrounds. PLoS One 2014; 9:e94240. [PMID: 24713822 PMCID: PMC3979772 DOI: 10.1371/journal.pone.0094240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/14/2014] [Indexed: 11/24/2022] Open
Abstract
It has been hypothesized that a single mutation at a highly conserved amino acid site (HCS) can be severely deleterious to HIV in most if not all isolate-specific genetic backgrounds. Consequently, potentially universal HIV-1 vaccines exclusively targeting highly conserved regions of the viral proteome have been proposed. To test this hypothesis, we examined the impact of 10 Gag-p24 and 9 Env-gp120 HCS single mutations on viral fitness. In the original founder sequence of the subject in whom these mutations were identified, all Gag-p24 HCS mutations significantly reduced viral replication fitness, including 7 that were lethal. Similar results were obtained at 9/10 sites when the same mutations were introduced into the founder sequences of two epidemiologically unlinked subjects. In contrast, none of the 9 Env-gp120 HCS mutations were lethal in the original founder sequence, and four had no fitness cost. Hence, HCS mutations in Gag-p24 are likely to be severely deleterious in different HIV-1 subtype B backgrounds; however, some HCS mutations in both Gag-p24 and Env-gp120 fragments can be well tolerated. Therefore, when designing HIV-1 immunogens that are intended to force the virus to nonviable escape pathways, the fitness constraints on the HIV segments included should be considered beyond their conservation level.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| | - Ushnal Rao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jan McClure
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Philip Konopa
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Siriphan Manocheewa
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Moon Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lennie Chen
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ryan M. Troyer
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Denis M. Tebit
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sarah Holte
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eric J. Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
136
|
McMichael AJ, Koff WC. Vaccines that stimulate T cell immunity to HIV-1: the next step. Nat Immunol 2014; 15:319-22. [PMID: 24646598 PMCID: PMC4324504 DOI: 10.1038/ni.2844] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
The search for a vaccine against human immunodeficiency virus type 1 (HIV-1) has many hurdles to overcome. Ideally, the stimulation of both broadly neutralizing antibodies and cell-mediated immune responses remains the best option, but no candidate in clinical trials at present has elicited such antibodies, and efficacy trials have not demonstrated any benefit for vaccines designed to stimulate immune responses of CD8(+) T cells. Findings obtained with the simian immunodeficiency virus (SIV) monkey model have provided new evidence that stimulating effective CD8(+) T cell immunity could provide protection, and in this Perspective we explore the path forward for optimizing such responses in humans.
Collapse
Affiliation(s)
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, New York, USA
| |
Collapse
|
137
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
138
|
Kopycinski J, Hayes P, Ashraf A, Cheeseman H, Lala F, Czyzewska-Khan J, Spentzou A, Gill DK, Keefer MC, Excler JL, Fast P, Cox J, Gilmour J. Broad HIV epitope specificity and viral inhibition induced by multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2014; 9:e90378. [PMID: 24609066 PMCID: PMC3946500 DOI: 10.1371/journal.pone.0090378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/29/2014] [Indexed: 12/11/2022] Open
Abstract
A correlation between in vivo and in vitro virus control mediated by CD8+ T-cell populations has been demonstrated by CD8 T-cell-mediated inhibition of HIV-1 and SIV replication in vitro in peripheral blood mononuclear cells (PBMCs) from infected humans and non-human primates (NHPs), respectively. Here, the breadth and specificity of T-cell responses induced following vaccination with replication-defective adenovirus serotype 35 (Ad35) vectors containing a fusion protein of Gag, reverse transcriptase (RT), Integrase (Int) and Nef (Ad35-GRIN) and Env (Ad35-ENV), derived from HIV-1 subtype A isolates, was assessed in 25 individuals. The vaccine induced responses to a median of 4 epitopes per vaccinee. We correlated the CD8 responses to conserved vs. variable regions with the ability to inhibit a panel of 7 HIV-1 isolates representing multiple clades in a virus inhibition assay (VIA). The results indicate that targeting immunodominant responses to highly conserved regions of the HIV-1 proteome may result in an increased ability to inhibit multiple clades of HIV-1 in vitro. The data further validate the use of the VIA to screen and select future HIV vaccine candidates. Moreover, our data suggest that future T cell-focused vaccine design should aim to induce immunodominant responses to highly conserved regions of the virus.
Collapse
Affiliation(s)
- Jakub Kopycinski
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
- * E-mail:
| | - Peter Hayes
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Ambreen Ashraf
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Hannah Cheeseman
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Francesco Lala
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Justyna Czyzewska-Khan
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Aggeliki Spentzou
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Dilbinder K. Gill
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Michael C. Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | | | - Josephine Cox
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
139
|
Abstract
PURPOSE OF REVIEW To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. RECENT FINDINGS Replication-competent viral vectors have advanced to the stage at which decisions can be made regarding the future development of HIV vaccines. The viruses being used as replication-competent vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. Replication-competent viral vectors encoding simian immunodeficiency virus or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of preexisting immunity. SUMMARY A variety of DNA and RNA viruses are being used to develop replication-competent viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be well tolerated and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials.
Collapse
|
140
|
Hanke T. Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther 2014; 14:601-16. [PMID: 24490585 DOI: 10.1517/14712598.2014.885946] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Effective vaccines are the best solution for stopping the spread of HIV/AIDS and other infectious diseases. Their development and in-depth understanding of pathogen-host interactions rely on technological advances. AREAS COVERED Rational vaccine development can be effectively approached by conceptual separation of, on one hand, design of immunogens from improving their presentation to the immune system and, on the other, induction of antibodies from induction of killer CD8(+) T cells. The biggest roadblock for many vaccines is the pathogens' variability. This is best tackled by focusing both antibodies and T cells on the functionally most conserved regions of proteins common to many variants, including escape mutants. For vectored vaccines, these 'universal' subunit immunogens are most efficiently delivered using heterologous prime-boost regimens, which can be further optimised by adjuvantation and route of delivery. EXPERT OPINION Development of vaccines against human diseases has many features in common. Acceleration of vaccine discovery depends on basic research and new technologies. Novel strategies should be safely, but rapidly tested in humans. While out-of-the-box thinking is important, vaccine success largely depends on incremental advances best achieved through small, systematic, iterative clinical studies. Failures are inevitable, but the end rewards are huge. The future will be exciting.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ , UK
| |
Collapse
|
141
|
Abstract
A global human immunodeficiency virus-1 (HIV-1) vaccine will have to elicit immune responses capable of providing protection against a tremendous diversity of HIV-1 variants. In this review, we first describe the current state of the HIV-1 vaccine field, outlining the immune responses that are desired in a global HIV-1 vaccine. In particular, we emphasize the likely importance of Env-specific neutralizing and non-neutralizing antibodies for protection against HIV-1 acquisition and the likely importance of effector Gag-specific T lymphocytes for virologic control. We then highlight four strategies for developing a global HIV-1 vaccine. The first approach is to design specific vaccines for each geographic region that include antigens tailor-made to match local circulating HIV-1 strains. The second approach is to design a vaccine that will elicit Env-specific antibodies capable of broadly neutralizing all HIV-1 subtypes. The third approach is to design a vaccine that will elicit cellular immune responses that are focused on highly conserved HIV-1 sequences. The fourth approach is to design a vaccine to elicit highly diverse HIV-1-specific responses. Finally, we emphasize the importance of conducting clinical efficacy trials as the only way to determine which strategies will provide optimal protection against HIV-1 in humans.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
142
|
Kulkarni V, Valentin A, Rosati M, Alicea C, Singh AK, Jalah R, Broderick KE, Sardesai NY, Le Gall S, Mothe B, Brander C, Rolland M, Mullins JI, Pavlakis GN, Felber BK. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS One 2014; 9:e86254. [PMID: 24465991 PMCID: PMC3900501 DOI: 10.1371/journal.pone.0086254] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022] Open
Abstract
HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24gag elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ashish K. Singh
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Kate E. Broderick
- Inovio Pharmaceuticals, Inc., Blue Bell, Pennsylvania, United States of America
| | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GNP); (BKF)
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GNP); (BKF)
| |
Collapse
|
143
|
|
144
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
145
|
Tager AM, Pensiero M, Allen TM. Recent advances in humanized mice: accelerating the development of an HIV vaccine. J Infect Dis 2013; 208 Suppl 2:S121-4. [PMID: 24151317 DOI: 10.1093/infdis/jit451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of humanized mice hold great promise to advance our understanding of protective immunity to human immunodeficiency virus (HIV) infection and to aid in the design of an effective HIV vaccine. This supplement of the Journal of Infectious Diseases summarizes work in the humanized mouse model presented at an HIV Humanized Mouse workshop in Boston, Massachusetts, in November 2012, including recent advances in the development of humanized mice, the trafficking of human immune cells following mucosal HIV transmission, the role of immune activation and Toll-like receptor agonists in the control of HIV, the induction and efficacy of HIV-specific cellular and humoral immune responses, and the preclinical modeling of novel anti-HIV therapeutics. Many gaps remain in our understanding of how to design an effective HIV vaccine and novel therapeutics to eliminate the viral reservoir. Promising early results from studies in humanized mice suggest great potential and enthusiasm for this model to accelerate these critical areas of HIV research.
Collapse
Affiliation(s)
- Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School
| | | | | |
Collapse
|
146
|
Shekhar K, Ruberman CF, Ferguson AL, Barton JP, Kardar M, Chakraborty AK. Spin models inferred from patient-derived viral sequence data faithfully describe HIV fitness landscapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062705. [PMID: 24483484 PMCID: PMC5260469 DOI: 10.1103/physreve.88.062705] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 05/10/2023]
Abstract
Mutational escape from vaccine-induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine-induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of nonequilibrium viral evolution driven by patient-specific immune responses and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory á la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses.
Collapse
Affiliation(s)
- Karthik Shekhar
- Department of Chemical Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02129, USA
| | - Claire F. Ruberman
- Department of Mathematics, Pomona College, Claremont, California 91711, USA
| | - Andrew L. Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - John P. Barton
- Department of Chemical Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02129, USA
| | - Mehran Kardar
- Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
| | - Arup K. Chakraborty
- Department of Chemical Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02129, USA
- Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
147
|
DNA/long peptide vaccination against conserved regions of SIV induces partial protection against SIVmac251 challenge. AIDS 2013; 27:2841-51. [PMID: 24105029 DOI: 10.1097/qad.0000000000000047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We recently developed a HIVconsv vaccine strategy, consisting of combined conserved regions of HIV-1, to adequately cover viral diversity. To evaluate efficacy in nonhuman primates, an equivalent SIV-derived immunogen SIVconsv was designed and delivered as plasmid DNA or synthetic long peptides. DESIGN Rhesus macaques lacking protective MHC class I alleles Mamu-A*001 : 01, B*008 : 01, B*017 : 01 were immunized with either SIVconsv synthetic long peptides (S) alone or in combination with plasmid DNA encoding the same conserved regions (D) using SSS or DDSS regimens. METHODS The SIVconsv synthetic long peptide vaccine consisted of 46 approximately 30-amino acid-long peptides emulsified in Montanide ISA-720 and adjuvanted with pegylated type I interferon and imiquimod. RESULTS Both SSS and DDSS regimens generated high frequencies of SIV-specific IFN-γ-producing cells comparable with reported adenoviral vector systems. Strong polyfunctional CD4⁺ T-cell and modest CD8⁺ T-cell responses were generated, which were of central memory T-cell phenotype. Furthermore, SIVconsv-specific antibody responses were induced capable of recognizing the Env glycoprotein. Eight weeks after the last immunization, control and SIVconsv-vaccinated animals were challenged intrarectally with 10 MID50 of pathogenic SIVmac251. Two out of six animals in the DDSS group were protected against infection, while all 14 animals in the SSS and two control groups were infected. Vaccine induced SIV-specific IgG responses in mucosal washes prechallenge were highest in the two protected animals. CONCLUSION This study demonstrates that vaccine-elicited responses towards conserved regions can afford partial protection against a high-dose intrarectal SIVmac251 challenge.
Collapse
|
148
|
Increased sequence coverage through combined targeting of variant and conserved epitopes correlates with control of HIV replication. J Virol 2013; 88:1354-65. [PMID: 24227851 DOI: 10.1128/jvi.02361-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge in the development of an HIV vaccine is that of contending with the extensive sequence variability found in circulating viruses. Induction of HIV-specific T-cell responses targeting conserved regions and induction of HIV-specific T-cell responses recognizing a high number of epitope variants have both been proposed as strategies to overcome this challenge. We addressed the ability of cytotoxic T lymphocytes from 30 untreated HIV-infected subjects with and without control of virus replication to recognize all clade B Gag sequence variants encoded by at least 5% of the sequences in the Los Alamos National Laboratory HIV database (1,300 peptides) using gamma interferon and interleukin-2 (IFN-γ/IL-2) FluoroSpot analysis. While targeting of conserved regions was similar in the two groups (P = 0.47), we found that subjects with control of virus replication demonstrated marginally lower recognition of Gag epitope variants than subjects with normal progression (P = 0.05). In viremic controllers and progressors, we found variant recognition to be associated with viral load (r = 0.62, P = 0.001). Interestingly, we show that increased overall sequence coverage, defined as the overall proportion of HIV database sequences targeted through the Gag-specific repertoire, is inversely associated with viral load (r = -0.38, P = 0.03). Furthermore, we found that sequence coverage, but not variant recognition, correlated with increased recognition of a panel of clade B HIV founder viruses (r = 0.50, P = 0.004). We propose sequence coverage by HIV Gag-specific immune responses as a possible correlate of protection that may contribute to control of virus replication. Additionally, sequence coverage serves as a valuable measure by which to evaluate the protective potential of future vaccination strategies.
Collapse
|
149
|
Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol Ther 2013; 22:464-475. [PMID: 24166483 DOI: 10.1038/mt.2013.248] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/16/2013] [Indexed: 12/14/2022] Open
Abstract
Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.
Collapse
|
150
|
Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, McNally AG, Liu J, Abbink P, Maxfield LF, Seaman MS, Dugast AS, Alter G, Ferguson M, Li W, Earl PL, Moss B, Giorgi EE, Szinger JJ, Eller LA, Billings EA, Rao M, Tovanabutra S, Sanders-Buell E, Weijtens M, Pau MG, Schuitemaker H, Robb ML, Kim JH, Korber BT, Michael NL. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 2013; 155:531-9. [PMID: 24243013 DOI: 10.1016/j.cell.2013.09.061] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/05/2013] [Accepted: 09/27/2013] [Indexed: 01/24/2023]
Abstract
The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:
Collapse
Affiliation(s)
- Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|