101
|
Udo R, Hamada T, Horikawa K, Iwahana E, Miyakawa K, Otsuka K, Shibata S. The role of Clock in the plasticity of circadian entrainment. Biochem Biophys Res Commun 2004; 318:893-8. [PMID: 15147955 DOI: 10.1016/j.bbrc.2004.04.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Indexed: 10/26/2022]
Abstract
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.
Collapse
Affiliation(s)
- Ryuta Udo
- Department of Pharmacology, School of Science and Engineering, Waseda University, Bldg 61, Room 515, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
102
|
Ohdo S. Changes in toxicity and effectiveness with timing of drug administration: implications for drug safety. Drug Saf 2004; 26:999-1010. [PMID: 14583062 DOI: 10.2165/00002018-200326140-00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The effectiveness and toxicity of many drugs can vary depending on the time of administration in relation to 24-hour rhythms of biochemical, physiological and behavioural processes under the control of the circadian clock. Such chronopharmacological phenomena are influenced by not only the pharmacokinetics but also pharmacodynamics of medications. Chronotherapy is especially relevant when the risk and/or intensity of the symptoms of disease vary predictably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke and peptic ulcer disease. Morning, once-daily administration of corticosteroids results in little adrenocortical suppression, while the same daily dose split into four equal doses to coincide with daily meals and bedtime results in significant hypothalamus-pituitary-adrenal axis suppression. In a randomised, multicentre trial involving patients with previously untreated metastases from colorectal cancer, the chronomodulated infusion of oxaliplatin, fluorouracil and folinic acid was compared with a constant-rate infusion method. Adverse effects such as stomatitis and peripheral sensory neuropathy were lower and objective response was higher with chronotherapy as compared with the fixed-rate infusion. The merit of chronomodulated infusion is supported by the 24-hour rhythm of DNA synthesis and the activity of dehydropyrimidine dehydrogenase, which brings about the intracellular catabolism of fluorouracil. On the other hand, haloperidol and selective serotonin reuptake inhibitors have diverse effects on sleep continuity and nocturnal arousals. Although interferon also alters the clock function, this disruptive effect can be overcome by devising an administration regimen that minimises adverse drug effects on clock function. Thus, one approach to increasing the efficiency of pharmacotherapy is the administration of drugs at times at which they are most effective and/or best tolerated.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
103
|
Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E. Indication of circadian oscillations in the rat pancreas. FEBS Lett 2004; 564:91-6. [PMID: 15094047 DOI: 10.1016/s0014-5793(04)00322-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/11/2004] [Accepted: 03/15/2004] [Indexed: 12/11/2022]
Abstract
The central circadian oscillator of the suprachiasmatic nucleus controls diurnal rhythmicity of the body with light as its dominant zeitgeber. Recently, peripheral oscillators have been detected in liver and heart, which follow as yet unidentified cues. In this study real-time reverse transcription-polymerase chain reaction (RT-PCR) was used in analysis of the expression of the major clock genes Per1, Per2, Bmal1, Cry1, Tim (timeless) and Clock, as well as of the output genes Dbp and Rev-erbalpha in the pancreatic tissue of rats. The results presented here indicate a robust circadian expression of clock genes (e.g. Per1 and Bmal1) and the probable existence of a peripheral oscillator in the pancreas. Whether this oscillator regulates the diverse functions of the islets of Langerhans remains to be elucidated.
Collapse
Affiliation(s)
- E Mühlbauer
- Saxon Academy of Sciences Leipzig, Karl-Tauchnitz-Str. 1, D-04107 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
104
|
Butcher GQ, Lee B, Hsieh F, Obrietan K. Light- and clock-dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus. Eur J Neurosci 2004; 19:907-15. [PMID: 15009138 DOI: 10.1111/j.0953-816x.2004.03155.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent work has revealed that signalling via the p42/44 mitogen-activated protein kinase (MAPK) pathway couples light to entrainment of the circadian clock located in the suprachiasmatic nucleus (SCN). Given that many effects of the MAPK pathway are mediated by intermediate kinases, it was of interest to identify kinase targets of ERK in the SCN. One potential target is the family of 90-kDa ribosomal S6 kinases (RSKs). In this study, we examined light-induced regulation of RSK-1 in the SCN. Immunohistochemical and Western analysis were used to show that photic stimulation during the early and late night triggered the phosphorylation of RSK-1 at two sites that are targeted by ERK. This increase in the phosphorylation state of RSK-1 corresponded with an approximate fourfold increase in kinase activity. Light exposure during the subjective day did not increase the phosphorylated form of RSK-1, indicating that the capacity of light to stimulate RSK-1 activation is phase-restricted. Double immunofluorescent labelling of SCN tissue revealed the colocalized expression of the activated form of ERK with the phosphorylated form of RSK-1 following a light pulse. In vivo pharmacological inhibition of light-induced MAPK pathway activation blocked RSK-1 phosphorylation, indicating that RSK-1 activity is regulated by the MAPK pathway. PDK-1, a coregulator of RSK-1, is also expressed in the SCN and is likely to contribute to RSK-1 activity. RSK-1 phosphorylation was also rhythmically regulated within a subset of phospho-ERK-expressing cells. Together these results identify RSK-1 as a light- and clock-regulated kinase and raise the possibility that it contributes to entrainment and timing of the circadian pacemaker.
Collapse
Affiliation(s)
- Greg Q Butcher
- Department of Neuroscience, The Ohio State University, Graves Hall, Rm 4118, 333 W 10th Ave., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
105
|
Sato Y, Kobayashi E, Hakamata Y, Kobahashi M, Wainai T, Murayama T, Mishina M, Seo N. Chronopharmacological studies of ketamine in normal and NMDA epsilon1 receptor knockout mice. Br J Anaesth 2004; 92:859-64. [PMID: 15064251 DOI: 10.1093/bja/aeh144] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The effectiveness and toxicity of many drugs depends on the dosing-time schedule, relative to the circadian rhythms of biochemical, physiological, and behavioural processes. Previous studies have found chronopharmacology of ketamine, which is a N-methyl-d-aspartate (NMDA) receptor antagonist. The in vivo contribution of the NMDA receptor epsilon1 subunit (NR2A) in this effect is unclear. METHODS In the present study, daily variations in the hypnotic effect of ketamine were determined in wild-type mice and NMDA epsilon1 knockout (KO) mice. RESULTS The effect of ketamine had a definite daily variation in wild-type mice. No significant difference in blood concentration was observed at different dosing times (10:00 and 22:00). In NMDA receptor epsilon1 KO mice, the hypnotic effect of ketamine was weaker than in wild-type mice and there was no dependence on the time of administration. Significant pharmacokinetic differences were not observed between wild-type and KO mice. CONCLUSIONS The enhanced hypnotic effect in the active phase of the circadian cycle is likely a result of changes with the time of day in the susceptibility of the central nervous system to ketamine. Knockout of the NMDA receptor epsilon1 subunit gene markedly reduced the effect of ketamine, and eliminated the time-dependent sensitivity to ketamine.
Collapse
Affiliation(s)
- Y Sato
- Department of Anesthesiology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Hirota T, Fukada Y. Resetting Mechanism of Central and Peripheral Circadian Clocks in Mammals. Zoolog Sci 2004; 21:359-68. [PMID: 15118222 DOI: 10.2108/zsj.21.359] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Almost all organisms on earth exhibit diurnal rhythms in physiology and behavior under the control of autonomous time-measuring system called circadian clock. The circadian clock is generally reset by environmental time cues, such as light, in order to synchronize with the external 24-h cycles. In mammals, the core oscillator of the circadian clock is composed of transcription/translation-based negative feedback loops regulating the cyclic expression of a limited number of clock genes (such as Per, Cry, Bmal1, etc.) and hundreds of output genes in a well-concerted manner. The central clock controlling the behavioral rhythm is localized in the hypothalamic suprachiasmatic nucleus (SCN), and peripheral clocks are present in other various tissues. The phase of the central clock is amenable to ambient light signal captured by the visual rod-cone photoreceptors and non-visual melanopsin in the retina. These light signals are transmitted to the SCN through the retinohypothalamic tract, and transduced therein by mitogen-activated protein kinase and other signaling molecules to induce Per gene expression, which eventually elicits phase-dependent phase shifts of the clock. The central clock controls peripheral clocks directly and indirectly by virtue of neural, humoral, and other signals in a coordinated manner. The change in feeding time resets the peripheral clocks in a SCN-independent manner, possibly by food metabolites and body temperature rhythms. In this article, we will provide an overview of recent molecular and genetic studies on the resetting mechanism of the central and peripheral circadian clocks in mammals.
Collapse
Affiliation(s)
- Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
107
|
Abstract
The circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus. At the core of the clock are molecular autofeedback loops associated with clock gene transcription. However, the mechanisms of circadian signal transduction are basically unknown. A recent report by Ikeda et al. provides new insights into the intracellular signaling pathways involved in conveying circadian clock information from the core loop to cellular functions. Cytosolic Ca(2+) is proposed to be a key substance linking the 'pendulum' to the 'hands' of the clock.
Collapse
Affiliation(s)
- Sato Honma
- Department of Physiology, Hokkaido University Graduate School of Medicine, 060-8638, Sapporo, Japan.
| | | |
Collapse
|
108
|
Marquez S, Crespo P, Carlini V, Garbarino-Pico E, Baler R, Caputto BL, Guido ME. The metabolism of phospholipids oscillates rhythmically in cultures of fibroblasts and is regulated by the clock protein PERIOD 1. FASEB J 2004; 18:519-21. [PMID: 14715703 DOI: 10.1096/fj.03-0417fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mammalian circadian timing system is composed of countless cell oscillators distributed throughout the body and central pacemakers regulating temporal physiology and behavior. Peripheral clocks display circadian rhythms in gene expression both in vivo and in culture. We examined the biosynthesis of phospholipids as well as the expression of the clock gene period 1 (Per1) and its potential involvement in the regulation of the phospholipid metabolism in cultured quiescent NIH 3T3 cells synchronized by a 2 h serum shock. A 30 min pulse of radiolabeled precursor was given at phases ranging from 0.5 to 62 h after serum treatment. We observed a daily rhythm in the phospholipid labeling that persisted at least for two cycles, with levels significantly decreasing 29 and 58 h after treatment. Per1 expression exhibited a rapid and transient induction and a daily rhythmicity in antiphase to the lipid labeling. After Per1 expression knockdown, the rhythm of phospholipid labeling was lost. Furthermore, in cultures of CLOCK mutant fibroblasts--cells with a clock mechanism impairment--PER1 was equally expressed at all times examined and the phospholipid labeling did not oscillate. The results demonstrate that the biosynthesis of phospholipids oscillates daily in cultured fibroblasts by an endogenous clock mechanism involving Per1 expression.
Collapse
Affiliation(s)
- Sebastian Marquez
- CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
109
|
Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU. Requirement of mammalian Timeless for circadian rhythmicity. Science 2003; 302:439-42. [PMID: 14564007 DOI: 10.1126/science.1086593] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite a central circadian role in Drosophila for the transcriptional regulator Timeless (dTim), the relevance of mammalian Timeless (mTim) remains equivocal. Conditional knockdown of mTim protein expression in the rat suprachiasmatic nucleus (SCN) disrupted SCN neuronal activity rhythms, and altered levels of known core clock elements. Full-length mTim protein (mTIM-fl) exhibited a 24-hour oscillation, where as a truncated isoform (mTIM-s) was constitutively expressed. mTIM-fl associated with the mammalian clock Period proteins (mPERs) in oscillating SCN cells. These data suggest that mTim is required for rhythmicity and is a functional homolog of dTim on the negative-feedback arm of the mammalian molecular clockwork.
Collapse
Affiliation(s)
- Jessica W Barnes
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Varcoe TJ, Kennaway DJ, Voultsios A. Activation of 5-HT2C receptors acutely induces Per gene expression in the rat suprachiasmatic nucleus at night. ACTA ACUST UNITED AC 2003; 119:192-200. [PMID: 14625086 DOI: 10.1016/j.molbrainres.2003.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus receives dense serotonergic projections from the raphe nuclei and this input has been implicated in the modulation of circadian rhythms. In the present study, we investigated the effect of 5-HT2C receptor activation on various clock genes within the suprachiasmatic nucleus, including Per1 and Per2, which have previously been demonstrated as necessary for phase shifts. Rats were exposed to light (400 lx, 15 min), administered 5-HT2C receptor agonists (+/-)-1-(4-iodo-2,5-dimethoxy-phenyl)-2-aminopropane (DOI) (2 mg/kg) or RO 60-0175 (10 mg/kg) or vehicle 4 or 10 h after dark onset (ZT16 and ZT22). The expression of Per1, Per2, Cry1, Clock, Bmal1, Dec1, Dec2 and c-fos was determined 30 and 120 min after treatment in suprachiasmatic nucleus punches by real time reverse transcription-polymerase chain reaction (RT-PCR). Light exposure induced a 7-fold increase in c-fos expression within 30 min of treatment at both ZT16 and ZT22. Per1 expression was increased 2-fold following light exposure at ZT22, whereas treatment at ZT16 had no significant effect. Per2 expression was significantly induced following light at ZT16, but was not affected at ZT22. RO 60-0175 or DOI administration induced a 5-fold change in c-fos expression at ZT16 and a 3-fold change at ZT22 within 30 min of treatment. The drug increased both Per1 and Per2 expression at ZT16, but had no effect at ZT22. These results provide evidence for 5-HT2C receptors being involved in the modulation of circadian rhythms during early night.
Collapse
Affiliation(s)
- Tamara J Varcoe
- Department of Obstetrics and Gynaecology, University of Adelaide Medical School, Frome Road, Adelaide 5005, South Australia, Australia.
| | | | | |
Collapse
|
111
|
Bergström AL, Hannibal J, Hindersson P, Fahrenkrug J. Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci 2003; 18:2552-62. [PMID: 14622156 DOI: 10.1046/j.1460-9568.2003.03000.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are daily adjusted (entrained) by light via the retinohypothalamic tract (RHT). The RHT contains two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), which are believed to mediate the phase-shifting effects of light on the clock. In the present study we have elucidated the role of PACAP in light-induced phase shifting at early night in hamsters and shown that (i) light-induced phase delay of running-wheel activity was significantly attenuated by a specific PAC1 receptor antagonist (PACAP6-38) or by immunoblockade with a specific anti-PACAP antibody injected intracerebroventricularly before light stimulation; (ii) PACAP administered close to the SCN was able to phase-delay the circadian rhythm of running-wheel activity in a similar way to light; (iii) PACAP was present in the hamster RHT, colocalized with melanopsin, a recently identified opsin which has been suggested to be a circadian photopigment. The findings indicate that PACAP is a neurotransmitter of the RHT mediating photic information to the clock, possibly via melanopsin located exclusively on the PACAP-expressing cells of the RHT.
Collapse
Affiliation(s)
- A L Bergström
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark
| | | | | | | |
Collapse
|
112
|
Masuda T, Iigo M, Mizusawa K, Aida K. Effects of Macromolecule Synthesis Inhibitors on Light-Induced Phase Shift of the Circadian Rhythm in Melatonin Release from the Cultured Pineal Organ of a Teleost, Ayu (Plecoglossus altivelis). Zoolog Sci 2003; 20:1405-10. [PMID: 14624041 DOI: 10.2108/zsj.20.1405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Effects of macromolecule synthesis inhibitors on the light-induced phase shift of the circadian clock in the photoreceptive pineal organ of a teleost, ayu (Plecoglosus altivelis) were investigated using melatonin release as an indicator. A single light pulse during the early- and late-subjective night delayed and advanced the phase of the circadian rhythm in melatonin release, respectively. During the late subjective-night, protein synthesis inhibitor cycloheximide (CHX) delayed the rhythm while RNA synthesis inhibitor 5,6-dichlorobenzimidazole riboside (DRB) had little effect. Light-induced phase advance was diminished by the treatment of CHX but not by DRB. During the early subjective-night, DRB, CHX, light and combination of these (DRB+light, CHX+light) all phase-delayed the rhythm. There were no additive effects of light and DRB or CHX. These results indicate that macromolecule synthesis is somehow involved in generation of circadian oscillation, and that de novo protein synthesis is required for light-induced phase shift of the circadian clock in the ayu pineal organ.
Collapse
Affiliation(s)
- Tomohiro Masuda
- Laboratory of Aquatic Animal Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, jAPAN
| | | | | | | |
Collapse
|
113
|
Hamada T, LeSauter J, Lokshin M, Romero MT, Yan L, Venuti JM, Silver R. Calbindin influences response to photic input in suprachiasmatic nucleus. J Neurosci 2003; 23:8820-6. [PMID: 14523082 PMCID: PMC3281751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
It is well known that light resets the circadian clock only at specific times of day. The mechanisms mediating such gating of environmental input to the CNS are not well understood. We show that calbindinD28K (CalB)-containing cells of the suprachiasmatic nucleus (SCN), which are directly retinorecipient, gate photic entrainment of cellular circadian oscillators and thereby determine the timing of locomotor rhythmicity. Specifically, we demonstrate a circadian rhythm of subcellular localization of CalB: whereas the protein is detected at all times in the cytoplasm, it is low or absent in the nucleus during the night. Under normal circumstances, light-induced behavioral phase shifts and Period (Per) gene expression in the SCN occur only during the subjective night. Surprisingly, both behavioral phase shifts and light-induced Per are blocked during the subjective night and enhanced during the subjective day after administration of CalB antisense oligodeoxynucleotides. These results suggest a cellular basis for temporal gating of photic input to the circadian clock.
Collapse
Affiliation(s)
- Toshiyuki Hamada
- Department of Psychology, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Sudo M, Sasahara K, Moriya T, Akiyama M, Hamada T, Shibata S. Constant light housing attenuates circadian rhythms of mPer2 mRNA AND mPER2 protein expression in the suprachiasmatic nucleus of mice. Neuroscience 2003; 121:493-9. [PMID: 14522008 DOI: 10.1016/s0306-4522(03)00457-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Constant light (LL) or constant dark (DD) environmental lighting conditions cause a free-running period and activity reduction in the rodent behavioral circadian rhythm. In order to understand the molecular process underlying behavioral rhythms in LL or DD housing conditions, we examined the circadian profile of mPer2 mRNA and mPER2 in the suprachiasmatic nucleus (SCN), a main oscillator, of free-running mice. The circadian expression rhythm of mPer2 in the SCN was dampened under 7-day LL conditions, whereas that of mPER2 protein was moderately attenuated and its expression peak delayed. The circadian expression of mPer2 and its product was slightly attenuated and advanced by 7-day DD conditions. With arrhythmic behavioral activity caused by long-term LL housing, mPER2 protein lost its rhythmicity in the SCN. On the other hand, LL or DD housing did not affect the mPer2 gene and its product in the cerebral cortex. The present results suggest that mPER2 circadian expression in the SCN corresponds well with behavioral circadian oscillation under LL or DD conditions. Thus, the behavioral circadian rhythm seems to correlate with molecular clock works in the SCN.
Collapse
Affiliation(s)
- M Sudo
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1164, Japan
| | | | | | | | | | | |
Collapse
|
115
|
Vansteensel MJ, Yamazaki S, Albus H, Deboer T, Block GD, Meijer JH. Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr Biol 2003; 13:1538-42. [PMID: 12956957 DOI: 10.1016/s0960-9822(03)00560-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a major circadian pacemaker that imposes or entrains rhythmicity on other structures by generating a circadian pattern in electrical activity. The identification of "clock genes" within the SCN and the ability to dynamically measure their rhythmicity by using transgenic animals open up new opportunities to study the relationship between molecular rhythmicity and other well-documented rhythms within the SCN. We investigated SCN circadian rhythms in Per1-luc bioluminescence, electrical activity in vitro and in vivo, as well as the behavioral activity of rats exposed to a 6-hr advance in the light-dark cycle followed by constant darkness. The data indicate large and persisting phase advances in Per1-luc bioluminescence rhythmicity, transient phase advances in SCN electrical activity in vitro, and an absence of phase advances in SCN behavioral or electrical activity measured in vivo. Surprisingly, the in vitro phase-advanced electrical rhythm returns to the phase measured in vivo when the SCN remains in situ. Our study indicates that hierarchical levels of organization within the circadian timing system influence SCN output and suggests a strong and unforeseen role of extra-SCN areas in regulating pacemaker function.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Department of Neurophysiology, Leiden University Medical Center, Wassenaarseweg 62, P.O. Box 9604, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
116
|
Paul KN, Fukuhara C, Tosini G, Albers HE. Transduction of light in the suprachiasmatic nucleus: evidence for two different neurochemical cascades regulating the levels of Per1 mRNA and pineal melatonin. Neuroscience 2003; 119:137-44. [PMID: 12763075 DOI: 10.1016/s0306-4522(03)00098-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The suprachiasmatic nucleus (SCN) contains a circadian clock and regulates melatonin synthesis in the pineal gland. Light exposure during the subjective night acutely increases the mRNA levels of the Period (Per)1 gene in the SCN and acutely suppresses melatonin levels in the pineal gland. Activation of N-methyl-D-aspartate (NMDA) receptors in the SCN has been demonstrated to phase-shift the circadian clock in a manner similar to light. We tested the hypothesis that activation of excitatory amino acid (EAA) receptors in the SCN mediates the acute effects of light on Per1 mRNA levels and pineal melatonin. NMDA, injected into the SCN of Syrian hamsters during the night, acutely suppressed melatonin levels in the pineal gland. Both the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5) and the alpha-amino-3-hydroxy-5-methylisoxazoleproprionic acid (AMPA)/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) inhibited the light-induced increase of Per1 mRNA levels in the SCN. In the same animals, however, these antagonists had no effect on the ability of light to suppress pineal melatonin. These results support the hypothesis that EAA receptor activation in the SCN is necessary for the acute effects of light on Per1 mRNA levels. They also indicate that NMDA receptor activation in the SCN is sufficient but may not be necessary for the acute effects of light on pineal melatonin. These data suggest that there may be at least two different neurochemical cascades that transduce the effects of light in the SCN
Collapse
Affiliation(s)
- K N Paul
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, 24 Peachtree Center Avenue, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
117
|
Nagano M, Adachi A, Nakahama KI, Nakamura T, Tamada M, Meyer-Bernstein E, Sehgal A, Shigeyoshi Y. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 2003; 23:6141-51. [PMID: 12853433 PMCID: PMC6740348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is the neuroanatomical locus of the mammalian circadian pacemaker. Here we demonstrate that an abrupt shift in the light/dark (LD) cycle disrupts the synchronous oscillation of circadian components in the rat SCN. The phases of the RNA cycles of the period genes Per1 and Per2 and the cryptochrome gene Cry1 shifted rapidly in the ventrolateral, photoreceptive region of the SCN, but were relatively slow to shift in the dorsomedial region. During the period of desynchrony, the animals displayed increased nighttime rest, the timing of which was inversely correlated with the expression of Per1 mRNA in the dorsomedial SCN. Molecular resynchrony required approximately 6 d after a 10 hr delay and 9 approximately 13 d after a 6 hr advance of the LD cycle and was accompanied by the reemergence of normal rest-activity patterns. This dissociation and slow resynchronization of endogenous oscillators within the SCN after an LD cycle shift suggests a mechanism for the physiological symptoms that constitute jet lag.
Collapse
Affiliation(s)
- Mamoru Nagano
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osakasayama City, Osaka 589-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Masumoto KH, Fujioka A, Nakahama KI, Inouye SIT, Shigeyoshi Y. Effect of phosphodiesterase type 4 on circadian clock gene Per1 transcription. Biochem Biophys Res Commun 2003; 306:781-5. [PMID: 12810087 DOI: 10.1016/s0006-291x(03)01048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The induction of Per1 gene in the suprachiasmatic nucleus, the center of the circadian clock, is assumed to play significant roles in the adjustment of the internal clock. cAMP is one of the intracellular mediators which activates Per1 transcription. Here, we showed that the amount of the rat Per1 (rPer1) transcript induced by forskolin (FK) was significantly upregulated by the inhibition of phosphodiesterase type 4 (PDE4), a specific phosphodiesterase for cAMP, in rat-1 fibroblasts. Administration of rolipram, a specific inhibitor of PDE4, increased intracellular cAMP concentration, phosphorylation of cAMP response element binding protein (CREB) and enhanced rPer1 induction at their peaks. However, in the falling phase of rPer1 induction, the inhibition of PDE4 hardly affected the profile of rPer1 expression. These findings suggest the involvement of PDE4 for the regulation of rPer1 expression via cAMP metabolism at peak of the induction but little or no participation of PDE4 in the decreasing phase of the gene expression.
Collapse
Affiliation(s)
- Koh-hei Masumoto
- Department of Physics, Informatics and Biology, Yamaguchi University, Yoshida, 753-8512, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
119
|
von Gall C, Noton E, Lee C, Weaver DR. Light does not degrade the constitutively expressed BMAL1 protein in the mouse suprachiasmatic nucleus. Eur J Neurosci 2003; 18:125-33. [PMID: 12859345 DOI: 10.1046/j.1460-9568.2003.02735.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological rhythms in mammals are driven by a central circadian clock located in the suprachiasmatic nucleus (SCN). At the molecular level the biological clock is based on the rhythmic expression of clock genes. Two basic helix-loop-helix (bHLH)/PAS-containing transcription factors, CLOCK and BMAL1 (MOP3), provide the basic drive to the system by activating transcription of negative regulators through E box enhancer elements. A critical feature of circadian timing is the ability of the clockwork to be entrained to the environmental light/dark cycle. The light-resetting mechanism of the mammalian circadian clock is poorly understood. Light-induced phase shifts are correlated with the induction of the clock genes mPer1 and mPer2 and a subsequent increase in mPER1 protein levels. It has previously been suggested that rapid degradation of BMAL1 protein in the rat SCN is part of the resetting mechanism of the central pacemaker. Our study shows that BMAL1 and CLOCK proteins are continuously expressed at high levels in the mouse SCN, supporting the hypothesis that rhythmic negative feedback plays the major role in rhythm generation in the mammalian pacemaker. Using both immunocytochemistry and immunoblot analysis, our studies demonstrate that BMAL1 protein in the mouse SCN is not affected by a phase-resetting light pulse. These results indicate that rapid degradation of BMAL1 protein is not a consistent feature of resetting mechanisms in rodents.
Collapse
Affiliation(s)
- Charlotte von Gall
- Department of Neurobiology, Aaron Lazare Medical Research Building, Room 723, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | |
Collapse
|
120
|
Meijer JH, Schwartz WJ. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 2003; 18:235-49. [PMID: 12828281 DOI: 10.1177/0748730403018003006] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.
Collapse
Affiliation(s)
- Johanna H Meijer
- Department of Physiology, Leiden University Medical Centre, 2300 RC Leiden, the Netherlands
| | | |
Collapse
|
121
|
Challet E, Poirel VJ, Malan A, Pévet P. Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice. J Neurosci Res 2003; 72:629-37. [PMID: 12749028 DOI: 10.1002/jnr.10616] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus contain the master circadian clock in mammals. Nocturnal light pulses that reset the circadian clock also lead to rapid increases in levels of Per1 and Per2 mRNA in the SCN, suggesting that these genes are involved in the synchronization to light. During the day, when light has no phase-shifting effects in nocturnal rodents, the consequences of light exposure for Per expression have been less thoroughly studied. Therefore, the effects of light exposure during the day were assessed on Per1 and Per2 mRNA in the SCN of mice. Expression of Per1 and Per2 was generally increased by 30-min light pulses during the subjective day, with more pronounced effects in the morning. One exception was noted for a transient decrease in Per2 expression after a short light pulse applied at midday. Prolonged light exposure (up to 3 hr) starting at midday markedly increased Per2 expression but not that of Per1. Moreover, the amplitude of the daily variations of both Per and the duration of Per1 peak was increased in mice exposed to a light-dark cycle compared with those transferred to constant darkness. Finally, the amplitude of the daily variations of both Per and the basal level of Per1 were increased in mice under a light-dark cycle compared with animals synchronized to a skeleton photoperiod (i.e., with daily dawn and dusk 1-hr exposures to light). Taken together, the results indicate that prolonged light exposure during daytime positively modulates daily levels of Per1 and Per2 mRNA in the SCN of mice.
Collapse
Affiliation(s)
- Etienne Challet
- Laboratory of Neurobiology of Rhythms (CNRS UMR7518), University Louis Pasteur, Neuroscience Federation (IFR37), Strasbourg, France.
| | | | | | | |
Collapse
|
122
|
Challet E, Caldelas I, Graff C, Pévet P. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 2003; 384:711-9. [PMID: 12817467 DOI: 10.1515/bc.2003.079] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.
Collapse
Affiliation(s)
- Etienne Challet
- Laboratory of Neurobiology of Rhythms, Centre National de la Recherche Scientifique (UMR7518), University Louis Pasteur, Neuroscience Federation (IFR37), 12 rue de l'université, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
123
|
Moriya T, Ikeda M, Teshima K, Hara R, Kuriyama K, Yoshioka T, Allen CN, Shibata S. Facilitation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents. J Neurochem 2003; 85:978-87. [PMID: 12716429 DOI: 10.1046/j.1471-4159.2003.01758.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to test whether the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-facilitating drug, aniracetam, could potentiate photic responses of the biological clock in the suprachiasmatic nucleus (SCN) of rodents. Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN. The AMPA application-elicited increase of intracellular Ca2+ concentration in SCN slices was also enhanced by aniracetam treatment. The systemic injection of aniracetam dose-dependently (10-100 mg/kg) potentiated the phase delay in behavioral rhythm induced by brief light exposure of low intensity (3 lux) but not high intensity (10 or 60 lux) during early subjective night. Under the blockade of NMDA receptors by (+) MK801, aniracetam failed to potentiate a light (3 lux)-induced phase delay in behavioral rhythm. Aniracetam increased the photic induction of c-Fos protein in the SCN that was elicited by low intensity light exposure (3 lux). These results suggest that AMPA receptor-mediated responses facilitated by aniracetam can explain enhanced photic responses of the biological clock in the SCN of rodents.
Collapse
Affiliation(s)
- Takahiro Moriya
- Departments of Pharmacology and Brain Science, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Saitama 359-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Scheer FA, Kalsbeek A, Buijs RM. Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat. Biol Chem 2003; 384:697-709. [PMID: 12817466 DOI: 10.1515/bc.2003.078] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The risk for cardiovascular incidents is highest in the early morning, which seems partially due to endogenous factors. Endogenous circadian rhythms in mammalian physiology and behavior are regulated by the suprachiasmatic nucleus (SCN). Recently, anatomical evidence has been provided that SCN functioning is disturbed in patients with essential hypertension. Here we review neural and neuroendocrine mechanisms by which the SCN regulates the cardiovascular system. First, we discuss evidence for an endogenous circadian rhythm in cardiac activity, both in humans and rats, which is abolished after SCN lesioning in rats. The immediate impact of retinal light exposure at night on SCN-output to the cardiovascular system, which signals 'day' in both diurnal (human) and nocturnal (rat) mammals with opposite effects on physiology, is discussed. Furthermore, we discuss the impact of melatonin treatment on the SCN and its potential medical relevance in patients with essential hypertension. Finally, we argue that regional differentiation of the SCN and autonomous nervous system is required to explain the multitude of circadian rhythms. Insights into the mechanisms by which the SCN affects the cardiovascular system may provide new strategies for the treatment of disease conditions known to coincide with circadian rhythm disturbances, as is presented for essential hypertension.
Collapse
Affiliation(s)
- Frank A Scheer
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Brain Research, NL-1105 Amsterdam AZ, The Netherlands
| | | | | |
Collapse
|
125
|
Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U. cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 2003; 13:725-33. [PMID: 12725729 DOI: 10.1016/s0960-9822(03)00252-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND In mammals, the master circadian clock that drives many biochemical, physiological, and behavioral rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Generation and maintenance of circadian rhythmicity rely on complex interlocked transcriptional/translational feedback loops involving a set of clock genes. Among the molecular components driving the mammalian circadian clock are the Period 1 and 2 (mPer1 and mPer2) genes. Because the periodicity of the clock is not exactly 24 hr, it has to be adjusted periodically. The major stimulus for adjustment (resetting) of the clock is nocturnal light. It evokes activation of signaling pathways in the SCN that ultimately lead to expression of mPer1 and mPer2 genes conveying adjustment of the clock. RESULTS We show that mice deficient in cGMP-dependent protein kinase II (cGKII, also known as PKGII), despite regular retinal function, are defective in resetting the circadian clock, as assessed by changes in the onset of wheel running activity after a light pulse. At the molecular level, light induction of mPer2 in the SCN is strongly reduced in the early period of the night, whereas mPer1 induction is elevated in cGKII-deficient mice. Additionally, we show that light induction of cfos and light-dependent phosphorylation of CREB at serine 133 are not affected in these animals. CONCLUSIONS cGKII plays a role in the clock-resetting mechanism. In particular, the ability to delay clock phase is affected in cGKII-deficient mice. It seems that the signaling pathway involving cGKII influences in an opposite manner the light-induced induction of mPer1 and mPer2 genes and thereby influences the direction of a phase shift of the circadian clock.
Collapse
Affiliation(s)
- Henrik Oster
- Department of Medicine, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Three homologs of the Drosophila Period gene have been identified in mammals. In mice, these three genes (mPer1, mPer2, and mPer3) have distinct roles in the circadian clockwork. While products of mPer1 and mPer2 play important roles in the maintenance of circadian rhythmicity, mPer3 gene products are dispensable for rhythmicity. Several studies also implicate mPER1 and mPER2 in transduction of photic information to the core circadian clockwork. The phase-shifting effects of light were examined in mPER1-deficient and mPER2-deficient mice using T cycle paradigms, in which mice received 1 h of light per day at an interval of T hours. To assess phase delays, repeated exposure to 1 h of light per day at T = 24 was used. To assess phase advances, exposure to 1-h light pulses at T = 22-h intervals was used. The degeneration of rhythmicity in the mutant mice prevented assessment of a response in most cases. Nevertheless, clear examples of phase delays and phase advances were observed in both mPer1 and mPer2 mutant mice. These results are not consistent with the hypothesis that mPER1 and mPER2 play necessary and nonoverlapping roles in mediating the effects of light on the circadian dock.
Collapse
Affiliation(s)
- Kiho Bae
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
127
|
Dziema H, Oatis B, Butcher GQ, Yates R, Hoyt KR, Obrietan K. The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur J Neurosci 2003; 17:1617-27. [PMID: 12752379 DOI: 10.1046/j.1460-9568.2003.02592.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signalling via the p42/44 mitogen-activated protein kinase (MAPK) pathway has been identified as an intermediate event coupling light to entrainment of the mammalian circadian clock located in the suprachiasmatic nucleus (SCN). Given this observation, it was of interest to determine where within the entrainment process the MAPK pathway was functioning. In this study, we examined the role of the MAPK pathway as a regulator of light-induced gene expression in the SCN. Towards this end, we characterized the effect pharmacological disruption of the MAPK cascade has on the expression of the immediate-early genes c-Fos, JunB and EGR-1. We report that uncoupling light from MAPK pathway activation attenuated the expression of all three gene products. In the absence of photic stimulation, inhibition of the MAPK pathway did not alter basal gene product expression levels. Light-induced activation of cAMP response element (CRE)-dependent transcription, as assessed using a CRE-LacZ transgenic mouse strain, was also disrupted by blocking MAPK pathway activation. These results reveal that the MAPK cascade functions as one of the first transduction steps leading from light to rapid transcriptional activation, an essential event in the entrainment process. MAPK pathway-dependent gene expression in the SCN may result, in part, from stimulation of CRE-dependent transcription.
Collapse
Affiliation(s)
- Heather Dziema
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) receives multiple afferent signals that could potentially modulate its phase. One input, the serotonin (5-HT) projection from the raphe nuclei, has been extensively investigated in rats and hamsters, yet its role(s) in modulating circadian clock phase remains controversial. To expand our investigation of 5-HT modulation of the SCN clock, we investigated the phase-shifting effects of 5-HT and its agonist, (+)8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), when applied to mouse SCN brain slices. 5-HT induced 2-3 h phase advances when applied during subjective day, while non-significant phase shifts were seen after 5-HT application at other times. These phase shifts were completely blocked by the 5-HT antagonist, metergoline. DPAT also induced phase shifts when applied during mid-subjective day, and this effect appeared dose-dependent. Together, these results demonstrate that the mouse SCN, like that of the rat, is directly sensitive to in vitro phase-resetting by 5-HT.
Collapse
Affiliation(s)
- Rebecca A Prosser
- University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, M407 Walter's Life Sciences Building, Knoxville, TN 37996, USA.
| |
Collapse
|
129
|
Sanggaard KM, Hannibal J, Fahrenkrug J. Serotonin inhibits glutamate- but not PACAP-induced per gene expression in the rat suprachiasmatic nucleus at night. Eur J Neurosci 2003; 17:1245-52. [PMID: 12670312 DOI: 10.1046/j.1460-9568.2003.02562.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Circadian rhythms of physiology and behaviour generated by the brain's biological clock located in the suprachiasmatic nucleus are entrained by light via the retinohypothalamic tract. Two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), found in this monosynaptic pathway mediate the effects of light to the clock. It is well known that not only light entrains the clock. Nonphotic cues mediated by neurotransmitters such as serotonin reaching the suprachiasmatic nucleus from the midbrain raphe nucleus modulate light-induced phase shifts at night. Two clock genes, per1 and per2, have been attributed a role in light-induced phase shift. In the present study, using an in vitro brain slice model and quantitative in situ hybridization for per1 and per2, we have shown that serotonin induces per1 gene expression at late subjective night but not at early night. Furthermore, serotonin application before glutamate or PACAP blocked glutamate-induced per1 expression at early night and per2 gene expression at late night. In contrast, serotonin did not influence PACAP-induced per gene expression at late night. Triple antigen immunohistochemistry and confocal microscopy supported both a pre- and post-synaptic interaction of retinohypothalamic tract (PACAP-immunoreactive) and serotonin projections on vasoactive intestinal peptide- and gastrin-releasing peptide-containing cell bodies in the ventro-lateral suprachiasmatic nucleus. Our findings suggest that the per genes could be the molecular target for the modulatory effects of serotonin on light signalling to the clock.
Collapse
Affiliation(s)
- K M Sanggaard
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark
| | | | | |
Collapse
|
130
|
Kuhlman SJ, Silver R, Le Sauter J, Bult-Ito A, McMahon DG. Phase resetting light pulses induce Per1 and persistent spike activity in a subpopulation of biological clock neurons. J Neurosci 2003; 23:1441-50. [PMID: 12598633 PMCID: PMC3281758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The endogenous circadian clock of the mammalian suprachiasmatic nucleus (SCN) can be reset by light to synchronize the biological clock of the brain with the external environment. This process involves induction of immediate-early genes such as the circadian clock gene Period1 (Per1) and results in a stable shift in the timing of behavioral and physiological rhythms on subsequent days. The mechanisms by which gene activation permanently alters the phase of clock neuron activity are unknown. To study the relationship between acute gene activation and persistent changes in the neurophysiology of SCN neurons, we recorded from SCN neurons marked with a dynamic green fluorescent protein (GFP) reporter of Per1 gene activity. Phase-resetting light pulses resulted in Per1 induction in a distinct subset of SCN neurons that also exhibited a persistent increase in action potential frequency 3-5 hr after a light pulse. By simultaneously quantifying Per1 gene activation and spike frequency in individual neurons, we found that the degree of Per1 induction was highly correlated with neuronal spike frequency on a cell-by-cell basis. Increased neuronal activity was mediated by membrane potential depolarization as a result of a reduction in outward potassium current. Double-label immunocytochemistry revealed that vasoactive intestinal peptide (VIP)-expressing cells, but not arginine vasopressin (AVP)-expressing cells, exhibited significant Per1 induction by light pulses. Rhythmic GFP expression occurred in both VIP and AVP neurons. Our results indicate that the steps that link acute molecular events to permanent changes in clock phase involve persistent suppression of potassium current, downstream of Per1 gene induction, in a specific subset of Per1-expressing neurons enriched for VIP.
Collapse
Affiliation(s)
- Sandra J Kuhlman
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0084, USA.
| | | | | | | | | |
Collapse
|
131
|
Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU. Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 2003; 278:718-23. [PMID: 12409294 DOI: 10.1074/jbc.m209241200] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light is a prominent stimulus that synchronizes endogenous circadian rhythmicity to environmental light/dark cycles. Nocturnal light elevates mRNA of the Period1 (Per1) gene and induces long term state changes, expressed as phase shifts of circadian rhythms. The cellular mechanism for Per1 elevation and light-induced phase advance in the suprachiasmatic nucleus (SCN), a process initiated primarily by glutamatergic neurotransmission from the retinohypothalamic tract, was examined. Glutamate (GLU)-induced phase advances in the rat SCN were blocked by antisense oligodeoxynucleotide (ODN) against Per1 and Ca(2+)/cAMP response element (CRE)-decoy ODN. CRE-decoy ODN also blocked light-induced phase advances in vivo. Furthermore, the CRE-decoy blocked GLU-induced accumulation of Per1 mRNA. Thus, Ca(2+)/cAMP response element-binding protein (CREB) and Per1 are integral components of the pathway transducing light-stimulated GLU neurotransmission into phase advance of the circadian clock.
Collapse
Affiliation(s)
- Shelley A Tischkau
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, B107 CLSL, 61801, USA
| | | | | | | | | |
Collapse
|
132
|
Caldelas I, Poirel VJ, Sicard B, Pévet P, Challet E. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 2003; 116:583-91. [PMID: 12559113 DOI: 10.1016/s0306-4522(02)00654-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular mechanisms of the mammalian circadian clock located in the suprachiasmatic nucleus have been essentially studied in nocturnal species. Currently, it is not clear if the clockwork and the synchronizing mechanisms are similar between diurnal and nocturnal species. Here we investigated in a day-active rodent Arvicanthis ansorgei, some of the molecular mechanisms that participate in the generation of circadian rhythmicity and processing of photic signals. In situ hybridization was used to characterize circadian profiles of expression of Per1, Per2, Cry2 and Bmal1 in the suprachiasmatic nucleus of A. ansorgei housed in constant dim red light. All the clock genes studied showed a circadian expression. Per1 and Per2 mRNA increased during the subjective day and decreased during the subjective night. Also, Bmal1 exhibited a circadian expression, but in anti-phase to that of Per1. The expression of Cry2 displayed a circadian pattern, increasing during the late subjective day and decreasing during the late subjective night. We also obtained the phase responses to light for wheel-running rhythm and clock gene expression. At a behavioral level, light was able to induce phase shifts only during the subjective night, like in other diurnal and nocturnal species. At a molecular level, light pulse exposure during the night led to an up-regulation of Per1 and Per2 concomitant with a down-regulation of Cry2 in the suprachiasmatic nucleus of A. ansorgei. In contrast, Bmal1 expression was not affected by light pulses at the circadian times investigated. This study demonstrates that light exposure during the subjective night has opposite effects on the expression of the clock genes Per1 and Per2 compared with that of Cry2. These differential effects can participate in photic resetting of the circadian clock. Our data also indicate that the molecular mechanisms underlying circadian rhythmicity and photic synchronization share clear similarities between diurnal and nocturnal mammals.
Collapse
Affiliation(s)
- I Caldelas
- Laboratory of Neurobiology of Rhythms, Centre National de la Recherche Scientifique UMR7518, Louis Pasteur University, 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
133
|
Stanewsky R. Genetic analysis of the circadian system in Drosophila melanogaster and mammals. JOURNAL OF NEUROBIOLOGY 2003; 54:111-47. [PMID: 12486701 DOI: 10.1002/neu.10164] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fruit fly, Drosophila melanogaster, has been a grateful object for circadian rhythm researchers over several decades. Behavioral, genetic, and molecular studies helped to reveal the genetic bases of circadian time keeping and rhythmic behaviors. Contrary, mammalian rhythm research until recently was mainly restricted to descriptive and physiologic approaches. As in many other areas of research, the surprising similarity of basic biologic principles between the little fly and our own species, boosted the progress of unraveling the genetic foundation of mammalian clock mechanisms. Once more, not only the basic mechanisms, but also the molecules involved in establishing our circadian system are taken or adapted from the fly. This review will try to give a comparative overview about the two systems, highlighting similarities as well as specifics of both insect and murine clocks.
Collapse
Affiliation(s)
- Ralf Stanewsky
- Universität Regensburg, Institut für Zoologie, Lehrstuhl für Entwicklungsbiologie, Universitätsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
134
|
Dardente H, Poirel VJ, Klosen P, Pévet P, Masson-Pévet M. Per and neuropeptide expression in the rat suprachiasmatic nuclei: compartmentalization and differential cellular induction by light. Brain Res 2002; 958:261-71. [PMID: 12470861 DOI: 10.1016/s0006-8993(02)03563-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Per1 and Per2, two clock genes rhythmically expressed in the suprachiasmatic nucleus (SCN), are implicated in the molecular mechanism of the circadian pacemaker and play a major role in its entrainment by light. To date, it is not known if every cell of the SCN, a heterogeneous structure in respect of neuropeptide content, expresses clock genes equally. The aim of this study was to identify, by single and double non-radioactive and/or radioactive hybridizations, the cell types (AVP, VIP and GRP) expressing Per1 or Per2 in the SCN of rats, (1) when Per are highly expressed during the daytime, and (2) after induction of Per expression by a light pulse at night. Our results indicate that, during the daytime, Per1 and Per2 genes are both mainly expressed in the AVP cells of the dorso-median part of the SCN, whereas only a few VIP cells in the ventral part of the SCN exhibit Per gene expression. In contrast, following a light pulse at night, there is differential induction of the two Per genes. Per1 expression essentially occurs in the ventro-lateral GRP cells, while Per2 expression is not restricted to the retinorecipient part of the SCN as it also occurs in AVP cells. Altogether, our results suggest that Per1 and Per2 are mainly expressed in AVP cells during the daytime and suggest that GRP cells play an important role in resetting of the clock by light.
Collapse
Affiliation(s)
- Hugues Dardente
- Neurobiologie des Rythmes, UMR 7518 CNRS/ULP, IFR 37, 12 Rue de l'Université, 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
135
|
Van Someren EJW, Riemersma RF, Swaab DF. Functional plasticity of the circadian timing system in old age: light exposure. PROGRESS IN BRAIN RESEARCH 2002; 138:205-31. [PMID: 12432772 DOI: 10.1016/s0079-6123(02)38080-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eus J W Van Someren
- Graduate School Neuroscience Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
136
|
Amir S, Beaulé C, Arvanitogiannis A, Stewart J. Modes of plasticity within the mammalian circadian system. PROGRESS IN BRAIN RESEARCH 2002; 138:191-203. [PMID: 12432771 DOI: 10.1016/s0079-6123(02)38079-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Shimon Amir
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 1455 de Maisonneuve Boulevard, West, Montreal, QC, H3G 1M8, Canada.
| | | | | | | |
Collapse
|
137
|
Lall GS, Biello SM. Attenuation of phase shifts to light by activity or neuropeptide Y: a time course study. Brain Res 2002; 957:109-16. [PMID: 12443986 DOI: 10.1016/s0006-8993(02)03610-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Circadian rhythms in mammals can be synchronised to photic and non-photic stimuli. Interactions between photic and behavioural stimuli were investigated during the late subjective night, 6 h after activity onset in Syrian hamsters (CT18). Light pulses of 130 lx for 15 min at this time resulted in phase advance shifts. Novel wheel exposure, for a period of 3 h, following photic stimulation was able to attenuate the phase advancing effects of light. A time delay of up to 60 min between photic and behavioural stimuli also resulted in significant attenuation of light-induced phase shifts (P<0.05). A 90-min interval between stimuli resulted in no significant attenuation. Novel wheel exposure mediates its effects via the intergeniculate leaflet, which conveys information to the SCN and utilises neuropeptide Y (NPY) as its primary neurotransmitter. Phase shifts to light pulses given at CT18 were attenuated by NPY administration. Neuropeptide Y injections up to 60 min post-light exposure significantly attenuated phase shifts by 50% on average. However a 90-min interval between light and NPY microinjection did not significantly affect light-induced phase shifts. These results confirm previous work indicating that novel wheel exposure and NPY administration can modulate light-induced phase shifts during the late night. Further, they show for the first time that the time course for this interaction is similar between wheel running and NPY. Most significantly, our work indicates that the time course in vivo in the late night is similar to that shown previously in vitro during the early night.
Collapse
Affiliation(s)
- Gurprit S Lall
- Department of Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB, Glasgow, UK
| | | |
Collapse
|
138
|
Koyanagi S, Ohdo S. Alteration of intrinsic biological rhythms during interferon treatment and its possible mechanism. Mol Pharmacol 2002; 62:1393-9. [PMID: 12435807 DOI: 10.1124/mol.62.6.1393] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the most indispensable biological functions for all living organisms is the circadian clock, which acts like a multifunctional timer to regulate the homeostatic system, including sleep and wakefulness, hormonal secretions, and various other bodily functions with a 24-h cycle. We reported previously that interferon (IFN) has the ability to modulate the biological clock system at the genetic level. In the present study, this mechanism was investigated further by evaluating the effects of IFN-alpha on circadian output function. Treatment of cultured hepatic cells (HepG2) with IFN-alpha significantly decreased the protein levels of CLOCK and BMAL1, which are positive regulators of circadian output rhythm, then their mRNA levels. Aurintricarboxylic acid, a ligand inhibitor of IFN-alpha, dose dependently inhibited the IFN-alpha-induced phosphorylation of the signal transducer and activator of transcription 1 (STAT1) protein in HepG2 cells, accompanied by the restoration of Clock and Bmal1 mRNA levels. The continuous administration of IFN-alpha significantly decreased CLOCK and BMAL1 protein levels in the suprachiasmatic nucleus and liver of mice, thereby preventing oscillations in the expression of clock and clock-controlled output genes. These results reveal a possible pharmacological action by IFN-alpha on the core circadian oscillation mechanism and indicate that the disruptive effect of IFN-alpha on circadian output function is the underlying cause of its adverse effects on 24-h rhythms in physiology and behavior.
Collapse
Affiliation(s)
- Satoru Koyanagi
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
139
|
Abstract
The core apparatus that regulates circadian rhythm has been extensively studied over the past five years. A looming question remains, however, regarding how this apparatus is adjusted to maintain coordination between physiology and the changing environment. The diversity of stimuli and input pathways that gain access to the circadian clock are summarized. Cellular metabolic states could serve to link physiologic perception of the environment to the circadian oscillatory apparatus. A simple model, integrating biochemical, cellular, and physiologic data, is presented to account for the connection of cellular metabolism and circadian rhythm.
Collapse
Affiliation(s)
- Jared Rutter
- Department of Biochemistry, University of Texas-Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9152, USA.
| | | | | |
Collapse
|
140
|
Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 2002; 277:44244-51. [PMID: 12213820 DOI: 10.1074/jbc.m206233200] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, peripheral circadian clocks are present in most tissues, but little is known about how these clocks are synchronized with the ambient 24-h cycles. By using rat-1 fibroblasts, a model cell system of the peripheral clock, we found that an exchange of the culture medium triggered circadian gene expression that was preceded by slow down-regulation of Per1 and Per2 mRNA levels. This profile contrasts to the immediate up-regulation of these genes often observed for clock resetting. The screening of factor(s) responsible for the down-regulation revealed glucose as a key component triggering the circadian rhythm. The requirement of both glucose metabolism and RNA/protein synthesis for the down-regulation suggests the involvement of gene(s) immediately up-regulated by glucose metabolism. An analysis with high density oligonucleotide microarrays identified >100 glucose-regulated genes. We found among others immediately up-regulated genes encoding transcriptional regulators TIEG1, VDUP1, and HES1, in addition to cooperatively regulated genes that are associated with cholesterol biosynthesis and cell cycle. The immediate up-regulation of Tieg1 and Vdup1 expression was dependent on glucose metabolism but not on protein synthesis, suggesting that the transcriptional regulators mediate the glucose-induced down-regulation of Per1 and Per2 expression. These results illustrate a novel mode of peripheral clock resetting by external glucose, a major food metabolite.
Collapse
Affiliation(s)
- Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Takata M, Burioka N, Ohdo S, Takane H, Terazono H, Miyata M, Sako T, Suyama H, Fukuoka Y, Tomita K, Shimizu E. Daily expression of mRNAs for the mammalian Clock genes Per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:263-9. [PMID: 12499581 DOI: 10.1254/jjp.90.263] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and in most peripheral tissues. Clock genes drive the biological clock. However, circadian expression variations of the human clock genes are still unclear. In this study, we analyzed the daily variations of mPer2 and mClock mRNA expression in both the mouse SCN and liver to evaluate the central and peripheral alterations in the rodent clock genes. We also examined whether there are the daily variations of the clock genes hPer2 and hClock in human peripheral blood mononuclear cells (PBMCs). The daily variation of mClock and mPer2 mRNA expression in mouse SCN and liver were determined at ZT2, ZT6, ZT10, ZT14, ZT18 or ZT22. We isolated PBMCs from 9 healthy volunteers at 9:00 and 21:00 and examined the expression of hPer2 and hClock mRNA by RT-PCR analysis. The animals exhibited a robust daily rhythm in the RNA levels of mPer2 in the SCN and liver (P<0.01, respectively). In humans, hPer2 mRNA expression also had daily variation, and the hPer2 mRNA levels at 9:00 were significantly larger than those at 21:00 (P<0.01). While, the Clock mRNA in both mice and humans exhibited no daily variation. These findings suggest that the variation in hPer2 mRNA expression may be useful for assessing human peripheral circadian systems.
Collapse
Affiliation(s)
- Miyako Takata
- Third Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Hurst WJ, Mitchell JW, Gillette MU. Synchronization and phase-resetting by glutamate of an immortalized SCN cell line. Biochem Biophys Res Commun 2002; 298:133-43. [PMID: 12379231 DOI: 10.1016/s0006-291x(02)02346-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
SCN 2.2 cultures were stably transfected with luciferase reporter constructs driven by Ca(2+)/cAMP response element, E-box, or vasoactive intestinal peptide promoter to probe the circadian properties of this clock cell line. SCN 2.2 reporter lines displayed approximately 24-h rhythms of transcriptional activation after serum-shock. Serum-shocked cultures pulsed with glutamate exhibited phase-gated induction of phospho-CREB and of VIP, CRE, and E-box promoter activity. Glutamate-induced CRE promoter activity displayed restricted sensitivity to inhibitors of nitric oxide synthase and cGMP-dependent protein kinase. The temporal pattern of these sensitivities paralleled those of the SCN to light and glutamate during the night. Taken together, our data indicate that serum-shock can synchronize the circadian clock of SCN 2.2 cells to a state consistent with the day/night transition and, thus, establishes a temporal context for this cell line.
Collapse
Affiliation(s)
- William J Hurst
- Departments of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
143
|
Minami Y, Furuno K, Akiyama M, Moriya T, Shibata S. Pituitary adenylate cyclase-activating polypeptide produces a phase shift associated with induction of mPer expression in the mouse suprachiasmatic nucleus. Neuroscience 2002; 113:37-45. [PMID: 12123682 DOI: 10.1016/s0306-4522(02)00148-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main mammalian circadian pacemaker is located in the suprachiasmatic nucleus of the hypothalamus. Clock genes such as the mouse Period gene (mPer) play a role in this core clock mechanism in the mouse. With brief light exposure during the subjective night, the photic information, which is conveyed directly to the suprachiasmatic nucleus via the retinohypothalamic tract, results in mPer1 and mPer2 expression in the suprachiasmatic nucleus. Glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) are co-stored in the retinohypothalamic tract. Recent studies have suggested that not only glutamate but also PACAP are key players in the phase shift that occurs during subject night; however, research demonstrating a direct association between the PACAP-induced phase shift and mPer gene expression has yet to be conducted. In the present study, PACAP (200 pmol) injected into the lateral ventricle during subjective night (circadian time 16; circadian time 12, onset of locomotor activity) caused a moderate phase delay associated with moderate expression of mPer1 and only slight expression of mPer2 in the mouse suprachiasmatic nucleus. PACAP-induced mPer1 expression was also observed in the paraventricular nucleus and periventricular area of the hypothalamus. (+)MK-801 (0.5 mg/kg), an N-methyl-D-aspartate (NMDA) receptor antagonist, suppressed both the PACAP-induced phase delay and mPer1 expression. From these results we suggest that PACAP induces phase delays in the mouse circadian rhythm in association with an increase of mPer expression in the suprachiasmatic nucleus via the activation of NMDA receptors.
Collapse
Affiliation(s)
- Y Minami
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | | | | | | | | |
Collapse
|
144
|
Yan L, Silver R. Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur J Neurosci 2002; 16:1531-40. [PMID: 12405967 PMCID: PMC3281755 DOI: 10.1046/j.1460-9568.2002.02224.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism whereby brief light exposure resets the mammalian circadian clock in a phase dependent manner is not known, but is thought to involve Per gene expression. At the behavioural level, a light pulse produces phase delays in early subjective night, phase advances in late subjective night, and no phase shifts in mid-subjective night or subjective day. To understand the relationship between Per gene activity and behavioural phase shifts, we examined light-induced mPer1 and mPer2 expression in the suprachiasmatic nucleus (SCN) of the mouse, in the subjective night, with a view to understanding SCN heterogeneity. In the VIP-containing region of the SCN (termed 'core'), light-induced mPer1 expression occurs at all times of the subjective night, while mPer2 induction is seen only in early subjective night. In the remaining regions of the SCN (termed 'shell'), a phase delaying light pulse produces no mPer1 but significant mPer2 expression, while a phase advancing light pulse produces no mPer2 but substantial mPer1 induction. Moreover, following a light pulse during mid-subjective night, neither mPer1 nor mPer2 are induced in the shell. The results reveal that behavioural phase shifts occur only when light-induced Per gene expression spreads from the core to the shell SCN, with mPer1 expression in shell corresponding to phase advances, and mPer2 corresponding to phase delays. The results indicate that the time course and the localization of light-induced Per gene expression in SCN reveals important aspects of intra-SCN communication.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology, Columbia University, New York, NY 10027
| | - Rae Silver
- Department of Psychology, Columbia University, New York, NY 10027
- Department of Psychology, Barnard College, New York, NY 10027
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
145
|
Yannielli PC, McKinley Brewer J, Harrington ME. Is novel wheel inhibition of per1 and per2 expression linked to phase shift occurrence? Neuroscience 2002; 112:677-85. [PMID: 12074909 DOI: 10.1016/s0306-4522(02)00100-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied whether access to a novel running wheel in vivo could reset the suprachiasmatic nuclei (SCN) in vitro. Golden hamsters were transferred to dim red light at Zeitgeber time (ZT) 4, given their first exposure to a running wheel for 3 h, and killed at either ZT7 or ZT9. Using a brain slice preparation, the SCN firing rate rhythm in vitro was advanced relative to controls only in the slices prepared at ZT9 (phase shift: 2.36+/-0.06 h, n=4) but not ZT7 (-0.26+/-0.16 h, n=4). Transitions to dim red light or brain slice preparation at ZT7 or ZT9 alone do not shift the rhythm. Hamsters with wheels had significantly lower levels of SCN per1 mRNA compared with controls at ZT7, and lower per2 mRNA when examined at ZT9. We conclude that 3 h of novel wheel access appears to require some extended time in vivo in order for the SCN to be reset, even beyond the time when per1 mRNA levels have been altered.
Collapse
Affiliation(s)
- P C Yannielli
- Department of Psychology and Neuroscience Program, Smith College, Northampton, MA 01063, USA
| | | | | |
Collapse
|
146
|
Reddy AB, Field MD, Maywood ES, Hastings MH. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci 2002; 22:7326-30. [PMID: 12196553 PMCID: PMC6757999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 06/19/2002] [Accepted: 06/19/2002] [Indexed: 02/26/2023] Open
Abstract
Disruption of the circadian timing system arising from travel between time zones ("jet lag") and rotational shift work impairs mental and physical performance and severely compromises long-term health. Circadian disruption is more severe during adaptation to advances in local time, because the circadian clock takes much longer to phase advance than delay. The recent identification of mammalian circadian clock genes now makes it possible to examine time zone adjustments from the perspective of molecular events within the suprachiasmatic nucleus (SCN), the principal circadian oscillator. Current models of the clockwork posit interlocked transcriptional/post-translational feedback loops based on the light-sensitive Period (Per) genes and the Cryptochrome (Cry) genes, which are indirectly regulated by light. We show that circadian cycles of mPer expression in the mouse SCN react rapidly to an advance in the lighting schedule, whereas rhythmic mCry1 expression advances more slowly, in parallel to the gradual resetting of the activity-rest cycle. In contrast, during a delay in local time the mPer and mCry cycles react rapidly, completing the 6 hr shift together by the second cycle, in parallel with the activity-rest cycle. These results reveal the potential for dissociation of mPer and mCry expression within the central oscillator during circadian resetting and a differential molecular response of the clock during advance and delay resetting. They highlight the indirect photic regulation of mCry1 as a potentially rate-limiting factor in behavioral adjustment to time zone transitions.
Collapse
Affiliation(s)
- A B Reddy
- Medical Research Council Laboratory of Molecular Biology, Division of Neurobiology, University of Cambridge, Cambridge, CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
147
|
Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 2002; 99:7728-33. [PMID: 12032351 PMCID: PMC124335 DOI: 10.1073/pnas.102075599] [Citation(s) in RCA: 426] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythmicity in mammals is under the control of a molecular pacemaker constituted of clock gene products organized in transcriptional autoregulatory loops. Phase resetting of the clock in response to light involves dynamic changes in the expression of several clock genes. The molecular pathways used by light to influence pacemaker-driven oscillation of clock genes remain poorly understood. We explored the functional integration of both light- and clock-responsive transcriptional regulation at the promoter level of the Period (Per) genes. Three Per genes exist in the mouse. Whereas mPer1 and mPer2 are light-inducible in clock neurons of the hypothalamic suprachiasmatic nucleus, mPer3 is not. We have studied the promoter structure of the three mPer genes and compared their regulation. All three mPer promoters contain E-boxes and respond to the CLOCK/brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like protein 1 (BMAL1) heterodimer. On the other hand, only mPer1 and mPer2 promoters contain bona fide cAMP-responsive elements (CREs) that bind CRE-binding protein (CREB) from suprachiasmatic nucleus protein extracts. The mPer1 promoter is responsive to synergistic activation of the cAMP and mitogen-activated protein kinase pathways, a physiological response that requires integrity of the CRE. In contrast, activation of mPer promoters by CLOCK/BMAL1 occurs regardless of an intact CRE. Altogether, these results constitute strong evidence that CREB acts as a pivotal endpoint of signaling pathways for the regulation of mPer genes. Our results reveal that signaling-dependent activation of mPer genes is distinct from the CLOCK/BMAL1-driven transcription required within the clock feedback loop.
Collapse
Affiliation(s)
- Zdenka Travnickova-Bendova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université Louis Pasteur, B.P. 10142, 67404 Illkirch-Strasbourg, France
| | | | | | | |
Collapse
|
148
|
Takahashi S, Yoshinobu Y, Aida R, Shimomura H, Akiyama M, Moriya T, Shibata S. Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J Neurosci Res 2002; 68:470-8. [PMID: 11992474 DOI: 10.1002/jnr.10225] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported previously that (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride (MKC-242) (3 mg kg(-1), i.p.), a selective 5-HT(1A) receptor agonist, accelerated the re-entrainment of hamster wheel-running rhythms to a new 8 hr delayed or advanced light-dark cycle, and also potentiated the phase advance of the wheel-running rhythm produced by light pulses. The molecular mechanism underlying MKC-242-induced potentiation of this phase shift, however, has not yet been elucidated. We examined the effects of MKC-242 on light-induced mPer1 and mPer2 mRNA expression in the suprachiasmatic nucleus (SCN) of mice. MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced mPer1 and mPer2 expression in the SCN of mice housed in constant darkness for 2 days, when mRNA levels were observed 3 hr after light-exposure. More potentiating action of MKC-242 on mPer2 expression in the SCN was observed in mice housed in constant darkness for 9-10 days. This facilitatory action of MKC-242 on mPer1 expression was antagonized by WAY100635, a selective 5-HT(1A) receptor blocker, indicating that MKC-242 activated 5-HT(1A) receptors. Other drugs such as 8-hydroxy-dipropylaminotetralin (10 mg kg(-1), i.p.), paroxetine (10 mg kg(-1), i.p.), buspirone (10 mg kg(-1), i.p.), and diazepam (10 mg kg(-1), i.p.) did not display a potentiating action on light-induced mPer1 and mPer2 expression in the SCN. In the behavioral experiments, we found that MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced phase delays of free-running rhythm in mice. The present results suggest that prolonged increase of mPer1 or mPer2 expression in the SCN by MKC-242 may be involved in the potentiation of photic entrainment by MKC-242 in mice.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
149
|
Kolker DE, Losee Olson S, Dutton-Boilek J, Bennett KM, Wallen EP, Horton TH, Turek FW. Feeding melatonin enhances the phase shifting response to triazolam in both young and old golden hamsters. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1382-8. [PMID: 11959680 DOI: 10.1152/ajpregu.00362.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging alters many aspects of circadian rhythmicity, including responsivity to phase-shifting stimuli and the amplitude of the rhythm of melatonin secretion. As melatonin is both an output from and an input to the circadian clock, we hypothesized that the decreased melatonin levels exhibited by old hamsters may adversely impact the circadian system as a whole. We enhanced the diurnal rhythm of melatonin by feeding melatonin to young and old hamsters. Animals of both age groups on the melatonin diet showed larger phase shifts than control-fed animals in response to an injection with the benzodiazepine triazolam at a circadian time known to induce phase advances in the activity rhythm of young animals. Thus melatonin treatment can increase the sensitivity of the circadian timing system of young animals to a nonphotic stimulus, and the ability to increase this sensitivity persists into old age, indicating exogenous melatonin might be useful in reversing at least some age-related changes in circadian clock function.
Collapse
Affiliation(s)
- Daniel E Kolker
- Department of Neurobiology and Physiology and Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schütz G. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 2002; 34:245-53. [PMID: 11970866 DOI: 10.1016/s0896-6273(02)00656-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biological rhythms are driven in mammals by a central circadian clock located in the suprachiasmatic nucleus (SCN). Light-induced phase shifting of this clock is correlated with phosphorylation of CREB at Ser133 in the SCN. Here, we characterize phosphorylation of CREB at Ser142 and describe its contribution to the entrainment of the clock. In the SCN, light and glutamate strongly induce CREB Ser142 phosphorylation. To determine the physiological relevance of phosphorylation at Ser142, we generated a mouse mutant, CREB(S142A), lacking this phosphorylation site. Light-induced phase shifts of locomotion and expression of c-Fos and mPer1 in the SCN are significantly attenuated in CREB(S142A) mutants. Our findings provide genetic evidence that CREB Ser142 phosphorylation is involved in the entrainment of the mammalian clock and reveal a novel phosphorylation-dependent regulation of CREB activity.
Collapse
Affiliation(s)
- Daniel Gau
- Division of Molecular Biology of the Cell I, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|