101
|
Zhang X, Cheng H, Zuo Z, Zhou K, Cong F, Wang B, Zhuo Y, Chen L, Xue R, Fan Y. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study. Front Neurosci 2018; 12:270. [PMID: 29755313 PMCID: PMC5932177 DOI: 10.3389/fnins.2018.00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo. In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.
Collapse
Affiliation(s)
- Xianchang Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hewei Cheng
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhou
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Fei Cong
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
102
|
LeDoux J, Daw ND. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci 2018; 19:269-282. [PMID: 29593300 DOI: 10.1038/nrn.2018.22] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on defensive behaviour in mammals has in recent years focused on elicited reactions; however, organisms also make active choices when responding to danger. We propose a hierarchical taxonomy of defensive behaviour on the basis of known psychological processes. Included are three categories of reactions (reflexes, fixed reactions and habits) and three categories of goal-directed actions (direct action-outcome behaviours and actions based on implicit or explicit forecasting of outcomes). We then use this taxonomy to guide a summary of findings regarding the underlying neural circuits.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA.,Department of Psychiatry and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA.,Nathan Kline Institute for Psychiatry Research, Orangeburg, NY, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
103
|
Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S. MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. EBioMedicine 2018; 30:62-73. [PMID: 29580842 PMCID: PMC5952351 DOI: 10.1016/j.ebiom.2018.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/25/2022] Open
Abstract
Abnormalities in limbic neural circuits have been implicated in the onset of anxiety disorders. However, the molecular pathogenesis underlying anxiety disorders remains poorly elucidated. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) regulates amygdala circuitry to control the activity of the hypothalamic-pituitary-adrenal (HPA) axis, as well as induces anxiety-like behaviors in mice. MARCKSL1 expression was predominantly localized in the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala of the adult mouse brain. MARCKSL1 transgenic (Tg) mice exhibited anxiety-like behaviors dependent on corticotropin-releasing hormone. MARCKSL1 increased spine formation in the central amygdala, and downregulation of MARCKSL1 in the amygdala normalized both increased HPA axis activity and elevated anxiety-like behaviors in Tg mice. Furthermore, MARCKSL1 expression was increased in the PFC and amygdala in a brain injury model associated with anxiety-like behaviors. Our findings suggest that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors. MARCKSL1 induces spine formation in the amygdala, HPA axis activation, and anxiety-like behaviors. Downregulation of MARCKSL1 in the amygdala ameliorates anxiety-like behaviors MARCKSL1 is increased in a brain injury model associated with anxiety.
The molecular pathogenesis underlying anxiety disorders is still unclear. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) overexpression in mice increases spine formation in the amygdala and induces stress hormone upregulation and anxiety-like behaviors. Suppression of MARCKSL1 in the amygdala ameliorates both the increase in stress hormones and the elevated anxiety-like behaviors. Our results indicate that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors.
Collapse
Affiliation(s)
- Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; Department of Anatomy II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaki Ueno
- Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
104
|
Gibbard CR, Ren J, Skuse DH, Clayden JD, Clark CA. Structural connectivity of the amygdala in young adults with autism spectrum disorder. Hum Brain Mapp 2018; 39:1270-1282. [PMID: 29265723 PMCID: PMC5838552 DOI: 10.1002/hbm.23915] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairments in social cognition, a function associated with the amygdala. Subdivisions of the amygdala have been identified which show specificity of structure, connectivity, and function. Little is known about amygdala connectivity in ASD. The aim of this study was to investigate the microstructural properties of amygdala-cortical connections and their association with ASD behaviours, and whether connectivity of specific amygdala subregions is associated with particular ASD traits. The brains of 51 high-functioning young adults (25 with ASD; 26 controls) were scanned using MRI. Amygdala volume was measured, and amygdala-cortical connectivity estimated using probabilistic tractography. An iterative 'winner takes all' algorithm was used to parcellate the amygdala based on its primary cortical connections. Measures of amygdala connectivity were correlated with clinical scores. In comparison with controls, amygdala volume was greater in ASD (F(1,94) = 4.19; p = .04). In white matter (WM) tracts connecting the right amygdala to the right cortex, ASD subjects showed increased mean diffusivity (t = 2.35; p = .05), which correlated with the severity of emotion recognition deficits (rho = -0.53; p = .01). Following amygdala parcellation, in ASD subjects reduced fractional anisotropy in WM connecting the left amygdala to the temporal cortex was associated with with greater attention switching impairment (rho = -0.61; p = .02). This study demonstrates that both amygdala volume and the microstructure of connections between the amygdala and the cortex are altered in ASD. Findings indicate that the microstructure of right amygdala WM tracts are associated with overall ASD severity, but that investigation of amygdala subregions can identify more specific associations.
Collapse
Affiliation(s)
- Clare R. Gibbard
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Juejing Ren
- Behavioural Sciences UnitUCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - David H. Skuse
- Behavioural Sciences UnitUCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Jonathan D. Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| |
Collapse
|
105
|
Tillman RM, Stockbridge MD, Nacewicz BM, Torrisi S, Fox AS, Smith JF, Shackman AJ. Intrinsic functional connectivity of the central extended amygdala. Hum Brain Mapp 2018; 39:1291-1312. [PMID: 29235190 PMCID: PMC5807241 DOI: 10.1002/hbm.23917] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)-plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community-dwelling adults. Multiband imaging, high-precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole-brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with "deidentified" neuroimaging data.
Collapse
Affiliation(s)
| | - Melissa D. Stockbridge
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMaryland20742
| | - Brendon M. Nacewicz
- Department of PsychiatryUniversity of Wisconsin—Madison, 6001 Research Park BoulevardMadisonWisconsin53719
| | - Salvatore Torrisi
- Section on the Neurobiology of Fear and AnxietyNational Institute of Mental HealthBethesdaMaryland20892
| | - Andrew S. Fox
- Department of PsychologyUniversity of CaliforniaDavisCalifornia95616
- California National Primate Research CenterUniversity of CaliforniaDavisCalifornia95616
| | - Jason F. Smith
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
| | - Alexander J. Shackman
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland20742
- Maryland Neuroimaging CenterUniversity of MarylandCollege ParkMaryland20742
| |
Collapse
|
106
|
Lin X, Itoga CA, Taha S, Li MH, Chen R, Sami K, Berton F, Francesconi W, Xu X. c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 2018; 8:92-102. [PMID: 29560385 PMCID: PMC5857493 DOI: 10.1016/j.ynstr.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Real-world stressors are complex and multimodal, involving physical, psychological, and social dimensions. However, the brain networks that mediate stress responses to these stimuli need to be further studied. We used c-Fos mapping in mice to characterize brain circuits activated by exposure to a single episode of multimodal stress (MMS), and compared these to circuits activated by electric foot shocks (EFS). We focused on characterizing c-Fos activity in stress-relevant brain regions including the paraventricular nucleus (PVN) of the hypothalamus and the bed nucleus of the stria terminalis (BNST). We also assessed stress-induced activation of CRH-positive neurons in each of these structures. MMS and EFS activated an overlapping network of brain regions with a similar time course. c-Fos expression within the PVN and the BNST peaked 30–60 min after exposure to both MMS and EFS, and returned to baseline levels within 24 h. Quantification of c-Fos expression within BNST subregions revealed that while c-Fos expression peaked in all subregions 30–60 min after MMS and EFS exposure, the neuronal density of c-Fos expression was significantly higher in the dorsomedial and ventral BNST relative to the dorsolateral BNST. Our preliminary assessment indicated that a great majority of MMS or EFS-activated neurons in the PVN were CRH-positive (>87%); in contrast, about 6–35% of activated neurons in the BNST were CRH-positive. Our findings indicate that both MMS and EFS are effective at activating stress-relevant brain areas and support the use of MMS as an effective approach for studying multidimensional stress in animal models. The results also reveal that the PVN and BNST are part of a common neural circuit substrate involved in neural processing related to stress.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Sharif Taha
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112-5820, United States
| | - Ming H Li
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Ryan Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Kirolos Sami
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Fulvia Berton
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Walter Francesconi
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States.,Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, United States.,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, United States
| |
Collapse
|
107
|
Alisch RS, Van Hulle C, Chopra P, Bhattacharyya A, Zhang SC, Davidson RJ, Kalin NH, Goldsmith HH. A multi-dimensional characterization of anxiety in monozygotic twin pairs reveals susceptibility loci in humans. Transl Psychiatry 2017; 7:1282. [PMID: 29225348 PMCID: PMC5802687 DOI: 10.1038/s41398-017-0047-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
The etiology of individual differences in human anxiousness is complex and includes contributions from genetic, epigenetic (i.e., DNA methylation) and environmental factors. Past genomic approaches have been limited in their ability to detect human anxiety-related differences in these factors. To overcome these limitations, we employed both a multi-dimensional characterization method, to select monozygotic twin pairs discordant for anxiety, and whole genome DNA methylation sequencing. This approach revealed 230 anxiety-related differentially methylated loci that were annotated to 183 genes, including several known stress-related genes such as NAV1, IGF2, GNAS, and CRTC1. As an initial validation of these findings, we tested the significance of an overlap of these data with anxiety-related differentially methylated loci that we previously reported from a key neural circuit of anxiety (i.e., the central nucleus of the amygdala) in young monkeys and found a significant overlap (P-value < 0.05) of anxiety-related differentially methylated genes, including GNAS, SYN3, and JAG2. Finally, sequence motif predictions of all the human differentially methylated regions indicated an enrichment of five transcription factor binding motifs, suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding of these transcripts. Together, these data demonstrate environmentally sensitive factors that may underlie the development of human anxiety.
Collapse
Affiliation(s)
- Reid S Alisch
- Departments of Psychiatry, University of Wisconsin, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
| | | | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Su-Chun Zhang
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Departments of Neuroscience, University of Wisconsin, Madison, WI, USA
- Departments of Neurology, University of Wisconsin, Madison, WI, USA
| | - Richard J Davidson
- Departments of Psychiatry, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Departments of Psychology, University of Wisconsin, Madison, WI, USA
- Center for Healthy Minds, Madison, WI, USA
| | - Ned H Kalin
- Departments of Psychiatry, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - H Hill Goldsmith
- Waisman Center, University of Wisconsin, Madison, WI, USA.
- Departments of Psychology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
108
|
Kedo O, Zilles K, Palomero-Gallagher N, Schleicher A, Mohlberg H, Bludau S, Amunts K. Receptor-driven, multimodal mapping of the human amygdala. Brain Struct Funct 2017; 223:1637-1666. [PMID: 29188378 DOI: 10.1007/s00429-017-1577-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022]
Abstract
The human amygdala consists of subdivisions contributing to various functions. However, principles of structural organization at the cellular and molecular level are not well understood. Thus, we re-analyzed the cytoarchitecture of the amygdala and generated cytoarchitectonic probabilistic maps of ten subdivisions in stereotaxic space based on novel workflows and mapping tools. This parcellation was then used as a basis for analyzing the receptor expression for 15 receptor types. Receptor fingerprints, i.e., the characteristic balance between densities of all receptor types, were generated in each subdivision to comprehensively visualize differences and similarities in receptor architecture between the subdivisions. Fingerprints of the central and medial nuclei and the anterior amygdaloid area were highly similar. Fingerprints of the lateral, basolateral and basomedial nuclei were also similar to each other, while those of the remaining nuclei were distinct in shape. Similarities were further investigated by a hierarchical cluster analysis: a two-cluster solution subdivided the phylogenetically older part (central, medial nuclei, anterior amygdaloid area) from the remaining parts of the amygdala. A more fine-grained three-cluster solution replicated our previous parcellation including a laterobasal, superficial and centromedial group. Furthermore, it helped to better characterize the paralaminar nucleus with a molecular organization in-between the laterobasal and the superficial group. The multimodal cyto- and receptor-architectonic analysis of the human amygdala provides new insights into its microstructural organization, intersubject variability, localization in stereotaxic space and principles of receptor-based neurochemical differences.
Collapse
Affiliation(s)
- Olga Kedo
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Aachen, Germany
| | | | - Axel Schleicher
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Aachen, Germany.,C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
109
|
Rale A, Shendye N, Bodas DS, Subhedar N, Ghose A. CART neuropeptide modulates the extended amygdalar CeA-vBNST circuit to gate expression of innate fear. Psychoneuroendocrinology 2017; 85:69-77. [PMID: 28825977 DOI: 10.1016/j.psyneuen.2017.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Innate fear is critical for the survival of animals and is under tight homeostatic control. Deregulation of innate fear processing is thought to underlie pathological phenotypes including, phobias and panic disorders. Although central processing of conditioned fear has been extensively studied, the circuitry and regulatory mechanisms subserving innate fear remain relatively poorly defined. In this study, we identify cocaine- and amphetamine-regulated transcript (CART) neuropeptide signaling in the central amygdala (CeA) - ventral bed nucleus of stria terminalis (vBNST) axis as a key modulator of innate fear expression. 2,4,5-trimethyl-3-thiazoline (TMT), a component of fox faeces, induces a freezing response whose intensity is regulated by the extent of CART-signaling in the CeA neurons. Abrogation of CART activity in the CeA attenuates the freezing response and reduces activation of vBNST neurons. Conversely, ectopically elevated CART signaling in the CeA potentiates the fear response concomitant with enhanced vBNST activation. We show that local levels of CART signaling modulate the activation of CeA neurons by NMDA receptor-mediated glutamatergic inputs, in turn, regulating activity in the vBNST. This study identifies the extended amygdalar CeA-vBNST circuit as a CART modulated axis encoding innate fear. CART signaling regulates the glutamatergic excitatory drive in the CeA-vBNST circuit, in turn, gating the expression of the freezing response to TMT.
Collapse
Affiliation(s)
- Abhishek Rale
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India
| | - Ninad Shendye
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India
| | - Devika S Bodas
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India
| | - Nishikant Subhedar
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India.
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
110
|
Amygdala Resting Connectivity Mediates Association Between Maternal Aggression and Adolescent Major Depression: A 7-Year Longitudinal Study. J Am Acad Child Adolesc Psychiatry 2017; 56:983-991.e3. [PMID: 29096781 DOI: 10.1016/j.jaac.2017.09.415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The parent-adolescent relationship is an important predictor of adolescent mental health, especially depressive disorders. This relationship is constructed in the context of maturing emotion neurobiology and could help shape such neurobiology in ways that are important for current and future mental health. Amygdala resting-state functional networks have been linked to depression, but whether such resting connectivity is associated with parent affective behaviors or acts as a salient mediator between parenting and risk for depressive disorder is unknown. METHOD In the present study of 128 individuals, a 7-year longitudinal design was used to examine how observed maternal aggressive behavior during mother-adolescent interactions in early adolescence (12 years) predicted amygdala (whole and subregion)-based resting connectivity in mid adolescence (16 years). In 101 of those participants, whether altered amygdala resting-state connectivity mediated the association between maternal aggressive behavior and the first onset of major depressive disorder (MDD) in late adolescence (19 years) was analyzed. RESULTS Maternal aggression was related to resting-state functional connectivity between the amygdala and right superior temporal-posterior insula-Heschl gyri, bilateral visual cortex, and left temporal and insula cortices (the latter being driven by the centromedial amygdala subregion; p < .001). Further, amygdala and centromedial amygdala connectivity with the temporal and insula cortices mediated the association between maternal aggression and late adolescent-onset MDD (CI 0.20 to 2.87; CI 0.13 to 2.40, respectively). CONCLUSION These findings are consistent with previous literature documenting the importance of amygdala resting networks for adolescent depression but further suggest the importance of parental affective (particularly aggressive) behavior in the development of such functional connectivity patterns during this period of peak onset for mental health disorders.
Collapse
|
111
|
Le QV, Nishimaru H, Matsumoto J, Takamura Y, Nguyen MN, Mao CV, Hori E, Maior RS, Tomaz C, Ono T, Nishijo H. Gamma oscillations in the superior colliculus and pulvinar in response to faces support discrimination performance in monkeys. Neuropsychologia 2017; 128:87-95. [PMID: 29037507 DOI: 10.1016/j.neuropsychologia.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
The subcortical visual pathway including the superior colliculus (SC), pulvinar, and amygdala has been implicated in unconscious visual processing of faces, eyes, and gaze direction in blindsight. Our previous studies reported that monkey SC and pulvinar neurons responded preferentially to images of faces while performing a delayed non-matching to sample (DNMS) task to discriminate different visual stimuli (Nguyen et al., 2013, 2014). However, the contribution of SC and pulvinar neurons to the discrimination of the facial images and subsequent behavioral performance remains unknown. Since gamma oscillations have been implicated in sensory and cognitive processes as well as behavioral execution, we hypothesized that gamma oscillations during neuronal responses might contribute to achieving the appropriate behavioral performance (i.e., a correct response). In the present study, we re-analyzed those neuronal responses in the monkey SC and pulvinar to investigate possible relationships between gamma oscillations in these neurons and behavioral performance (correct response ratios) during the DNMS task. Gamma oscillations of SC and pulvinar neuronal activity were analyzed in three phases around the stimulus onset [inter-trial interval (ITI): 1000ms before trial onset; Early: 0-200ms after stimulus onset; and Late: 300-500ms after stimulus onset]. We found that human facial images elicited stronger gamma oscillations in the early phase than the ITI and late phase in both the SC and pulvinar neurons. Furthermore, there was a significant correlation between strengths of gamma oscillations in the early phase and behavioral performance in both the SC and pulvinar. The results suggest that gamma oscillatory activity in the SC and pulvinar contributes to successful behavioral performance during unconscious perceptual and behavioral processes.
Collapse
Affiliation(s)
- Quan Van Le
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Vietnam Military Medical University, Hanoi, Vietnam
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minh Nui Nguyen
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Vietnam Military Medical University, Hanoi, Vietnam
| | - Can Van Mao
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Vietnam Military Medical University, Hanoi, Vietnam
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Rafael S Maior
- Department of Physiological Sciences, Primate Center and Laboratory of Neurosciences and Behavior, Institute of Biology, University of Brasília, CEP 70910-900 Brasilia, DF, Brazil
| | - Carlos Tomaz
- Department of Physiological Sciences, Primate Center and Laboratory of Neurosciences and Behavior, Institute of Biology, University of Brasília, CEP 70910-900 Brasilia, DF, Brazil; Neuroscience Research Group, CEUMA University, CE 65065-120 São Luís, Brazil
| | | | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| |
Collapse
|
112
|
Morud J, Strandberg J, Andrén A, Ericson M, Söderpalm B, Adermark L. Progressive modulation of accumbal neurotransmission and anxiety-like behavior following protracted nicotine withdrawal. Neuropharmacology 2017; 128:86-95. [PMID: 28986279 DOI: 10.1016/j.neuropharm.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 12/18/2022]
Abstract
Due to the highly addictive properties of nicotine, a low percentage of users successfully maintain cessation for longer periods of time. This might be linked to neuroadaptations elicited by the drug, and understanding progressive changes in neuronal function might provide critical insight into nicotine addiction. We have previously shown that neurotransmission in the nucleus accumbens (nAc), a key brain region with respect to drug reinforcement and relapse, is suppressed for as long as seven months after a brief period of nicotine treatment. Studies were therefore performed to define the temporal properties of these effects, and to assess behavioral correlates to altered neurotransmission. Ex vivo electrophysiology revealed progressive depression of synaptic efficacy in the nAc of rats previously receiving nicotine. In addition, following three months of nicotine withdrawal, the responses to GABAA receptor modulating drugs were blunted together with downregulation of several GABAA receptor subunits. In correlation to reduced accumbal neurotransmission, a reduced anxiety-like behavior; assessed in the elevated plus-maze and marble burying tests, were identified in animals pre-treated with nicotine. Lastly, to test the causal relationship between suppressed excitability in the nAc and reduced anxiety-like behavior, rats received local administration of diazepam in the nAc while monitoring behavioral effects on the elevated plus-maze. These results show that nicotine produces long-lasting changes in the GABAergic system, which are observed first after extended withdrawal. Our data also suggest that nicotine produces a progressive suppression of accumbal excitability, which could result in behavioral alterations that may have implications for further drug intake.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden.
| | - Joakim Strandberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Anna Andrén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden
| |
Collapse
|
113
|
Jalbrzikowski M, Larsen B, Hallquist MN, Foran W, Calabro F, Luna B. Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression. Biol Psychiatry 2017; 82:511-521. [PMID: 28274468 PMCID: PMC5522367 DOI: 10.1016/j.biopsych.2017.01.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/28/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To identify to what extent the deviations in amygdala-vmPFC maturation contribute to the onset of psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during typical development. METHODS Using an accelerated cohort longitudinal design (1-3 time points, 10-25 years old, n = 246), we characterized developmental changes of the amygdala-vmPFC subregion functional and structural connectivity using resting-state functional magnetic resonance imaging and diffusion-weighted imaging. RESULTS Functional connectivity between the centromedial amygdala and rostral anterior cingulate cortex (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late childhood to early adulthood in male and female subjects. Age-associated decreases were also observed between the basolateral amygdala and the rACC. Importantly, these findings were replicated in a separate cohort (10-22 years old, n = 327). Similarly, structural connectivity, as measured by quantitative anisotropy, significantly decreased with age in the same regions. Functional connectivity between the centromedial amygdala and the rACC was associated with structural connectivity in these same regions during early adulthood (22-25 years old). Finally, a novel time-varying coefficient analysis showed that increased centromedial amygdala-rACC functional connectivity was associated with greater anxiety and depression symptoms during early adulthood, while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter was associated with greater anxiety/depression during late childhood. CONCLUSIONS Specific developmental periods of functional and structural connectivity between the amygdala and the prefrontal systems may contribute to the emergence of anxiety and depressive symptoms and may play a critical role in the emergence of psychiatric disorders in adolescence.
Collapse
Affiliation(s)
| | - Bart Larsen
- University of Pittsburgh, Department of Psychology
| | | | | | | | - Beatriz Luna
- University of Pittsburgh, Department of Psychiatry,University of Pittsburgh, Department of Psychology,University of Pittsburgh, Department of Pediatrics
| |
Collapse
|
114
|
Ahlgrim NS, Raper J, Johnson E, Bachevalier J. Neonatal perirhinal cortex lesions impair monkeys' ability to modulate their emotional responses. Behav Neurosci 2017; 131:359-71. [PMID: 28956946 PMCID: PMC5675115 DOI: 10.1037/bne0000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The medial temporal lobe (MTL) is a collection of brain regions best known for their role in perception, memory, and emotional behavior. Within the MTL, the perirhinal cortex (PRh) plays a critical role in perceptual representation and recognition memory, although its contribution to emotional regulation is still debated. Here, rhesus monkeys with neonatal perirhinal lesions (Neo-PRh) and controls (Neo-C) were tested on the Human Intruder (HI) task at 2 months, 4.5 months, and 5 years of age to assess the role of the PRh in the development of emotional behaviors. The HI task presents a tiered social threat to which typically developing animals modulate their emotional responses according to the level of threat. Unlike animals with neonatal amygdala or hippocampal lesions, Neo-PRh animals were not broadly hyper- or hyporesponsive to the threat presented by the HI task as compared with controls. Instead, Neo-PRh animals displayed an impaired ability to modulate their freezing and anxiety-like behavioral responses according to the varying levels of threat. Impaired transmission of perceptual representation generated by the PRh to the amygdala and hippocampus may explain the animals' inability to appropriately assess and react to complex social stimuli. Neo-PRh animals also displayed fewer hostile behaviors in infancy and more coo vocalizations in adulthood. Neither stress-reactive nor basal cortisol levels were affected by the Neo-PRh lesions. Overall, these results suggest that the PRh is indirectly involved in the expression of emotional behavior and that effects of Neo-PRh lesions are dissociable from neonatal lesions to other temporal lobe structures. (PsycINFO Database Record
Collapse
Affiliation(s)
- Nathan S. Ahlgrim
- Graduate Program in Neuroscience, Emory University, Atlanta GA
- Department of Psychology, Emory University, Atlanta GA
| | - Jessica Raper
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| | - Emily Johnson
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| | - Jocelyne Bachevalier
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| |
Collapse
|
115
|
Coplan JD, Gupta NK, Karim A, Rozenboym A, Smith ELP, Kral JG, Rosenblum LA. Maternal hypothalamic-pituitary-adrenal axis response to foraging uncertainty: A model of individual vs. social allostasis and the "Superorganism Hypothesis". PLoS One 2017; 12:e0184340. [PMID: 28880949 PMCID: PMC5589238 DOI: 10.1371/journal.pone.0184340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term "social allostasis." We postulate that maternal food insecurity induces a "superorganism" state through coordination of individual HPA axis response. METHODS Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. RESULTS Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our "dyadic vulnerability" index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p < 0.0001) whereas relatively "advantaged" dyads exhibited maternal cortisol increases in response to VFD exposure. COMMENT In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a "superorganism" version of HPA axis homeostasis, provisionally termed "social allostasis."
Collapse
Affiliation(s)
- Jeremy D. Coplan
- Department of Psychiatry and Behavioral Sciences, Biological Science Unit, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| | - Nishant K. Gupta
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Asif Karim
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Anna Rozenboym
- Kingsborough Community College, Brooklyn, New York, United States of America
| | - Eric L. P. Smith
- Department of Psychiatry and Behavioral Sciences, Biological Science Unit, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| | - John G. Kral
- Departments of Internal Medicine and Surgery, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Leonard A. Rosenblum
- Department of Psychiatry and Behavioral Sciences, Biological Science Unit, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
116
|
Garcia R. Neurobiology of fear and specific phobias. ACTA ACUST UNITED AC 2017; 24:462-471. [PMID: 28814472 PMCID: PMC5580526 DOI: 10.1101/lm.044115.116] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized as highly debilitating, pathological fear remains insufficiently treated, indicating the importance of research on fear processing. The neurobiological basis of normal and pathological fear reactions is reviewed in this article. Innate and learned fear mechanisms, particularly those involving the amygdala, are considered. These fear mechanisms are also distinguished in specific phobias, which can indeed be nonexperiential (implicating innate, learning-independent mechanisms) or experiential (implicating learning-dependent mechanisms). Poor habituation and poor extinction are presented as dysfunctional mechanisms contributing to persistence of nonexperiential and experiential phobias, respectively.
Collapse
Affiliation(s)
- René Garcia
- Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université & Centre National de la Recherche Scientifique, 13385 Marseille, France
| |
Collapse
|
117
|
Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, Stevens A, Van Leemput K, McKee A, Frosch MP, Fischl B, Augustinack JC. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 2017; 155:370-382. [PMID: 28479476 PMCID: PMC5557007 DOI: 10.1016/j.neuroimage.2017.04.046] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Z M Saygin
- Massachusetts Institute of Technology/ McGovern Institute, 43 Vassar St., Cambridge, MA 02139, USA; Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| | - D Kliemann
- Massachusetts Institute of Technology/ McGovern Institute, 43 Vassar St., Cambridge, MA 02139, USA; Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - J E Iglesias
- University College London, Dept. Medical Physics and Biomedical Engineering Translational Imaging Group, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK; Basque Center on Cognition, Brain and Language, Paseo Mikeletegi 69, 20009 Donostia - San Sebastian, Spain
| | - A J W van der Kouwe
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - E Boyd
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - M Reuter
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - A Stevens
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - K Van Leemput
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - A McKee
- Department of Neurology and Pathology, Boston University School of Medicine, Boston University Alzheimer's Disease Center, Boston, MA 02118, USA; VA Boston Healthcare System, MA 02130, USA
| | - M P Frosch
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, MGH, 55 Fruit St., Boston, MA 02115, USA
| | - B Fischl
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; MIT Computer Science and AI Lab, Cambridge, MA 02139, USA
| | - J C Augustinack
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
118
|
Bidirectional Control of Social Behavior by Activity within Basolateral and Central Amygdala of Primates. J Neurosci 2017; 36:8746-56. [PMID: 27535919 DOI: 10.1523/jneurosci.0333-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Both hypoactivity and hyperactivity in the amygdala are associated with perturbations in social behavior. While >60 years of experimental manipulations of the amygdala in animal models have shown that amygdala is critical for social behavior, many of these studies contradict one another. Moreover, several questions remain unaddressed. (1) What effect does activation of amygdala have on social behavior? (2) What is the effect of transient silencing, rather than permanent damage? (3) Is there a dissociation between the roles of the central (CeA) and basolateral amygdala (BLA) in regulating social behavior? (4) Can the prosocial effects of amygdala manipulations be explained by anxiolytic effects? We focally manipulated activity within the CeA or BLA in macaques by intracerebral microinjection of muscimol (to inactivate) or bicuculline (to activate) to these amygdaloid subregions. Social interactions were observed in pairs of highly familiar monkeys. We compared these effects to those achieved with systemic diazepam. Activation of the BLA but not CeA suppressed social behavior. Inhibition of either structure increased social behavior, although the effect was greater following inhibition of the BLA. Systemic diazepam was without effect. These studies, which are the first to bidirectionally manipulate the primate amygdala for effects on social behavior, revealed that (1) the amygdala, as a critical regulator of the social network, is bidirectionally sensitive to perturbations in activity, and (2) increased sociability after amygdala inactivation cannot be solely explained by decreased fear. SIGNIFICANCE STATEMENT Many previous studies reported loss of social interactions following permanent damage to the amygdala in nonhuman primates. In contrast, we report that transient inhibition of the basolateral amygdala triggered a profound increase in social interactions in dyads of monkeys highly familiar with each other. We compared these effects to those of systemic diazepam, which failed to increase social behavior. While it has been suggested that suppression of "fear" could underlie the prosocial effects of amygdala manipulations, our data strongly suggest that impairment in fear processing per se cannot account for the prosocial effects of amygdala inhibition. Furthermore, our studies are the first to examine activation of the amygdala and to assess the separate roles of the amygdaloid nuclei in social behavior in primates.
Collapse
|
119
|
Kalin NH. Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. Eur Neuropsychopharmacol 2017; 27:543-553. [PMID: 28502529 PMCID: PMC5482756 DOI: 10.1016/j.euroneuro.2017.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anxious temperament (AT) is an early life disposition that markedly increases the risk to develop stress related psychopathology such as anxiety and depressive disorders. Since anxiety and depression are common, and frequently have their onset early in life, a better understanding of the factors related to their childhood onset will facilitate the development of new more effective neurally informed interventions. A nonhuman primate (NHP) developmental model of childhood AT has been established, which has provided an understanding of the neural systems and molecular mechanisms mediating the development of AT. Multimodal neuroimaging studies reveal altered brain metabolism across prefrontal, limbic (e.g. central nucleus of the amygdala (Ce) and anterior hippocampus), and brainstem regions, as well as altered functional connectivity involving the Ce. Heritability studies demonstrate that individual variation in AT is heritable, and genetic correlational analyses demonstrate that metabolism in the posterior orbital frontal cortex, the bed nucleus of the stria terminalis, and the periaqueductal gray share a genetic substrate with AT. On a molecular level, the finding of reduced expression of Ce neuroplasticity genes provides the basis for a neurodevelopmental hypothesis focused on the Ce. Viral vector methods for altering gene expression in the Ce of young NHPs are currently being used as a prelude to conceptualizing novel molecularly targeted early life interventions.
Collapse
Affiliation(s)
- Ned H Kalin
- Department of Psychiatry, HealthEmotions Research Institute, University of Wisconsin, Madison, United States.
| |
Collapse
|
120
|
Heightened extended amygdala metabolism following threat characterizes the early phenotypic risk to develop anxiety-related psychopathology. Mol Psychiatry 2017; 22:724-732. [PMID: 27573879 PMCID: PMC5332536 DOI: 10.1038/mp.2016.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Children with an anxious temperament are prone to heightened shyness and behavioral inhibition (BI). When chronic and extreme, this anxious, inhibited phenotype is an important early-life risk factor for the development of anxiety disorders, depression and co-morbid substance abuse. Individuals with extreme anxious temperament often show persistent distress in the absence of immediate threat and this contextually inappropriate anxiety predicts future symptom development. Despite its clear clinical relevance, the neural circuitry governing the maladaptive persistence of anxiety remains unclear. Here, we used a well-established nonhuman primate model of childhood temperament and high-resolution 18fluorodeoxyglucose positron emission tomography (FDG-PET) imaging to understand the neural systems governing persistent anxiety and to clarify their relevance to early-life phenotypic risk. We focused on BI, a core component of anxious temperament, because it affords the moment-by-moment temporal resolution needed to assess contextually appropriate and inappropriate anxiety. From a pool of 109 peri-adolescent rhesus monkeys, we formed groups characterized by high or low levels of BI, as indexed by freezing in response to an unfamiliar human intruder's profile. The high-BI group showed consistently elevated signs of anxiety and wariness across >2 years of assessments. At the time of brain imaging, 1.5 years after initial phenotyping, the high-BI group showed persistently elevated freezing during a 30-min 'recovery' period following an encounter with the intruder-more than an order of magnitude greater than the low-BI group-and this was associated with increased metabolism in the bed nucleus of the stria terminalis, a key component of the central extended amygdala. These observations provide a neurobiological framework for understanding the early phenotypic risk to develop anxiety-related psychopathology, for accelerating the development of improved interventions, and for understanding the origins of childhood temperament.
Collapse
|
121
|
Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions. J Neurosci 2017; 37:5051-5064. [PMID: 28411274 DOI: 10.1523/jneurosci.3940-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/16/2023] Open
Abstract
The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders.SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder.
Collapse
|
122
|
Gomes N, Silva S, Silva CF, Soares SC. Beware the serpent: the advantage of ecologically-relevant stimuli in accessing visual awareness. EVOL HUM BEHAV 2017. [DOI: 10.1016/j.evolhumbehav.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
123
|
Forcelli PA, Wellman LL, Malkova L. Blockade of glutamatergic transmission in the primate basolateral amygdala suppresses active behavior without altering social interaction. Behav Neurosci 2017; 131:192-200. [PMID: 28221080 DOI: 10.1037/bne0000187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amygdala is an integrator of affective processing, and a key component of a network regulating social behavior. While decades of lesion studies in nonhuman primates have shown alterations in social interactions after amygdala damage, acute manipulations of the amygdala in primates have been underexplored. We recently reported (Wellman, Forcelli, Aguilar, & Malkova, 2016) that acute pharmacological inhibition of the basolateral complex of the amygdala (BLA) or the central nucleus of the amygdala increased affiliative social interactions in experimental dyads of macaques; this was achieved through microinjection of a GABA-A receptor agonist. Prior studies in rodents have shown similar effects achieved by blocking NMDA receptors or AMPA receptors within the BLA. Here, we sought to determine the role of these receptor systems in the primate BLA in the context of social behavior. In familiar dyads, we microinjected the NMDA receptor antagonist 2-amino-7-phosphonoheptanoic acid (AP7) or the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) and observed behaviors and social interactions in the immediate postinjection period. In striking contrast with our prior report using GABA agonists, and in contrast with prior reports in rodents using glutamate antagonists, we found that neither NMDA nor AMPA blockade increase social interaction. Both treatments, however, were associated with decreases in locomotion and manipulation and increases in passive behavior. These data suggest that local blockade of glutamatergic neurotransmission in BLA is not the functional equivalent of local activation of GABAergic signaling, and raise interesting questions regarding the functional microcircuitry of the nonhuman primate amygdala in the context of social behavior. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Laurie L Wellman
- Department of Pharmacology and Physiology, Georgetown University
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University
| |
Collapse
|
124
|
Cumberland AL, Palliser HK, Crombie GK, Walker DW, Hirst JJ. Increased anxiety-like phenotype in female guinea pigs following reduced neurosteroid exposure in utero. Int J Dev Neurosci 2017; 58:50-58. [PMID: 28192175 DOI: 10.1016/j.ijdevneu.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are essential for aiding proper fetal neurodevelopment. Pregnancy compromises such as preterm birth, prenatal stress and intrauterine growth restriction are associated with an increased risk of developing behavioural and mood disorders, particularly during adolescence. These pathologies involve the premature loss or alteration of trophic steroid hormones reaching the fetus leading to impaired neurodevelopment. While the specific programming mechanisms are yet to be fully elucidated, in adult life, dysfunctions of allopregnanolone action are prevalent in individuals with depression, post-traumatic stress disorder and anxiety disorders. The objective of this study was to assess if changes in concentrations of the neurosteroid, allopregnanolone, may be a fetal programming factor in priming the brain towards a negative behavioural phenotype during the childhood to adolescent period using a guinea pig model. Pregnant guinea pigs received either vehicle (45% (2-hydroxypropyl)-β-cyclodextrin) or the 5α-reductase inhibitor, finasteride (25mg/kg maternal weight) from gestational age 60 until spontaneous delivery (∼71days gestation). Male and female offspring from vehicle and finasteride treated dams were tested at postnatal day 20 (juvenile-equivalence) in an open field arena, and hippocampus and amygdala subsequently assessed for neurological changes in markers of development and GABA production pathways 24h later. Females with reduced allopregnanolone exposure in utero displayed increased neophobic-like responses to a change in their environment compared to female controls. There were no differences in the neurodevelopmental markers assessed; MAP2, NeuN, MBP, GFAP or GAD67 between intrauterine finasteride or vehicle exposure, in either the hippocampus or amygdala whereas GAT1 staining was decreased. This study indicates that an intrauterine reduction in the supply of allopregnanolone programs vulnerability of female offspring to anxiety-like disorders in juvenility without impacting long term allopregnanolone concentrations.
Collapse
Affiliation(s)
- Angela L Cumberland
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia.
| | - Hannah K Palliser
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| | - Gabrielle K Crombie
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| | - David W Walker
- Department of Obstetrics and Gynaecology, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
| | - Jonathan J Hirst
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| |
Collapse
|
125
|
Robert GH, Schumann G. Reinforcement related behaviors and adolescent alcohol abuse: from localized brain structures to coordinated networks. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
126
|
Wanasuntronwong A, Jansri U, Srikiatkhachorn A. Neural hyperactivity in the amygdala induced by chronic treatment of rats with analgesics may elucidate the mechanisms underlying psychiatric comorbidities associated with medication-overuse headache. BMC Neurosci 2017; 18:1. [PMID: 28049513 PMCID: PMC5209916 DOI: 10.1186/s12868-016-0326-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/17/2016] [Indexed: 01/30/2023] Open
Abstract
Background Patients with medication-overuse headache suffer not only from chronic headache, but often from psychiatric comorbidities, such as anxiety and depression. The mechanisms underlying these comorbidities are unclear, but the amygdala is likely to be involved in their pathogenesis. To investigate the mechanisms underlying the comorbidities we used elevated plus maze and open field tests to assess anxiety-like behavior in rats chronically treated with analgesics. We measured the electrical properties of neurons in the amygdala, and examined the cortical spreading depression (CSD)-evoked expression of Fos in the trigeminal nucleus caudalis (TNC) and amygdala of rats chronically treated with analgesics. CSD, an analog of aura, evokes Fos expression in the TNC of rodents suggesting trigeminal nociception, considered to be a model of migraine. Results Increased anxiety-like behavior was seen both in elevated plus maze and open field tests in a model of medication overuse produced in male rats by chronic treatment with aspirin or acetaminophen. The time spent in the open arms of the maze by aspirin- or acetaminophen-treated rats (53 ± 36.1 and 37 ± 29.5 s, respectively) was significantly shorter than that spent by saline-treated vehicle control rats (138 ± 22.6 s, P < 0.001). Chronic treatment with the analgesics increased the excitability of neurons in the central nucleus of the amygdala as indicated by their more negative threshold for action potential generation (–54.6 ± 5.01 mV for aspirin-treated, –55.2 ± 0.97 mV for acetaminophen-treated, and –31.50 ± 5.34 mV for saline-treated rats, P < 0.001). Chronic treatment with analgesics increased the CSD-evoked expression of Fos in the TNC and amygdala [18 ± 10.2 Fos-immunoreactive (IR) neurons per slide in the amygdala of rats treated with aspirin, 11 ± 5.4 IR neurons per slide in rats treated with acetaminophen, and 4 ± 3.7 IR neurons per slide in saline-treated control rats, P < 0.001]. Conclusions Chronic treatment with analgesics can increase the excitability of neurons in the amygdala, which could underlie the anxiety seen in patients with medication-overuse headache. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0326-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aree Wanasuntronwong
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Ukkrit Jansri
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1874 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.,International Medical College, King Mongkut's Institute of Technology, 1 Chalongkrung Road, Lad Krabang, Bangkok, 10520, Thailand
| | - Anan Srikiatkhachorn
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1874 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.,International Medical College, King Mongkut's Institute of Technology, 1 Chalongkrung Road, Lad Krabang, Bangkok, 10520, Thailand
| |
Collapse
|
127
|
Shackman AJ, Tromp DPM, Stockbridge MD, Kaplan CM, Tillman RM, Fox AS. Dispositional negativity: An integrative psychological and neurobiological perspective. Psychol Bull 2016; 142:1275-1314. [PMID: 27732016 PMCID: PMC5118170 DOI: 10.1037/bul0000073] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dispositional negativity-the propensity to experience and express more frequent, intense, or enduring negative affect-is a fundamental dimension of childhood temperament and adult personality. Elevated levels of dispositional negativity can have profound consequences for health, wealth, and happiness, drawing the attention of clinicians, researchers, and policymakers. Here, we highlight recent advances in our understanding of the psychological and neurobiological processes linking stable individual differences in dispositional negativity to momentary emotional states. Self-report data suggest that 3 key pathways-increased stressor reactivity, tonic increases in negative affect, and increased stressor exposure-explain most of the heightened negative affect that characterizes individuals with a more negative disposition. Of these 3 pathways, tonically elevated, indiscriminate negative affect appears to be most central to daily life and most relevant to the development of psychopathology. New behavioral and biological data provide insights into the neural systems underlying these 3 pathways and motivate the hypothesis that seemingly "tonic" increases in negative affect may actually reflect increased reactivity to stressors that are remote, uncertain, or diffuse. Research focused on humans, monkeys, and rodents suggests that this indiscriminate negative affect reflects trait-like variation in the activity and connectivity of several key brain regions, including the central extended amygdala and parts of the prefrontal cortex. Collectively, these observations provide an integrative psychobiological framework for understanding the dynamic cascade of processes that bind emotional traits to emotional states and, ultimately, to emotional disorders and other kinds of adverse outcomes. (PsycINFO Database Record
Collapse
Affiliation(s)
- Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| | - Do P. M. Tromp
- Department of Psychology, University of California, Davis, CA 95616 USA
| | - Melissa D. Stockbridge
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742 USA
| | - Claire M. Kaplan
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Rachael M. Tillman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| |
Collapse
|
128
|
Jha A, Litvak V, Taulu S, Thevathasan W, Hyam JA, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Friston K, Brown P. Functional Connectivity of the Pedunculopontine Nucleus and Surrounding Region in Parkinson's Disease. Cereb Cortex 2016; 27:54-67. [PMID: 28316456 PMCID: PMC5357066 DOI: 10.1093/cercor/bhw340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deep brain stimulation of the pedunculopontine nucleus and surrounding region (PPNR) is a novel treatment strategy for gait freezing in Parkinson's disease (PD). However, clinical results have been variable, in part because of the paucity of functional information that might help guide selection of the optimal surgical target. In this study, we use simultaneous magnetoencephalography and local field recordings from the PPNR in seven PD patients, to characterize functional connectivity with distant brain areas at rest. The PPNR was preferentially coupled to brainstem and cingulate regions in the alpha frequency (8-12 Hz) band and to the medial motor strip and neighboring areas in the beta (18-33 Hz) band. The distribution of coupling also depended on the vertical distance of the electrode from the pontomesencephalic line: most effects being greatest in the middle PPNR, which may correspond to the caudal pars dissipata of the pedunculopontine nucleus. These observations confirm the crucial position of the PPNR as a functional node between cortical areas such as the cingulate/ medial motor strip and other brainstem nuclei, particularly in the dorsal pons. In particular they suggest a special role for the middle PPNR as this has the greatest functional connectivity with other brain regions.
Collapse
Affiliation(s)
- Ashwani Jha
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Vladimir Litvak
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Samu Taulu
- I-LABS MEG Brain Imaging Center, University of Washington, Seattle, WA, USA.,Department of Physics, University of Washington, Seattle, WA, USA
| | - Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan A Hyam
- Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Marko Bogdanovic
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
129
|
A Markerless 3D Computerized Motion Capture System Incorporating a Skeleton Model for Monkeys. PLoS One 2016; 11:e0166154. [PMID: 27812205 PMCID: PMC5094601 DOI: 10.1371/journal.pone.0166154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
In this study, we propose a novel markerless motion capture system (MCS) for monkeys, in which 3D surface images of monkeys were reconstructed by integrating data from four depth cameras, and a skeleton model of the monkey was fitted onto 3D images of monkeys in each frame of the video. To validate the MCS, first, estimated 3D positions of body parts were compared between the 3D MCS-assisted estimation and manual estimation based on visual inspection when a monkey performed a shuttling behavior in which it had to avoid obstacles in various positions. The mean estimation error of the positions of body parts (3-14 cm) and of head rotation (35-43°) between the 3D MCS-assisted and manual estimation were comparable to the errors between two different experimenters performing manual estimation. Furthermore, the MCS could identify specific monkey actions, and there was no false positive nor false negative detection of actions compared with those in manual estimation. Second, to check the reproducibility of MCS-assisted estimation, the same analyses of the above experiments were repeated by a different user. The estimation errors of positions of most body parts between the two experimenters were significantly smaller in the MCS-assisted estimation than in the manual estimation. Third, effects of methamphetamine (MAP) administration on the spontaneous behaviors of four monkeys were analyzed using the MCS. MAP significantly increased head movements, tended to decrease locomotion speed, and had no significant effect on total path length. The results were comparable to previous human clinical data. Furthermore, estimated data following MAP injection (total path length, walking speed, and speed of head rotation) correlated significantly between the two experimenters in the MCS-assisted estimation (r = 0.863 to 0.999). The results suggest that the presented MCS in monkeys is useful in investigating neural mechanisms underlying various psychiatric disorders and developing pharmacological interventions.
Collapse
|
130
|
Berkowicz SR, Featherby TJ, Whisstock JC, Bird PI. Mice Lacking Brinp2 or Brinp3, or Both, Exhibit Behaviors Consistent with Neurodevelopmental Disorders. Front Behav Neurosci 2016; 10:196. [PMID: 27826231 PMCID: PMC5079073 DOI: 10.3389/fnbeh.2016.00196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
Background:Brinps 1–3, and Astrotactins (Astn) 1 and 2, are members of the Membrane Attack Complex/Perforin (MACPF) superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1−/− mice exhibit behavior reminiscent of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Method: We created Brinp2−/− mice and Brinp3−/− mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behavior. Additionally, Brinp2−/−Brinp3−/− double knock-out mice were generated by interbreeding Brinp2−/− and Brinp3−/− mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioral examination. Brinp1−/−Brinp2−/−Brinp3−/− triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1−/− mice, and examined by weight and histological analysis. Results:Brinp2−/− and Brinp3−/− mice differ in their behavior: Brinp2−/− mice are hyperactive, whereas Brinp3−/− mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3−/− mice also show evidence of altered sociability. Both Brinp2−/− and Brinp3−/− mice have normal short-term memory, olfactory responses, pre-pulse inhibition, and motor learning. The double knock-out mice show behaviors of Brinp2−/− and Brinp3−/− mice, without evidence of new or exacerbated phenotypes. Conclusion:Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2−/− and Brinp3−/− genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.
Collapse
Affiliation(s)
- Susan R Berkowicz
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Travis J Featherby
- Melbourne Brain Centre, Florey Neuroscience Institute Parkville, VIC, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClayton, VIC, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash UniversityClayton, VIC, Australia
| | - Phillip I Bird
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
131
|
Boulanger Bertolus J, Mouly AM, Sullivan RM. Ecologically relevant neurobehavioral assessment of the development of threat learning. Learn Mem 2016; 23:556-66. [PMID: 27634146 PMCID: PMC5026204 DOI: 10.1101/lm.042218.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat.
Collapse
Affiliation(s)
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York 10010, USA
| |
Collapse
|
132
|
Morales S, Fu X, Pérez-Edgar KE. A developmental neuroscience perspective on affect-biased attention. Dev Cogn Neurosci 2016; 21:26-41. [PMID: 27606972 PMCID: PMC5067218 DOI: 10.1016/j.dcn.2016.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 01/09/2023] Open
Abstract
There is growing interest regarding the impact of affect-biased attention on psychopathology. However, most of the research to date lacks a developmental approach. In the present review, we examine the role affect-biased attention plays in shaping socioemotional trajectories within a developmental neuroscience framework. We propose that affect-biased attention, particularly if stable and entrenched, acts as a developmental tether that helps sustain early socioemotional and behavioral profiles over time, placing some individuals on maladaptive developmental trajectories. Although most of the evidence is found in the anxiety literature, we suggest that these relations may operate across multiple domains of interest, including positive affect, externalizing behaviors, drug use, and eating behaviors. We also review the general mechanisms and neural correlates of affect-biased attention, as well as the current evidence for the co-development of attention and affect. Based on the reviewed literature, we propose a model that may help us better understand the nuances of affect-biased attention across development. The model may serve as a strong foundation for ongoing attempts to identify neurocognitive mechanisms and intervene with individuals at risk. Finally, we discuss open issues for future research that may help bridge existing gaps in the literature.
Collapse
Affiliation(s)
- Santiago Morales
- The Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16802, United States.
| | - Xiaoxue Fu
- The Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16802, United States
| | - Koraly E Pérez-Edgar
- The Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16802, United States
| |
Collapse
|
133
|
Iemolo A, Seiglie M, Blasio A, Cottone P, Sabino V. Pituitary adenylate cyclase-activating polypeptide (PACAP) in the central nucleus of the amygdala induces anxiety via melanocortin receptors. Psychopharmacology (Berl) 2016; 233:3269-77. [PMID: 27376948 PMCID: PMC4982769 DOI: 10.1007/s00213-016-4366-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
RATIONALE Anxiety disorders are the most common mental disorders in the USA. Characterized by feelings of uncontrollable apprehension, they are accompanied by physical, affective, and behavioral symptoms. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1 (PAC1R) are highly expressed in the central nucleus of the amygdala (CeA), and they have gained growing attention for their proposed role in mediating the body's response to stress. OBJECTIVES The aim of this study was to evaluate the anxiogenic effects of PACAP in the CeA and its effects on the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, the mechanism of action of PACAP in the CeA was investigated. METHODS PACAP was microinfused into the CeA of rats, and its effects in the elevated plus maze (EPM), the defensive withdrawal tests, and plasma corticosterone levels were evaluated. The ability of the melanocortin receptor antagonist SHU9119 to block PACAP effect in the EPM was assessed. RESULTS Intra-CeA PACAP exerted a dose-dependent anxiogenic effect and activated the HPA axis. In contrast, PACAP microinfused into the basolateral nucleus of the amygdala (BlA) had no effect. Finally, the anxiogenic effect of intra-CeA PACAP was prevented by SHU9119. CONCLUSIONS These data prove an anxiogenic role for the PACAP system of the CeA and reveal that the melanocortin receptor 4 (MC4R) system of CeA mediates these effects. Our data provide insights into this neuropeptide system as a mechanism for modulating the behavioral and endocrine response to stress and suggest that dysregulations of this system may contribute to the pathophysiology of anxiety-related disorders.
Collapse
Affiliation(s)
- Attilio Iemolo
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
| | - Mariel Seiglie
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA.
| |
Collapse
|
134
|
Kalin NH, Fox AS, Kovner R, Riedel MK, Fekete EM, Roseboom PH, Tromp DPM, Grabow BP, Olsen ME, Brodsky EK, McFarlin DR, Alexander AL, Emborg ME, Block WF, Fudge JL, Oler JA. Overexpressing Corticotropin-Releasing Factor in the Primate Amygdala Increases Anxious Temperament and Alters Its Neural Circuit. Biol Psychiatry 2016; 80:345-55. [PMID: 27016385 PMCID: PMC4967405 DOI: 10.1016/j.biopsych.2016.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nonhuman primate models are critical for understanding mechanisms underlying human psychopathology. We established a nonhuman primate model of anxious temperament (AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the central nucleus of the amygdala (Ce) as an essential component of AT's neural substrates. Corticotropin-releasing factor (CRF) is expressed in the Ce, has a role in stress, and is linked to psychopathology. Here, in young rhesus monkeys, we combined viral vector technology with assessments of anxiety and multimodal neuroimaging to understand the consequences of chronically increased CRF in the Ce region. METHODS Using real-time intraoperative magnetic resonance imaging-guided convection-enhanced delivery, five monkeys received bilateral dorsal amygdala Ce-region infusions of adeno-associated virus serotype 2 containing the CRF construct. Their cagemates served as unoperated control subjects. AT, regional brain metabolism, resting functional magnetic resonance imaging, and diffusion tensor imaging were assessed before and 2 months after viral infusions. RESULTS Dorsal amygdala CRF overexpression significantly increased AT and metabolism within the dorsal amygdala. Additionally, we observed changes in metabolism in other AT-related regions, as well as in measures of functional and structural connectivity. CONCLUSIONS This study provides a translational roadmap that is important for understanding human psychopathology by combining molecular manipulations used in rodents with behavioral phenotyping and multimodal neuroimaging measures used in humans. The results indicate that chronic CRF overexpression in primates not only increases AT but also affects metabolism and connectivity within components of AT's neural circuitry.
Collapse
Affiliation(s)
- Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | - Andrew S Fox
- Department of Psychiatry, University of Wisconsin, Madison, WI
| | - Rothem Kovner
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI
| | | | - Eva M Fekete
- Department of Psychiatry, University of Wisconsin, Madison, WI
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI
| | | | - Miles E Olsen
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Ethan K Brodsky
- Department of Medical Physics, University of Wisconsin, Madison, WI,inseRT MRI, Inc
| | | | - Andrew L Alexander
- Department of Psychiatry, University of Wisconsin, Madison, WI,Department of Medical Physics, University of Wisconsin, Madison, WI,inseRT MRI, Inc
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, WI,Department of Medical Physics, University of Wisconsin, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin, Madison, WI,inseRT MRI, Inc
| | - Julie L Fudge
- Departments of Neurobiology and Anatomy, and Psychiatry, University of Rochester Medical Center
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
135
|
Forcelli PA, DesJardin JT, West EA, Holmes AL, Elorette C, Wellman LL, Malkova L. Amygdala selectively modulates defensive responses evoked from the superior colliculus in non-human primates. Soc Cogn Affect Neurosci 2016; 11:2009-2019. [PMID: 27510499 DOI: 10.1093/scan/nsw111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Brain circuitry underlying defensive behaviors includes forebrain modulatory sites, e.g. the amygdala and hypothalamus, and midbrain effector regions, such as the deep/intermediate layers of the superior colliculus (DLSC). When disinhibited, this network biases behavior towards reflexive defense reactions. While well characterized in rodent models, little is known about this system in the primate brain. Employing focal pharmacological manipulations, we have previously shown that activation of the DLSC triggers reflexive defensive responses, including cowering, escape behaviors and defensive vocalizations. Here, we show that activation of the DLSC also disrupts normal dyadic social interactions between familiar pairs of monkeys. When the basolateral complex of the amygdala (BLA) was inhibited concurrent with DLSC activation, cowering behavior was attenuated, whereas escape behaviors and defensive vocalizations were not. Moreover, inhibition of the BLA, previously shown to produce a profound increase in dyadic social interactions, was unable to normalize the decrease in social behavior resulting from DLSC activation. Together these data provide an understanding of forebrain-midbrain interactions in a species and circuit with translational relevance for the psychiatry of anxiety and post-traumatic stress disorders.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | - Elizabeth A West
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Angela L Holmes
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Catherine Elorette
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Laurie L Wellman
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ludise Malkova
- Department of Pharmacology & Physiology and .,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
136
|
Shackman AJ, Fox AS. Contributions of the Central Extended Amygdala to Fear and Anxiety. J Neurosci 2016; 36:8050-63. [PMID: 27488625 PMCID: PMC4971357 DOI: 10.1523/jneurosci.0982-16.2016] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023] Open
Abstract
It is widely thought that phasic and sustained responses to threat reflect dissociable circuits centered on the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST), the two major subdivisions of the central extended amygdala. Early versions of this hypothesis remain highly influential and have been incorporated into the National Institute of Mental Health Research Research Domain Criteria framework. However, new observations encourage a different perspective. Anatomical studies show that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated and used to assemble states of fear and anxiety. Imaging studies in humans and monkeys show that the Ce and BST exhibit similar functional profiles. Both regions are sensitive to a range of aversive challenges, including uncertain or temporally remote threat; both covary with concurrent signs and symptoms of fear and anxiety; both show phasic responses to short-lived threat; and both show heightened activity during sustained exposure to diffusely threatening contexts. Mechanistic studies demonstrate that both regions can control the expression of fear and anxiety during sustained exposure to diffuse threat. These observations compel a reconsideration of the central extended amygdala's contributions to fear and anxiety and its role in neuropsychiatric disease.
Collapse
Affiliation(s)
- Alexander J Shackman
- Department of Psychology, Neuroscience and Cognitive Science Program, and Maryland Neuroimaging Center, University of Maryland, College Park, Maryland 20742, and
| | - Andrew S Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, California 95616
| |
Collapse
|
137
|
Belmer A, Klenowski PM, Patkar OL, Bartlett SE. Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain. Brain Struct Funct 2016; 222:1297-1314. [PMID: 27485750 PMCID: PMC5368196 DOI: 10.1007/s00429-016-1278-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
Abstract
Serotonin neurons arise from the brainstem raphe nuclei and send their projections throughout the brain to release 5-HT which acts as a modulator of several neuronal populations. Previous electron microscopy studies in rats have morphologically determined the distribution of 5-HT release sites (boutons) in certain brain regions and have shown that 5-HT containing boutons form synaptic contacts that are either symmetric or asymmetric. In addition, 5-HT boutons can form synaptic triads with the pre- and postsynaptic specializations of either symmetrical or asymmetrical synapses. However, due to the labor intensive processing of serial sections required by electron microscopy, little is known about the neurochemical properties or the quantitative distribution of 5-HT triads within whole brain or discrete subregions. Therefore, we used a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label serotonin transporter (SERT) immunoreactive axons and reconstruct in 3D their distribution within limbic brain regions. We also used antibodies against key pre- (synaptophysin) and postsynaptic components of excitatory (PSD95) or inhibitory (gephyrin) synapses to (1) identify putative 5-HTergic boutons within SERT immunoreactive axons and, (2) quantify their close apposition to neurochemical excitatory or inhibitory synapses. We provide a 5-HTergic axon density map and have determined the ratio of synaptic triads consisting of a 5-HT bouton in close proximity to either neurochemical excitatory or inhibitory synapses within different limbic brain areas. The ability to model and map changes in 5-HTergic axonal density and the formation of triadic connectivity within whole brain regions using this rapid and quantitative approach offers new possibilities for studying neuroplastic changes in the 5-HTergic pathway.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Paul M Klenowski
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia. .,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
138
|
Rodríguez-Sierra OE, Goswami S, Turesson HK, Pare D. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety. Transl Psychiatry 2016; 6:e857. [PMID: 27434491 PMCID: PMC5545714 DOI: 10.1038/tp.2016.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022] Open
Abstract
A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed.
Collapse
Affiliation(s)
- O E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - S Goswami
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - D Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| |
Collapse
|
139
|
Gonzales HK, O'Reilly M, Lang R, Sigafoos J, Lancioni G, Kajian M, Kuhn M, Longino D, Rojeski L, Watkins L. Research involving anxiety in non-human primates has potential implications for the assessment and treatment of anxiety in autism spectrum disorder: A translational literature review. Dev Neurorehabil 2016; 19:175-92. [PMID: 25057887 DOI: 10.3109/17518423.2014.941117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this translational review (i.e. moving from basic primate research toward possible human applications) was to summarize non-human primate literature on anxiety to inform the development of future assessments of anxiety in non-verbal individuals with autism spectrum disorder (ASD). METHODS Systematic searches of databases identified 67 studies that met inclusion criteria. Each study was analysed and summarised in terms of (a) strategies used to evoke anxiety, (b) non-verbal behavioural indicators of anxiety and (c) physiological indicators of anxiety. RESULTS Eighteen strategies were used to evoke anxiety, 48 non-verbal behavioural indicators and 17 physiological indicators of anxiety were measured. CONCLUSIONS A number of the strategies used with non-human primates, if modified carefully, could be considered in the ongoing effort to study anxiety in individuals with ASD. Potential applications to the assessment of anxiety in humans with ASD are discussed.
Collapse
Affiliation(s)
- Heather K Gonzales
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Mark O'Reilly
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Russell Lang
- b Department of Curriculum and Instruction , Clinic for Autism Research Evaluation and Support, Texas State University , San Marcos , TX , USA
| | - Jeff Sigafoos
- c Department of Special Education , Victoria University of Wellington , Wellington , New Zealand , and
| | - Giulio Lancioni
- d Department of Education , University of Bari , Bari , Italy
| | - Mandana Kajian
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Michelle Kuhn
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Deanna Longino
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laura Rojeski
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laci Watkins
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
140
|
Vicario A, Mendoza E, Abellán A, Scharff C, Medina L. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Struct Funct 2016; 222:481-514. [PMID: 27160258 PMCID: PMC5225162 DOI: 10.1007/s00429-016-1229-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/21/2016] [Indexed: 02/01/2023]
Abstract
We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.
Collapse
Affiliation(s)
- Alba Vicario
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain.
| |
Collapse
|
141
|
Robertson JM, Prince MA, Achua JK, Carpenter RE, Arendt DH, Smith JP, Summers TL, Summers TR, Summers CH. Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety. Physiol Behav 2016; 146:86-97. [PMID: 26066728 DOI: 10.1016/j.physbeh.2015.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022]
Abstract
By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes.Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model.
Collapse
|
142
|
Wu Y, Li H, Zhou Y, Yu J, Zhang Y, Song M, Qin W, Yu C, Jiang T. Sex-specific neural circuits of emotion regulation in the centromedial amygdala. Sci Rep 2016; 6:23112. [PMID: 27004933 PMCID: PMC4804331 DOI: 10.1038/srep23112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huandong Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Yu
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
143
|
Oppenheimer S, Cechetto D. The Insular Cortex and the Regulation of Cardiac Function. Compr Physiol 2016; 6:1081-133. [DOI: 10.1002/cphy.c140076] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
144
|
Hrybouski S, Aghamohammadi-Sereshki A, Madan CR, Shafer AT, Baron CA, Seres P, Beaulieu C, Olsen F, Malykhin NV. Amygdala subnuclei response and connectivity during emotional processing. Neuroimage 2016; 133:98-110. [PMID: 26926791 DOI: 10.1016/j.neuroimage.2016.02.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023] Open
Abstract
The involvement of the human amygdala in emotion-related processing has been studied using functional magnetic resonance imaging (fMRI) for many years. However, despite the amygdala being comprised of several subnuclei, most studies investigated the role of the entire amygdala in processing of emotions. Here we combined a novel anatomical tracing protocol with event-related high-resolution fMRI acquisition to study the responsiveness of the amygdala subnuclei to negative emotional stimuli and to examine intra-amygdala functional connectivity. The greatest sensitivity to the negative emotional stimuli was observed in the centromedial amygdala, where the hemodynamic response amplitude elicited by the negative emotional stimuli was greater and peaked later than for neutral stimuli. Connectivity patterns converge with extant findings in animals, such that the centromedial amygdala was more connected with the nuclei of the basal amygdala than with the lateral amygdala. Current findings provide evidence of functional specialization within the human amygdala.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Christopher R Madan
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA
| | - Andrea T Shafer
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Corey A Baron
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Fraser Olsen
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
145
|
Multiple Anesthetic Exposure in Infant Monkeys Alters Emotional Reactivity to an Acute Stressor. Anesthesiology 2016; 123:1084-92. [PMID: 26313293 DOI: 10.1097/aln.0000000000000851] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Retrospective studies in humans have shown a higher prevalence of learning disabilities in children that received multiple exposures to general anesthesia before the age of 4 yr. Animal studies, primarily in rodents, have found that postnatal anesthetic exposure causes neurotoxicity and neurocognitive deficits in adulthood. The authors addressed the question of whether repeated postnatal anesthetic exposure was sufficient to cause long-term behavioral changes in a highly translationally relevant rhesus monkey model, allowing study of these variables against a background of protracted nervous system and behavioral development. METHODS Rhesus monkeys of both sexes underwent either three 4-h exposures to sevoflurane anesthesia (anesthesia group n = 10) or brief maternal separations (control group n = 10) on postnatal day 6 to 10 that were repeated 14 and 28 days later. Monkeys remained with their mothers in large social groups at all times except for overnight observation after each anesthetic/control procedure. At 6 months of age, each monkey was tested on the human intruder paradigm, a common test for emotional reactivity in nonhuman primates. RESULTS The frequency of anxiety-related behaviors was significantly higher in monkeys that were exposed to anesthesia as neonates as compared with controls: anesthesia 11.04 ± 1.68, controls 4.79 ± 0.77, mean ± SEM across all stimulus conditions. CONCLUSION Increased emotional behavior in monkeys after anesthesia exposure in infancy may reflect long-term adverse effects of anesthesia.
Collapse
|
146
|
Carcamo CR. Dysfunctional Relationship Between the Prefrontal Cortex and Amygdala for Explaining Posttraumatic CRPS Syndrome. PAIN MEDICINE 2016; 17:1379-1382. [DOI: 10.1093/pm/pnv091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/15/2015] [Accepted: 11/28/2015] [Indexed: 11/14/2022]
|
147
|
Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 2016; 530:98-102. [PMID: 26808898 DOI: 10.1038/nature16533] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2) has crucial roles in transcriptional regulation and microRNA processing. Mutations in the MECP2 gene are found in 90% of patients with Rett syndrome, a severe developmental disorder with autistic phenotypes. Duplications of MECP2-containing genomic segments cause the MECP2 duplication syndrome, which shares core symptoms with autism spectrum disorders. Although Mecp2-null mice recapitulate most developmental and behavioural defects seen in patients with Rett syndrome, it has been difficult to identify autism-like behaviours in the mouse model of MeCP2 overexpression. Here we report that lentivirus-based transgenic cynomolgus monkeys (Macaca fascicularis) expressing human MeCP2 in the brain exhibit autism-like behaviours and show germline transmission of the transgene. Expression of the MECP2 transgene was confirmed by western blotting and immunostaining of brain tissues of transgenic monkeys. Genomic integration sites of the transgenes were characterized by a deep-sequencing-based method. As compared to wild-type monkeys, MECP2 transgenic monkeys exhibited a higher frequency of repetitive circular locomotion and increased stress responses, as measured by the threat-related anxiety and defensive test. The transgenic monkeys showed less interaction with wild-type monkeys within the same group, and also a reduced interaction time when paired with other transgenic monkeys in social interaction tests. The cognitive functions of the transgenic monkeys were largely normal in the Wisconsin general test apparatus, although some showed signs of stereotypic cognitive behaviours. Notably, we succeeded in generating five F1 offspring of MECP2 transgenic monkeys by intracytoplasmic sperm injection with sperm from one F0 transgenic monkey, showing germline transmission and Mendelian segregation of several MECP2 transgenes in the F1 progeny. Moreover, F1 transgenic monkeys also showed reduced social interactions when tested in pairs, as compared to wild-type monkeys of similar age. Together, these results indicate the feasibility and reliability of using genetically engineered non-human primates to study brain disorders.
Collapse
|
148
|
Shackman AJ, Stockbridge MD, Tillman RM, Kaplan CM, Tromp DPM, Fox AS, Gamer M. The neurobiology of dispositional negativity and attentional biases to threat: Implications for understanding anxiety disorders in adults and youth. J Exp Psychopathol 2016; 7:311-342. [PMID: 27917284 PMCID: PMC5130287 DOI: 10.5127/jep.054015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
When extreme, anxiety can become debilitating. Anxiety disorders, which often first emerge early in development, are common and challenging to treat, yet the neurocognitive mechanisms that confer increased risk have only recently begun to come into focus. Here we review recent work highlighting the importance of neural circuits centered on the amygdala. We begin by describing dispositional negativity, a core dimension of childhood temperament and adult personality and an important risk factor for the development of anxiety disorders and other kinds of stress-sensitive psychopathology. Converging lines of epidemiological, neurophysiological, and mechanistic evidence indicate that the amygdala supports stable individual differences in dispositional negativity across the lifespan and contributes to the etiology of anxiety disorders in adults and youth. Hyper-vigilance and attentional biases to threat are prominent features of the anxious phenotype and there is growing evidence that they contribute to the development of psychopathology. Anatomical studies show that the amygdala is a hub, poised to govern attention to threat via projections to sensory cortex and ascending neuromodulatory systems. Imaging and lesion studies demonstrate that the amygdala plays a key role in selecting and prioritizing the processing of threat-related cues. Collectively, these observations provide a neurobiologically-grounded framework for understanding the development and maintenance of anxiety disorders in adults and youth and set the stage for developing improved intervention strategies.
Collapse
Affiliation(s)
- Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| | - Melissa D. Stockbridge
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742 USA
| | - Rachael M. Tillman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Claire M. Kaplan
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Do P. M. Tromp
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719 USA
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719 USA
- Lane Neuroimaging Laboratory, University of Wisconsin, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI 53719 USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Matthias Gamer
- Department of Psychology, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
149
|
Keil MF, Briassoulis G, Stratakis CA. The Role of Protein Kinase A in Anxiety Behaviors. Neuroendocrinology 2016; 103:625-39. [PMID: 26939049 DOI: 10.1159/000444880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
This review focuses on the genetic and other evidence supporting the notion that the cyclic AMP (cAMP) signaling pathway and its mediator, the protein kinase A (PKA) enzyme, which respond to environmental stressors and regulate stress responses, are central to the pathogenesis of disorders related to anxiety. We describe the PKA pathway and review in vitro animal studies (mouse) and other evidence that support the importance of PKA in regulating behaviors that lead to anxiety. Since cAMP signaling and PKA have been pharmacologically exploited since the 1940s (even before the identification of cAMP as a second messenger with PKA as its mediator) for a number of disorders from asthma to cardiovascular diseases, there is ample opportunity to develop therapies using this new knowledge about cAMP, PKA, and anxiety disorders.
Collapse
Affiliation(s)
- Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
150
|
Keil MF, Briassoulis G, Stratakis CA, Wu TJ. Protein Kinase A and Anxiety-Related Behaviors: A Mini-Review. Front Endocrinol (Lausanne) 2016; 7:83. [PMID: 27445986 PMCID: PMC4925668 DOI: 10.3389/fendo.2016.00083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 01/13/2023] Open
Abstract
This review focuses on the anxiety related to cyclic AMP/protein kinase A (PKA) signaling pathway that regulates stress responses. PKA regulates an array of diverse signals that interact with various neurotransmitter systems associated with alertness, mood, and acute and social anxiety-like states. Recent mouse studies support the involvement of the PKA pathway in common neuropsychiatric disorders characterized by heightened activation of the amygdala. The amygdala is critical for adaptive responses leading to fear learning and aberrant fear memory and its heightened activation is widely thought to underpin various anxiety disorders. Stress-induced plasticity within the amygdala is involved in the transition from normal vigilance responses to emotional reactivity, fear over-generalization, and deficits in fear inhibition resulting in pathological anxiety and conditions, such as panic and depression. Human studies of PKA signaling defects also report an increased incidence of psychiatric disorders, including anxiety, depression, bipolar disorder, learning disorders, and attention deficit hyperactivity disorder. We speculate that the PKA system is uniquely suited for selective, molecularly targeted intervention that may be proven effective in anxiolytic therapy.
Collapse
Affiliation(s)
- Margaret F. Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| | - George Briassoulis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Pediatric Intensive Care, University of Crete, Heraklion, Greece
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - T. John Wu
- Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| |
Collapse
|