101
|
Bereswill S, Ekmekciu I, Escher U, Fiebiger U, Stingl K, Heimesaat MM. Lactobacillus johnsonii ameliorates intestinal, extra-intestinal and systemic pro-inflammatory immune responses following murine Campylobacter jejuni infection. Sci Rep 2017; 7:2138. [PMID: 28522817 PMCID: PMC5437126 DOI: 10.1038/s41598-017-02436-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni infections are progressively increasing worldwide. Probiotic treatment might open novel therapeutic or even prophylactic approaches to combat campylobacteriosis. In the present study secondary abiotic mice were generated by broad-spectrum antibiotic treatment and perorally reassociated with a commensal murine Lactobacillus johnsonii strain either 14 days before (i.e. prophylactic regimen) or 7 days after (i.e. therapeutic regimen) peroral C. jejuni strain 81-176 infection. Following peroral reassociation both C. jejuni and L. johnsonii were able to stably colonize the murine intestinal tract. Neither therapeutic nor prophylactic L. johnsonii application, however, could decrease intestinal C. jejuni burdens. Notably, C. jejuni induced colonic apoptosis could be ameliorated by prophylactic L. johnsonii treatment, whereas co-administration of L. johnsonii impacted adaptive (i.e. T and B lymphocytes, regulatory T cells), but not innate (i.e. macrophages and monocytes) immune cell responses in the intestinal tract. Strikingly, C. jejuni induced intestinal, extra-intestinal and systemic secretion of pro-inflammatory mediators (such as IL-6, MCP-1, TNF and nitric oxide) could be alleviated by peroral L. johnsonii challenge. In conclusion, immunomodulatory probiotic species might offer valuable strategies for prophylaxis and/or treatment of C. jejuni induced intestinal, extra-intestinal as well as systemic pro-inflammatory immune responses in vivo.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine, Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine, Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité - University Medicine, Berlin, Germany
| | - Ulrike Fiebiger
- Department of Microbiology and Hygiene, Charité - University Medicine, Berlin, Germany
| | - Kerstin Stingl
- Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine, Berlin, Germany.
| |
Collapse
|
102
|
Ekmekciu I, von Klitzing E, Fiebiger U, Neumann C, Bacher P, Scheffold A, Bereswill S, Heimesaat MM. The Probiotic Compound VSL#3 Modulates Mucosal, Peripheral, and Systemic Immunity Following Murine Broad-Spectrum Antibiotic Treatment. Front Cell Infect Microbiol 2017; 7:167. [PMID: 28529928 PMCID: PMC5418240 DOI: 10.3389/fcimb.2017.00167] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
There is compelling evidence linking the commensal intestinal microbiota with host health and, in turn, antibiotic induced perturbations of microbiota composition with distinct pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter the intestinal microbiota, its immunological effects are still incompletely understood. The aim of the present study was to assess the efficacy of the probiotic formulation VSL#3 consisting of eight distinct bacterial species (including Streptococcus thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus) in reversing immunological effects of microbiota depletion as compared to reassociation with a complex murine microbiota. To address this, conventional mice were subjected to broad-spectrum antibiotic therapy for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers in the small and large intestinal lamina propria as well as in B220+ cell numbers in the former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced changes of respective cell populations in the spleen. However, VSL#3 application was as efficient as complex microbiota reassociation to attenuate the frequencies of regulatory T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon, mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10 by CD4+ cells in respective immunological compartments, VSL#3 recolonization was sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10 without affecting pro-inflammatory mediators. In summary, the probiotic compound VSL#3 has an extensive impact on mucosal, peripheral, and systemic innate as well as adaptive immunity, exerting beneficial anti-inflammatory effects in intestinal as well as systemic compartments. Hence, VSL#3 might be considered a therapeutic immunomodulatory tool following antibiotic therapy.
Collapse
Affiliation(s)
- Ira Ekmekciu
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Eliane von Klitzing
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Ulrike Fiebiger
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Christian Neumann
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University MedicineBerlin, Germany.,German Rheumatism Research Center, Leibniz AssociationBerlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University MedicineBerlin, Germany
| | - Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University MedicineBerlin, Germany.,German Rheumatism Research Center, Leibniz AssociationBerlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| |
Collapse
|
103
|
Ekmekciu I, von Klitzing E, Fiebiger U, Escher U, Neumann C, Bacher P, Scheffold A, Kühl AA, Bereswill S, Heimesaat MM. Immune Responses to Broad-Spectrum Antibiotic Treatment and Fecal Microbiota Transplantation in Mice. Front Immunol 2017; 8:397. [PMID: 28469619 PMCID: PMC5395657 DOI: 10.3389/fimmu.2017.00397] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence demonstrates the pivotal role of the commensal intestinal microbiota in host physiology and the detrimental effects of its perturbations following antibiotic treatment. Aim of this study was to investigate the impact of antibiotics induced depletion and subsequent restoration of the intestinal microbiota composition on the murine mucosal and systemic immunity. To address this, conventional C57BL/6j mice were subjected to broad-spectrum antibiotic treatment for 8 weeks. Restoration of the intestinal microbiota by peroral fecal microbiota transplantation (FMT) led to reestablishment of small intestinal CD4+, CD8+, and B220+ as well as of colonic CD4+ cell numbers as early as 7 days post-FMT. However, at d28 following FMT, colonic CD4+ and B220+ cell numbers were comparable to those in secondary abiotic (ABx) mice. Remarkably, CD8+ cell numbers were reduced in the colon upon antibiotic treatment, and FMT was not sufficient to restore this immune cell subset. Furthermore, absence of gut microbial stimuli resulted in decreased percentages of memory/effector T cells, regulatory T cells, and activated dendritic cells in the small intestine, colon, mesenteric lymph nodes (MLN), and spleen. Concurrent antibiotic treatment caused decreased cytokine production (IFN-γ, IL-17, IL-22, and IL-10) of CD4+ cells in respective compartments. These effects were, however, completely restored upon FMT. In summary, broad-spectrum antibiotic treatment resulted in profound local (i.e., small and large intestinal), peripheral (i.e., MLN), and systemic (i.e., splenic) changes in the immune cell repertoire that could, at least in part, be restored upon FMT. Further studies need to unravel the distinct molecular mechanisms underlying microbiota-driven changes in immune homeostasis subsequently providing novel therapeutic or even preventive approaches in human immunopathologies.
Collapse
Affiliation(s)
- Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulrike Fiebiger
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Christian Neumann
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
104
|
von Klitzing E, Ekmekciu I, Kühl AA, Bereswill S, Heimesaat MM. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota. PLoS One 2017; 12:e0176144. [PMID: 28414794 PMCID: PMC5393883 DOI: 10.1371/journal.pone.0176144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/05/2017] [Indexed: 01/27/2023] Open
Abstract
Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology / Research Center ImmunoSciences (RCIS), Charité – University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
105
|
Ekmekciu I, Fiebiger U, Stingl K, Bereswill S, Heimesaat MM. Amelioration of intestinal and systemic sequelae of murine Campylobacter jejuni infection by probiotic VSL#3 treatment. Gut Pathog 2017; 9:17. [PMID: 28413453 PMCID: PMC5387377 DOI: 10.1186/s13099-017-0168-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Background The incidence of human Campylobacter jejuni infections is progressively increasing worldwide. Probiotic compounds might open up valuable tools to decrease pathogen burden and subsequent pro-inflammatory immune responses, but in vivo data are scarce. Methods and results Secondary abiotic mice generated by broad-spectrum antibiotic treatment were perorally challenged with the commercial probiotic compound VSL#3 consisting of Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, and Lactobacillus delbrueckii ssp. bulgaricus) either 5 days before (i.e. prophylactic regimen) or after (i.e. therapeutic regimen) peroral C. jejuni strain 81–176 infection, and analyzed 3 weeks following the initial bacterial re-association. Upon challenge, mice were colonized with the probiotic bacteria and/or C. jejuni at comparable intestinal loads, but co-colonization did not result in reduction of the pathogen burden. Remarkably, prophylactic as well as therapeutic VSL#3 treatment of C. jejuni infected mice ameliorated intestinal apoptosis and pro-inflammatory immune responses as indicated by lower numbers of innate and adaptive immune cell populations in the murine colon upon probiotic prophylaxis or treatment and reduced colonic concentrations of pro-inflammatory mediators including IL-6 and MCP-1. Importantly, concentrations of anti-inflammatory mediators such as IL-10 were significantly elevated in the colon of probiotics treated mice as compared to untreated controls. Strikingly, prophylactic VSL#3 treatment attenuated C. jejuni induced systemic pro-inflammatory responses as indicated by less TNF and IL-12p70 secretion in the spleen of VSL#3 pre-treated as compared to non-treated mice. Conclusion Administration of probiotic formulations such as VSL#3 might open up valuable strategies for prophylaxis and/or treatment of C. jejuni induced intestinal and systemic sequelae in vivo by the suppression of pro-inflammatory and induction of anti-inflammatory responses.
Collapse
Affiliation(s)
- Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulrike Fiebiger
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
106
|
von Klitzing E, Öz F, Ekmekciu I, Escher U, Bereswill S, Heimesaat MM. Comprehensive Survey of Intestinal Microbiota Changes in Offspring of Human Microbiota-Associated Mice. Eur J Microbiol Immunol (Bp) 2017; 7:65-75. [PMID: 28386472 PMCID: PMC5372482 DOI: 10.1556/1886.2017.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022] Open
Abstract
Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Fulya Öz
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
107
|
Pott J, Stockinger S. Type I and III Interferon in the Gut: Tight Balance between Host Protection and Immunopathology. Front Immunol 2017; 8:258. [PMID: 28352268 PMCID: PMC5348535 DOI: 10.3389/fimmu.2017.00258] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
108
|
Bereswill S, Grundmann U, Alutis ME, Fischer A, Heimesaat MM. Campylobacter jejuni infection of conventionally colonized mice lacking nucleotide-oligomerization-domain-2. Gut Pathog 2017; 9:5. [PMID: 28127403 PMCID: PMC5251327 DOI: 10.1186/s13099-017-0155-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/14/2017] [Indexed: 01/07/2023] Open
Abstract
Background The nucleotide-binding oligomerisaton protein 2 (NOD2) constitutes a pivotal sensor of bacterial muramyl dipeptide and assures expression of distinct antimicrobial peptides and mediators produced by enterocytes and immune cells directed against pathogens including Campylobacter jejuni. We here elucidated the role of NOD2 during murine C. jejuni infection in more detail. Results Conventionally colonized NOD2 deficient (NOD2−/−) mice and corresponding wildtype (WT) counterparts were perorally infected with C. jejuni strain 81–176 on three consecutive days. The pathogen colonized both WT and NOD2−/− mice only sporadically until day 14 post infection (p.i.). However, the slightly higher prevalence of C. jejuni in NOD2−/− mice was accompanied by higher intestinal Escherichia coli loads known to facilitate C. jejuni colonization. Neither overt macroscopic (clinical) nor microscopic sequelae (such as colonic epithelial apoptosis) could be observed upon murine C. jejuni infection of either genotype. Innate immune responses were less distinctly induced in C. jejuni infected NOD2−/− versus WT mice as indicated by lower colonic numbers of neutrophils in the former. Conversely, adaptive immune cell counts including T lymphocytes were higher in large intestines of NOD2−/− as compared to WT mice that were paralleled by increased colonic IL-6 secretion and higher TNF and IL-18 mRNA expression levels in large intestines of the former. Only in NOD2−/− mice, however, colonic IL-22 mRNA expression was down-regulated at day 14 p.i. Whereas viable commensal intestinal bacteria could exclusively be detected in mesenteric lymph nodes and livers of NOD2−/− mice, bacterial translocation rates to kidneys and spleen were NOD2 independent. Notably, large intestinal mRNA expression levels of mucin-2, constituting a pivotal factor involved in epithelial barrier integrity, were comparable in naive and C. jejuni infected mice of either genotype. Conclusion NOD2 is involved in the well-balanced regulation of innate and adaptive pro-inflammatory immune responses of conventional mice upon C. jejuni infection. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0155-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
109
|
Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice. Gut Pathog 2017; 9:4. [PMID: 28115993 PMCID: PMC5241993 DOI: 10.1186/s13099-017-0154-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
Background The rising incidence of multidrug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa has become a serious issue in prevention of its spread particularly among hospitalized patients. It is, however, unclear whether distinct conditions such as acute intestinal inflammation facilitate P. aeruginosa infection of vertebrate hosts. Methods and results To address this, we analysed P. aeruginosa infection in human microbiota-associated (hma) mice with acute ileitis induced by peroral Toxoplasma gondii challenge. When perorally infected with P. aeruginosa at day 3 post ileitis induction, hma mice displayed higher intestinal P. aeruginosa loads as compared to hma mice without ileitis. However, the overall intestinal microbiota composition was not disturbed by P. aeruginosa (except for lowered bifidobacterial populations), and the infection did not further enhance ileal immune cell responses. Pro-inflammatory cytokines including IFN-γ and IL-12p70 were similarly increased in ileum and mesenteric lymph nodes of P. aeruginosa infected and uninfected hma mice with ileitis. The anti-inflammatory cytokine IL-10 increased multifold upon ileitis induction, but interestingly more distinctly in P. aeruginosa infected as compared to uninfected controls. Immune responses were not restricted to the intestines as indicated by elevated pro-inflammatory cytokine levels in liver and kidney upon ileitis induction. However, except for hepatic TNF-α levels, P. aeruginosa infection did not result in more distinct pro-inflammatory cytokine secretion in liver and kidney of hma mice with ileitis. Whereas viable intestinal bacteria were more frequently detected in systemic compartments such as spleen and cardiac blood of P. aeruginosa infected than uninfected mice at day 7 following ileitis induction, P. aeruginosa infection did not exacerbate systemic pro-inflammatory sequelae, but resulted in lower IL-10 serum levels. Conclusion Acute intestinal inflammation facilitates infection of the vertebrate host with MDR bacteria including P. aeruginosa and might also pose particularly hospitalized patients at risk for acquisition. Since acute T. gondii induced inflammation might mask immunopathology caused by P. aeruginosa, a subacute or chronic inflammation model might be better suited to investigate the potential role of P. aeruginosa infection in the aggravation of intestinal disease. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0154-4) contains supplementary material, which is available to authorized users.
Collapse
|
110
|
Stahl M, Graef FA, Vallance BA. Mouse Models for Campylobacter jejuni Colonization and Infection. Methods Mol Biol 2017; 1512:171-188. [PMID: 27885607 DOI: 10.1007/978-1-4939-6536-6_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Relevant animal models for Campylobacter jejuni infection have been difficult to establish due to C. jejuni's inability to cause disease in many common animal research models. Fortunately, recent work has proven successful in developing several new and relevant mouse models of C. jejuni infection, including the SIGIRR-deficient mouse strain that develops acute enterocolitis in response to C. jejuni. Here we describe how to properly infect mice with C. jejuni, as well as a number of accompanying histological techniques to aid in studying C. jejuni colonization and infection in mice.
Collapse
Affiliation(s)
- Martin Stahl
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Franziska A Graef
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6H 3V4, Canada.
| |
Collapse
|
111
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Bereswill S. Microbiota Composition and Immune Responses During Campylobacter Jejuni Infection in Conventionally Colonized IL-10 -/- Mice Lacking Nucleotide Oligomerization Domain 2. Eur J Microbiol Immunol (Bp) 2016; 7:1-14. [PMID: 28386467 PMCID: PMC5372477 DOI: 10.1556/1886.2016.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10–/– mice lacking NOD2 and IL-10–/– controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2–/– IL-10–/– mice exhibited less fecal bifidobacteria and lactobacilli than IL-10–/– counterparts after infection. Interestingly, NOD2–/– IL-10–/– mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10–/– animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2–/– IL-10–/– mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2–/– IL-10–/– mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10–/– as compared to NOD2–/– IL-10–/– mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10–/– mice in a time-dependent manner.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
112
|
Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur J Microbiol Immunol (Bp) 2016; 6:253-271. [PMID: 27980855 PMCID: PMC5146645 DOI: 10.1556/1886.2016.00036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host-microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these "secondary abiotic mice" have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.
Collapse
Affiliation(s)
| | | | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology and Hygiene, Charité – University Medicine Berlin, Campus Benjamin Franklin
| |
Collapse
|
113
|
The Helical Shape of Campylobacter jejuni Promotes In Vivo Pathogenesis by Aiding Transit through Intestinal Mucus and Colonization of Crypts. Infect Immun 2016; 84:3399-3407. [PMID: 27647867 DOI: 10.1128/iai.00751-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/10/2016] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a helix-shaped enteric bacterial pathogen and a common cause of gastroenteritis. We recently developed a mouse model for this human pathogen utilizing the SIGIRR-deficient mouse strain, which exhibits significant intestinal inflammation in response to intestinal C. jejuni infection. In the current study, this mouse model was used to define whether C. jejuni's characteristic helical shape plays a role in its ability to colonize and elicit inflammation in the mouse intestine. Mice were infected with the previously characterized straight-rod Δpgp1 and Δpgp2 mutant strains, along with a newly characterized curved-rod Δ1228 mutant strain. We also compared the resultant infections and pathology to those elicited by the helix-shaped wild-type C. jejuni and complemented strains. Despite displaying wild-type colonization of the intestinal lumen, the straight-rod Δpgp1 and Δpgp2 mutants were essentially nonpathogenic, while all strains with a curved or helical shape retained their expected virulence. Furthermore, analysis of C. jejuni localization within the ceca of infected mice determined that the primary difference between the rod-shaped, nonpathogenic mutants and the helix-shaped, pathogenic strains was the ability to colonize intestinal crypts. Rod-shaped mutants appeared unable to colonize intestinal crypts due to an inability to pass through the intestinal mucus layer to directly contact the epithelium. Together, these results support a critical role for C. jejuni's helical morphology in enabling it to traverse and colonize the mucus-filled intestinal crypts of their host, a necessary step required to trigger intestinal inflammation in response to C. jejuni.
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW This article describes the mechanisms and consequences of both microbial translocation and microbial dysbiosis in HIV infection. RECENT FINDINGS Microbes in HIV are likely playing a large role in contributing to HIV pathogenesis, morbidities and mortality. Two major disruptions to microbial systems in HIV infection include microbial translocation and microbiome dysbiosis. Microbial translocation occurs when the bacteria (or bacterial products) that should be in the lumen of the intestine translocate across the tight epithelial barrier into systemic circulation, where they contribute to inflammation and pathogenesis. This is associated with poorer health outcomes in HIV-infected individuals. In addition, microbial populations in the gastrointestinal tract are also altered after HIV infection, resulting in microbiome dysbiosis, which further exacerbates microbial translocation, epithelial barrier disruption, inflammation and mucosal immune functioning. SUMMARY Altered microbial regulation in HIV infection can lead to poor health outcomes, and understanding the mechanisms underlying microbial dysbiosis and translocation may result in novel pathways for therapeutic interventions.
Collapse
|
115
|
Culebro A, Revez J, Pascoe B, Friedmann Y, Hitchings MD, Stupak J, Sheppard SK, Li J, Rossi M. Large Sequence Diversity within the Biosynthesis Locus and Common Biochemical Features of Campylobacter coli Lipooligosaccharides. J Bacteriol 2016; 198:2829-40. [PMID: 27481928 PMCID: PMC5038013 DOI: 10.1128/jb.00347-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Despite the importance of lipooligosaccharides (LOSs) in the pathogenicity of campylobacteriosis, little is known about the genetic and phenotypic diversity of LOS in Campylobacter coli In this study, we investigated the distribution of LOS locus classes among a large collection of unrelated C. coli isolates sampled from several different host species. Furthermore, we paired C. coli genomic information and LOS chemical composition for the first time to investigate possible associations between LOS locus class sequence diversity and biochemical heterogeneity. After identifying three new LOS locus classes, only 85% of the 144 isolates tested were assigned to a class, suggesting higher genetic diversity than previously thought. This genetic diversity is at the basis of a completely unexplored LOS structural heterogeneity. Mass spectrometry analysis of the LOSs of nine isolates, representing four different LOS classes, identified two features distinguishing C. coli LOS from that of Campylobacter jejuni 2-Amino-2-deoxy-d-glucose (GlcN)-GlcN disaccharides were present in the lipid A backbone, in contrast to the β-1'-6-linked 3-diamino-2,3-dideoxy-d-glucopyranose (GlcN3N)-GlcN backbone observed in C. jejuni Moreover, despite the fact that many of the genes putatively involved in 3-acylamino-3,6-dideoxy-d-glucose (Quip3NAcyl) were apparently absent from the genomes of various isolates, this rare sugar was found in the outer core of all C. coli isolates. Therefore, regardless of the high genetic diversity of the LOS biosynthesis locus in C. coli, we identified species-specific phenotypic features of C. coli LOS that might explain differences between C. jejuni and C. coli in terms of population dynamics and host adaptation. IMPORTANCE Despite the importance of C. coli to human health and its controversial role as a causative agent of Guillain-Barré syndrome, little is known about the genetic and phenotypic diversity of C. coli LOSs. Therefore, we paired C. coli genomic information and LOS chemical composition for the first time to address this paucity of information. We identified two species-specific phenotypic features of C. coli LOS, which might contribute to elucidating the reasons behind the differences between C. jejuni and C. coli in terms of population dynamics and host adaptation.
Collapse
Affiliation(s)
- Alejandra Culebro
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Joana Revez
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Yasmin Friedmann
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Matthew D Hitchings
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Jacek Stupak
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Samuel K Sheppard
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jianjun Li
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
116
|
Yu ZT, Nanthakumar NN, Newburg DS. The Human Milk Oligosaccharide 2'-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. J Nutr 2016; 146:1980-1990. [PMID: 27629573 PMCID: PMC5037868 DOI: 10.3945/jn.116.230706] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Campylobacter jejuni causes diarrhea worldwide; young children are most susceptible. Binding of virulent C. jejuni to the intestinal mucosa is inhibited ex vivo by α1,2-fucosylated carbohydrate moieties, including human milk oligosaccharides (HMOSs). OBJECTIVE The simplest α1,2-fucosylated HMOS structure, 2'-fucosyllactose (2'-FL), can be predominant at ≤5 g/L milk. Although 2'-FL inhibits C. jejuni binding ex vivo and in vivo, the effects of 2'FL on the cell invasion central to C. jejuni pathogenesis have not been tested. Clinical isolates of C. jejuni infect humans, birds, and ferrets, limiting studies on its mammalian pathobiology. METHODS Human epithelial cells HEp-2 and HT-29 infected with the virulent C. jejuni strain 81-176 human isolate were treated with 5 g 2'-FL/L, and the degree of infection and inflammatory response was measured. Four-week-old male wild-type C57BL/6 mice were fed antibiotics to reduce their intestinal microbiota and were inoculated with C. jejuni strain 81-176. The sensitivity of the resulting acute transient enteric infection and immune response to inhibition by 2'-FL ingestion was tested. RESULTS In HEp-2 and HT-29 cells, 2'-FL attenuated 80% of C. jejuni invasion (P < 0.05) and suppressed the release of mucosal proinflammatory signals of interleukin (IL) 8 by 60-70%, IL-1β by 80-90%, and the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2) by 50% (P < 0.05). Ingestion of 2'-FL by mice reduced C. jejuni colonization by 80%, weight loss by 5%, histologic features of intestinal inflammation by 50-70%, and induction of inflammatory signaling molecules of the acute-phase mucosal immune response by 50-60% (P < 0.05). This acute model did not induce IL-17 (adaptive T cell response), a chronic response. CONCLUSIONS In human cells in vitro (HEp-2, HT-29) and in a mouse infection model that recapitulated key pathologic features of C. jejuni clinical disease, 2'-FL inhibited pathogenesis and its sequelae. These data strongly support the hypothesis that 2'-FL represents a new class of oral agent for prevention, and potentially for treatment, of specific enteric infectious diseases.
Collapse
Affiliation(s)
- Zhuo-Teng Yu
- Department of Biology, Boston College, Chestnut Hill, MA; and
| | - N Nanda Nanthakumar
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - David S Newburg
- Department of Biology, Boston College, Chestnut Hill, MA; and
| |
Collapse
|
117
|
Vaezirad MM, Keestra-Gounder AM, de Zoete MR, Koene MG, Wagenaar JA, van Putten JPM. Invasive behavior of Campylobacter jejuni in immunosuppressed chicken. Virulence 2016; 8:248-260. [PMID: 27574876 PMCID: PMC5411237 DOI: 10.1080/21505594.2016.1221559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Campylobacter jejuni is a predominant cause of gastroenteritis in humans but rather harmless in chickens. The basis of this difference is unknown. We investigated the effect of the chicken immune defense on the behavior of C. jejuni using glucocorticoid (GC)-treated and mock-treated 17-day old Ross 308 chicken bearing in mind that GCs have immunosuppressive effects and dampen the innate immune response. The effect of GC administration on the behavior of C. jejuni was compared with that on infection with Salmonella Enteritidis to address possible microbe-associated differences. Our results revealed that GC treatment fastened the intestinal colonization of C. jejuni (p < 0.001) and enhanced its dissemination to the liver (p = 0.007). The effect of GC on intestinal colonization of S. Enteritidis was less pronounced (p = 0.033) but GC did speed up the spread of this pathogen to the liver (p < 0.001). Cytokine transcript analysis showed an up to 30-fold reduction in baseline levels of IL-8 mRNA in the cecal (but not spleen) tissue at Day 1 after GC treatment (p < 0.005). Challenge with C. jejuni strongly increased intestinal IL-8, IL-6, and iNOS transcript levels in the non-GC treated animals but not in the GC-treated birds (P < 0.005). In vitro assays with chicken macrophages showed that GC dampened the TLR agonist- and C. jejuni induced-inflammatory gene transcription and production of nitric oxide (P < 0.005). Together, the results support the hypothesis that C. jejuni has the intrinsic ability to invade chicken tissue and that an effective innate immune response may limit its invasive behavior.
Collapse
Affiliation(s)
- Mahdi M Vaezirad
- a Department of Infectious Diseases & Immunology , Utrecht University , Utrecht , the Netherlands.,b University of Birjand , Birjand , Iran
| | | | - Marcel R de Zoete
- a Department of Infectious Diseases & Immunology , Utrecht University , Utrecht , the Netherlands
| | - Miriam G Koene
- c Central Veterinary Institute of Wageningen UR , Lelystad , the Netherlands
| | - Jaap A Wagenaar
- a Department of Infectious Diseases & Immunology , Utrecht University , Utrecht , the Netherlands.,c Central Veterinary Institute of Wageningen UR , Lelystad , the Netherlands
| | - Jos P M van Putten
- a Department of Infectious Diseases & Immunology , Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
118
|
Gölz G, Alter T, Bereswill S, Heimesaat MM. The Immunopathogenic Potential of Arcobacter butzleri - Lessons from a Meta-Analysis of Murine Infection Studies. PLoS One 2016; 11:e0159685. [PMID: 27438014 PMCID: PMC4954699 DOI: 10.1371/journal.pone.0159685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022] Open
Abstract
Background Only limited information is available about the immunopathogenic properties of Arcobacter infection in vivo. Therefore, we performed a meta-analysis of published data in murine infection models to compare the pathogenic potential of Arcobacter butzleri with Campylobacter jejuni and commensal Escherichia coli as pathogenic and harmless reference bacteria, respectively. Methodology / Principal Findings Gnotobiotic IL-10-/- mice generated by broad-spectrum antibiotic compounds were perorally infected with A. butzleri (strains CCUG 30485 or C1), C. jejuni (strain 81-176) or a commensal intestinal E. coli strain. Either strain stably colonized the murine intestines upon infection. At day 6 postinfection (p.i.), C. jejuni infected mice only displayed severe clinical sequelae such as wasting bloody diarrhea. Gross disease was accompanied by increased numbers of colonic apoptotic cells and distinct immune cell populations including macrophages and monocytes, T and B cells as well as regulatory T cells upon pathogenic infection. Whereas A. butzleri and E. coli infected mice were clinically unaffected, respective colonic immune cell numbers increased in the former, but not in the latter, and more distinctly upon A. butzleri strain CCUG 30485 as compared to C1 strain infection. Both, A. butzleri and C. jejuni induced increased secretion of pro-inflammatory cytokines such as IFN-γ, TNF, IL-6 and MCP-1 in large, but also small intestines. Remarkably, even though viable bacteria did not translocate from the intestines to extra-intestinal compartments, systemic immune responses were induced in C. jejuni, but also A. butzleri infected mice as indicated by increased respective pro-inflammatory cytokine concentrations in serum samples at day 6 p.i. Conclusion / Significance A. butzleri induce less distinct pro-inflammatory sequelae as compared to C. jejuni, but more pronounced local and systemic immune responses than commensal E. coli in a strain-dependent manner. Hence, data point towards that A. butzleri is more than a commensal in vertebrate hosts.
Collapse
Affiliation(s)
- Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
119
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. The IL-23/IL-22/IL-18 axis in murine Campylobacter jejuni infection. Gut Pathog 2016; 8:21. [PMID: 27385977 PMCID: PMC4934010 DOI: 10.1186/s13099-016-0106-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023] Open
Abstract
Background Human Campylobacter jejuni infections are worldwide on the rise. Information about the distinct molecular mechanisms underlying campylobacteriosis, however, are scarce. In the present study we investigated whether cytokines including IL-23, IL-22 and IL-18 sharing pivotal functions in host immunity were involved in mediating immunopathological responses upon C. jejuni infection. Results To address this, conventionally colonized IL-23p19−/−, IL-22−/− and IL-18−/− mice were perorally infected with C. jejuni strain ATCC 43431. Respective gene-deficient, but not wildtype mice were susceptible to C. jejuni infection and could be readily colonized with highest pathogenic loads in the terminal ileum and colon at day 14 postinfection (p.i.). In IL-23p19−/−, IL-22−/− and IL-18−/− mice viable C. jejuni were detected in MLNs, but did not translocate to spleen, liver, kidney and blood in the majority of cases. Susceptible IL-22−/−, but neither IL-23p19−/−, nor IL-18−/− mice harbored higher intestinal commensal E. coli loads when compared to resistant wildtype mice. Alike C. jejuni, commensal E. coli did not translocate from the intestinal to extra-intestinal tissue sites. Despite C. jejuni infection, mice lacking IL-23p19, IL-22 or IL-18 exhibited less apoptotic cells, but higher numbers of proliferating cells in their colonic epithelium as compared to wildtype mice at day 14 p.i. Less pronounced apoptosis was parallelled by lower abundance of neutrophils within the colonic mucosa and lamina propria of infected IL-23p19−/− and IL-22−/− as compared to wildtype control mice, whereas less distinct colonic TNF secretion could be measured in IL-22−/− and IL-18−/− than in wildtype mice at day 14 p.i. Notably, in infected IL-22−/− mice, colonic IL-23p19 mRNA levels were lower, whereas the other way round, colonic IL-22 expression rates were lower in IL-23p19−/− mice as compared to wildtype controls. Moreover, IL-18 mRNA was less distinctly expressed in large intestines of naive and infected IL-22−/− mice, but not vice versa, given that IL-22 mRNA levels did not differ between in IL-18−/− and wildtype mice. Conclusion Cytokines belonging to the IL-23/IL-22/IL-18 axis mediate immunopathological responses upon murine C. jejuni infection in a differentially orchestrated manner. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogenic-host interaction. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0106-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
120
|
Bereswill S, Alutis ME, Grundmann U, Fischer A, Göbel UB, Heimesaat MM. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice. PLoS One 2016; 11:e0158020. [PMID: 27322540 PMCID: PMC4913948 DOI: 10.1371/journal.pone.0158020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. METHODOLOGY/PRINCIPAL FINDINGS To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81-176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. CONCLUSION/SIGNIFICANCE We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogen-host interaction.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Marie E. Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
121
|
Impact of gut microbiota on diabetes mellitus. DIABETES & METABOLISM 2016; 42:303-315. [PMID: 27179626 DOI: 10.1016/j.diabet.2016.04.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Various functions of the gut are regulated by sophisticated interactions among its functional elements, including the gut microbiota. These microorganisms play a crucial role in gastrointestinal mucosa permeability. They control the fermentation and absorption of dietary polysaccharides to produce short-chain fatty acids, which may explain their importance in the regulation of fat accumulation and the subsequent development of obesity-related diseases, suggesting that they are a crucial mediator of obesity and its consequences. In addition, gut bacteria play a crucial role in the host immune system, modulation of inflammatory processes, extraction of energy from the host diet and alterations of human gene expression. Dietary modulation of the human colonic microbiota has been shown to confer a number of health benefits to the host. Simple therapeutic strategies targeted at attenuating the progression of chronic low-grade inflammation and insulin resistance are urgently required to prevent or slow the development of diabetes in susceptible individuals. The main objective of this review is to address the pathogenic association between gut microbiota and diabetes, and to explore any novel related therapeutic targets. New insights into the role of the gut microbiota in diabetes could lead to the development of integrated strategies using probiotics to prevent and treat these metabolic disorders.
Collapse
|
122
|
Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016; 100:27-45. [PMID: 27162325 DOI: 10.1189/jlb.2ri1115-531r] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent signaling is required for TLR-mediated production of type-I IFN and several other proinflammatory mediators. Various pathogens target the signaling molecules and transcriptional regulators acting in the TRIF pathway, thus demonstrating the importance of this pathway in host defense. Indeed, the TRIF pathway contributes to control of both viral and bacterial pathogens through promotion of inflammatory mediators and activation of antimicrobial responses. TRIF signaling also has both protective and pathologic roles in several chronic inflammatory disease conditions, as well as an essential function in wound-repair processes. Here, we review our current understanding of the regulatory mechanisms that control TRIF-dependent TLR signaling, the role of the TRIF pathway in different infectious and noninfectious pathologic states, and the potential for manipulating TRIF-dependent TLR signaling for therapeutic benefit.
Collapse
Affiliation(s)
- M Obayed Ullah
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia;
| |
Collapse
|
123
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. Colonic Expression of Genes Encoding Inflammatory Mediators and Gelatinases During Campylobacter Jejuni Infection of Conventional Infant Mice. Eur J Microbiol Immunol (Bp) 2016; 6:137-46. [PMID: 27429796 PMCID: PMC4936336 DOI: 10.1556/1886.2016.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
Within 1 week following peroral Campylobacter jejuni infection, infant mice develop acute enteritis resolving thereafter. We here assessed colonic expression profiles of mediators belonging to the IL-23/IL-22/IL-18 axis and of matrix-degrading gelatinases MMP-2 and MMP-9 at day 6 post C. jejuni strain 81-176 infection. Whereas the pathogen readily colonized the intestines of infant IL-18–/– mice only, colonic mucin-2 mRNA, a pivotal mucus constituent, was downregulated in IL-22–/– mice and accompanied by increased expression of pro-inflammatory cytokines including IFN-γ, TNF, IL-17A, and IL-1β. Furthermore, in both naive and infected IL-22–/– mice, colonic expression of IL-23p19 and IL-18 was lower as compared to wildtype mice, whereas, conversely, colonic IL-22 mRNA levels were lower in IL-18–/– and colonic IL-18 expression lower in IL-23p19–/– as compared to wildtype mice. Moreover, colonic expression of MMP-2 and MMP-9 and their endogenous inhibitor TIMP-1 were lower in IL-22–/– as compared to wildtype mice at day 6 postinfection. In conclusion, mediators belonging of the IL-23/IL-22/IL-18 axis as well as the gelatinases MMP-2 and MMP-9 are involved in mediating campylobacteriosis of infant mice in a differentially regulated fashion.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
124
|
Heimesaat MM, Alutis ME, Grundmann U, Fischer A, Göbel UB, Bereswill S. The Role of IL-23, IL-22, and IL-18 in Campylobacter Jejuni Infection of Conventional Infant Mice. Eur J Microbiol Immunol (Bp) 2016; 6:124-36. [PMID: 27429795 PMCID: PMC4936335 DOI: 10.1556/1886.2016.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023] Open
Abstract
We have recently shown that, within 1 week following peroral Campylobacter jejuni infection, conventional infant mice develop self-limiting enteritis. We here investigated the role of IL-23, IL-22, and IL-18 during C. jejuni strain 81-176 infection of infant mice. The pathogen efficiently colonized the intestines of IL-18(-/-) mice only, but did not translocate to extra-intestinal compartments. At day 13 postinfection (p.i.), IL-22(-/-) mice displayed lower colonic epithelial apoptotic cell numbers as compared to wildtype mice, whereas, conversely, colonic proliferating cells increased in infected IL-22(-/-) and IL-18(-/-) mice. At day 6 p.i., increases in neutrophils, T and B lymphocytes were less pronounced in gene-deficient mice, whereas regulatory T cell numbers were lower in IL-23p19(-/-) and IL-22(-/-) as compared to wildtype mice, which was accompanied by increased colonic IL-10 levels in the latter. Until then, colonic pro-inflammatory cytokines including TNF, IFN-γ, IL-6, and MCP-1 increased in IL-23p19(-/-) mice, whereas IL-18(-/-) mice exhibited decreased cytokine levels and lower colonic numbers of T and B cell as well as of neutrophils, macrophages, and monocytes as compared to wildtype controls. In conclusion, IL-23, IL-22, and IL-18 are differentially involved in mediating C. jejuni-induced immunopathology of conventional infant mice.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
125
|
Winek K, Engel O, Koduah P, Heimesaat MM, Fischer A, Bereswill S, Dames C, Kershaw O, Gruber AD, Curato C, Oyama N, Meisel C, Meisel A, Dirnagl U. Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome After Murine Stroke. Stroke 2016; 47:1354-63. [PMID: 27056982 PMCID: PMC4839545 DOI: 10.1161/strokeaha.115.011800] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Antibiotics disturbing microbiota are often used in treatment of poststroke infections. A bidirectional brain-gut microbiota axis was recently suggested as a modulator of nervous system diseases. We hypothesized that gut microbiota may be an important player in the course of stroke. METHODS We investigated the outcome of focal cerebral ischemia in C57BL/6J mice after an 8-week decontamination with quintuple broad-spectrum antibiotic cocktail. These microbiota-depleted animals were subjected to 60 minutes middle cerebral artery occlusion or sham operation. Infarct volume was measured using magnetic resonance imaging, and mice were monitored clinically throughout the whole experiment. At the end point, tissues were preserved for further analysis, comprising histology and immunologic investigations using flow cytometry. RESULTS We found significantly decreased survival in the middle cerebral artery occlusion microbiota-depleted mice when the antibiotic cocktail was stopped 3 days before surgery (compared with middle cerebral artery occlusion specific pathogen-free and sham-operated microbiota-depleted mice). Moreover, all microbiota-depleted animals in which antibiotic treatment was terminated developed severe acute colitis. This phenotype was rescued by continuous antibiotic treatment or colonization with specific pathogen-free microbiota before surgery. Further, infarct volumes on day one did not differ between any of the experimental groups. CONCLUSIONS Conventional microbiota ensures intestinal protection in the mouse model of experimental stroke and prevents development of acute and severe colitis in microbiota-depleted mice not given antibiotic protection after cerebral ischemia. Our experiments raise the clinically important question as to whether microbial colonization or specific microbiota are crucial for stroke outcome.
Collapse
Affiliation(s)
- Katarzyna Winek
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Odilo Engel
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Priscilla Koduah
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Markus M Heimesaat
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - André Fischer
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Stefan Bereswill
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Claudia Dames
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Olivia Kershaw
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Achim D Gruber
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Caterina Curato
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Naoki Oyama
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Christian Meisel
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Andreas Meisel
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.)
| | - Ulrich Dirnagl
- From the Department of Experimental Neurology (K.W., O.E., P.K., N.O., A.M., U.D.), NeuroCure Clinical Research (K.W., C.C., A.M., U.D.), Center for Stroke Research Berlin (K.W., O.E., P.K., A.M., U.D.), Department of Microbiology and Hygiene (M.M.H., A.F., S.B.), Institute for Medical Immunology (C.D., C.M.), and Department of Neurology (A.M., U.D.), Charité - Universitätsmedizin Berlin, Germany; Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany (O.K., A.D.G.); German Rheumatism Research Center (DRFZ), Berlin, Germany (C.C.); and German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (U.D.).
| |
Collapse
|
126
|
Gölz G, Alter T, Bereswill S, Heimesaat MM. Toll-Like Receptor-4 Dependent Intestinal Gene Expression During Arcobacter Butzleri Infection of Gnotobiotic Il-10 Deficient Mice. Eur J Microbiol Immunol (Bp) 2016; 6:67-80. [PMID: 27141316 PMCID: PMC4838987 DOI: 10.1556/1886.2016.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that Arcobacter butzleri infection induces Toll-like receptor (TLR) -4 dependent immune responses in perorally infected gnotobiotic IL-10–/– mice. Here, we analyzed TLR-4-dependent expression of genes encoding inflammatory mediators and matrix-degrading gelatinases MMP-2 and -9 in the small and large intestines of gnotobiotic TLR-4-deficient IL-10–/– mice that were perorally infected with A. butzleri strains CCUG 30485 or C1, of human and chicken origin, respectively. At day 6 following A. butzleri infection, colonic mucin-2 mRNA, as integral part of the intestinal mucus layer, was downregulated in the colon, but not ileum, of IL-10–/– but not TLR-4–/– IL-10–/– mice. CCUG 30485 strain-infected TLR-4-deficient IL-10–/– mice displayed less distinctly upregulated IFN-γ, IL-17A, and IL-1β mRNA levels in ileum and colon, which was also true for colonic IL-22. These changes were accompanied by upregulated colonic MMP-2 and ileal MMP-9 mRNA exclusively in IL-10–/– mice. In conclusion, TLR-4 is essentially involved in A. butzleri mediated modulation of gene expression in the intestines of gnotobiotic IL-10–/– mice.
Collapse
Affiliation(s)
- Greta Gölz
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
127
|
Heimesaat MM, Alter T, Bereswill S, Gölz G. Intestinal Expression of Genes Encoding Inflammatory Mediators and Gelatinases During Arcobacter Butzleri Infection of Gnotobiotic Il-10 Deficient Mice. Eur J Microbiol Immunol (Bp) 2016; 6:56-66. [PMID: 27141315 PMCID: PMC4838986 DOI: 10.1556/1886.2016.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that Arcobacter butzleri induces intestinal, extra-intestinal, and systemic immune responses in perorally infected gnotobiotic IL-10(-/-) mice in a strain-dependent fashion. Here, we present a comprehensive survey of small and large intestinal expression profiles of inflammatory and regulatory mediators as well as of the matrix-degrading gelatinases MMP-2 and MMP-9 following murine A. butzleri infection. Gnotobiotic IL-10(-/-) mice were infected with A. butzleri strains CCUG 30485 or C1 of human and chicken origin, respectively. At day 6 following A. butzleri infection, mucin-2 mRNA, an integral part of the intestinal mucus layer, was downregulated in the colon, whereas TNF and IL-23p19 mRNA were upregulated in the ileum. Furthermore, IFN-γ, IL-17A, IL-1β, and IL-22 mRNA were upregulated in both colonic and ileal ex vivo biopsies at day 6 post strain CCUG 30485 infection. These changes were accompanied by downregulated colonic MMP-9 levels, whereas both MMP-2 and MMP-9 mRNA were upregulated in the ileum. In conclusion, these data indicate that A. butzleri infection induces changes in the expression of genes involved in pro-inflammatory and regulatory immune responses as well as in tissue degradation.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Greta Gölz
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| |
Collapse
|
128
|
Abstract
The formation of SCFA is the result of a complex interplay between diet and the gut microbiota within the gut lumen environment. The discovery of receptors, across a range of cell and tissue types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent the major carbon flux from the diet through the gut microbiota to the host and evidence is emerging for a regulatory role of SCFA in local, intermediary and peripheral metabolism. However, a lack of well-designed and controlled human studies has hampered our understanding of the significance of SCFA in human metabolic health. This review aims to pull together recent findings on the role of SCFA in human metabolism to highlight the multi-faceted role of SCFA on different metabolic systems.
Collapse
Affiliation(s)
- Douglas J. Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, Scotland
| | - Tom Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, Scotland
| |
Collapse
|
129
|
Abstract
The formation of SCFA is the result of a complex interplay between diet and the gut microbiota within the gut lumen environment. The discovery of receptors, across a range of cell and tissue types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent the major carbon flux from the diet through the gut microbiota to the host and evidence is emerging for a regulatory role of SCFA in local, intermediary and peripheral metabolism. However, a lack of well-designed and controlled human studies has hampered our understanding of the significance of SCFA in human metabolic health. This review aims to pull together recent findings on the role of SCFA in human metabolism to highlight the multi-faceted role of SCFA on different metabolic systems.
Collapse
Affiliation(s)
- Douglas J. Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, Scotland
| | - Tom Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, Scotland
| |
Collapse
|
130
|
Crosstalk between microbiota, pathogens and the innate immune responses. Int J Med Microbiol 2016; 306:257-265. [PMID: 26996809 DOI: 10.1016/j.ijmm.2016.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023] Open
Abstract
Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis.
Collapse
|
131
|
Abstract
This report summarises talks given at the 8th International Yakult Symposium, held on 23-24 April 2015 in Berlin. Two presentations explored different aspects of probiotic intervention: the small intestine as a probiotic target and inclusion of probiotics into integrative approaches to gastroenterology. Probiotic recommendations in gastroenterology guidelines and current data on probiotic efficacy in paediatric patients were reviewed. Updates were given on probiotic and gut microbiota research in obesity and obesity-related diseases, the gut-brain axis and development of psychobiotics, and the protective effects of equol-producing strains for prostate cancer. Recent studies were presented on probiotic benefit for antibiotic-associated diarrhoea and people with HIV, as well as protection against the adverse effects of a short-term high-fat diet. Aspects of probiotic mechanisms of activity were discussed, including immunomodulatory mechanisms and metabolite effects, the anti-inflammatory properties of Faecalibacterium prausnitzii, the relationship between periodontitis, microbial production of butyrate in the oral cavity and ageing, and the pathogenic mechanisms of Campylobacter. Finally, an insight was given on a recent expert meeting, which re-examined the probiotic definition, advised on the appropriate use and scope of the term and outlined different probiotic categories and the prevalence of different mechanisms of activity.
Collapse
|
132
|
Colonization pattern of C. jejuni isolates of human and avian origin and differences in the induction of immune responses in chicken. Vet Immunol Immunopathol 2016; 169:1-9. [DOI: 10.1016/j.vetimm.2015.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/14/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022]
|
133
|
Gölz G, Karadas G, Fischer A, Göbel UB, Alter T, Bereswill S, Heimesaat MM. Toll-Like Receptor-4 is Essential for Arcobacter Butzleri-Induced Colonic and Systemic Immune Responses in Gnotobiotic IL-10(-/-) Mice. Eur J Microbiol Immunol (Bp) 2015; 5:321-32. [PMID: 26716021 PMCID: PMC4681360 DOI: 10.1556/1886.2015.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Arcobacter butzleri causes sporadic cases of gastroenteritis, but the underlying immunopathological mechanisms of infection are unknown. We have recently demonstrated that A. butzleri-infected gnotobiotic IL-10–/– mice were clinically unaffected but exhibited intestinal and systemic inflammatory immune responses. For the first time, we here investigated the role of Toll-like receptor (TLR)-4, the main receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, in murine arcobacteriosis. Gnotobiotic TLR-4/IL-10-double deficient (TLR-4–/– IL-10–/–) and IL-10–/– control mice generated by broad-spectrum antibiotics were perorally infected with A. butzleri. Until day 16 postinfection, mice of either genotype were stably colonized with the pathogen, but fecal bacterial loads were approximately 0.5–2.0 log lower in TLR-4–/– IL-10–/– as compared to IL-10–/– mice. A. butzleri-infected TLR-4–/– IL-10–/– mice displayed less pronounced colonic apoptosis accompanied by lower numbers of macrophages and monocytes, T lymphocytes, regulatory T-cells, and B lymphocytes within the colonic mucosa and lamina propria as compared to IL-10–/– mice. Furthermore, colonic concentrations of nitric oxide, TNF, IL-6, MCP-1, and, remarkably, IFN-γ and IL-12p70 serum levels were lower in A. butzleri-infected TLR-4–/– IL-10–/– versus IL-10–/– mice. In conclusion, TLR-4 is involved in mediating murine A. butzleri infection. Further studies are needed to investigate the molecular mechanisms underlying Arcobacter–host interactions in more detail.
Collapse
Affiliation(s)
- Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - Gül Karadas
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
134
|
Heimesaat MM, Karadas G, Fischer A, Göbel UB, Alter T, Bereswill S, Gölz G. Toll-Like Receptor-4 Dependent Small Intestinal Immune Responses Following Murine Arcobacter Butzleri Infection. Eur J Microbiol Immunol (Bp) 2015; 5:333-42. [PMID: 26716022 PMCID: PMC4681361 DOI: 10.1556/1886.2015.00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
Sporadic cases of gastroenteritis have been attributed to Arcobacter butzleri infection, but information about the underlying immunopathological mechanisms is scarce. We have recently shown that experimental A. butzleri infection induces intestinal, extraintestinal and systemic immune responses in gnotobiotic IL-10(-/-) mice. The aim of the present study was to investigate the immunopathological role of Toll-like Receptor-4, the receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, during murine A. butzleri infection. To address this, gnotobiotic IL-10(-/-) mice lacking TLR-4 were generated by broad-spectrum antibiotic treatment and perorally infected with two different A. butzleri strains isolated from a patient (CCUG 30485) or fresh chicken meat (C1), respectively. Bacteria of either strain stably colonized the ilea of mice irrespective of their genotype at days 6 and 16 postinfection. As compared to IL-10(-/-) control animals, TLR-4(-/-) IL-10(-/-) mice were protected from A. butzleri-induced ileal apoptosis, from ileal influx of adaptive immune cells including T lymphocytes, regulatory T-cells and B lymphocytes, and from increased ileal IFN-γ secretion. Given that TLR-4-signaling is essential for A. butzleri-induced intestinal inflammation, we conclude that bacterial lipooligosaccharide or lipopolysaccharide compounds aggravate intestinal inflammation and may thus represent major virulence factors of Arcobacter. Future studies need to further unravel the molecular mechanisms of TLR-4-mediated A. butzleri-host interactions.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Gül Karadas
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
135
|
Indikova I, Humphrey TJ, Hilbert F. Survival with a Helping Hand: Campylobacter and Microbiota. Front Microbiol 2015; 6:1266. [PMID: 26617600 PMCID: PMC4637420 DOI: 10.3389/fmicb.2015.01266] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 01/09/2023] Open
Abstract
Campylobacteriosis is the most important bacterial food-borne disease in the developed world. Consumption of chicken meat, beef or raw milk, direct contact with ruminants and exposure to contaminated surface water or even consumption of tap water have been identified as risk factors for human disease. However, the most important risk factor is consumption of and/or handling contaminated chicken. Campylobacter spp. are fastidious microorganisms but must somehow survive outside the host, especially in food and agricultural environments and also resist the innate and humoral immune responses inside the host. In this paper we hypothesize that other microorganisms in mixed populations with Campylobacter may act to improve survival outside the host and may also protect the pathogen against the intestinal immune system. Our evidence for this hypothesis is based on: 1. newly generated microbial community analysis; 2. the prolonged survival of Campylobacter in mixed species biofilms and in co-culture with environmental bacteria; 3. improved survival in amoebae and rumen fluid; 4. sulfur release and iron uptake systems within the intestinal lumen. This would make Campylobacter an exceptional food-borne pathogen. With this in mind, new strategies are necessary to combat Campylobacter along the total food chain.
Collapse
Affiliation(s)
- Ivana Indikova
- Institute of Meat Hygiene, Meat Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Tom J. Humphrey
- Medical Microbiology and Infectious Diseases Group, College of Medicine, Swansea University, Swansea, UK
| | - Friederike Hilbert
- Institute of Meat Hygiene, Meat Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
136
|
Alutis ME, Grundmann U, Fischer A, Hagen U, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. The Role of Gelatinases in Campylobacter Jejuni Infection of Gnotobiotic Mice. Eur J Microbiol Immunol (Bp) 2015; 5:256-67. [PMID: 26716014 PMCID: PMC4681353 DOI: 10.1556/1886.2015.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMP)-2 and -9 (also referred to gelatinases-A and -B, respectively) are upregulated in the inflamed gut of mice and men. We recently demonstrated that synthetic gelatinase blockage reduced large intestinal pro-inflammatory immune responses and apoptosis following murine Campylobacter (C.) jejuni infection. In order to address which gelatinase mediates C. jejuni-induced immune responses, gnotobiotic MMP-2(-/-), MMP-9(-/-), and wildtype (WT) mice were generated by broadspectrum antibiotic treatment and perorally infected with C. jejuni strain 81-176. The pathogen stably colonized the murine intestinal tract irrespective of the genotype but did not translocate to extra-intestinal compartments. At days 8 and 14 postinfection (p.i.), less pronounced colonic histopathological changes were observed in infected MMP-2(-/-) mice, less distinct epithelial apoptosis, but more epithelial proliferation in both MMP-2(-/-) and MMP-9(-/-) mice, as compared to WT controls. Reduced immune responses in gelatinase-deficient mice were characterized by lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa and lamina propria. The expression of IL-22, IL-18, IL-17A, and IL-1β mRNA was higher in the colon of MMP-2(-/-) as compared to WT mice. In conclusion, both MMP-2 and MMP-9 are differentially involved in mediating C. jejuni-induced intestinal immunopathology.
Collapse
Affiliation(s)
- Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulrike Hagen
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
137
|
Heimesaat MM, Karadas G, Alutis M, Fischer A, Kühl AA, Breithaupt A, Göbel UB, Alter T, Bereswill S, Gölz G. Survey of small intestinal and systemic immune responses following murine Arcobacter butzleri infection. Gut Pathog 2015; 7:28. [PMID: 26483849 PMCID: PMC4610047 DOI: 10.1186/s13099-015-0075-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arcobacter (A.) butzleri has been described as causative agent for sporadic cases of human gastroenteritis with abdominal pain and acute or prolonged watery diarrhea. In vitro studies revealed distinct adhesive, invasive and cytotoxic properties of A. butzleri. Information about the underlying immunopathological mechanisms of infection in vivo, however, are scarce. The aim of this study was to investigate the immunopathological properties of two different A. butzleri strains in a well-established murine infection model. RESULTS Gnotobiotic IL-10(-/-) mice, in which the intestinal microbiota was depleted by broad-spectrum antibiotic treatment, were perorally infected with two different A. butzleri strains isolated from a diseased patient (CCUG 30485) or fresh chicken meat (C1), respectively. Eventhough bacteria of either strain could stably colonize the intestinal tract at day 6 and day 16 postinfection (p.i.), mice did not exert infection induced symptoms such as diarrhea or wasting. In small intestines of infected mice, however, increased numbers of apoptotic cells could be detected at day 16, but not day 6 following infection with either strain. A strain-dependent influx of distinct immune cell populations such as T and B cells as well as of regulatory T cells could be observed upon A. butzleri infection which was accompanied by increased small intestinal concentrations of pro-inflammatory cytokines such as TNF, IFN-γ, MCP-1 and IL-6. Remarkably, inflammatory responses following A. butzleri infection were not restricted to the intestinal tract, given that the CCUG 30485 strain induced systemic immune responses as indicated by increased IFN-γ concentrations in spleens at day 6, but not day 16 following infection. CONCLUSION Upon peroral infection A. butzleri stably colonized the intestinal tract of gnotobiotic IL-10(-/-) mice. The dynamics of distinct local and systemic inflammatory responses could be observed in a strain-dependent fashion pointing towards an immunopathogenic potential of A. butzleri in vivo. These results indicate that gnotobiotic IL-10(-/-) mice are well suited to further investigate the molecular mechanisms underlying arcobacteriosis in vivo.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, Berlin, Germany
| | - Gül Karadas
- Institute of Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Marie Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité-University Medicine Berlin, Berlin, Germany
| | - Angele Breithaupt
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| |
Collapse
|
138
|
Gölz G, Karadas G, Alutis ME, Fischer A, Kühl AA, Breithaupt A, Göbel UB, Alter T, Bereswill S, Heimesaat MM. Arcobacter butzleri Induce Colonic, Extra-Intestinal and Systemic Inflammatory Responses in Gnotobiotic IL-10 Deficient Mice in a Strain-Dependent Manner. PLoS One 2015; 10:e0139402. [PMID: 26406497 PMCID: PMC4584000 DOI: 10.1371/journal.pone.0139402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/12/2015] [Indexed: 01/14/2023] Open
Abstract
Background The immunopathological impact of human Arcobacter (A.) infections is under current debate. Episodes of gastroenteritis with abdominal pain and acute or prolonged watery diarrhea were reported for A. butzleri infected patients. Whereas adhesive, invasive and cytotoxic capacities have been described for A. butzleri in vitro, only limited information is available about the immunopathogenic potential and mechanisms of infection in vivo. Methodology/Principal Findings Gnotobiotic IL-10-/- mice were generated by broad-spectrum antibiotic treatment and perorally infected with the A. butzleri strains CCUG 30485 and C1 shown to be invasive in cell culture assays. Bacterial colonization capacities, clinical conditions, intestinal, extra-intestinal and systemic immune responses were monitored at day six and 16 postinfection (p.i.). Despite stable intestinal A. butzleri colonization at high loads, gnotobiotic IL-10-/- mice were virtually unaffected and did not display any overt symptoms at either time point. Notably, A. butzleri infection induced apoptosis of colonic epithelial cells which was paralleled by increased abundance of proliferating cells. Furthermore A. butzleri infection caused a significant increase of distinct immune cell populations such as T and B cells, regulatory T cells, macrophages and monocytes in the colon which was accompanied by elevated colonic TNF, IFN-γ, nitric oxide (NO), IL-6, IL-12p70 and MCP-1 concentrations. Strikingly, A. butzleri induced extra-intestinal and systemic immune responses as indicated by higher NO concentrations in kidney and increased TNF, IFN-γ, IL-12p70 and IL-6 levels in serum samples of infected as compared to naive mice. Overall, inflammatory responses could be observed earlier in the course of infection by the CCUG 30485 as compared to the C1 strain. Conclusion/Significance Peroral A. butzleri infection induced not only intestinal but also extra-intestinal and systemic immune responses in gnotobiotic IL-10-/- mice in a strain-dependent manner. These findings point towards an immunopathogenic potential of A. butzleri in vertebrate hosts.
Collapse
Affiliation(s)
- Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Gül Karadas
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Marie E. Alutis
- Department of Microbiology and Hygiene, Charité—University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité—University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité—University Medicine Berlin, Berlin, Germany
| | - Angele Breithaupt
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité—University Medicine Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité—University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité—University Medicine Berlin, Berlin, Germany
| |
Collapse
|
139
|
Alutis ME, Grundmann U, Hagen U, Fischer A, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. Matrix Metalloproteinase-2 Mediates Intestinal Immunopathogenesis in Campylobacter Jejuni-Infected Infant Mice. Eur J Microbiol Immunol (Bp) 2015; 5:188-98. [PMID: 26495129 PMCID: PMC4598886 DOI: 10.1556/1886.2015.00020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in the inflamed gut. We have recently shown that synthetic gelatinase blockage reduces colonic apoptosis and pro-inflammatory immune responses following murine Campylobacter (C.) jejuni infection. In order to dissect whether MMP-2 and/or MMP-9 is involved in mediating C. jejuni-induced immune responses, infant MMP-2(-/-), MMP-9(-/-), and wildtype (WT) mice were perorally infected with the C. jejuni strain B2 immediately after weaning. Whereas, at day 2 postinfection (p.i.), fecal C. jejuni B2 loads were comparable in mice of either genotype, mice expelled the pathogen from the intestinal tract until day 4 p.i. Six days p.i., colonic MMP-2 but not MMP-9 mRNA was upregulated in WT mice. Remarkably, infected MMP-2(-/-) mice exhibited less frequent abundance of blood in feces, less distinct colonic histopathology and apoptosis, lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa, and higher colonic IL-22 mRNA levels as compared to infected WT mice. In conclusion, these results point towards an important role of MMP-2 in mediating C. jejuni-induced intestinal immunopathogenesis.
Collapse
Affiliation(s)
- Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulrike Hagen
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
140
|
Heimesaat MM, Fischer A, Kühl AA, Göbel UB, Gozes I, Bereswill S. Anti-Inflammatory Properties of NAP in Acute Toxoplasma Gondii-Induced Ileitis in Mice. Eur J Microbiol Immunol (Bp) 2015; 5:210-20. [PMID: 26495132 PMCID: PMC4598889 DOI: 10.1556/1886.2015.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 01/31/2023] Open
Abstract
The octapeptide NAP has been shown to exert neuroprotective properties. Here, we investigated potential anti-inflammatory effects of NAP in an acute ileitis model. To address this, C57BL/6j mice were perorally infected with Toxoplasma gondii (day 0). Within 1 week postinfection (p.i.), placebo (PLC)-treated mice developed acute ileitis due to Th1-type immune responses. Mice that were subjected to intraperitoneal NAP treatment from day 1 until day 6 p.i., however, developed less distinct macroscopic and microscopic disease as indicated by less body weight loss, less distinct histopathological ileal changes, and lower ileal apoptotic, but higher proliferating cell numbers, less abundance of neutrophils, macrophages, monocytes, and T lymphocytes, but higher numbers of regulatory T cells in the ileal mucosa and lamina propria, and lower concentrations of pro-inflammatory mediators in the ilea as compared to PLC controls at day 7 p.i. Remarkably, NAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments including liver and spleen. Strikingly, lower MCP-1, TNF, and IL-12p70 serum concentrations in NAP as compared to PLC-treated mice at day 7 p.i. indicate a pronounced systemic anti-inflammatory effect of NAP in acute ileitis. These findings provide first evidence for NAP as a potential novel treatment option in intestinal inflammation.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Illana Gozes
- Department of Clinical Biochemistry, Sackler School of Medicine, Aviv University , Aviv, Israel
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
141
|
Kampmann C, Dicksved J, Engstrand L, Rautelin H. Composition of human faecal microbiota in resistance to Campylobacter infection. Clin Microbiol Infect 2015; 22:61.e1-61.e8. [PMID: 26369602 DOI: 10.1016/j.cmi.2015.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 01/22/2023]
Abstract
In mice, specific species composition of gut microbiota enhances susceptibility to Campylobacter jejuni but little is known about the specific composition of the human gut microbiota in providing protection from infections caused by enteropathogens. Healthy adult individuals, who travelled in groups from Sweden to destinations with an estimated high risk for acquisition of Campylobacter infection, were enrolled. Faecal samples, collected before travelling and after returning home, were cultured for bacterial enteropathogens, and analysed for Campylobacter by PCR and for the species composition of the microbiota by 16S amplicon massive parallel sequencing. The microbiota compositions were compared between persons who became infected during their travel and those who did not. A total of 63 participants completed the study; 14 became infected with Campylobacter, two with Salmonella and 47 remained negative for the enteropathogens tested. After exclusion of samples taken after antimicrobial treatment, 49 individuals were included in the final analyses. Intra-individual stability of the microbiota was demonstrated for samples taken before travelling. The original diversity of the faecal microbiota was significantly lower among individuals who later became infected compared with those who remained uninfected. The relative abundances of bacteria belonging to the family Lachnospiraceae, and more specifically its two genera Dorea and Coprococcus, were significantly higher among those who remained uninfected. The travel-related infection did not significantly modify the faecal microbiota composition. Species composition of human gut microbiota is important for colonization resistance to Campylobacter infection. Especially individuals with a lower diversity are more susceptible to Campylobacter infection.
Collapse
Affiliation(s)
- C Kampmann
- Department of Infectious Diseases, Gävle Hospital, Gävle, Sweden; Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden; Centre for Research and Development, Uppsala University/County Council of Gävleborg, Sweden.
| | - J Dicksved
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden; Science for Life Laboratory, Clinical Genomics, Stockholm, Sweden
| | - H Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden; Department of Bacteriology and Immunology, University of Helsinki, Finland
| |
Collapse
|
142
|
Reuter M, Periago PM, Mulholland F, Brown HL, van Vliet AHM. A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni. Front Microbiol 2015; 6:770. [PMID: 26284050 PMCID: PMC4519771 DOI: 10.3389/fmicb.2015.00770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023] Open
Abstract
The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation of a tightly associated “cell-train” morphotype, where up to four cells were connected by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied by increased autoagglutination, and was not observed in aflagellated cells. The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein, which comprises of a single endoribonuclease L-PSP domain. Comparative genomics showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted in decreased autoagglutination in Tween-20-supplemented media. The Δcj1388 and Δcj0327 mutants were also attenuated in a Galleria larvae-based infection model. Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in non-reducing conditions, and resulted in decreased autoagglutination in the presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational modification of the flagella through yet unidentified mechanisms, and propose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively.
Collapse
Affiliation(s)
- Mark Reuter
- Institute of Food Research, Gut Health and Food Safety Programme Norwich, UK
| | - Paula M Periago
- Departamento Ingeniería de Alimentos y del Equipamiento Agrícola, Campus de Excelencia Internacional Regional "Campus Mare Nostrum," Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena Cartagena, Spain ; Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum," Universidad Politécnica de Cartagena Cartagena, Spain
| | - Francis Mulholland
- Institute of Food Research, Gut Health and Food Safety Programme Norwich, UK
| | - Helen L Brown
- Institute of Food Research, Gut Health and Food Safety Programme Norwich, UK ; Cardiff School of Health Sciences, Cardiff Metropolitan University Cardiff, UK
| | | |
Collapse
|
143
|
Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166:12-27. [PMID: 25655839 PMCID: PMC4458388 DOI: 10.1016/j.trsl.2015.01.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine.
Collapse
|
144
|
The Intestinal Microbiota Influences Campylobacter jejuni Colonization and Extraintestinal Dissemination in Mice. Appl Environ Microbiol 2015; 81:4642-50. [PMID: 25934624 DOI: 10.1128/aem.00281-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/24/2015] [Indexed: 12/15/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human foodborne gastroenteritis worldwide. The interactions between this pathogen and the intestinal microbiome within a host are of interest as endogenous intestinal microbiota mediates a form of resistance to the pathogen. This resistance, termed colonization resistance, is the ability of commensal microbiota to prevent colonization by exogenous pathogens or opportunistic commensals. Although mice normally demonstrate colonization resistance to C. jejuni, we found that mice treated with ampicillin are colonized by C. jejuni, with recovery of Campylobacter from the colon, mesenteric lymph nodes, and spleen. Furthermore, there was a significant reduction in recovery of C. jejuni from ampicillin-treated mice inoculated with a C. jejuni virulence mutant (ΔflgL strain) compared to recovery of mice inoculated with the C. jejuni wild-type strain or the C. jejuni complemented isolate (ΔflgL/flgL). Comparative analysis of the microbiota from nontreated and ampicillin-treated CBA/J mice led to the identification of a lactic acid-fermenting isolate of Enterococcus faecalis that prevented C. jejuni growth in vitro and limited C. jejuni colonization of mice. Next-generation sequencing of DNA from fecal pellets that were collected from ampicillin-treated CBA/J mice revealed a significant decrease in diversity of operational taxonomic units (OTUs) compared to that in control (nontreated) mice. Taken together, we have demonstrated that treatment of mice with ampicillin alters the intestinal microbiota and permits C. jejuni colonization. These findings provide valuable insights for researchers using mice to investigate C. jejuni colonization factors, virulence determinants, or the mechanistic basis of probiotics.
Collapse
|
145
|
Stahl M, Vallance BA. Insights into Campylobacter jejuni colonization of the mammalian intestinal tract using a novel mouse model of infection. Gut Microbes 2015; 6:143-8. [PMID: 25831043 PMCID: PMC4615362 DOI: 10.1080/19490976.2015.1016691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. We recently published that mice deficient in Single IgG Interleukin-1 related receptor (SIGIRR), a repressor of MyD88-dependent innate immune signaling, were highly susceptible to enteric infection by murine bacterial pathogens. Subsequently, we successfully employed these mice as an animal model for the human pathogen C. jejuni and gained substantial new insights into infection by this pathogen. The infected mice developed significant intestinal inflammation, primarily via TLR4 stimulation. Furthermore, the resulting gastroenteritis was dependent on C. jejuni pathogenesis as bacterial strains suffering mutations in key virulence factors were attenuated in causing disease. The ability to infect SIGIRR-deficient mice with C. jejuni sheds new light onto how these bacteria colonize the mucus layer of the intestinal tract, invade epithelial cells, and raises new prospects for studying the virulence strategies and pathogenesis of C. jejuni.
Collapse
Affiliation(s)
- Martin Stahl
- Division of Gastroenterology; BC's Children's Hospital; The Child and Family Research Institute and The University of British Columbia; Vancouver, BC Canada
| | - Bruce A Vallance
- Division of Gastroenterology; BC's Children's Hospital; The Child and Family Research Institute and The University of British Columbia; Vancouver, BC Canada,Correspondence to: Bruce A Vallance;
| |
Collapse
|
146
|
Alutis ME, Grundmann U, Fischer A, Kühl AA, Bereswill S, Heimesaat MM. Selective gelatinase inhibition reduces apoptosis and pro-inflammatory immune cell responses in Campylobacter jejuni-infected gnotobiotic IL-10 deficient mice. Eur J Microbiol Immunol (Bp) 2014; 4:213-22. [PMID: 25544894 DOI: 10.1556/eujmi-d-14-00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Increased levels of the matrix metalloproteinases-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in intestinal inflammation. We have recently shown that selective gelatinase blockage by the synthetic compound RO28-2653 ameliorates acute murine ileitis and colitis. We here investigated whether RO28-2653 exerts anti-inflammatory effects in acute Campylobacter jejuni-induced enterocolitis of gnotobiotic IL-10(-/-) mice generated following antibiotic treatment. Mice were perorally infected with C. jejuni (day 0) and either treated with RO28-2653 (75 mg/kg body weight/day) or placebo from day 1 until day 6 post infection (p.i.) by gavage. Irrespective of the treatment, infected mice displayed comparable pathogen loads within the gastrointestinal tract. Following RO28-2653 administration, however, infected mice exhibited less severe symptoms such as bloody diarrhea as compared to placebo controls. Furthermore, less distinct apoptosis but higher numbers of proliferating cells could be detected in the colon of RO28-2653-treated as compared to placebo-treated mice at day 7 p.i. Remarkably, gelatinase blockage resulted in lower numbers of T- and B-lymphocytes as well as macrophages and monocytes in the colonic mucosa of C. jejuni-infected gnotobiotic IL-10(-/-) mice. Taken together, synthetic gelatinase inhibition exerts anti-inflammatory effects in experimental campylobacteriosis.
Collapse
|
147
|
Thoene-Reineke C, Fischer A, Friese C, Briesemeister D, Göbel UB, Kammertoens T, Bereswill S, Heimesaat MM. Composition of intestinal microbiota in immune-deficient mice kept in three different housing conditions. PLoS One 2014; 9:e113406. [PMID: 25401702 PMCID: PMC4234647 DOI: 10.1371/journal.pone.0113406] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Abundance of commensals constituting the intestinal microbiota (IM) affects the immune system and predisposes to a variety of diseases, including intestinal infections, cancer, inflammatory and metabolic disorders. Housing conditions determine the IM and can hence influence the immune system. We analyzed how both variables affect the IM of four immune-compromized mouse lines kept under different housing conditions. METHODOLOGY/PRINCIPAL FINDINGS We investigated the IM composition in mice by quantitative 16S rRNA RT-PCR analysis of the main fecal bacterial groups (Enterobacteriaceae, enterococci, lactobacilli, bifidobacteria, Bacteroides/Prevotella (BP) spp., Clostridium leptum and coccoides groups). Mice were homozygous (HO) or heterozygous (HE) for a targeted inactivating mutation of either the IFN-γ Receptor (R), IFN-γ, Rag1 or IL-4 genes. Overall, differences in IM composition were subtle. However, in the SPF-barrier, total eubacterial loads were higher in Rag1 HE versus Rag1 HO mice as well as in IFN-γR HE versus IFN-γR HO and WT animals. Although absent in WT mice, bifidobacterial loads were higher in HO and HE IFN-γ and Rag1 as well as IL-4 HO mice. Furthermore, BP was slightly lower in HO and HE IFN-γR and IFN-γ mice as well as in IL-4 HO mice as compared to WT controls. Interestingly, IM compositions were comparable in WT mice when kept in individual ventilated cages (IVC) or open cages (OC). IFN-γ HO and HE mice, however, had higher enterobacteria and BP loads, but lacked bifidobacteria when kept in OC versus IVC, as was the case in HO and HE Rag1 mice. In addition, Rag1 HO mice harbored higher clostridial loads when housed in OC as compared to IVC. Unexpectedly, lactobacilli levels were higher in IFN-γR mice when kept in OC versus IVC. CONCLUSION/SIGNIFICANCE Housing-dependent and immune-deficiency mediated changes in intestinal microbiota composition were rather subtle but may nevertheless impact immunopathology in experimental models.
Collapse
Affiliation(s)
- Christa Thoene-Reineke
- Forschungseinrichtung für Experimentelle Medizin, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Christian Friese
- Department of Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Dana Briesemeister
- Department of Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Thomas Kammertoens
- Department of Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
148
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
149
|
Heimesaat MM, Dunay IR, Schulze S, Fischer A, Grundmann U, Alutis M, Kühl AA, Tamas A, Toth G, Dunay MP, Göbel UB, Reglodi D, Bereswill S. Pituitary adenylate cyclase-activating polypeptide ameliorates experimental acute ileitis and extra-intestinal sequelae. PLoS One 2014; 9:e108389. [PMID: 25238233 PMCID: PMC4169633 DOI: 10.1371/journal.pone.0108389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
Background The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Methodology/Principal Findings Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Conclusion/Significance Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| | - Ildiko R. Dunay
- Department of Microbiology and Hygiene, University of Magdeburg, Magdeburg, Germany
| | - Silvia Schulze
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Marie Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Andrea Tamas
- Department of Anatomy, PTE-MTA Lendület PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Gabor Toth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Miklos P. Dunay
- Department and Clinic of Surgery and Ophthalmology, Faculty of Veterinary Medicine, Szent Istvan University Budapest, Budapest, Hungary
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA Lendület PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
150
|
Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota. mBio 2014; 5:e01212-14. [PMID: 25227462 PMCID: PMC4172070 DOI: 10.1128/mbio.01212-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The gut microbiota is essential for human health, but very little is known about how the composition of this ecosystem can influence and respond to bacterial infections. Here we address this by prospectively studying the gut microbiota composition before, during, and after natural Campylobacter infection in exposed poultry abattoir workers. The gut microbiota composition was analyzed with 16S amplicon sequencing of fecal samples from poultry abattoir workers during the peak season of Campylobacter infection in Sweden. The gut microbiota compositions were compared between individuals who became culture positive for Campylobacter and those who remained negative. Individuals who became Campylobacter positive had a significantly higher abundance of Bacteroides (P = 0.007) and Escherichia (P = 0.002) species than those who remained culture negative. Furthermore, this group had a significantly higher abundance of Phascolarctobacterium (P = 0.017) and Streptococcus (P = 0.034) sequences than the Campylobacter-negative group, which had an overrepresentation of Clostridiales (P = 0.017), unclassified Lachnospiraceae (P = 0.008), and Anaerovorax (P = 0.015) sequences. Intraindividual comparisons of the fecal microbiota compositions yielded small differences over time in Campylobacter-negative participants, but significant long-term changes were found in the Campylobacter-positive group (P < 0.005). The results suggest that the abundance of specific genera in the microbiota reduces resistance to Campylobacter colonization in humans and that Campylobacter infection can have long-term effects on the composition of the human fecal microbiota. IMPORTANCE Studies using mouse models have made important contributions to our understanding of the role of the gut microbiota in resistance to bacterial enteropathogen colonization. The relative abundances of Escherichia coli and Bacteroides species have been pointed out as important determinants of susceptibility to Gram-negative pathogens in general and Campylobacter infection in particular. In this study, we assessed the role of the human gut microbiota in resistance to Campylobacter colonization by studying abattoir workers that are heavily exposed to these bacteria. Individuals with a certain composition of the gut microbiota became culture positive for Campylobacter. As their microbiotas were characterized by high abundances of Bacteroides spp. and E. coli, well in line with the findings with mouse models, these bacterial species likely play an important role in colonization resistance also in humans.
Collapse
|