101
|
Scheeringa R, Bonnefond M, van Mourik T, Jensen O, Norris DG, Koopmans PJ. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cereb Cortex 2023; 33:1537-1549. [PMID: 35512361 PMCID: PMC9977363 DOI: 10.1093/cercor/bhac154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Laminar functional magnetic resonance imaging (fMRI) holds the potential to study connectivity at the laminar level in humans. Here we analyze simultaneously recorded electroencephalography (EEG) and high-resolution fMRI data to investigate how EEG power modulations, induced by a task with an attentional component, relate to changes in fMRI laminar connectivity between and within brain regions in visual cortex. Our results indicate that our task-induced decrease in beta power relates to an increase in deep-to-deep layer coupling between regions and to an increase in deep/middle-to-superficial layer connectivity within brain regions. The attention-related alpha power decrease predominantly relates to reduced connectivity between deep and superficial layers within brain regions, since, unlike beta power, alpha power was found to be positively correlated to connectivity. We observed no strong relation between laminar connectivity and gamma band oscillations. These results indicate that especially beta band, and to a lesser extent, alpha band oscillations relate to laminar-specific fMRI connectivity. The differential effects for alpha and beta bands indicate that they relate to different feedback-related neural processes that are differentially expressed in intra-region laminar fMRI-based connectivity.
Collapse
Affiliation(s)
- René Scheeringa
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, University of Duisburg-Essen, Kokereiallee 7, 45141 Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.,Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France.,Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Trigon 204, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Mathilde Bonnefond
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France
| | - Tim van Mourik
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Trigon 204, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ole Jensen
- School of Psychology, Centre for Human Brain Health, University of Birmingham, Hills Building, Birmingham B15 2TT, United Kingdom
| | - David G Norris
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, University of Duisburg-Essen, Kokereiallee 7, 45141 Essen, Germany.,Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Trigon 204, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, University of Duisburg-Essen, Kokereiallee 7, 45141 Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.,Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Trigon 204, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
102
|
Cansler HL, in ’t Zandt EE, Carlson KS, Khan WT, Ma M, Wesson DW. Organization and engagement of a prefrontal-olfactory network during olfactory selective attention. Cereb Cortex 2023; 33:1504-1526. [PMID: 35511680 PMCID: PMC9930634 DOI: 10.1093/cercor/bhac153] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how it is perceived - yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. METHODS First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded (i) local field potentials from the olfactory bulb (OB), mPFC, and TuS, or (ii) sniffing, while rats completed an olfactory selective attention task. RESULTS Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. CONCLUSIONS Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated based upon attentional states.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Estelle E in ’t Zandt
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Kaitlin S Carlson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Waseh T Khan
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 110 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, United States
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| |
Collapse
|
103
|
Towards a systematization of brain oscillatory activity in actions. Commun Biol 2023; 6:137. [PMID: 36732548 PMCID: PMC9894929 DOI: 10.1038/s42003-023-04531-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Information processing in the brain is governed by oscillatory activity. Activity oscillations in specific frequency bands (theta, alpha, beta and gamma) have been associated with various cognitive functions. A drawback of this is that the plethora of findings led to considerable uncertainty as to the functional relevance of activity in different frequency bands and their interrelation. Here, we use a novel cognitive-science theoretical framework to better understand and conceptually harmonize neurophysiological research on human action control. We outline how this validated starting point can systematize and probably reframe the functional relevance of oscillatory activity relevant for action control and beyond.
Collapse
|
104
|
Dubey A, Markowitz DA, Pesaran B. Top-down control of exogenous attentional selection is mediated by beta coherence in prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523664. [PMID: 36711697 PMCID: PMC9882082 DOI: 10.1101/2023.01.11.523664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salience-driven exogenous and goal-driven endogenous attentional selection are two distinct forms of attention that guide selection of task-irrelevant and task-relevant targets in primates. During conflict i.e, when salience and goal each favor the selection of different targets, endogenous selection of the task-relevant target relies on top-down control. Top-down attentional control mechanisms enable selection of the task-relevant target by limiting the influence of sensory information. Although the lateral prefrontal cortex (LPFC) is known to mediate top-down control, the neuronal mechanisms of top-down control of attentional selection are poorly understood. Here, using a two-target free-choice luminance-reward selection task, we demonstrate that visual-movement neurons and not visual neurons or movement neurons encode exogenous and endogenous selection. We then show that coherent-beta activity selectively modulates mechanisms of exogenous selection specifically during conflict and consequently may support top-down control. These results reveal the VM-neuron-specific network mechanisms of attentional selection and suggest a functional role for beta-frequency coherent neural dynamics in the modulation of sensory communication channels for the top-down control of attentional selection.
Collapse
Affiliation(s)
- Agrita Dubey
- Center for Neural Science, New York University, New York 10003
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104
| | | | - Bijan Pesaran
- Center for Neural Science, New York University, New York 10003
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
105
|
Sensorimotor recalibration of postural control strategies occurs after whole body vibration. Sci Rep 2023; 13:522. [PMID: 36627328 PMCID: PMC9831994 DOI: 10.1038/s41598-022-27117-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Efficient postural control results from an effective interplay between sensory feedbacks integration and muscle modulation and can be affected by ageing and neuromuscular injuries. With this study, we investigated the effect of whole-body vibratory stimulation on postural control strategies employed to maintain an upright posture. We explored both physiological and posturography metrics, through corticomuscular and intramuscular coherence, and muscle networks analyses. The stimulation disrupts balance in the short term, but leads to a greater contribution of cortical activity, necessary to modulate muscle activation via the formation of (new) synergies. We also observed a reconfiguration of muscle recruitment patterns that returned to pre-stimulation levels after few minutes, accompanied by a slight improvement of balance in the anterior-posterior direction. Our results suggest that, in the context of postural control, appropriate mechanical stimulation is capable of triggering a recalibration of the sensorimotor set and might offer new perspectives for motor re-education.
Collapse
|
106
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Cognitive flexibility in post-traumatic stress disorder: Sustained interference associated with altered modulation of cortical oscillatory activity during task-switching. Neuroimage Clin 2023; 37:103297. [PMID: 36563647 PMCID: PMC9795531 DOI: 10.1016/j.nicl.2022.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Post-traumatic stress disorder (PTSD) is associated with deficits in cognitive flexibility, with evidence suggesting that these deficits may be a risk factor for the development of core PTSD symptoms. Understanding the neurophysiological substrate of this association could aid the development of effective therapies for PTSD. In this study, we investigated the relationship between post-traumatic stress severity (PTSS) in service members with combat exposure and the modulation of cortical oscillatory activity during a test of cognitive flexibility. Participants were assigned to three groups based on PTSS scores: low (well below a threshold consistent with a diagnosis of PTSD, n = 30), moderate (n = 32), and high (n = 29) symptom severity. Magnetoencephalography data were recorded while participants performed a cued rule-switching task in which two matching rules were repeated or switched across consecutive trials. Participants with high PTSS had longer reaction times for both switch and repeat trials, and showed evidence of sustained residual interference during repeat trials. During the cue-stimulus interval, participants with moderate and high PTSS showed higher relative theta power in switch trials over left dorsolateral prefrontal cortex (DLPFC). After test-stimulus onset, participants with high PTSS showed less suppression of beta band activity, which was present over multiple prefrontal, parietal, and temporal regions in switch trials, but it was confined to ventromedial prefrontal cortex in repeat trials. Higher theta band activity is a marker of effortful voluntary shifting of attention, while lower suppression of beta band activity reflects difficulties with inhibition of competing perceptual information and courses of action. These findings are consistent with a role for altered suppression of beta band activity, which can be due to less effective top-down bias signals exerted by DLPFC, in the etiology of cognitive flexibility deficits in PTSD.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA; Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
107
|
Zhang J, Zhu C, Han J. The neural mechanism of non-phase-locked EEG activity in task switching. Neurosci Lett 2023; 792:136957. [PMID: 36347341 DOI: 10.1016/j.neulet.2022.136957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Flexible switching between different tasks is an important cognitive ability for humans and it is often studied using the task-switching paradigm. Although the neural mechanisms of task switching have been extensively explored in previous studies using event-related potentials techniques, the activity and process mechanisms of non-phase-locked electroencephalography (EEG) have rarely been revealed. For this reason, this paper discusses the processing of non-phase-locked EEG oscillations in task switching based on frequency-band delineation. First, the roles of each frequency band in local brain regions were summarized. In particular, during the proactive control process (the cue-stimulus interval), delta, theta, and alpha oscillations played more roles in the switch condition while beta played more roles in repeat task. In the reactive control process (post-target), delta, alpha, and beta are all related to sensorimotor function. Then, utilizing the functional connectivity (FC) method, delta connections in the frontotemporal regions and theta connections located in the parietal-to-occipital sites are involved in the preparatory period before task switching, while alpha connections located in the sensorimotor areas and beta connections located in the frontal-parietal cortex are involved in response inhibition. Finally, cross-frequency coupling (CFC) play an important role in working memory among different band oscillation. The present study shows that in addition to the processing mechanisms specific to each frequency band, there are some shared and interactive neural mechanism in task switching by using different analysis techniques.
Collapse
Affiliation(s)
- Jing Zhang
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| | - Chengdong Zhu
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Jiahui Han
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China.
| |
Collapse
|
108
|
Michelini G, Lenartowicz A, Diaz-Fong JP, Bilder RM, McGough JJ, McCracken JT, Loo SK. Methylphenidate, Guanfacine, and Combined Treatment Effects on Electroencephalography Correlates of Spatial Working Memory in Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2023; 62:37-47. [PMID: 35963558 PMCID: PMC10829974 DOI: 10.1016/j.jaac.2022.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The combination of d-methylphenidate and guanfacine (an α-2A adrenergic agonist) may be an effective alternative to either agent as monotherapy in children with attention-deficit/hyperactivity disorder (ADHD). This study investigated the neural mechanisms underlying medication effects using cortical source analysis of electroencephalography (EEG) data. METHOD A total of 172 children with ADHD (aged 7-14; 118 boys) completed an 8-week randomized, double-blind, comparative study with 3 treatment arms: d-methylphenidate, guanfacine, or their combination. EEG modulations of brain oscillations at baseline and end point were measured during a spatial working memory task from cortical sources localized within the anterior cingulate (midfrontal) and primary visual cortex (midoccipital), based on previously reported ADHD and control differences. Linear mixed models examined treatment effects on EEG and performance measures. RESULTS Combined treatment decreased midoccipital EEG power across most frequency bands and task phases. Several midoccipital EEG measures also showed significantly greater changes with combined treatment than with monotherapies. D-methylphenidate significantly increased midoccipital theta during retrieval, while guanfacine produced only trend-level reductions in midoccipital alpha during maintenance and retrieval. Task accuracy improved with combined treatment, was unchanged with d-methylphenidate, and worsened with guanfacine. Treatment-related changes in midoccipital power correlated with improvement in ADHD severity. CONCLUSION These findings show that combined treatment ameliorates midoccipital neural activity associated with treatment-related behavioral improvements and previously implicated in visuo-attentional deficits in ADHD. Both monotherapies had limited effects on EEG measures, with guanfacine further showing detrimental effects on performance. The identified midoccipital EEG profile may aid future treatment monitoring for children with ADHD. CLINICAL TRIAL REGISTRATION INFORMATION Single Versus Combination Medication Treatment for Children With Attention Deficit Hyperactivity Disorder (Project1); https://clinicaltrials.gov/; NCT00429273. DIVERSITY & INCLUSION STATEMENT We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure sex and gender balance in the recruitment of human participants. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. We actively worked to promote sex and gender balance in our author group.
Collapse
Affiliation(s)
- Giorgia Michelini
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California; School of Biological & Behavioural Sciences, Queen Mary University of London, United Kingdom.
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California
| | - Joel P Diaz-Fong
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California
| | - Robert M Bilder
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California
| | - James J McGough
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California
| | - James T McCracken
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California
| | - Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California.
| |
Collapse
|
109
|
Ippolito G, Bertaccini R, Tarasi L, Di Gregorio F, Trajkovic J, Battaglia S, Romei V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022; 10:biomedicines10123189. [PMID: 36551945 PMCID: PMC9775381 DOI: 10.3390/biomedicines10123189] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations (7-13 Hz) are the dominant rhythm in both the resting and active brain. Accordingly, translational research has provided evidence for the involvement of aberrant alpha activity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia, major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes at play, not to mention recent technical and methodological advances in this domain. Herein, we seek to address this issue by reviewing the literature gathered on this topic over the last ten years. For each neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger the associated symptomatology, as well as a summary of the most relevant studies and scientific contributions issued throughout the last decade. We conclude with some advice and recommendations that might improve future inquiries within this field.
Collapse
Affiliation(s)
- Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Francesco Di Gregorio
- UO Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, 40133 Bologna, Italy
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Università di Torino, 10124 Torino, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
110
|
Blohm G, Cheyne DO, Crawford JD. Parietofrontal oscillations show hand-specific interactions with top-down movement plans. J Neurophysiol 2022; 128:1518-1533. [PMID: 36321728 DOI: 10.1152/jn.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To generate a hand-specific reach plan, the brain must integrate hand-specific signals with the desired movement strategy. Although various neurophysiology/imaging studies have investigated hand-target interactions in simple reach-to-target tasks, the whole brain timing and distribution of this process remain unclear, especially for more complex, instruction-dependent motor strategies. Previously, we showed that a pro/anti pointing instruction influences magnetoencephalographic (MEG) signals in frontal cortex that then propagate recurrently through parietal cortex (Blohm G, Alikhanian H, Gaetz W, Goltz HC, DeSouza JF, Cheyne DO, Crawford JD. NeuroImage 197: 306-319, 2019). Here, we contrasted left versus right hand pointing in the same task to investigate 1) which cortical regions of interest show hand specificity and 2) which of those areas interact with the instructed motor plan. Eight bilateral areas, the parietooccipital junction (POJ), superior parietooccipital cortex (SPOC), supramarginal gyrus (SMG), medial/anterior interparietal sulcus (mIPS/aIPS), primary somatosensory/motor cortex (S1/M1), and dorsal premotor cortex (PMd), showed hand-specific changes in beta band power, with four of these (M1, S1, SMG, aIPS) showing robust activation before movement onset. M1, SMG, SPOC, and aIPS showed significant interactions between contralateral hand specificity and the instructed motor plan but not with bottom-up target signals. Separate hand/motor signals emerged relatively early and lasted through execution, whereas hand-motor interactions only occurred close to movement onset. Taken together with our previous results, these findings show that instruction-dependent motor plans emerge in frontal cortex and interact recurrently with hand-specific parietofrontal signals before movement onset to produce hand-specific motor behaviors.NEW & NOTEWORTHY The brain must generate different motor signals depending on which hand is used. The distribution and timing of hand use/instructed motor plan integration are not understood at the whole brain level. Using MEG we show that different action planning subnetworks code for hand usage and integrating hand use into a hand-specific motor plan. The timing indicates that frontal cortex first creates a general motor plan and then integrates hand specificity to produce a hand-specific motor plan.
Collapse
Affiliation(s)
- Gunnar Blohm
- Centre of Neuroscience Studies, Departments of Biomedical & Molecular Sciences, Mathematics & Statistics, and Psychology and School of Computing, Queen's University, Kingston, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| |
Collapse
|
111
|
Johnston PR, McIntosh AR, Meltzer JA. Spectral slowing in chronic stroke reflects abnormalities in both periodic and aperiodic neural dynamics. Neuroimage Clin 2022; 37:103277. [PMID: 36495856 PMCID: PMC9758570 DOI: 10.1016/j.nicl.2022.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Decades of electrophysiological work have demonstrated the presence of "spectral slowing" in stroke patients - a prominent shift in the power spectrum towards lower frequencies, most evident in the vicinity of the lesion itself. Despite the reliability of this slowing as a marker of dysfunctional tissue across patient groups as well as animal models, it has yet to be explained in terms of the pathophysiological processes of stroke. To do so requires clear understanding of the neural dynamics that these differences represent, acknowledging the often overlooked fact that spectral power reflects more than just the amplitude of neural oscillations. To accomplish this, we used a combination of frequency domain and time domain measures to disambiguate and quantify periodic (oscillatory) and aperiodic (non-oscillatory) neural dynamics in resting state magnetoencephalography (MEG) recordings from chronic stroke patients. We found that abnormally elevated low frequency power in these patients was best explained by a steepening of the aperiodic component of the power spectrum, rather than an enhancement of low frequency oscillations, as is often assumed. However, genuine oscillatory activity at higher frequencies was also found to be abnormal, with patients showing alpha slowing and diminished oscillatory activity in the beta band. These aperiodic and periodic abnormalities were found to covary, and could be detected even in the un-lesioned hemisphere, however they were most prominent in perilesional tissue, where their magnitude was predictive of cognitive impairment. This work redefines spectral slowing as a pattern of changes involving both aperiodic and periodic neural dynamics and narrows the gap in understanding between non-invasive markers of dysfunctional tissue and disease processes responsible for altered neural dynamics.
Collapse
Affiliation(s)
- Phillip R Johnston
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada.
| | - Anthony R McIntosh
- Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive E K9625, Burnaby, BC V5A 1S6, Canada; Institute for Neuroscience and Neurotechnology, Simon Fraser University, 8888 University Drive E K9625, Burnaby, BC V5A 1S6, Canada
| | - Jed A Meltzer
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Speech-Language Pathology, University of Toronto, 500 University Avenue, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
112
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
113
|
Das A, Menon V. Replicable patterns of causal information flow between hippocampus and prefrontal cortex during spatial navigation and spatial-verbal memory formation. Cereb Cortex 2022; 32:5343-5361. [PMID: 35136979 PMCID: PMC9712747 DOI: 10.1093/cercor/bhac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Interactions between the hippocampus and prefrontal cortex (PFC) play an essential role in both human spatial navigation and episodic memory, but the underlying causal flow of information between these regions across task domains is poorly understood. Here we use intracranial EEG recordings and spectrally resolved phase transfer entropy to investigate information flow during two different virtual spatial navigation and memory encoding/recall tasks and examine replicability of information flow patterns across spatial and verbal memory domains. Information theoretic analysis revealed a higher causal information flow from hippocampus to lateral PFC than in the reverse direction. Crucially, an asymmetric pattern of information flow was observed during memory encoding and recall periods of both spatial navigation tasks. Further analyses revealed frequency specificity of interactions characterized by greater bottom-up information flow from hippocampus to PFC in delta-theta band (0.5-8 Hz); in contrast, top-down information flow from PFC to hippocampus was stronger in beta band (12-30 Hz). Bayesian analysis revealed a high degree of replicability between the two spatial navigation tasks (Bayes factor > 5.46e+3) and across tasks spanning the spatial and verbal memory domains (Bayes factor > 7.32e+8). Our findings identify a domain-independent and replicable frequency-dependent feedback loop engaged during memory formation in the human brain.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
114
|
Bel-Bahar TS, Khan AA, Shaik RB, Parvaz MA. A scoping review of electroencephalographic (EEG) markers for tracking neurophysiological changes and predicting outcomes in substance use disorder treatment. Front Hum Neurosci 2022; 16:995534. [PMID: 36325430 PMCID: PMC9619053 DOI: 10.3389/fnhum.2022.995534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Substance use disorders (SUDs) constitute a growing global health crisis, yet many limitations and challenges exist in SUD treatment research, including the lack of objective brain-based markers for tracking treatment outcomes. Electroencephalography (EEG) is a neurophysiological technique for measuring brain activity, and although much is known about EEG activity in acute and chronic substance use, knowledge regarding EEG in relation to abstinence and treatment outcomes is sparse. We performed a scoping review of longitudinal and pre-post treatment EEG studies that explored putative changes in brain function associated with abstinence and/or treatment in individuals with SUD. Following PRISMA guidelines, we identified studies published between January 2000 and March 2022 from online databases. Search keywords included EEG, addictive substances (e.g., alcohol, cocaine, methamphetamine), and treatment related terms (e.g., abstinence, relapse). Selected studies used EEG at least at one time point as a predictor of abstinence or other treatment-related outcomes; or examined pre- vs. post-SUD intervention (brain stimulation, pharmacological, behavioral) EEG effects. Studies were also rated on the risk of bias and quality using validated instruments. Forty-four studies met the inclusion criteria. More consistent findings included lower oddball P3 and higher resting beta at baseline predicting negative outcomes, and abstinence-mediated longitudinal decrease in cue-elicited P3 amplitude and resting beta power. Other findings included abstinence or treatment-related changes in late positive potential (LPP) and N2 amplitudes, as well as in delta and theta power. Existing studies were heterogeneous and limited in terms of specific substances of interest, brief times for follow-ups, and inconsistent or sparse results. Encouragingly, in this limited but maturing literature, many studies demonstrated partial associations of EEG markers with abstinence, treatment outcomes, or pre-post treatment-effects. Studies were generally of good quality in terms of risk of bias. More EEG studies are warranted to better understand abstinence- or treatment-mediated neural changes or to predict SUD treatment outcomes. Future research can benefit from prospective large-sample cohorts and the use of standardized methods such as task batteries. EEG markers elucidating the temporal dynamics of changes in brain function related to abstinence and/or treatment may enable evidence-based planning for more effective and targeted treatments, potentially pre-empting relapse or minimizing negative lifespan effects of SUD.
Collapse
Affiliation(s)
- Tarik S. Bel-Bahar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anam A. Khan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Riaz B. Shaik
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Muhammad A. Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
115
|
Ulanov M, Shtyrov Y. Oscillatory beta/alpha band modulations: A potential biomarker of functional language and motor recovery in chronic stroke? Front Hum Neurosci 2022; 16:940845. [PMID: 36226263 PMCID: PMC9549964 DOI: 10.3389/fnhum.2022.940845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading causes of various disabilities, including debilitating motor and language impairments. Though various treatments exist, post-stroke impairments frequently become chronic, dramatically reducing daily life quality, and requiring specific rehabilitation. A critical goal of chronic stroke rehabilitation is to induce, usually through behavioral training, experience-dependent plasticity processes in order to promote functional recovery. However, the efficiency of such interventions is typically modest, and very little is known regarding the neural dynamics underpinning recovery processes and possible biomarkers of their efficiency. Some studies have emphasized specific alterations of excitatory–inhibitory balance within distributed neural networks as an important recovery correlate. Neural processes sensitive to these alterations, such as task-dependent oscillatory activity in beta as well as alpha bands, may be candidate biomarkers of chronic stroke functional recovery. In this review, we discuss the results of studies on motor and language recovery with a focus on oscillatory processes centered around the beta band and their modulations during functional recovery in chronic stroke. The discussion is based on a framework where task-dependent modulations of beta and alpha oscillatory activity, generated by the deep cortical excitatory–inhibitory microcircuits, serve as a neural mechanism of domain-general top-down control processes. We discuss the findings, their limitations, and possible directions for future research.
Collapse
Affiliation(s)
- Maxim Ulanov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- *Correspondence: Maxim Ulanov,
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
116
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
117
|
Walsh C, Ridler T, Margetts-Smith G, Garcia Garrido M, Witton J, Randall AD, Brown JT. β Bursting in the Retrosplenial Cortex Is a Neurophysiological Correlate of Environmental Novelty Which Is Disrupted in a Mouse Model of Alzheimer's Disease. J Neurosci 2022; 42:7094-7109. [PMID: 35927034 PMCID: PMC9480878 DOI: 10.1523/jneurosci.0890-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory and is functionally disrupted in the early stages of Alzheimer's disease (AD). In order to investigate neurophysiological correlates of spatial learning and memory in this region we employed in vivo electrophysiology in awake and freely moving male mice, comparing neural activity between wild-type and J20 mice, a transgenic model of AD-associated amyloidopathy. To determine the response of the RSC to environmental novelty local field potentials (LFPs) were recorded while mice explored novel and familiar recording arenas. In familiar environments we detected short, phasic bursts of β (20-30 Hz) oscillations (β bursts), which arose at a low but steady rate. Exposure to a novel environment rapidly initiated a dramatic increase in the rate, size and duration of β bursts. Additionally, θ-α/β cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the RSC was significantly enhanced during β bursts. Finally, excessive β bursting was seen in J20 mice, including increased β bursting during novelty and familiarity, yet a loss of coupling between β bursts and spiking activity. These findings support the concept that β bursting may be responsible for the activation and reactivation of neuronal ensembles underpinning the formation and maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie cognitive impairments seen in these animals.SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is thought to be involved in the formation, recall and consolidation of contextual memory. The discovery of bursts of β oscillations in this region, which are associated with increased neuronal spiking and strongly upregulated while mice explore novel environments, provides a potential mechanism for the activation of neuronal ensembles, which may underlie the formation of cortical representations of context. Excessive β bursting in the RSC of J20 mice, a mouse model of Alzheimer's disease (AD), alongside the disassociation of β bursting from neuronal spiking, may underlie spatial memory impairments previously shown in these mice. These findings introduce a novel neurophysiological correlate of spatial learning and memory, and a potentially new form of AD-related cortical dysfunction.
Collapse
Affiliation(s)
- Callum Walsh
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Thomas Ridler
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Gabriella Margetts-Smith
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Maria Garcia Garrido
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Jonathan Witton
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Andrew D Randall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| |
Collapse
|
118
|
Min JY, Ha SW, Lee K, Min KB. Use of electroencephalogram, gait, and their combined signals for classifying cognitive impairment and normal cognition. Front Aging Neurosci 2022; 14:927295. [PMID: 36158559 PMCID: PMC9490417 DOI: 10.3389/fnagi.2022.927295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Early identification of people at risk for cognitive decline is an important step in delaying the occurrence of cognitive impairment. This study investigated whether multimodal signals assessed using electroencephalogram (EEG) and gait kinematic parameters could be used to identify individuals at risk of cognitive impairment. Methods The survey was conducted at the Veterans Medical Research Institute in the Veterans Health Service Medical Center. A total of 220 individuals volunteered for this study and provided informed consent at enrollment. A cap-type wireless EEG device was used for EEG recording, with a linked-ear references based on a standard international 10/20 system. Three-dimensional motion capture equipment was used to collect kinematic gait parameters. Mild cognitive impairment (MCI) was evaluated by Seoul Neuropsychological Screening Battery-Core (SNSB-C). Results The mean age of the study participants was 73.5 years, and 54.7% were male. We found that specific EEG and gait parameters were significantly associated with cognitive status. Individuals with decreases in high-frequency EEG activity in high beta (25-30 Hz) and gamma (30-40 Hz) bands increased the odds ratio of MCI. There was an association between the pelvic obliquity angle and cognitive status, assessed by MCI or SNSB-C scores. Results from the ROC analysis revealed that multimodal signals combining high beta or gamma and pelvic obliquity improved the ability to discriminate MCI individuals from normal controls. Conclusion These findings support prior work on the association between cognitive status and EEG or gait, and offer new insights into the applicability of multimodal signals to distinguish cognitive impairment.
Collapse
Affiliation(s)
- Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Sang-Won Ha
- Department of Neurology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, South Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, South Korea
- Medical Research Center, Institute of Health Policy and Management, Seoul National University, Seoul, South Korea
| |
Collapse
|
119
|
Dynamic Functional Connectivity of Emotion Processing in Beta Band with Naturalistic Emotion Stimuli. Brain Sci 2022; 12:brainsci12081106. [PMID: 36009166 PMCID: PMC9405988 DOI: 10.3390/brainsci12081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
While naturalistic stimuli, such as movies, better represent the complexity of the real world and are perhaps crucial to understanding the dynamics of emotion processing, there is limited research on emotions with naturalistic stimuli. There is a need to understand the temporal dynamics of emotion processing and their relationship to different dimensions of emotion experience. In addition, there is a need to understand the dynamics of functional connectivity underlying different emotional experiences that occur during or prior to such experiences. To address these questions, we recorded the EEG of participants and asked them to mark the temporal location of their emotional experience as they watched a video. We also obtained self-assessment ratings for emotional multimedia stimuli. We calculated dynamic functional the connectivity (DFC) patterns in all the frequency bands, including information about hubs in the network. The change in functional networks was quantified in terms of temporal variability, which was then used in regression analysis to evaluate whether temporal variability in DFC (tvDFC) could predict different dimensions of emotional experience. We observed that the connectivity patterns in the upper beta band could differentiate emotion categories better during or prior to the reported emotional experience. The temporal variability in functional connectivity dynamics is primarily related to emotional arousal followed by dominance. The hubs in the functional networks were found across the right frontal and bilateral parietal lobes, which have been reported to facilitate affect, interoception, action, and memory-related processing. Since our study was performed with naturalistic real-life resembling emotional videos, the study contributes significantly to understanding the dynamics of emotion processing. The results support constructivist theories of emotional experience and show that changes in dynamic functional connectivity can predict aspects of our emotional experience.
Collapse
|
120
|
Vasaghi Gharamaleki M, Mousavi SZ, Owrangi M, Gholamzadeh MJ, Kamali AM, Dehghani M, Chakrabarti P, Nami M. Neural correlates in functional brain mapping among breast cancer survivors receiving different chemotherapy regimens: a qEEG/HEG-based investigation. Jpn J Clin Oncol 2022; 52:1253-1264. [PMID: 35946328 DOI: 10.1093/jjco/hyac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Post-chemotherapy cognitive impairment commonly known as 'chemobrain' or 'chemofog' is a well-established clinical disorder affecting various cognitive domains including attention, visuospatial working memory, executive function, etc. Although several studies have confirmed the chemobrain in recent years, scant experiments have evaluated the potential neurotoxicity of different chemotherapy regimens and agents. In this study, we aimed to evaluate the extent of attention deficits, one of the commonly affected cognitive domains, among breast cancer patients treated with different chemotherapy regimens through neuroimaging techniques. METHODS Breast cancer patients treated with two commonly prescribed chemotherapy regimens, Adriamycin, Cyclophosphamide and Taxol and Taxotere, Adriamycin and Cyclophosphamide, and healthy volunteers were recruited. Near-infrared hemoencephalography and quantitative electroencephalography assessments were recorded for each participant at rest and during task performance to compare the functional cortical changes associated with each chemotherapy regimen. RESULTS Although no differences were observed in hemoencephalography results across groups, the quantitative electroencephalography analysis revealed increased power of high alpha/low beta in left fronto-centro-parietal regions involved in dorsal and ventral attention networks in the Adriamycin, Cyclophosphamide and Taxol-treated group compared with the Taxotere, Adriamycin and Cyclophosphamide and control group. The Adriamycin, Cyclophosphamide and Taxol-treated cases had the highest current source density values in dorsal attention network and ventral attention network and ventral attention network-related centers in 10 and 15 Hz associated with the lowest Z-scored Fast Fourier Transform coherence in the mentioned regions. CONCLUSIONS The negatively affected neurocognitive profile in breast cancer patients treated with the Adriamycin, Cyclophosphamide and Taxol regimen proposes presumably neurotoxic sequelae of this chemotherapy regimen as compared with the Taxotere, Adriamycin and Cyclophosphamide regimen.
Collapse
Affiliation(s)
| | - Seyedeh Zahra Mousavi
- Students' Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owrangi
- Students' Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali-Mohammad Kamali
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Department of Hematology and Medical Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
- Swiss Alternative Medicine, Geneva, Switzerland
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Republic of Panama
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
| |
Collapse
|
121
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
122
|
Wendiggensen P, Adelhöfer N, Jamous R, Mückschel M, Takacs A, Frings C, Münchau A, Beste C. Processing of embedded response plans is modulated by an interplay of fronto-parietal theta and beta activity. J Neurophysiol 2022; 128:543-555. [PMID: 35894437 DOI: 10.1152/jn.00537.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Even simple actions like opening a door require integration/binding and flexible re-activation of different motor elements. Yet, the neural mechanisms underlying the processing of such 'embedded response plans' are largely elusive, despite theoretical frameworks, such as the Theory of Event Coding, describing the involved cognitive processes. In a sample of N = 40 healthy participants we combine time-frequency decomposition and various beamforming methods to examine neurophysiological dynamics of such action plans - with special emphasis on the interplay of theta and beta frequency activity during the processing of these plans. We show that the integration and rule-guided reactivation of embedded response plans is modulated by a complex interplay of theta and beta activity. Pre-trial BBA is related to different functional neuroanatomical structures which are activated in a consecutive fashion. Enhanced preparatory activity is positively associated with higher binding-related BBA in the precuneus/parietal areas, indicating that activity in the precuneus/parietal cortex facilitates the execution of an embedded action sequence. Increased preparation subsequently leads to reduced working memory retrieval demands. A cascading pattern of interactions between pre-trial and within-trial activity indicates the importance of preparatory brain activity. The study shows that there are multiple roles of beta and theta oscillations associated with different functional neuroanatomical structures during the integration and reactivation of motor elements during actions.
Collapse
Affiliation(s)
- Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
123
|
Schranz C, Vatinno A, Ramakrishnan V, Seo NJ. Neuroplasticity after upper-extremity rehabilitation therapy with sensory stimulation in chronic stroke survivors. Brain Commun 2022; 4:fcac191. [PMID: 35938072 PMCID: PMC9351980 DOI: 10.1093/braincomms/fcac191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effect of using subthreshold vibration as a peripheral sensory stimulation during therapy on cortical activity. Secondary analysis of a pilot triple-blinded randomized controlled trial. Twelve chronic stroke survivors underwent 2-week upper-extremity task-practice therapy. Half received subthreshold vibratory stimulation on their paretic wrist (treatment group) and the other half did not (control). EEG connectivity and event-related de-/resynchronization for the sensorimotor network during hand grip were examined at pre-intervention, post-intervention and follow-up. Statistically significant group by time interactions were observed for both connectivity and event-related spectral perturbation. For the treatment group, connectivity increased at post-intervention and decreased at follow-up. Event-related desynchronization decreased and event-related resynchronization increased at post-intervention, which was maintained at follow-up. The control group had the opposite trend for connectivity and no change in event-related spectral perturbation. The stimulation altered cortical sensorimotor activity. The findings complement the clinical results of the trial in which the treatment group significantly improved gross manual dexterity while the control group did not. Increased connectivity in the treatment group may indicate neuroplasticity for motor learning, while reduced event-related desynchronization and increased event-related resynchronization may indicate lessened effort for grip and improved inhibitory control. EEG may improve understanding of neural processes underlying motor recovery.
Collapse
Affiliation(s)
- Christian Schranz
- Correspondence to: Christian Schranz, PhD 77 President Street, Charleston SC 29425, USA E-mail:
| | - Amanda Vatinno
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Na Jin Seo
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA,Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA,Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
124
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
125
|
Wen 文雯 W, Huang 黄志邦 Z, Hou 侯寅 Y, Li 李晟 S. Tracking Neural Markers of Template Formation and Implementation in Attentional Inhibition under Different Distractor Consistency. J Neurosci 2022; 42:4927-4936. [PMID: 35545435 PMCID: PMC9188384 DOI: 10.1523/jneurosci.1705-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022] Open
Abstract
Performing visual search tasks requires optimal attention deployment to promote targets and inhibit distractors. Rejection templates based on the feature of the distractor can be built to constrain the search process. We measured electroencephalography (EEG) of human participants of both sexes when they performed a visual search task in conditions where the distractor cues were constant within a block (fixed cueing) or changed on a trial-by-trial basis (varied cueing). In the fixed-cueing condition, sustained decoding of the cued colors could be achieved during the retention interval, and participants with higher decoding accuracy showed larger suppression benefits of the distractor cueing in the search period. In the varied-cueing condition, the cued color could only be transiently decoded after its onset, and higher decoding accuracy was observed from the participants who demonstrated lower suppression benefit. The differential neural representations of the to-be-ignored color in the two cueing conditions as well as their reverse associations with behavioral performance implied that rejection templates were formed in the fixed-cueing condition but not in the varied-cueing condition. Additionally, we observed stronger posterior alpha lateralization and midfrontal theta/beta power during the retention interval of the varied-cueing condition, indicating the cognitive costs in template formation caused by the trialwise change of distractor colors. Together, our findings revealed the neural markers associated with the critical roles of distractor consistency in linking template formation to successful inhibition.SIGNIFICANCE STATEMENT How do we strategically build a rejection template based on distractor features to filter out matched items when performing visual search tasks? Previous studies have suggested that the consistency of the to-be-ignored feature may play a significant role in this process. We recorded scalp EEGs when human participants searched for a target among distractors. Capitalized on multivariate decoding technique and time-frequency analysis, we revealed the neural markers of the rejection template under different distractor consistencies. Being able to track these processes in visual search could help us to understand the connection between template formation and successful distractor inhibition. Our findings may also benefit future EEG-based interventions on individuals with deficits in attentional control.
Collapse
Affiliation(s)
- Wen Wen 文雯
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Zhibang Huang 黄志邦
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Yin Hou 侯寅
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Sheng Li 李晟
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100101, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100875, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
126
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Christopher Güttler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
127
|
Theta but not beta activity is modulated by freedom of choice during action selection. Sci Rep 2022; 12:9115. [PMID: 35650241 PMCID: PMC9160249 DOI: 10.1038/s41598-022-13318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Large-scale neurophysiological markers of action competition have been almost exclusively investigated in the context of instructed choices, hence it remains unclear whether these markers also apply to free choices. This study aimed to compare the specific brain dynamics underlying instructed and free decisions. Electroencephalography (EEG) was recorded while 31 participants performed a target selection task; the choice relied either on stimulus-response mappings (instructed) or on participants' preferences (free). Choice difficulty was increased by introducing distractors in the informative stimulus in instructed choices, and by presenting targets with similar motor costs in free choices. Results revealed that increased decision difficulty was associated with higher reaction times (RTs) in instructed choices and greater choice uncertainty in free choices. Midfrontal EEG theta (4-8 Hz) power increased with difficulty in instructed choices, but not in free choices. Although sensorimotor beta (15-30 Hz) power was correlated with RTs, it was not significantly influenced by choice context or difficulty. These results suggest that midfrontal theta power may specifically increase with difficulty in externally-driven choices, whereas sensorimotor beta power may be predictive of RTs in both externally- and internally-driven choices.
Collapse
|
128
|
Das A, Myers J, Mathura R, Shofty B, Metzger BA, Bijanki K, Wu C, Jacobs J, Sheth SA. Spontaneous neuronal oscillations in the human insula are hierarchically organized traveling waves. eLife 2022; 11:76702. [PMID: 35616527 PMCID: PMC9200407 DOI: 10.7554/elife.76702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The insula plays a fundamental role in a wide range of adaptive human behaviors, but its electrophysiological dynamics are poorly understood. Here, we used human intracranial electroencephalographic recordings to investigate the electrophysiological properties and hierarchical organization of spontaneous neuronal oscillations within the insula. We analyzed the neuronal oscillations of the insula directly and found that rhythms in the theta and beta frequency oscillations are widespread and spontaneously present. These oscillations are largely organized along the anterior–posterior (AP) axis of the insula. Both the left and right insula showed anterior-to-posterior decreasing gradients for the power of oscillations in the beta frequency band. The left insula also showed a posterior-to-anterior decreasing frequency gradient and an anterior-to-posterior decreasing power gradient in the theta frequency band. In addition to measuring the power of these oscillations, we also examined the phase of these signals across simultaneous recording channels and found that the insula oscillations in the theta and beta bands are traveling waves. The strength of the traveling waves in each frequency was positively correlated with the amplitude of each oscillation. However, the theta and beta traveling waves were uncoupled to each other in terms of phase and amplitude, which suggested that insular traveling waves in the theta and beta bands operate independently. Our findings provide new insights into the spatiotemporal dynamics and hierarchical organization of neuronal oscillations within the insula, which, given its rich connectivity with widespread cortical regions, indicates that oscillations and traveling waves have an important role in intrainsular and interinsular communications.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia University, New York, United States
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Raissa Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Brian A Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Kelly Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, United States
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, United States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| |
Collapse
|
129
|
Raufi B, Longo L. An Evaluation of the EEG Alpha-to-Theta and Theta-to-Alpha Band Ratios as Indexes of Mental Workload. Front Neuroinform 2022; 16:861967. [PMID: 35651718 PMCID: PMC9149374 DOI: 10.3389/fninf.2022.861967] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Many research works indicate that EEG bands, specifically the alpha and theta bands, have been potentially helpful cognitive load indicators. However, minimal research exists to validate this claim. This study aims to assess and analyze the impact of the alpha-to-theta and the theta-to-alpha band ratios on supporting the creation of models capable of discriminating self-reported perceptions of mental workload. A dataset of raw EEG data was utilized in which 48 subjects performed a resting activity and an induced task demanding exercise in the form of a multitasking SIMKAP test. Band ratios were devised from frontal and parietal electrode clusters. Building and model testing was done with high-level independent features from the frequency and temporal domains extracted from the computed ratios over time. Target features for model training were extracted from the subjective ratings collected after resting and task demand activities. Models were built by employing Logistic Regression, Support Vector Machines and Decision Trees and were evaluated with performance measures including accuracy, recall, precision and f1-score. The results indicate high classification accuracy of those models trained with the high-level features extracted from the alpha-to-theta ratios and theta-to-alpha ratios. Preliminary results also show that models trained with logistic regression and support vector machines can accurately classify self-reported perceptions of mental workload. This research contributes to the body of knowledge by demonstrating the richness of the information in the temporal, spectral and statistical domains extracted from the alpha-to-theta and theta-to-alpha EEG band ratios for the discrimination of self-reported perceptions of mental workload.
Collapse
|
130
|
Herbst SK, Obleser J, van Wassenhove V. Implicit Versus Explicit Timing-Separate or Shared Mechanisms? J Cogn Neurosci 2022; 34:1447-1466. [PMID: 35579985 DOI: 10.1162/jocn_a_01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Time implicitly shapes cognition, but time is also explicitly represented, for instance, in the form of durations. Parsimoniously, the brain could use the same mechanisms for implicit and explicit timing. Yet, the evidence has been equivocal, revealing both joint versus separate signatures of timing. Here, we directly compared implicit and explicit timing using magnetoencephalography, whose temporal resolution allows investigating the different stages of the timing processes. Implicit temporal predictability was induced in an auditory paradigm by a manipulation of the foreperiod. Participants received two consecutive task instructions: discriminate pitch (indirect measure of implicit timing) or duration (direct measure of explicit timing). The results show that the human brain efficiently extracts implicit temporal statistics of sensory environments, to enhance the behavioral and neural responses to auditory stimuli, but that those temporal predictions did not improve explicit timing. In both tasks, attentional orienting in time during predictive foreperiods was indexed by an increase in alpha power over visual and parietal areas. Furthermore, pretarget induced beta power in sensorimotor and parietal areas increased during implicit compared to explicit timing, in line with the suggested role for beta oscillations in temporal prediction. Interestingly, no distinct neural dynamics emerged when participants explicitly paid attention to time, compared to implicit timing. Our work thus indicates that implicit timing shapes the behavioral and sensory response in an automatic way and is reflected in oscillatory neural dynamics, whereas the translation of implicit temporal statistics to explicit durations remains somewhat inconclusive, possibly because of the more abstract nature of this task.
Collapse
|
131
|
Wang J, Liu Q, Tian F, Zhou S, Parra MA, Wang H, Yu X. Disrupted Spatiotemporal Complexity of Resting-State Electroencephalogram Dynamics Is Associated With Adaptive and Maladaptive Rumination in Major Depressive Disorder. Front Neurosci 2022; 16:829755. [PMID: 35615274 PMCID: PMC9125314 DOI: 10.3389/fnins.2022.829755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
Patients with major depressive disorder (MDD) exhibit abnormal rumination, including both adaptive and maladaptive forms. However, the neural substrates of rumination in depression remain poorly understood. We hypothesize that divergent spatiotemporal complexity of brain oscillations would be associated with the levels of rumination in MDD. We employed the multi-scale entropy (MSE), power and phase-amplitude coupling (PAC) to estimate the complexity of rhythmic dynamics from the eye-closed high-density electroencephalographic (EEG) data in treatment-naive patients with MDD (n = 24) and healthy controls (n = 22). The depressive, brooding, and reflective subscales of the Ruminative Response Scale were assessed. MDD patients showed higher MSE in timescales finer than 5 (cluster P = 0.038) and gamma power (cluster P = 0.034), as well as lower PAC values between alpha/low beta and gamma bands (cluster P = 0.002- 0.021). Higher reflective rumination in MDD was region-specifically associated with the more localized EEG dynamics, including the greater MSE in scales finer than 8 (cluster P = 0.008), power in gamma (cluster P = 0.018) and PAC in low beta-gamma (cluster P = 0.042), as well as weaker alpha-gamma PAC (cluster P = 0.016- 0.029). Besides, the depressive and brooding rumination in MDD showed the lack of correlations with global long-range EEG variables. Our findings support the disturbed neural communications and point to the spatial reorganization of brain networks in a timescale-dependent migration toward local during adaptive and maladaptive rumination in MDD. These findings may provide potential implications on probing and modulating dynamic neuronal fluctuations during the rumination in depression.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Qi Liu
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Feng Tian
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Department of Psychiatry, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuzhe Zhou
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Mario Alfredo Parra
- School of Psychological Sciences and Health, Department of Psychology, University of Strathclyde, Glasgow, United Kingdom
| | - Huali Wang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
132
|
Harris A, Hutcherson CA. Temporal dynamics of decision making: A synthesis of computational and neurophysiological approaches. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1586. [PMID: 34854573 DOI: 10.1002/wcs.1586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
As interest in the temporal dynamics of decision-making has grown, researchers have increasingly turned to computational approaches such as the drift diffusion model (DDM) to identify how cognitive processes unfold during choice. At the same time, technological advances in noninvasive neurophysiological methods such as electroencephalography and magnetoencephalography now allow researchers to map the neural time course of decision making with millisecond precision. Combining these approaches can potentially yield important new insights into how choices emerge over time. Here we review recent research on the computational and neurophysiological correlates of perceptual and value-based decision making, from DDM parameters to scalp potentials and oscillatory neural activity. Starting with motor response preparation, the most well-understood aspect of the decision process, we discuss evidence that urgency signals and shifts in baseline activation, rather than shifts in the physiological value of the choice-triggering response threshold, are responsible for adjusting response times under speeded choice scenarios. Research on the neural correlates of starting point bias suggests that prestimulus activity can predict biases in motor choice behavior. Finally, studies examining the time dynamics of evidence construction and evidence accumulation have identified signals at frontocentral and centroparietal electrodes associated respectively with these processes, emerging 300-500 ms after stimulus onset. These findings can inform psychological theories of decision-making, providing empirical support for attribute weighting in value-based choice while suggesting theoretical alternatives to dual-process accounts. Further research combining computational and neurophysiological approaches holds promise for providing greater insight into the moment-by-moment evolution of the decision process. This article is categorized under: Psychology > Reasoning and Decision Making Neuroscience > Cognition Economics > Individual Decision-Making.
Collapse
Affiliation(s)
- Alison Harris
- Claremont McKenna College, Claremont, California, USA
| | | |
Collapse
|
133
|
Cu H, Lynch L, Huang K, Truccolo W, Nurmikko A. Grasp-squeeze adaptation to changes in object compliance leads to dynamic beta-band communication between primary somatosensory and motor cortices. Sci Rep 2022; 12:6776. [PMID: 35474117 PMCID: PMC9042850 DOI: 10.1038/s41598-022-10871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
In asking the question of how the brain adapts to changes in the softness of manipulated objects, we studied dynamic communication between the primary sensory and motor cortical areas when nonhuman primates grasp and squeeze an elastically deformable manipulandum to attain an instructed force level. We focused on local field potentials recorded from S1 and M1 via intracortical microelectrode arrays. We computed nonparametric spectral Granger Causality to assess directed cortico-cortical interactions between these two areas. We demonstrate that the time-causal relationship between M1 and S1 is bidirectional in the beta-band (15-30 Hz) and that this interareal communication develops dynamically as the subjects adjust the force of hand squeeze to reach the target level. In particular, the directed interaction is strongest when subjects are focused on maintaining the instructed force of hand squeeze in a steady state for several seconds. When the manipulandum's compliance is abruptly changed, beta-band interareal communication is interrupted for a short period (~ 1 s) and then is re-established once the subject has reached a new steady state. These results suggest that transient beta oscillations can provide a communication subspace for dynamic cortico-cortical S1-M1 interactions during maintenance of steady sensorimotor states.
Collapse
Affiliation(s)
- Huy Cu
- School of Engineering, Brown University, Providence, RI, USA.
| | - Laurie Lynch
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Kevin Huang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Arto Nurmikko
- School of Engineering, Brown University, Providence, RI, USA. .,Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
134
|
Shuffrey LC, Pini N, Potter M, Springer P, Lucchini M, Rayport Y, Sania A, Firestein M, Brink L, Isler JR, Odendaal H, Fifer WP. Aperiodic electrophysiological activity in preterm infants is linked to subsequent autism risk. Dev Psychobiol 2022; 64:e22271. [PMID: 35452546 PMCID: PMC9169229 DOI: 10.1002/dev.22271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022]
Abstract
Approximately 7% of preterm infants receive an autism spectrum disorder (ASD) diagnosis. Yet, there is a significant gap in the literature in identifying prospective markers of neurodevelopmental risk in preterm infants. The present study examined two electroencephalography (EEG) parameters during infancy, absolute EEG power and aperiodic activity of the power spectral density (PSD) slope, in association with subsequent autism risk and cognitive ability in a diverse cohort of children born preterm in South Africa. Participants were 71 preterm infants born between 25 and 36 weeks gestation (34.60 ± 2.34 weeks). EEG was collected during sleep between 39 and 41 weeks postmenstrual age adjusted (40.00 ± 0.42 weeks). The Bayley Scales of Infant Development and Brief Infant Toddler Social Emotional Assessment (BITSEA) were administered at approximately 3 years of age adjusted (34 ± 2.7 months). Aperiodic activity, but not the rhythmic oscillatory activity, at multiple electrode sites was associated with subsequent increased autism risk on the BITSEA at three years of age. No associations were found between the PSD slope or absolute EEG power and cognitive development. Our findings highlight the need to examine potential markers of subsequent autism risk in high-risk populations other than infants at familial risk.
Collapse
Affiliation(s)
- Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Mandy Potter
- Department of Obstetrics and Gynaecology, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Priscilla Springer
- Paediatrics and Child Health, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Yael Rayport
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Ayesha Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Morgan Firestein
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Lucy Brink
- Department of Obstetrics and Gynaecology, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Joseph R Isler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Hein Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA.,Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
135
|
Rayson H, Debnath R, Alavizadeh S, Fox N, Ferrari PF, Bonaiuto JJ. Detection and analysis of cortical beta bursts in developmental EEG data. Dev Cogn Neurosci 2022; 54:101069. [PMID: 35114447 PMCID: PMC8816670 DOI: 10.1016/j.dcn.2022.101069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 01/10/2023] Open
Abstract
Developmental EEG research often involves analyzing signals within various frequency bands, based on the assumption that these signals represent oscillatory neural activity. However, growing evidence suggests that certain frequency bands are dominated by transient burst events in single trials rather than sustained oscillations. This is especially true for the beta band, with adult 'beta burst' timing a better predictor of motor behavior than slow changes in average beta amplitude. No developmental research thus far has looked at beta bursts, with techniques used to investigate frequency-specific activity structure rarely even applied to such data. Therefore, we aimed to: i) provide a tutorial for developmental EEG researchers on the application of methods for evaluating the rhythmic versus transient nature of frequency-specific activity; and ii) use these techniques to investigate the existence of sensorimotor beta bursts in infants. We found that beta activity in 12-month-olds did occur in bursts, however differences were also revealed in terms of duration, amplitude, and rate during grasping compared to adults. Application of the techniques illustrated here will be critical for clarifying the functional roles of frequency-specific activity across early development, including the role of beta activity in motor processing and its contribution to differing developmental motor trajectories.
Collapse
Affiliation(s)
- Holly Rayson
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | | | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Nathan Fox
- University of Maryland College Park, MD, USA
| | - Pier F Ferrari
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
136
|
Taylor BK, Heinrichs-Graham E, Eastman JA, Frenzel MR, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Longitudinal changes in the neural oscillatory dynamics underlying abstract reasoning in children and adolescents. Neuroimage 2022; 253:119094. [PMID: 35306160 PMCID: PMC9152958 DOI: 10.1016/j.neuroimage.2022.119094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Fluid reasoning is the ability to problem solve in the absence of prior knowledge and is commonly conceptualized as “non-verbal” intelligence. Importantly, fluid reasoning abilities rapidly develop throughout childhood and adolescence. Although numerous studies have characterized the neural underpinnings of fluid reasoning in adults, there is a paucity of research detailing the developmental trajectory of this neural processing. Herein, we examine longitudinal changes in the neural oscillatory dynamics underlying fluid intelligence in a sample of typically developing youths. A total of 34 participants age 10 to 16 years-old completed an abstract reasoning task during magnetoencephalography (MEG) on two occasions set one year apart. We found robust longitudinal optimization in theta, beta, and gamma oscillatory activity across years of the study across a distributed network commonly implicated in fluid reasoning abilities. More specifically, activity tended to decrease longitudinally in additional, compensatory areas such as the right lateral prefrontal cortex and increase in areas commonly utilized in mature adult samples (e.g., left frontal and parietal cortices). Importantly, shifts in neural activity were associated with improvements in task performance from one year to the next. Overall, the data suggest a longitudinal shift in performance that is accompanied by a reconfiguration of the functional oscillatory dynamics serving fluid reasoning during this important period of development.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
137
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
138
|
Cognitive and emotional regulation processes of spontaneous facial self-touch are activated in the first milliseconds of touch: Replication of previous EEG findings and further insights. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:984-1000. [PMID: 35182383 PMCID: PMC8857530 DOI: 10.3758/s13415-022-00983-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/22/2022]
Abstract
Spontaneously touching one’s own face (sFST) is an everyday behavior that occurs in people of all ages, worldwide. It is—as opposed to actively touching the own face—performed without directing one’s attention to the action, and it serves neither instrumental (scratching, nose picking) nor communicative purposes. These sFST have been discussed in the context of self-regulation, emotional homeostasis, working memory processes, and attention focus. Even though self-touch research dates back decades, neuroimaging studies of this spontaneous behavior are basically nonexistent. To date, there is only one electroencephalography study that analyzed spectral power changes before and after sFST in 14 participants. The present study replicates the previous study on a larger sample. Sixty participants completed a delayed memory task of complex haptic relief stimuli while distracting sounds were played. During the retention interval 44 of the participants exhibited spontaneous face touch. Spectral power analyses corroborated the results of the replicated study. Decreased power shortly before sFST and increased power right after sFST indicated an involvement of regulation of attentional, emotional, and working memory processes. Additional analyses of spectral power changes during the skin contact phase of sFST revealed that significant neurophysiological changes do not occur while skin contact is in progress but at the beginning of sFST (movement toward face and initial skin contact). The present findings clearly illustrate the complexity of sFST and that the specific trigger mechanisms and functions of this spontaneous behavior need to be further investigated in controlled, experimental studies.
Collapse
|
139
|
Neural oscillations promoting perceptual stability and perceptual memory during bistable perception. Sci Rep 2022; 12:2760. [PMID: 35177702 PMCID: PMC8854562 DOI: 10.1038/s41598-022-06570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Ambiguous images elicit bistable perception, wherein periods of momentary perceptual stability are interrupted by sudden perceptual switches. When intermittently presented, ambiguous images trigger a perceptual memory trace in the intervening blank periods. Understanding the neural bases of perceptual stability and perceptual memory during bistable perception may hold clues for explaining the apparent stability of visual experience in the natural world, where ambiguous and fleeting images are prevalent. Motivated by recent work showing the involvement of the right inferior frontal gyrus (rIFG) in bistable perception, we conducted a transcranial direct-current stimulation (tDCS) study with a double-blind, within-subject cross-over design to test a potential causal role of rIFG in these processes. Subjects viewed ambiguous images presented continuously or intermittently while under EEG recording. We did not find any significant tDCS effect on perceptual behavior. However, the fluctuations of oscillatory power in the alpha and beta bands predicted perceptual stability, with higher power corresponding to longer percept durations. In addition, higher alpha and beta power predicted enhanced perceptual memory during intermittent viewing. These results reveal a unified neurophysiological mechanism sustaining perceptual stability and perceptual memory when the visual system is faced with ambiguous input.
Collapse
|
140
|
Law RG, Pugliese S, Shin H, Sliva DD, Lee S, Neymotin S, Moore C, Jones SR. Thalamocortical Mechanisms Regulating the Relationship between Transient Beta Events and Human Tactile Perception. Cereb Cortex 2022; 32:668-688. [PMID: 34401898 PMCID: PMC8841599 DOI: 10.1093/cercor/bhab221] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Transient neocortical events with high spectral power in the 15-29 Hz beta band are among the most reliable predictors of sensory perception. Prestimulus beta event rates in primary somatosensory cortex correlate with sensory suppression, most effectively 100-300 ms before stimulus onset. However, the neural mechanisms underlying this perceptual association are unknown. We combined human magnetoencephalography (MEG) measurements with biophysical neural modeling to test potential cellular and circuit mechanisms that underlie observed correlations between prestimulus beta events and tactile detection. Extending prior studies, we found that simulated bursts from higher-order, nonlemniscal thalamus were sufficient to drive beta event generation and to recruit slow supragranular inhibition acting on a 300 ms timescale to suppress sensory information. Further analysis showed that the same beta-generating mechanism can lead to facilitated perception for a brief period when beta events occur simultaneously with tactile stimulation before inhibition is recruited. These findings were supported by close agreement between model-derived predictions and empirical MEG data. The postevent suppressive mechanism explains an array of studies that associate beta with decreased processing, whereas the during-event facilitatory mechanism may demand a reinterpretation of the role of beta events in the context of coincident timing.
Collapse
Affiliation(s)
- Robert G Law
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA 02215, USA
| | - Sarah Pugliese
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Hyeyoung Shin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle D Sliva
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Shane Lee
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI 02903, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI 02903, USA
| | - Samuel Neymotin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA
| |
Collapse
|
141
|
Chikhi S, Matton N, Blanchet S. EEG
power spectral measures of cognitive workload: A meta‐analysis. Psychophysiology 2022; 59:e14009. [DOI: 10.1111/psyp.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| | - Nadine Matton
- CLLE‐LTC University of Toulouse, CNRS (UMR5263) Toulouse France
- ENAC Research Lab École Nationale d’Aviation Civile Toulouse France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| |
Collapse
|
142
|
ASMR amplifies low frequency and reduces high frequency oscillations. Cortex 2022; 149:85-100. [DOI: 10.1016/j.cortex.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022]
|
143
|
Michelini G, Salmastyan G, Vera JD, Lenartowicz A. Event-related brain oscillations in attention-deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Int J Psychophysiol 2022; 174:29-42. [DOI: 10.1016/j.ijpsycho.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
|
144
|
The Neurophysiological Impact of Subacute Stroke: Changes in Cortical Oscillations Evoked by Bimanual Finger Movement. Stroke Res Treat 2022; 2022:9772147. [PMID: 35154632 PMCID: PMC8831071 DOI: 10.1155/2022/9772147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction. To design more effective interventions, such as neurostimulation, for stroke rehabilitation, there is a need to understand early physiological changes that take place that may be relevant for clinical monitoring. We aimed to study changes in neurophysiology following recent ischemic stroke, both at rest and with motor planning and execution. Materials and Methods. We included 10 poststroke patients, between 7 and 10 days after stroke, and 20 age-matched controls to assess changes in cortical motor output via transcranial magnetic stimulation and in dynamics of oscillations, as recorded using electroencephalography (EEG). Results. We found significant differences in cortical oscillatory patterns comparing stroke patients with healthy participants, particularly in the beta rhythm during motor planning (
) and execution (
) of a complex movement with fingers from both hands simultaneously. Discussion. The stroke lesion induced a decrease in event-related desynchronization in patients, in comparison to controls, providing evidence for decreased disinhibition. Conclusions. After a stroke lesion, the dynamics of cortical oscillations is changed, with an increasing neural beta synchronization in the course of motor preparation and performance of complex bimanual finger tasks. The observed patterns may provide a potential functional measure that could be used to monitor and design interventional approaches in subacute stages.
Collapse
|
145
|
Samaha J, Cohen MX. Power spectrum slope confounds estimation of instantaneous oscillatory frequency. Neuroimage 2022; 250:118929. [PMID: 35077852 DOI: 10.1016/j.neuroimage.2022.118929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/12/2023] Open
Abstract
Oscillatory neural dynamics are highly non-stationary and require methods capable of quantifying time-resolved changes in oscillatory activity in order to understand neural function. Recently, a method termed 'frequency sliding' was introduced to estimate the instantaneous frequency of oscillatory activity, providing a means of tracking temporal changes in the dominant frequency within a sub-band of field potential recordings. Here, the ability of frequency sliding to recover ground-truth oscillatory frequency in simulated data is tested while the exponent (slope) of the 1/fx component of the signal power spectrum is systematically varied, mimicking real electrophysiological data. The results show that 1) in the presence of 1/f activity, frequency sliding systematically underestimates the true frequency of the signal, 2) the magnitude of underestimation is correlated with the steepness of the slope, suggesting that, if unaccounted for, slope changes could be misinterpreted as frequency changes, 3) the impact of slope on frequency estimates interacts with oscillation amplitude, indicating that changes in oscillation amplitude alone may also influence instantaneous frequency estimates in the presence of strong 1/f activity; and 4) analysis parameters such as filter bandwidth and location also mediate the influence of slope on estimated frequency, indicating that these settings should be considered when interpreting estimates obtained via frequency sliding. The origin of these biases resides in the output of the filtering step of frequency sliding, whose energy is biased towards lower frequencies precisely because of the 1/f structure of the data. We discuss several strategies to mitigate these biases and provide a proof-of-principle for a 1/f normalization strategy.
Collapse
Affiliation(s)
- Jason Samaha
- Psychology Department, University of California, Santa Cruz.
| | - Michael X Cohen
- Donders Centre for Medical Neuroscience, Radboud University Medical Centre
| |
Collapse
|
146
|
Lydon EA, Nguyen LT, Shende SA, Chiang HS, Spence JS, Mudar RA. EEG theta and alpha oscillations in early versus late mild cognitive impairment during a semantic Go/NoGo task. Behav Brain Res 2022; 416:113539. [PMID: 34416304 DOI: 10.1016/j.bbr.2021.113539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/02/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) is marked by episodic memory deficits, which can be used to classify individuals into early MCI (EMCI) and late MCI (LMCI). Although mounting evidence suggests that individuals with aMCI have additional cognitive alterations including deficits in cognitive control, few have examined if EMCI and LMCI differ on processes other than episodic memory. Using a semantic Go/NoGo task, we examined differences in cognitive control between EMCI and LMCI on behavioral (accuracy and reaction time) and neural (scalp-recorded event-related oscillations in theta and alpha band) measures. Although no behavioral differences were observed between the EMCI and LMCI groups, differences in neural oscillations were observed. The LMCI group had higher theta synchronization on Go trials at central electrodes compared to the EMCI group. In addition, the EMCI group showed differences in theta power at central electrodes and alpha power at central and centro-parietal electrodes between Go and NoGo trials, while the LMCI group did not exhibit such differences. These findings suggest that while behavioral differences may not be observable, neural changes underlying cognitive control processes may differentiate EMCI and LMCI stages and may be useful to understand the trajectory of aMCI in future studies.
Collapse
Affiliation(s)
- Elizabeth A Lydon
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 South 6th Street, Champaign, IL, 61820, United States
| | - Lydia T Nguyen
- Neuroscience Program, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, United States
| | - Shraddha A Shende
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 South 6th Street, Champaign, IL, 61820, United States
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, United States; School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, United States
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, 2200 West Mockingbird Ln, Dallas, TX, United States
| | - Raksha A Mudar
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 South 6th Street, Champaign, IL, 61820, United States; Neuroscience Program, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
147
|
Ross JM, Comstock DC, Iversen JR, Makeig S, Balasubramaniam R. Cortical mu rhythms during action and passive music listening. J Neurophysiol 2022; 127:213-224. [PMID: 34936516 PMCID: PMC8794057 DOI: 10.1152/jn.00346.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brain systems supporting body movement are active during music listening in the absence of overt movement. This covert motor activity is not well understood, but some theories propose a role in auditory timing prediction facilitated by motor simulation. One question is how music-related covert motor activity relates to motor activity during overt movement. We address this question using scalp electroencephalogram by measuring mu rhythms-cortical field phenomena associated with the somatomotor system that appear over sensorimotor cortex. Lateralized mu enhancement over hand sensorimotor cortex during/just before foot movement in foot versus hand movement paradigms is thought to reflect hand movement inhibition during current/prospective movement of another effector. Behavior of mu during music listening with movement suppressed has yet to be determined. We recorded 32-channel EEG (n = 17) during silence without movement, overt movement (foot/hand), and music listening without movement. Using an independent component analysis-based source equivalent dipole clustering technique, we identified three mu-related clusters, localized to left primary motor and right and midline premotor cortices. Right foot tapping was accompanied by mu enhancement in the left lateral source cluster, replicating previous work. Music listening was accompanied by similar mu enhancement in the left, as well as midline, clusters. We are the first, to our knowledge, to report, and also to source-resolve, music-related mu modulation in the absence of overt movements. Covert music-related motor activity has been shown to play a role in beat perception (Ross JM, Iversen JR, Balasubramaniam R. Neurocase 22: 558-565, 2016). Our current results show enhancement in somatotopically organized mu, supporting overt motor inhibition during beat perception.NEW & NOTEWORTHY We are the first to report music-related mu enhancement in the absence of overt movements and the first to source-resolve mu activity during music listening. We suggest that music-related mu modulation reflects overt motor inhibition during passive music listening. This work is relevant for the development of theories relating to the involvement of covert motor system activity for predictive beat perception.
Collapse
Affiliation(s)
- Jessica M. Ross
- 1Veterans Affairs Palo Alto Heathcare System, the Sierra Pacific Mental Illness, Research Education, and Clinical Center (MIRECC), Palo Alto, California,2Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California,3Berenson-Allen Center for Noninvasive Brain Stimulation,
Beth Israel Deaconess Medical Center, Boston, Massachusetts,4Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Daniel C. Comstock
- 5Cognitive and Information Sciences, University of California, Merced, California
| | - John R. Iversen
- 6Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, California
| | - Scott Makeig
- 6Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, California
| | | |
Collapse
|
148
|
Predictive Feedback, Early Sensory Representations, and Fast Responses to Predicted Stimuli Depend on NMDA Receptors. J Neurosci 2021; 41:10130-10147. [PMID: 34732525 DOI: 10.1523/jneurosci.1311-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Learned associations between stimuli allow us to model the world and make predictions, crucial for efficient behavior (e.g., hearing a siren, we expect to see an ambulance and quickly make way). While there are theoretical and computational frameworks for prediction, the circuit and receptor-level mechanisms are unclear. Using high-density EEG, Bayesian modeling, and machine learning, we show that inferred "causal" relationships between stimuli and frontal alpha activity account for reaction times (a proxy for predictions) on a trial-by-trial basis in an audiovisual delayed match-to-sample task which elicited predictions. Predictive β feedback activated sensory representations in advance of predicted stimuli. Low-dose ketamine, an NMDAR blocker, but not the control drug dexmedetomidine, perturbed behavioral indices of predictions, their representation in higher-order cortex, feedback to posterior cortex, and pre-activation of sensory templates in higher-order sensory cortex. This study suggests that predictions depend on alpha activity in higher-order cortex, β feedback, and NMDARs, and ketamine blocks access to learned predictive information.SIGNIFICANCE STATEMENT We learn the statistical regularities around us, creating associations between sensory stimuli. These associations can be exploited by generating predictions, which enable fast and efficient behavior. When predictions are perturbed, it can negatively influence perception and even contribute to psychiatric disorders, such as schizophrenia. Here we show that the frontal lobe generates predictions and sends them to posterior brain areas, to activate representations of predicted sensory stimuli before their appearance. Oscillations in neural activity (α and β waves) are vital for these predictive mechanisms. The drug ketamine blocks predictions and the underlying mechanisms. This suggests that the generation of predictions in the frontal lobe, and the feedback pre-activating sensory representations in advance of stimuli, depend on NMDARs.
Collapse
|
149
|
Kuc A, Korchagin S, Maksimenko VA, Shusharina N, Hramov AE. Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification. Front Syst Neurosci 2021; 15:716897. [PMID: 34867218 PMCID: PMC8635058 DOI: 10.3389/fnsys.2021.716897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive operators. Addressing this issue, we considered ambiguous stimuli classification tasks and trained an artificial neural network to classify brain responses to the stimuli of low and high ambiguity. We built a pre-trained classifier utilizing time-frequency features corresponding to the fundamental neurophysiological processes shared between subjects. To extract these features, we statistically contrasted electroencephalographic (EEG) spectral power between the classes in the representative group of subjects. As a result, the pre-trained classifier achieved 74% accuracy on the data of newly recruited subjects. Analysis of the literature suggested that a pre-trained classifier could help naive users to start using BCI bypassing training and further increased accuracy during the feedback session. Thus, our results contribute to using BCI during paralysis or limb amputation when there is no explicit user-generated kinematic output to properly train a decoder. In machine learning, our approach may facilitate the development of transfer learning (TL) methods for addressing the cross-subject problem. It allows extracting the interpretable feature subspace from the source data (the representative group of subjects) related to the target data (a naive user), preventing the negative transfer in the cross-subject tasks.
Collapse
Affiliation(s)
- Alexander Kuc
- Center for Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Sergey Korchagin
- Department of Data Analysis and Machine Learning, Financial University Under the Government of the Russian Federation, Moscow, Russia
| | - Vladimir A Maksimenko
- Center for Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, Russia
| | - Natalia Shusharina
- Center for Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander E Hramov
- Center for Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, Russia
| |
Collapse
|
150
|
Strube A, Rose M, Fazeli S, Büchel C. Alpha-to-beta- and gamma-band activity reflect predictive coding in affective visual processing. Sci Rep 2021; 11:23492. [PMID: 34873255 PMCID: PMC8648824 DOI: 10.1038/s41598-021-02939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Processing of negative affective pictures typically leads to desynchronization of alpha-to-beta frequencies (ERD) and synchronization of gamma frequencies (ERS). Given that in predictive coding higher frequencies have been associated with prediction errors, while lower frequencies have been linked to expectations, we tested the hypothesis that alpha-to-beta ERD and gamma ERS induced by aversive pictures are associated with expectations and prediction errors, respectively. We recorded EEG while volunteers were involved in a probabilistically cued affective picture task using three different negative valences to produce expectations and prediction errors. Our data show that alpha-to-beta band activity after stimulus presentation was related to the expected valence of the stimulus as predicted by a cue. The absolute mismatch of the expected and actual valence, which denotes an absolute prediction error was related to increases in alpha, beta and gamma band activity. This demonstrates that top-down predictions and bottom-up prediction errors are represented in typical spectral patterns associated with affective picture processing. This study provides direct experimental evidence that negative affective picture processing can be described by neuronal predictive coding computations.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|