101
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
102
|
Perez Bay AE, Belingheri AV, Alvarez YD, Marengo FD. Membrane cycling after the excess retrieval mode of rapid endocytosis in mouse chromaffin cells. Acta Physiol (Oxf) 2012; 204:403-18. [PMID: 21791014 DOI: 10.1111/j.1748-1716.2011.02340.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM After exocytosis, neuroendocrine cells and neurones keep constant the plasma membrane and the releasable vesicle pools by performing endocytosis and vesicular cycling. Patch-clamp capacitance measurements on chromaffin cells showed that strong Ca(+2) entry activates excess retrieval: a rapid endocytosis process that retrieves more membrane than the one fused by preceding exocytosis. The main purpose of the present experiments was to study the recycling pathway that follows excess retrieval, which is unknown. METHODS Membrane recycling after exocytosis-endocytosis can be studied by fluorescence imaging assays with FM1-43 (Perez Bay et al. Am J Physiol Cell Physiol 2007; 293, C1509). In this work, we used this assay in combination with fluorescent dextrans and specific organelle-targeted antibodies to study the membrane recycling after excess retrieval in mouse chromaffin cells. RESULTS Excess retrieval was observed after the application of high-K(+) or cholinergic agonists during 15 or 30 s in the presence of FM1-43. We found that the excess retrieval membrane pool (defined as endocytosis-exocytosis) was associated with the generation of a non-releasable fraction of membrane (up to 30% of plasma membrane surface) colocalizing with the lysosomal compartment. The excess retrieval membrane pool followed a saturable cytosolic Ca(2+) dependency, and it was suppressed by inhibitors of L-type Ca(2+) channels, endoplasmic reticulum Ca(2+) release and PKC. CONCLUSION Excess retrieval is not associated with the cycling of releasable vesicles, but it is related to the formation of non-releasable endosomes. This process is activated by a concerted contribution of Ca(2+) entry through L-channels and Ca(2+) release from endoplasmic reticulum.
Collapse
Affiliation(s)
- A E Perez Bay
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
103
|
Koch M, Holt M. Coupling exo- and endocytosis: an essential role for PIP₂ at the synapse. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1114-32. [PMID: 22387937 DOI: 10.1016/j.bbalip.2012.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Marta Koch
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease and K.U. Leuven Center for Human Genetics, O&N4 Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
104
|
Vesicular zinc regulates the Ca2+ sensitivity of a subpopulation of presynaptic vesicles at hippocampal mossy fiber terminals. J Neurosci 2012; 31:18251-65. [PMID: 22171030 DOI: 10.1523/jneurosci.4164-11.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synaptic vesicles segregate into functionally diverse subpopulations within presynaptic terminals, yet there is no information about how this may occur. Here we demonstrate that a distinct subgroup of vesicles within individual glutamatergic, mossy fiber terminals contain vesicular zinc that is critical for the rapid release of a subgroup of synaptic vesicles during increased activity in mice. In particular, vesicular zinc dictates the Ca(2+) sensitivity of release during high-frequency firing. Intense synaptic activity alters the subcellular distribution of zinc in presynaptic terminals and decreases the number of zinc-containing vesicles. Zinc staining also appears in endosomes, an observation that is consistent with the preferential replenishment of zinc-enriched vesicles by bulk endocytosis. We propose that functionally diverse vesicle pools with unique membrane protein composition support different modes of transmission and are generated via distinct recycling pathways.
Collapse
|
105
|
Bartolomé-Martín D, Ramírez-Franco J, Castro E, Sánchez-Prieto J, Torres M. Efficient synaptic vesicle recycling after intense exocytosis concomitant with the accumulation of non-releasable endosomes at early developmental stages. J Cell Sci 2012; 125:422-34. [DOI: 10.1242/jcs.090878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the exocytosis of neurotransmitter-containing synaptic vesicles, endocytosis is fundamental to re-establishing conditions for synaptic transmission. As there are distinct endocytotic pathways that each differ in their efficiency to generate releasable synaptic vesicles, we used the dye FM1-43 to track vesicle recycling, and to determine whether nerve terminals use multiple pathways of endocytosis. We identified two types of synaptic boutons in cultured cerebellar granule cells that were characterized by weak or strong FM1-43-unloading profiles. Decreasing the extent of exocytosis dramatically increased the proportion of synaptic boutons that exhibited strong FM1-43-unloading and dramatically reduced the number of endosome-like structures. Hence, we concluded that efficient recycling of synaptic vesicles is concomitant with the formation of non-releasable endosomes in both types of synaptic boutons, although to different extents. Furthermore, cell maturation in culture increased the proportion of synaptic boutons that were capable of an intense release response, whereas the chronic blockage of synaptic activity diminished the capacity of boutons to release dye.
Collapse
Affiliation(s)
- David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, 28040, Spain
| | - Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, 28040, Spain
| | - Enrique Castro
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Ciencias de la Salud, Universidad de las Palmas de Gran Canaria (ULPG), Las Palmas, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, 28040, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, 28040, Spain
| |
Collapse
|
106
|
Cheung G, Cousin MA. Quantitative analysis of synaptic vesicle pool replenishment in cultured cerebellar granule neurons using FM dyes. J Vis Exp 2011:3143. [PMID: 22105080 PMCID: PMC3308581 DOI: 10.3791/3143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After neurotransmitter release in central nerve terminals, SVs are rapidly retrieved by endocytosis. Retrieved SVs are then refilled with neurotransmitter and rejoin the recycling pool, defined as SVs that are available for exocytosis1,2. The recycling pool can generally be subdivided into two distinct pools - the readily releasable pool (RRP) and the reserve pool (RP). As their names imply, the RRP consists of SVs that are immediately available for fusion while RP SVs are released only during intense stimulation1,2. It is important to have a reliable assay that reports the differential replenishment of these SV pools in order to understand 1) how SVs traffic after different modes of endocytosis (such as clathrin-dependent endocytosis and activity-dependent bulk endocytosis) and 2) the mechanisms controlling the mobilisation of both the RRP and RP in response to different stimuli. FM dyes are routinely employed to quantitatively report SV turnover in central nerve terminals3-8. They have a hydrophobic hydrocarbon tail that allows reversible partitioning in the lipid bilayer, and a hydrophilic head group that blocks passage across membranes. The dyes have little fluorescence in aqueous solution, but their quantum yield increases dramatically when partitioned in membrane9. Thus FM dyes are ideal fluorescent probes for tracking actively recycling SVs. The standard protocol for use of FM dye is as follows. First they are applied to neurons and are taken up during endocytosis (Figure 1). After non-internalised dye is washed away from the plasma membrane, recycled SVs redistribute within the recycling pool. These SVs are then depleted using unloading stimuli (Figure 1). Since FM dye labelling of SVs is quantal10, the resulting fluorescence drop is proportional to the amount of vesicles released. Thus, the recycling and fusion of SVs generated from the previous round of endocytosis can be reliably quantified. Here, we present a protocol that has been modified to obtain two additional elements of information. Firstly, sequential unloading stimuli are used to differentially unload the RRP and the RP, to allow quantification of the replenishment of specific SV pools. Secondly, each nerve terminal undergoes the protocol twice. Thus, the response of the same nerve terminal at S1 can be compared against the presence of a test substance at phase S2 (Figure 2), providing an internal control. This is important, since the extent of SV recycling across different nerve terminals is highly variable11. Any adherent primary neuronal cultures may be used for this protocol, however the plating density, solutions and stimulation conditions are optimised for cerebellar granule neurons (CGNs)12,13.
Collapse
Affiliation(s)
- Giselle Cheung
- Membrane Biology Group, Centre for integrative Physiology, University of Edinburgh
| | | |
Collapse
|
107
|
Leitz J, Kavalali ET. Ca²⁺ influx slows single synaptic vesicle endocytosis. J Neurosci 2011; 31:16318-26. [PMID: 22072683 PMCID: PMC3235053 DOI: 10.1523/jneurosci.3358-11.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/23/2011] [Accepted: 09/25/2011] [Indexed: 01/14/2023] Open
Abstract
Ca²⁺-dependent synaptic vesicle recycling is critical for maintenance of neurotransmission. However, uncoupling the roles of Ca²⁺ in synaptic vesicle fusion and retrieval has been difficult, as studies probing the role of Ca²⁺ in endocytosis relied on measurements of bulk synaptic vesicle retrieval. Here, to dissect the role of Ca²⁺ in these processes, we used a low signal-to-noise pHluorin-tagged vesicular probe to monitor single synaptic vesicle recycling in rat hippocampal neurons. We show that Ca²⁺ increases synaptic vesicle fusion probability in the classical sense, but surprisingly decreases the rate of synaptic vesicle retrieval. This negative regulation of synaptic vesicle retrieval is blocked by the Ca²⁺ chelator, EGTA, as well as FK506, a specific inhibitor of Ca²⁺-calmodulin-dependent phosphatase calcineurin. The slow time course of aggregate synaptic vesicle retrieval detected during repetitive activity could be explained by a progressive decrease in the rate of synaptic vesicle retrieval during the stimulation train. These results indicate that Ca²⁺ entry during single action potentials slows the pace of subsequent synaptic vesicle recycling.
Collapse
Affiliation(s)
| | - Ege T. Kavalali
- Departments of Neuroscience and
- Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
108
|
Jakobsson J, Ackermann F, Andersson F, Larhammar D, Löw P, Brodin L. Regulation of synaptic vesicle budding and dynamin function by an EHD ATPase. J Neurosci 2011; 31:13972-80. [PMID: 21957258 PMCID: PMC6633164 DOI: 10.1523/jneurosci.1289-11.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/01/2011] [Accepted: 08/09/2011] [Indexed: 12/24/2022] Open
Abstract
Eps15 homology domain-containing proteins (EHDs) are conserved ATPases implicated in membrane remodeling. Recently, EHD1 was found to be enriched at synaptic release sites, suggesting a possible involvement in the trafficking of synaptic vesicles. We have investigated the role of an EHD1/3 ortholog (l-EHD) in the lamprey giant reticulospinal synapse. l-EHD was detected by immunogold at endocytic structures adjacent to release sites. In antibody microinjection experiments, perturbation of l-EHD inhibited synaptic vesicle endocytosis and caused accumulation of clathrin-coated pits with atypical, elongated necks. The necks were covered with helix-like material containing dynamin. To test whether l-EHD directly interferes with dynamin function, we used fluid-supported bilayers as in vitro assay. We found that l-EHD strongly inhibited vesicle budding induced by dynamin in the constant presence of GTP. l-EHD also inhibited dynamin-induced membrane tubulation in the presence of GTPγS, a phenomenon linked with dynamin helix assembly. Our in vivo results demonstrate the involvement of l-EHD in clathrin/dynamin-dependent synaptic vesicle budding. Based on our in vitro observations, we suggest that l-EHD acts to limit the formation of long, unproductive dynamin helices, thereby promoting vesicle budding.
Collapse
Affiliation(s)
- Joel Jakobsson
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden, and
| | - Frauke Ackermann
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden, and
| | - Fredrik Andersson
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden, and
| | - Dan Larhammar
- Department of Neuroscience, Uppsala University, S-751 24, Uppsala, Sweden
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden, and
| | - Lennart Brodin
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden, and
| |
Collapse
|
109
|
Xue J, Graham ME, Novelle AE, Sue N, Gray N, McNiven MA, Smillie KJ, Cousin MA, Robinson PJ. Calcineurin selectively docks with the dynamin Ixb splice variant to regulate activity-dependent bulk endocytosis. J Biol Chem 2011; 286:30295-30303. [PMID: 21730063 DOI: 10.1074/jbc.m111.273110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals.
Collapse
Affiliation(s)
- Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Mark E Graham
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Aimee E Novelle
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Nancy Sue
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Noah Gray
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Karen J Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Michael A Cousin
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia.
| |
Collapse
|
110
|
Gaffield MA, Romberg CF, Betz WJ. Live imaging of bulk endocytosis in frog motor nerve terminals using FM dyes. J Neurophysiol 2011; 106:599-607. [PMID: 21543750 DOI: 10.1152/jn.00123.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We observed endocytosis in real time in stimulated frog motor nerve terminals by imaging the growth of large membrane infoldings labeled with a low concentration of FM dye. The spatial and temporal information made available by these experiments allowed us to image several new aspects of this synaptic vesicle recycling pathway. Membrane infoldings appeared near synaptic vesicle clusters and grew rapidly during long-duration, high-frequency stimulation. In some cases, we observed large, elongated infoldings growing laterally into the terminal. We used these observations to calculate infolding growth rates. A decrease in stimulation frequency caused a decrease in growth rates, but the overall length of these structures was unaffected by frequency changes. Attempts to wash the dye from these infoldings after stimulation were unsuccessful, demonstrating that the fluorescent structures had been endocytosed. We also used this technique to trigger and image infoldings during repeated, short trains. We found that membrane uptake occurred repeatedly at individual endocytosis sites, but only during a portion of the total number of trains delivered to the terminal. Finally, we showed that phosphatidylinositol 3-kinase, but not actin, was involved in this endocytosis pathway. The ability to monitor many individual bulk endocytosis sites in real time should allow for new types of endocytosis measurements and could reveal novel and unexpected mechanisms for coordinating membrane recovery during synaptic activity.
Collapse
Affiliation(s)
- Michael A Gaffield
- Department of Physiology and Biophysics, University of Colorado-Denver, Anshutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
111
|
Groemer TW, Thiel CS, Holt M, Riedel D, Hua Y, Hüve J, Wilhelm BG, Klingauf J. Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One 2011; 6:e18754. [PMID: 21556148 PMCID: PMC3083403 DOI: 10.1371/journal.pone.0018754] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 03/16/2011] [Indexed: 02/04/2023] Open
Abstract
A large body of evidence has implicated amyloid precursor protein (APP) and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD). Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling.
Collapse
Affiliation(s)
- Teja W. Groemer
- Department of Membrane Biophysics, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University of Erlangen,
Erlangen, Germany
| | - Cora S. Thiel
- Department of Membrane Biophysics, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
- Institute of Medical Physics and Biophysics, University of Münster,
Münster, Germany
| | - Matthew Holt
- Department of Neurobiology, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
- * E-mail: (MH); (JK)
| | - Dietmar Riedel
- Electron Microscopy Group, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
| | - Yunfeng Hua
- Department of Membrane Biophysics, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
- Institute of Medical Physics and Biophysics, University of Münster,
Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical
Physics and Biophysics, University of Münster, Münster,
Germany
| | - Benjamin G. Wilhelm
- Department of Membrane Biophysics, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
| | - Jürgen Klingauf
- Department of Membrane Biophysics, Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
- Institute of Medical Physics and Biophysics, University of Münster,
Münster, Germany
- * E-mail: (MH); (JK)
| |
Collapse
|
112
|
Barnett DGS, Bibb JA. The role of Cdk5 in cognition and neuropsychiatric and neurological pathology. Brain Res Bull 2011; 85:9-13. [PMID: 21145377 PMCID: PMC3073157 DOI: 10.1016/j.brainresbull.2010.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that is ubiquitous in the nervous system and interacts with a myriad of substrates. Its modulation of synaptic plasticity and associated mechanisms of learning and memory as well as neurodegeneration and cognitive disease highlights its importance in the human brain. Cdk5 is active throughout the neuron via its kinase activity, protein-protein interactions, and nuclear associations. It regulates functions thought vital to memory and plasticity, including synaptic vesicle recycling, dendritic spine formation, neurotransmitter receptor density, and neuronal excitability. Although conditional knockout of Cdk5 improves learning and plasticity, the associated deleterious effects of increased excitability cast doubts on the therapeutic efficacy of systemic inhibitors. However, through further work on the regulation of Cdk5 and its effectors, this important molecule promises to aid in elucidating key pathways involved in learning and memory and uncover innovative therapeutic targets to treat neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- David G. S. Barnett
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
113
|
Smillie KJ, Cousin MA. The Role of GSK3 in Presynaptic Function. Int J Alzheimers Dis 2011; 2011:263673. [PMID: 21547219 PMCID: PMC3087464 DOI: 10.4061/2011/263673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/20/2011] [Indexed: 11/20/2022] Open
Abstract
The past ten years of research have identified a number of key roles for glycogen synthase kinase 3 (GSK3) at the synapse. In terms of presynaptic physiology, critical roles for GSK3 have been revealed in the growth and maturation of the nerve terminal and more recently a key role in the control of activity-dependent bulk endocytosis of synaptic vesicles. This paper will summarise the major roles assigned to GSK3 in both immature and mature nerve terminals, the substrates GSK3 phosphorylates to exert its action, and how GSK3 activity is regulated by different presynaptic signalling cascades. The number of essential roles for GSK3, coupled with the numerous signalling cascades all converging to regulate its activity, suggests that GSK3 is a key integrator of multiple inputs to modulate the strength of neurotransmission. Modulation of these pathways may point to potential mechanisms to overcome synaptic failure in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Janet Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, EH8 9XD, Edinburgh, UK
| | | |
Collapse
|
114
|
Pérez-Martínez FC, Guerra J, Posadas I, Ceña V. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res 2011; 28:1843-58. [PMID: 21225319 PMCID: PMC3130907 DOI: 10.1007/s11095-010-0364-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/27/2010] [Indexed: 12/17/2022]
Abstract
Efficient methods for cell line transfection are well described, but, for primary neurons, a high-yield method different from those relying on viral vectors is lacking. Viral transfection has several drawbacks, such as the complexity of vector preparation, safety concerns, and the generation of immune and inflammatory responses when used in vivo. However, one of the main problems for the use of non-viral gene vectors for neuronal transfection is their low efficiency when compared with viral vectors. Transgene expression, or siRNA delivery mediated by non-viral vectors, is the result of multiple processes related to cellular membrane crossing, intracellular traffic, and/or nuclear delivery of the genetic material cargo. This review will deal with the barriers that different nanoparticles (cationic lipids, polyethyleneimine, dendrimers and carbon nanotubes) must overcome to efficiently deliver their cargo to central nervous system cells, including internalization into the neurons, interaction with intracellular organelles such as lysosomes, and transport across the nuclear membrane of the neuron in the case of DNA transfection. Furthermore, when used in vivo, the nanoparticles should efficiently cross the blood-brain barrier to reach the target cells in the brain.
Collapse
|
115
|
Abstract
Synaptic vesicles have a high sterol content, but the importance of vesicular sterols during vesicle recycling is unclear. We used the Drosophila temperature-sensitive dynamin mutant, shibire-ts1, to block endocytosis of recycling synaptic vesicles and to trap them reversibly at the plasma membrane where they were accessible to sterol extraction. Depletion of sterols from trapped vesicles prevented recovery of synaptic transmission after removal of the endocytic block. Measurement of vesicle recycling with synaptopHluorin, FM1-43, and FM4-64 demonstrated impaired membrane retrieval after vesicular sterol depletion. When plasma membrane sterols were extracted before vesicle trapping, no vesicle recycling defects were observed. Ultrastructural analysis indicated accumulation of endosomes and a defect in the formation of synaptic vesicles in synaptic terminals subjected to vesicular sterol depletion. Our results demonstrate the importance of a high vesicular sterol concentration for endocytosis and suggest that vesicular and membrane sterol pools do not readily intermingle during vesicle recycling.
Collapse
|
116
|
Cárdenas AM, Marengo FD. Rapid endocytosis and vesicle recycling in neuroendocrine cells. Cell Mol Neurobiol 2010; 30:1365-70. [PMID: 21046457 DOI: 10.1007/s10571-010-9579-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
Endocytosis is a crucial process for neuroendocrine cells that ensures membrane homeostasis, vesicle recycling, and hormone release reliability. Different endocytic mechanisms have been described in chromaffin cells, such as clathrin-dependent slow endocytosis and clathrin-independent rapid endocytosis. Rapid endocytosis, classically measured in terms of a fast decrease in membrane capacitance, exhibits two different forms, "rapid compensatory endocytosis" and "excess retrieval." While excess retrieval seems to be associated with formation of long-lasting endosomes, rapid compensatory endocytosis is well correlated with exocytotic activity, and it is regarded as a mechanism associated to rapid vesicle recycling during normal secretory activity. It has been suggested that rapid compensatory endocytosis may be related to the prevalence of a transient fusion mode of exo-endocytosis. In the latter mode, the fusion pore, a nanometric-sized channel formed at the onset of exocytosis, remains open for a few hundred milliseconds and later abruptly closes, releasing a small amount of transmitters. By this mechanism, endocrine cell selectively releases low molecular weight transmitters, and rapidly recycles the secretory vesicles. In this article, we discuss the cellular and molecular mechanisms that define the different forms of exocytosis and endocytosis and their impact on vesicle recycling pathways.
Collapse
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaiso, Chile
| | | |
Collapse
|
117
|
Denker A, Rizzoli SO. Synaptic vesicle pools: an update. Front Synaptic Neurosci 2010; 2:135. [PMID: 21423521 PMCID: PMC3059705 DOI: 10.3389/fnsyn.2010.00135] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/02/2010] [Indexed: 12/04/2022] Open
Abstract
During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool.
Collapse
Affiliation(s)
- Annette Denker
- European Neuroscience Institute, DFG Center for Molecular Physiology of the Brain Göttingen, Germany
| | | |
Collapse
|
118
|
Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J Neurosci 2010; 30:8151-61. [PMID: 20554865 DOI: 10.1523/jneurosci.0293-10.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple synaptic vesicle (SV) retrieval modes exist in central nerve terminals to maintain a continual supply of SVs for neurotransmission. Two such modes are clathrin-mediated endocytosis (CME), which is dominant during mild neuronal activity, and activity-dependent bulk endocytosis (ADBE), which is dominant during intense neuronal activity. However, little is known about how activation of these SV retrieval modes impact the replenishment of the total SV recycling pool and the pools that reside within it, the readily releasable pool (RRP) and reserve pool. To address this question, we examined the replenishment of all three SV pools by triggering these SV retrieval modes during both high- and low-intensity stimulation of primary rat neuronal cultures. SVs generated by CME and ADBE were differentially labeled using the dyes FM1-43 and FM2-10, and their replenishment of specific SV pools was quantified using stimulation protocols that selectively depleted each pool. Our studies indicate that while the RRP was replenished by CME-generated SVs, ADBE provided additional SVs to increase the capacity of the reserve pool. Morphological analysis of the uptake of the fluid phase marker horseradish peroxidase corroborated these findings. The differential replenishment of specific SV pools by independent SV retrieval modes illustrates how previously experienced neuronal activity impacts the capability of central nerve terminals to respond to future stimuli.
Collapse
|
119
|
Clayton E, Sue N, Smillie K, O’Leary T, Bache N, Cheung G, Cole A, Wyllie D, Sutherland C, Robinson P, Cousin M. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci 2010; 13:845-51. [PMID: 20526333 PMCID: PMC2894011 DOI: 10.1038/nn.2571] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/06/2010] [Indexed: 01/02/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a critical enzyme in neuronal physiology; however, it is not yet known whether it has any specific role in presynaptic function. We found that GSK3 phosphorylates a residue on the large GTPase dynamin I (Ser-774) both in vitro and in primary rat neuronal cultures. This was dependent on prior phosphorylation of Ser-778 by cyclin-dependent kinase 5. Using both acute inhibition with pharmacological antagonists and silencing of expression with short hairpin RNA, we found that GSK3 was specifically required for activity-dependent bulk endocytosis (ADBE) but not clathrin-mediated endocytosis. Moreover we found that the specific phosphorylation of Ser-774 on dynamin I by GSK3 was both necessary and sufficient for ADBE. These results demonstrate a presynaptic role for GSK3 and they indicate that a protein kinase signaling cascade prepares synaptic vesicles for retrieval during elevated neuronal activity.
Collapse
Affiliation(s)
- E.L. Clayton
- Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | | | - K.J. Smillie
- Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | - T. O’Leary
- Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | | | - G. Cheung
- Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | | | - D.J Wyllie
- Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | | | | | - M.A Cousin
- Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| |
Collapse
|
120
|
Khandelwal P, Ruiz WG, Apodaca G. Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway. EMBO J 2010; 29:1961-75. [PMID: 20461056 PMCID: PMC2892371 DOI: 10.1038/emboj.2010.91] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/20/2010] [Indexed: 11/09/2022] Open
Abstract
Compensatory endocytosis (CE) ensures recycling of membrane components and maintenance of plasma membrane size; however, the mechanisms, regulation, and physiological functions of clathrin-independent modes of CE are poorly understood. CE was studied in umbrella cells, which undergo regulated exocytosis of subapical discoidal/fusiform vesicles (DFV) during bladder filling, and may then replenish the pool of DFV by internalizing apical membrane during voiding. We found that voiding-stimulated CE, which depended on beta(1) integrin-associated signalling pathways, occurred by a dynamin-, actin-, and RhoA-regulated mechanism and was independent of caveolins, clathrin, and flotillin. Internalized apical membrane and fluid were initially found in ZO-1-positive vesicles, which were distinct from DFV, classical early endosomes, or the Golgi, and subsequently in lysosomes. We conclude that clathrin-independent CE in umbrella cells functions to recover membrane during voiding, is integrin regulated, occurs by a RhoA- and dynamin-dependent pathway, and terminates in degradation and not recapture of membrane in DFV.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Department of Medicine, Laboratory of Epithelial Cell Biology and Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wily G Ruiz
- Department of Medicine, Laboratory of Epithelial Cell Biology and Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine, Laboratory of Epithelial Cell Biology and Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
121
|
Meunier FA, Nguyen TH, Colasante C, Luo F, Sullivan RKP, Lavidis NA, Molgó J, Meriney SD, Schiavo G. Sustained synaptic-vesicle recycling by bulk endocytosis contributes to the maintenance of high-rate neurotransmitter release stimulated by glycerotoxin. J Cell Sci 2010; 123:1131-40. [PMID: 20215402 DOI: 10.1242/jcs.049296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycerotoxin (GLTx), a large neurotoxin isolated from the venom of the sea worm Glycera convoluta, promotes a long-lasting increase in spontaneous neurotransmitter release at the peripheral and central synapses by selective activation of Ca(v)2.2 channels. We found that GLTx stimulates the very high frequency, long-lasting (more than 10 hours) spontaneous release of acetylcholine by promoting nerve terminal Ca(2+) oscillations sensitive to the inhibitor omega-conotoxin GVIA at the amphibian neuromuscular junction. Although an estimate of the number of synaptic vesicles undergoing exocytosis largely exceeds the number of vesicles present in the motor nerve terminal, ultrastructural examination of GLTx-treated synapses revealed no significant change in the number of synaptic vesicles. However, we did detect the appearance of large pre-synaptic cisternae suggestive of bulk endocytosis. Using a combination of styryl dyes, photoconversion and horseradish peroxidase (HRP)-labeling electron microscopy, we demonstrate that GLTx upregulates presynaptic-vesicle recycling, which is likely to emanate from the limiting membrane of these large cisternae. Similar synaptic-vesicle recycling through bulk endocytosis also occurs from nerve terminals stimulated by high potassium. Our results suggest that this process might therefore contribute significantly to synaptic recycling under sustained levels of synaptic stimulation.
Collapse
Affiliation(s)
- Frederic A Meunier
- Molecular Dynamics of Synaptic Function Laboratory, Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Preferred sites of exocytosis and endocytosis colocalize during high- but not lower-frequency stimulation in mouse motor nerve terminals. J Neurosci 2009; 29:15308-16. [PMID: 19955383 DOI: 10.1523/jneurosci.4646-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial relationship of exocytosis and endocytosis in motor nerve terminals has been explored, with varied results, mostly in fixed preparations and without direct information on the utilization of each exocytic site. We sought to determine these spatial properties in real time using synaptopHluorin (spH) and FM4-64. Earlier we showed that nerve stimulation elicits the appearance of spH fluorescence hot spots, which mark preferred sites of exocytosis. Here we show that nerve stimulation in the presence of the styryl dye FM4-64 evokes hot spots of FM4-64 fluorescence. Their size, density, and rate of appearance are similar to the spH hot spots, but their rate of disappearance after stimulation was much slower (t(1/2) approximately 9 min vs approximately 10 s for spH hot spots), consistent with FM4-64 spots identifying bulk endocytosis and subsequent slow intracellular dispersion of nascent vesicles. Simultaneous imaging of both fluorophores revealed a strong colocalization of spH and FM4-64 spots, but only during high (100 Hz) stimulation. At 40 Hz stimulation, exocytic and endocytic spots did not colocalize. Our results are consistent with the hypothesis that hot spots of endocytosis, possibly in the form of bulk uptake, occur at or very near highly active exocytic sites during high-frequency stimulation.
Collapse
|
123
|
Abstract
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.
Collapse
Affiliation(s)
- Emma L. Clayton
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | - Michael A. Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| |
Collapse
|
124
|
Affiliation(s)
- Jeremy Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
125
|
Logiudice L, Sterling P, Matthews G. Vesicle recycling at ribbon synapses in the finely branched axon terminals of mouse retinal bipolar neurons. Neuroscience 2009; 164:1546-56. [PMID: 19778591 DOI: 10.1016/j.neuroscience.2009.09.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/30/2022]
Abstract
In retinal bipolar neurons, synaptic ribbons mark the presence of exocytotic active zones in the synaptic terminal. It is unknown, however, where compensatory vesicle retrieval is localized in this cell type and by what mechanism(s) excess membrane is recaptured. To determine whether endocytosis is localized or diffuse in mouse bipolar neurons, we imaged FM4-64 to track vesicles in cells whose synaptic ribbons were tagged with a fluorescent peptide. In synaptic terminals, vesicle retrieval occurred at discrete sites that were spatially consistent over multiple stimuli, indicative of endocytotic "hot spots." Retrieval sites were spatially correlated with fluorescently labeled synaptic ribbons. Electron microscopy (EM) analysis of bipolar cell terminals after photoconversion of internalized FM dye revealed that almost all of the dye was contained within vesicles approximately 30 nm in diameter. Clathrin-coated vesicles were observed budding from the plasma membrane and within the cytosol, and application of dynasore, a dynamin inhibitor, arrested membrane retrieval just after the budding stage. We conclude that synaptic vesicles in the fine branches of mouse bipolar axon terminals are retrieved locally near active zones, at least in part via a clathrin-mediated pathway.
Collapse
Affiliation(s)
- L Logiudice
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794-5230, USA
| | | | | |
Collapse
|
126
|
Clayton EL, Cousin MA. Quantitative monitoring of activity-dependent bulk endocytosis of synaptic vesicle membrane by fluorescent dextran imaging. J Neurosci Methods 2009; 185:76-81. [PMID: 19766140 DOI: 10.1016/j.jneumeth.2009.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 11/20/2022]
Abstract
Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) retrieval mode in central nerve terminals during periods of intense neuronal activity. Despite this fact there are very few real time assays that report the activity of this critical SV retrieval mode. In this paper we report a simple and quantitative assay of ADBE using uptake of large flourescent dextrans as fluid phase markers. We show that almost all dextran uptake occurs in nerve terminals, using co-localisation with the fluorescent probe FM1-43. We also demonstrate that accumulated dextran cannot be unloaded by neuronal stimulation, indicating its specific loading into bulk endosomes and not SVs. Quantification of dextran uptake was achieved by using thresholding analysis to count the number of loaded nerve terminals, since monitoring the average fluorescence intensity of these nerve terminals did not accurately report the extent of ADBE. Using this analysis we showed that dextran uptake occurs very soon after stimulation and that it does not persist when stimulation terminates. Thus we have devised a simple and quantitative method to monitor ADBE in living neurones, which will be ideal for real time screening of small molecule inhibitors of this key SV retrieval mode.
Collapse
Affiliation(s)
- Emma Louise Clayton
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
127
|
The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J Neurosci 2009; 29:7706-17. [PMID: 19535582 DOI: 10.1523/jneurosci.1976-09.2009] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles (SVs) are retrieved by more than one mode in central nerve terminals. During mild stimulation, the dominant SV retrieval pathway is classical clathrin-mediated endocytosis (CME). During elevated neuronal activity, activity-dependent bulk endocytosis (ADBE) predominates, which requires activation of the calcium-dependent protein phosphatase calcineurin. We now report that calcineurin dephosphorylates dynamin I in nerve terminals only above the same activity threshold that triggers ADBE. ADBE was arrested when the two major phospho-sites on dynamin I were perturbed, suggesting that dynamin I dephosphorylation is a key step in its activation. Dynamin I dephosphorylation stimulates a specific dynamin I-syndapin I interaction. Inhibition of this interaction by competitive peptides or by site-directed mutagenesis exclusively inhibited ADBE but did not affect CME. The results reveal that the phospho-dependent dynamin-syndapin interaction recruits ADBE to massively increase SV endocytosis under conditions of elevated neuronal activity.
Collapse
|
128
|
Cousin MA. Activity-dependent bulk synaptic vesicle endocytosis--a fast, high capacity membrane retrieval mechanism. Mol Neurobiol 2009; 39:185-9. [PMID: 19266323 PMCID: PMC2871594 DOI: 10.1007/s12035-009-8062-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Central nerve terminals are placed under considerable stress during intense stimulation due to large numbers of synaptic vesicles (SVs) fusing with the plasma membrane. Classical clathrin-dependent SV endocytosis cannot correct for the large increase in nerve terminal surface area in the short term, due to its slow kinetics and low capacity. During such intense stimulation, an additional SV retrieval pathway is recruited called bulk endocytosis. Recent studies have shown that bulk endocytosis fulfils all of the physiological requirements to remedy the acute changes in nerve terminal surface area to allow the nerve terminal to continue to function. This review will summarise the recent developments in the field that characterise the physiology of bulk endocytosis which show that it is a fast, activity-dependent and high capacity mechanism that is essential for the function of central nerve terminals.
Collapse
Affiliation(s)
- M A Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
| |
Collapse
|
129
|
Tao-Cheng JH, Dosemeci A, Gallant PE, Miller S, Galbraith JA, Winters CA, Azzam R, Reese TS. Rapid turnover of spinules at synaptic terminals. Neuroscience 2009; 160:42-50. [PMID: 19248820 DOI: 10.1016/j.neuroscience.2009.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 02/13/2009] [Accepted: 02/15/2009] [Indexed: 11/29/2022]
Abstract
Spinules found in brain consist of small invaginations of plasma membranes which enclose membrane evaginations from adjacent cells. Here, we focus on the dynamic properties of the most common type, synaptic spinules, which reside in synaptic terminals. In order to test whether depolarization triggers synaptic spinule formation, hippocampal slice cultures (7-day-old rats, 10-14 days in culture) were exposed to high K+ for 0.5-5 min, and examined by electron microscopy. Virtually no synaptic spinules were found in control slices representing a basal state, but numerous spinules appeared at both excitatory and inhibitory synapses after treatment with high K+. Spinule formation peaked with approximately 1 min treatment at 37 degrees C, decreased with prolonged treatment, and disappeared after 1-2 min of washout in normal medium. The rate of disappearance of spinules was substantially slower at 4 degrees C. N-methyl-D-aspartic acid (NMDA) treatment also induced synaptic spinule formation, but to a lesser extent than high K+ depolarization. In acute brain slices prepared from adult mice, synaptic spinules were abundant immediately after dissection at 4 degrees C, extremely rare in slices allowed to recover at 28 degrees C, but frequent after high K(+) depolarization. High pressure freezing of acute brain slices followed by freeze-substitution demonstrated that synaptic spinules are not induced by chemical fixation. These results indicate that spinules are absent in synapses at low levels of activity, but form and disappear quickly during sustained synaptic activity. The rapid turnover of synaptic spinules may represent an aspect of membrane retrieval during synaptic activity.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- NINDS EM Facility, Building 49, Room 3A50, NIH, Bethesda, MD 20892-4477, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proc Natl Acad Sci U S A 2008; 105:17555-60. [PMID: 18987309 DOI: 10.1073/pnas.0809621105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exocytosis of synaptic vesicles is rapidly followed by compensatory plasma membrane endocytosis. The efficiency of endocytosis varies with experimental conditions, but the molecular basis for this control remains poorly understood. Here, the function of dynamin 1, the neuron-specific member of a family of GTPases implicated in vesicle fission, was investigated with high temporal resolution via membrane capacitance measurements at the calyx of Held, a giant glutamatergic synapse. Endocytosis at dynamin 1 KO calyces was the same as in wild type after weak stimuli, consistent with the nearly normal ultrastructure of mutant synapses. However, following stronger stimuli, the speed of slow endocytosis, but not of other forms of endocytosis, failed to scale with the increased endocytic load. Thus, high level expression of dynamin 1 is essential to allow the slow, clathrin-mediated endocytosis, which accounts for the bulk of the endocytic response, to operate efficiently over a wide range of activity.
Collapse
|
131
|
Smith SM, Renden R, von Gersdorff H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 2008; 31:559-68. [PMID: 18817990 DOI: 10.1016/j.tins.2008.08.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Several modes of synaptic vesicle release, retrieval and recycling have been identified. In a well-established mode of exocytosis, termed 'full-collapse fusion', vesicles empty their neurotransmitter content fully into the synaptic cleft by flattening out and becoming part of the presynaptic membrane. The fused vesicle membrane is then reinternalized via a slow and clathrin-dependent mode of compensatory endocytosis that takes several seconds. A more fleeting mode of vesicle fusion, termed 'kiss-and-run' exocytosis or 'flicker-fusion', indicates that during synaptic transmission some vesicles are only briefly connected to the presynaptic membrane by a transient fusion pore. Finally, a mode that retrieves a large amount of membrane, equivalent to that of several fused vesicles, termed 'bulk endocytosis', has been found after prolonged exocytosis. We are of the opinion that both fast and slow modes of endocytosis co-exist at central nervous system nerve terminals and that one mode can predominate depending on stimulus strength, temperature and synaptic maturation.
Collapse
Affiliation(s)
- Stephen M Smith
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
132
|
Clayton EL, Cousin MA. Differential labelling of bulk endocytosis in nerve terminals by FM dyes. Neurochem Int 2008; 53:51-5. [PMID: 18586059 DOI: 10.1016/j.neuint.2008.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 10/22/2022]
Abstract
Bulk endocytosis is triggered in central nerve terminals during intense physiological stimulation. This endocytosis pathway can be labelled by the dye FM1-43 but not its more hydrophilic counterpart FM2-10. This selective labelling was proposed to be due to the retention of FM1-43, but not FM2-10, in slowly retrieving structures after washout of the dye. However, this explanation assumed that bulk endocytosis was a slow process that persisted after stimulation. We have recently shown that the great majority of bulk endocytosis occurs during stimulation, therefore another explanation for the specific labelling of this pathway by FM1-43 must be found. In this paper we show that the ability of FM dyes to label bulk endocytosis is dependent on the concentration of dye used and not their washout properties. When the loading concentration of FM1-43 was reduced 10-fold, its ability to label bulk endocytosis was lost. Conversely when the loading concentration of FM2-10 was increased 10-fold, it now labelled the pathway. This suggests that a difference in affinity of bulk endosome membranes for FM1-43 and FM2-10 underlies the disparity in labelling.
Collapse
Affiliation(s)
- E L Clayton
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Scotland, UK.
| | | |
Collapse
|